NACs, generalist in plant life
Summary Plant‐specific NAC proteins constitute a major transcription factor family that is well‐known for its roles in plant growth, development, and responses to abiotic and biotic stresses. In recent years, there has been significant progress in understanding the functions of NAC proteins. NAC pro...
Saved in:
Published in | Plant biotechnology journal Vol. 21; no. 12; pp. 2433 - 2457 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
John Wiley & Sons, Inc
01.12.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Summary
Plant‐specific NAC proteins constitute a major transcription factor family that is well‐known for its roles in plant growth, development, and responses to abiotic and biotic stresses. In recent years, there has been significant progress in understanding the functions of NAC proteins. NAC proteins have a highly conserved DNA‐binding domain; however, their functions are diverse. Previous understanding of the structure of NAC transcription factors can be used as the basis for their functional diversity. NAC transcription factors consist of a target‐binding domain at the N‐terminus and a highly versatile C‐terminal domain that interacts with other proteins. A growing body of research on NAC transcription factors helps us comprehend the intricate signalling network and transcriptional reprogramming facilitated by NAC‐mediated complexes. However, most studies of NAC proteins have been limited to a single function. Here, we discuss the upstream regulators, regulatory components and targets of NAC in the context of their prospective roles in plant improvement strategies via biotechnology intervention, highlighting the importance of the NAC transcription factor family in plants and the need for further research. |
---|---|
AbstractList | Plant-specific NAC proteins constitute a major transcription factor family that is well-known for its roles in plant growth, development, and responses to abiotic and biotic stresses. In recent years, there has been significant progress in understanding the functions of NAC proteins. NAC proteins have a highly conserved DNA-binding domain; however, their functions are diverse. Previous understanding of the structure of NAC transcription factors can be used as the basis for their functional diversity. NAC transcription factors consist of a target-binding domain at the N-terminus and a highly versatile C-terminal domain that interacts with other proteins. A growing body of research on NAC transcription factors helps us comprehend the intricate signalling network and transcriptional reprogramming facilitated by NAC-mediated complexes. However, most studies of NAC proteins have been limited to a single function. Here, we discuss the upstream regulators, regulatory components and targets of NAC in the context of their prospective roles in plant improvement strategies via biotechnology intervention, highlighting the importance of the NAC transcription factor family in plants and the need for further research. Plant-specific NAC proteins constitute a major transcription factor family that is well-known for its roles in plant growth, development, and responses to abiotic and biotic stresses. In recent years, there has been significant progress in understanding the functions of NAC proteins. NAC proteins have a highly conserved DNA-binding domain; however, their functions are diverse. Previous understanding of the structure of NAC transcription factors can be used as the basis for their functional diversity. NAC transcription factors consist of a target-binding domain at the N-terminus and a highly versatile C-terminal domain that interacts with other proteins. A growing body of research on NAC transcription factors helps us comprehend the intricate signalling network and transcriptional reprogramming facilitated by NAC-mediated complexes. However, most studies of NAC proteins have been limited to a single function. Here, we discuss the upstream regulators, regulatory components and targets of NAC in the context of their prospective roles in plant improvement strategies via biotechnology intervention, highlighting the importance of the NAC transcription factor family in plants and the need for further research.Plant-specific NAC proteins constitute a major transcription factor family that is well-known for its roles in plant growth, development, and responses to abiotic and biotic stresses. In recent years, there has been significant progress in understanding the functions of NAC proteins. NAC proteins have a highly conserved DNA-binding domain; however, their functions are diverse. Previous understanding of the structure of NAC transcription factors can be used as the basis for their functional diversity. NAC transcription factors consist of a target-binding domain at the N-terminus and a highly versatile C-terminal domain that interacts with other proteins. A growing body of research on NAC transcription factors helps us comprehend the intricate signalling network and transcriptional reprogramming facilitated by NAC-mediated complexes. However, most studies of NAC proteins have been limited to a single function. Here, we discuss the upstream regulators, regulatory components and targets of NAC in the context of their prospective roles in plant improvement strategies via biotechnology intervention, highlighting the importance of the NAC transcription factor family in plants and the need for further research. Summary Plant‐specific NAC proteins constitute a major transcription factor family that is well‐known for its roles in plant growth, development, and responses to abiotic and biotic stresses. In recent years, there has been significant progress in understanding the functions of NAC proteins. NAC proteins have a highly conserved DNA‐binding domain; however, their functions are diverse. Previous understanding of the structure of NAC transcription factors can be used as the basis for their functional diversity. NAC transcription factors consist of a target‐binding domain at the N‐terminus and a highly versatile C‐terminal domain that interacts with other proteins. A growing body of research on NAC transcription factors helps us comprehend the intricate signalling network and transcriptional reprogramming facilitated by NAC‐mediated complexes. However, most studies of NAC proteins have been limited to a single function. Here, we discuss the upstream regulators, regulatory components and targets of NAC in the context of their prospective roles in plant improvement strategies via biotechnology intervention, highlighting the importance of the NAC transcription factor family in plants and the need for further research. |
Author | Sun, Yuhan Li, Yun Zhao, Ye Han, Kunjin |
Author_xml | – sequence: 1 givenname: Kunjin orcidid: 0009-0005-2253-5625 surname: Han fullname: Han, Kunjin organization: Beijing Forestry University – sequence: 2 givenname: Ye surname: Zhao fullname: Zhao, Ye organization: Beijing Forestry University – sequence: 3 givenname: Yuhan surname: Sun fullname: Sun, Yuhan organization: Beijing Forestry University – sequence: 4 givenname: Yun orcidid: 0000-0002-8426-565X surname: Li fullname: Li, Yun email: yunli@bjfu.edu.cn organization: Beijing Forestry University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37623750$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkctOwzAQRS1URB-w4AeqSGxAIq3fdpal4lGpAhawtpzEQa7SJNiJUP8eQ1sWFYjZzCzOvZqZOwS9qq4MAOcITlCoaZPaCaKIoyMwQJSLWHCGez8zpX0w9H4FIUac8RPQJ4JjIhgcgPHjbO6vozdTGadL69vIVlFT6qqNSluYU3Bc6NKbs10fgde725f5Q7x8ul_MZ8s4oxihONWMCIkhhwYKiHNJEpJplgvBUyMlQkkuhcEkZ0kGWV5khUkoJ5IWTHPBczICl1vfxtXvnfGtWlufmTIsYurOKwIpJCxcSP5FsWRCMoYwDOjFAbqqO1eFQwKVQMgkFShQ4x3VpWuTq8bZtXYbtX9SAKZbIHO1984UKrOtbm1dtU7bUiGovmJQIQb1HUNQXB0o9qa_sTv3D1uazd-ger5ZbBWfpLuRCQ |
CitedBy_id | crossref_primary_10_1016_j_jare_2024_05_032 crossref_primary_10_3390_plants12213755 crossref_primary_10_1111_pce_14944 crossref_primary_10_3390_horticulturae10121236 crossref_primary_10_1016_j_stress_2024_100559 crossref_primary_10_3390_agronomy15010251 crossref_primary_10_3390_horticulturae10060595 crossref_primary_10_1111_pce_15168 crossref_primary_10_3389_fgene_2024_1375488 crossref_primary_10_1093_plphys_kiae202 crossref_primary_10_1016_j_plantsci_2024_112283 crossref_primary_10_3390_ijms25020688 crossref_primary_10_1016_j_jia_2024_12_033 crossref_primary_10_3390_ijms25042037 crossref_primary_10_1016_j_plaphy_2025_109645 crossref_primary_10_1111_tpj_17173 crossref_primary_10_1093_plphys_kiae031 crossref_primary_10_1016_j_plaphy_2025_109676 crossref_primary_10_1016_j_indcrop_2025_120691 crossref_primary_10_1002_advs_202400930 crossref_primary_10_3389_fpls_2025_1563065 crossref_primary_10_1093_plphys_kiaf001 crossref_primary_10_1016_j_plaphy_2024_109098 crossref_primary_10_3390_f15030479 crossref_primary_10_1016_j_stress_2024_100724 crossref_primary_10_3390_ijms252312531 crossref_primary_10_1016_j_cj_2024_11_001 crossref_primary_10_1093_hr_uhae284 crossref_primary_10_1016_j_plantsci_2024_112258 crossref_primary_10_1007_s44154_024_00201_w crossref_primary_10_3390_plants14060834 crossref_primary_10_1016_j_hpj_2024_06_007 crossref_primary_10_1016_j_postharvbio_2025_113459 crossref_primary_10_1111_pce_15291 crossref_primary_10_1016_j_plaphy_2024_108721 crossref_primary_10_1007_s00425_024_04438_7 crossref_primary_10_1111_ppl_70123 crossref_primary_10_3390_plants13101352 crossref_primary_10_1111_plb_13657 crossref_primary_10_1007_s00299_024_03402_9 crossref_primary_10_3389_fpls_2024_1474589 crossref_primary_10_1111_tpj_70077 crossref_primary_10_3390_ijms25063296 crossref_primary_10_3390_biom14020182 crossref_primary_10_1038_s41598_024_82151_x crossref_primary_10_1016_j_indcrop_2024_120138 crossref_primary_10_3390_ijms251910355 crossref_primary_10_1016_j_indcrop_2025_120827 crossref_primary_10_1016_j_plaphy_2024_108629 crossref_primary_10_1016_j_plantsci_2025_112455 crossref_primary_10_1016_j_plaphy_2024_108828 crossref_primary_10_1016_j_plantsci_2024_112276 crossref_primary_10_1038_s41598_025_85615_w |
Cites_doi | 10.1093/plphys/kiac397 10.1093/jxb/ers349 10.1093/hr/uhac136 10.1111/tpj.15485 10.1105/tpc.113.117861 10.1105/tpc.114.133769 10.1093/jxb/eraa333 10.1105/tpc.15.00015 10.1016/j.pbi.2014.07.009 10.1016/j.plaphy.2019.04.038 10.1104/pp.113.223388 10.1111/tpj.15447 10.1093/plphys/kiac146 10.4161/psb.11083 10.1111/tpj.12819 10.1093/pcp/pct113 10.1101/gad.852200 10.1093/mp/ssq062 10.1007/s00299-016-1996-9 10.1016/j.molp.2021.09.006 10.1111/tpj.12194 10.1111/mpp.12281 10.1111/j.1365-313X.2004.02171.x 10.1104/pp.15.00567 10.1016/j.tplants.2012.02.004 10.1016/j.fob.2013.07.006 10.1111/nph.18340 10.1111/j.1365-313X.2005.02488.x 10.3389/fpls.2016.00004 10.1016/j.plantsci.2005.05.035 10.1093/jxb/eru072 10.3390/ijms20133225 10.1111/nph.12047 10.3390/ijms232012258 10.1111/nph.17425 10.1016/j.molp.2021.07.014 10.1016/j.jplph.2017.12.009 10.1111/j.1365-313X.2006.02723.x 10.3389/fpls.2013.00273 10.1104/pp.15.00943 10.3389/fpls.2017.01049 10.1016/j.plantsci.2016.05.019 10.1111/nph.17560 10.1042/BJ20091234 10.1111/nph.18343 10.1093/dnares/10.6.239 10.1111/j.1365-313X.2011.04764.x 10.1093/plphys/kiac070 10.1104/pp.108.131912 10.1073/pnas.2010911118 10.1016/j.cell.2017.09.030 10.1093/jxb/ery366 10.1104/pp.20.01033 10.1105/tpc.108.063321 10.1104/pp.18.01167 10.1016/j.gene.2010.06.008 10.1093/hr/uhac039 10.1105/tpc.105.036004 10.1111/tpj.15807 10.4161/gmcr.1.1.10569 10.1093/jxb/ers178 10.3389/fpls.2020.00564 10.1038/21877 10.1111/nph.12797 10.1105/tpc.15.00222 10.1016/j.molp.2017.09.008 10.1038/s41438-018-0111-5 10.1111/tpj.12018 10.1186/1471-2229-12-220 10.1093/plcell/koaa040 10.1111/j.1365-313X.2010.04151.x 10.1073/pnas.232590499 10.1093/jxb/eraa131 10.1016/S0092-8674(00)81093-4 10.1007/s13238-011-1010-9 10.1038/s41438-021-00649-1 10.1038/embor.2013.24 10.1093/plphys/kiab195 10.1016/j.optlastec.2008.12.018 10.1111/tpj.14484 10.1093/nar/gkaa1191 10.1105/tpc.111.090894 10.1146/annurev.arplant.53.091401.143329 10.1093/plphys/kiac508 10.1016/j.cell.2016.08.029 10.1111/nph.18301 10.1146/annurev.arplant.57.032905.105316 10.1105/tpc.9.6.841 10.1093/jxb/ert324 10.1105/tpc.113.118927 10.1111/j.1365-313X.2007.03350.x 10.1104/pp.19.00148 10.1111/j.1365-313X.2012.04932.x 10.3389/fpls.2021.634040 10.1105/tpc.18.00662 10.1111/j.1365-313X.2008.03646.x 10.1007/s10142-008-0076-9 10.1038/cr.2009.108 10.1093/jxb/ert412 10.1038/nature14099 10.3389/fpls.2017.02118 10.1016/j.plaphy.2020.01.020 10.3389/fpls.2015.00288 10.1016/j.molp.2023.02.006 10.1111/nph.16036 10.1038/s41467-022-29210-x 10.1093/jxb/erz513 10.1111/tpj.13867 10.1073/pnas.1803841115 10.1073/pnas.1016436107 10.3109/07388551.2010.505910 10.1038/s41438-021-00644-6 10.3389/fpls.2018.00310 10.1111/pce.12303 10.1093/jxb/eru112 10.1111/pbi.13297 10.1111/pce.13829 10.1371/journal.pgen.1010090 10.1371/journal.pgen.1005399 10.1111/pbi.13209 10.1105/tpc.110.075036 10.1093/plcell/koac041 10.1186/1471-2229-10-145 10.1093/plcell/koac151 10.1104/pp.17.00542 10.1111/tpj.12605 10.1104/pp.16.01096 10.1093/plphys/kiab190 10.1104/pp.18.00292 10.3389/fpls.2021.655127 10.1093/jxb/erab027 10.1111/pbi.12776 10.1016/j.pbi.2020.05.008 10.3389/fpls.2022.818107 10.3389/fpls.2021.770060 10.1016/j.cub.2005.02.017 10.1093/jxb/erv240 10.1126/science.1248417 10.1111/j.1365-313X.2011.04687.x 10.1105/tpc.106.047043 10.1093/plcell/koac026 10.1105/tpc.108.061325 10.1105/tpc.010192 10.1007/s00438-010-0557-0 10.3389/fpls.2022.986628 10.1126/science.321.5887.330 10.1093/jxb/erz098 10.1111/tpj.12923 10.1146/annurev-arplant-042916-040936 10.1107/S0907444903022029 10.1073/pnas.1904995116 10.1038/ncomms5636 10.1038/nplants.2016.13 10.3389/fpls.2019.01036 10.1002/pmic.201400375 10.1111/nph.16233 10.1038/sj.embor.7400093 10.1146/annurev-arplant-050718-100005 10.1016/j.pbi.2008.10.005 10.1111/pbi.13277 10.1111/jipb.13218 10.1016/j.tplants.2004.12.010 10.1105/tpc.107.053678 10.1105/tpc.111.084913 10.1111/pce.13363 10.1007/s00425-010-1238-2 10.1111/tpj.14310 10.1073/pnas.1721523115 10.1111/j.1365-313X.2009.04091.x 10.1104/pp.20.00313 10.3390/ijms23179625 10.3390/cells10051136 10.1105/tpc.19.00569 10.1038/s41438-020-00442-6 10.1111/tpj.15057 10.1093/jxb/eraa320 10.1016/j.tplants.2008.06.008 10.1105/tpc.106.047399 10.3389/fpls.2018.00383 10.1111/pce.13803 10.1146/annurev.arplant.59.032607.092911 10.1104/pp.17.00461 10.1105/tpc.18.00293 10.1093/jxb/eraa118 10.1111/tpj.15512 10.1186/s12870-022-03623-8 10.1093/jxb/erac436 10.3390/ijms23031755 10.1007/s00438-008-0386-6 10.1093/plphys/kiac351 10.1111/jipb.13414 10.1111/pbi.13524 10.1111/tpj.13030 10.1093/mp/sst012 10.3389/fpls.2022.925035 10.1111/j.1365-313X.2011.04514.x |
ContentType | Journal Article |
Copyright | 2023 The Authors. published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd. 2023 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd. 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2023 The Authors. published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd. – notice: 2023 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd. – notice: 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 8FD 8FE 8FG 8FH ABJCF ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 GNUQQ HCIFZ L6V LK8 M7P M7S P64 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7X8 7S9 L.6 |
DOI | 10.1111/pbi.14161 |
DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Engineering Collection Biological Sciences Biological Science Database ProQuest Engineering Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Engineering Collection Biotechnology Research Abstracts Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) Engineering Collection Engineering Database ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Technology Collection Biological Science Database ProQuest SciTech Collection Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic CrossRef AGRICOLA Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access (WRLC) url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 1467-7652 |
EndPage | 2457 |
ExternalDocumentID | 37623750 10_1111_pbi_14161 PBI14161 |
Genre | reviewArticle Research Support, Non-U.S. Gov't Journal Article Review |
GrantInformation_xml | – fundername: Fundamental Research Funds for the Central Universities funderid: PTYX202338 – fundername: National Natural Science Foundation of China funderid: 32171769 – fundername: Fundamental Research Funds for the Central Universities grantid: PTYX202338 – fundername: National Natural Science Foundation of China grantid: 32171769 |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 123 1OC 24P 29O 31~ 33P 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52W 52X 53G 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8FE 8FG 8FH 8UM 930 A03 A8Z AAEVG AAHBH AAHHS AANHP AAONW AAZKR ABCQN ABDBF ABEML ABIJN ABJCF ABPVW ACBWZ ACCFJ ACCMX ACIWK ACPRK ACRPL ACSCC ACUHS ACXQS ACYXJ ADBBV ADIZJ ADKYN ADNMO ADZMN AEEZP AEIMD AENEX AEQDE AEUQT AEUYN AFBPY AFEBI AFKRA AFRAH AFZJQ AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR ASPBG ATUGU AVUZU AVWKF AZBYB AZFZN BAFTC BBNVY BCNDV BDRZF BENPR BFHJK BGLVJ BHPHI BNHUX BROTX BRXPI BY8 CAG CCPQU COF CS3 D-E D-F DPXWK DR2 DU5 EAD EAP EBD EBS ECGQY EDH EJD EMK EMOBN EST ESX F00 F01 F04 F5P FEDTE G-S G.N GODZA GROUPED_DOAJ H.T H.X HCIFZ HF~ HOLLA HVGLF HZ~ IAO IEP IGS IHE ITC IX1 J0M KQ8 L6V LC2 LC3 LH4 LK8 LP6 LP7 LW6 M7P M7S MK4 ML0 N04 N05 N9A NF~ O66 O9- OIG OK1 P2P P2X P4D PIMPY PROAC PTHSS Q.N Q11 QB0 QM4 QO4 R.K ROL RPM RX1 SUPJJ SV3 TUS UB1 W8V W99 WIH WIN WQJ WRC XG1 ~IA ~KM ~WT AAYXX AGQPQ CITATION PHGZM PHGZT AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM PQGLB 7QO 8FD ABUWG AZQEC DWQXO FR3 GNUQQ P64 PKEHL PQEST PQQKQ PQUKI PRINS 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c4211-ba53782060e0702d8393ca5d776be88119d87e23d59c05dfcfe946384f5a676d3 |
IEDL.DBID | DR2 |
ISSN | 1467-7644 1467-7652 |
IngestDate | Fri Jul 11 18:35:08 EDT 2025 Fri Jul 11 15:05:47 EDT 2025 Wed Aug 13 09:56:44 EDT 2025 Mon Jul 21 06:02:51 EDT 2025 Thu Apr 24 23:12:37 EDT 2025 Tue Jul 01 02:34:50 EDT 2025 Wed Jan 22 17:18:46 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | plant development stress NAC transcription factors network |
Language | English |
License | Attribution 2023 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4211-ba53782060e0702d8393ca5d776be88119d87e23d59c05dfcfe946384f5a676d3 |
Notes | These authors contributed equally to this work ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-8426-565X 0009-0005-2253-5625 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fpbi.14161 |
PMID | 37623750 |
PQID | 2890058471 |
PQPubID | 1096352 |
PageCount | 2457 |
ParticipantIDs | proquest_miscellaneous_3040351613 proquest_miscellaneous_2857855120 proquest_journals_2890058471 pubmed_primary_37623750 crossref_citationtrail_10_1111_pbi_14161 crossref_primary_10_1111_pbi_14161 wiley_primary_10_1111_pbi_14161_PBI14161 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2023 2023-12-00 20231201 |
PublicationDateYYYYMMDD | 2023-12-01 |
PublicationDate_xml | – month: 12 year: 2023 text: December 2023 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Southampton |
PublicationTitle | Plant biotechnology journal |
PublicationTitleAlternate | Plant Biotechnol J |
PublicationYear | 2023 |
Publisher | John Wiley & Sons, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc |
References | 2020c; 7 2010; 10 2013; 3 2013; 4 2022c; 64 2010; 107 2013a; 14 2019; 99 2019; 10 2013; 64 2002; 99 2010; 465 2022; 23 2014; 26 2005b; 10 2004; 5 2021a; 49 2018; 41 2012; 17 2020; 11 2021; 72 2012; 12 2013; 6 1997; 9 2016; 35 2014; 21 2010; 22 2018; 177 2018; 9 2018; 176 2018; 5 2010; 1 2000; 14 2019; 20 2013; 54 2015; 84 2004; 39 2015; 83 2022b; 15 2022; 34 2010; 232 2011; 66 2011; 68 2018; 30 2021b; 8 2013; 197 2008; 20 2010; 3 2021c; 108 2009; 19 2012; 24 2010; 5 2022; 111 2022b; 189 2018; 221 2007; 19 2011; 2 2019; 31 2022; 190 2017; 68 2020; 148 2008; 59 2016; 167 2008; 56 2010; 284 2022b; 190 2020; 32 2008; 53 2016; 17 2019; 100 2022; 235 2022; 189 2016; 7 2019; 181 2016; 2 2006; 46 2013; 73 2021b; 108 2015; 66 2013; 75 2018; 115 2022; 9 2014; 37 2022; 13 2019; 179 1996; 85 2015; 517 2018; 94 2005; 15 2020a; 18 2005; 17 2018; 16 2022; 18 2016; 172 2017; 8 2004; 60 2010; 426 2002; 53 2008; 8 2020; 57 2013; 163 2022a; 191 1999; 400 2021c; 12 2022; 65 2022a; 236 2010; 62 2003; 10 2014; 65 2010; 61 2008; 280 2012; 70 2014; 5 2022b; 236 2020a; 71 2021; 118 2019; 116 2015a; 82 2021a; 10 2011; 23 2021; 232 2020b; 225 2020; 43 2021; 231 2001; 13 2022a; 22 2014; 203 2012; 63 2021; 8 2015; 15 2015; 6 2019; 70 2009; 21 2020; 184 2015; 168 2023; 16 2021; 105 2015; 11 2011; 31 2020; 225 2017; 171 2006; 18 2005; 43 2008; 13 2021; 186 2008; 11 2017; 174 2022a; 74 2019; 140 2008; 321 2007; 58 2021; 14 2020b; 18 2013b; 25 2020a; 184 2015; 27 2021; 12 2020; 71 2017; 10 2021; 19 2011; 43 2014; 79 2021a; 33 2015b; 169 2005a; 169 2009; 149 2016; 250 2014; 343 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_132_1 e_1_2_8_155_1 e_1_2_8_178_1 e_1_2_8_9_1 e_1_2_8_117_1 e_1_2_8_170_1 e_1_2_8_193_1 e_1_2_8_64_1 e_1_2_8_87_1 e_1_2_8_41_1 e_1_2_8_15_1 e_1_2_8_38_1 Sosa‐Valencia G. (e_1_2_8_131_1) 2017; 68 e_1_2_8_120_1 e_1_2_8_143_1 e_1_2_8_166_1 e_1_2_8_189_1 e_1_2_8_91_1 e_1_2_8_99_1 e_1_2_8_105_1 e_1_2_8_128_1 e_1_2_8_181_1 e_1_2_8_53_1 e_1_2_8_76_1 e_1_2_8_30_1 e_1_2_8_25_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_133_1 e_1_2_8_179_1 e_1_2_8_110_1 e_1_2_8_171_1 e_1_2_8_86_1 e_1_2_8_118_1 e_1_2_8_194_1 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_156_1 e_1_2_8_14_1 e_1_2_8_37_1 e_1_2_8_144_1 e_1_2_8_90_1 e_1_2_8_121_1 e_1_2_8_98_1 e_1_2_8_106_1 e_1_2_8_182_1 e_1_2_8_75_1 e_1_2_8_167_1 e_1_2_8_28_1 e_1_2_8_81_1 e_1_2_8_111_1 e_1_2_8_7_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_89_1 e_1_2_8_119_1 e_1_2_8_172_1 e_1_2_8_195_1 e_1_2_8_134_1 e_1_2_8_157_1 e_1_2_8_17_1 Smýkal P. (e_1_2_8_129_1) 2014; 5 e_1_2_8_70_1 e_1_2_8_122_1 e_1_2_8_160_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_78_1 e_1_2_8_107_1 e_1_2_8_183_1 e_1_2_8_145_1 e_1_2_8_168_1 e_1_2_8_93_1 e_1_2_8_27_1 e_1_2_8_80_1 e_1_2_8_150_1 e_1_2_8_8_1 e_1_2_8_42_1 e_1_2_8_88_1 e_1_2_8_65_1 e_1_2_8_173_1 e_1_2_8_112_1 e_1_2_8_158_1 e_1_2_8_196_1 e_1_2_8_135_1 e_1_2_8_39_1 e_1_2_8_16_1 e_1_2_8_92_1 e_1_2_8_100_1 e_1_2_8_161_1 e_1_2_8_31_1 e_1_2_8_77_1 e_1_2_8_54_1 e_1_2_8_108_1 e_1_2_8_184_1 e_1_2_8_123_1 e_1_2_8_169_1 e_1_2_8_146_1 e_1_2_8_68_1 e_1_2_8_5_1 e_1_2_8_151_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_113_1 e_1_2_8_136_1 e_1_2_8_159_1 e_1_2_8_174_1 e_1_2_8_197_1 e_1_2_8_60_1 e_1_2_8_83_1 e_1_2_8_19_1 e_1_2_8_109_1 e_1_2_8_57_1 e_1_2_8_95_1 e_1_2_8_162_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_101_1 e_1_2_8_124_1 e_1_2_8_147_1 e_1_2_8_185_1 Kong X.‐M. (e_1_2_8_66_1) 2020; 71 e_1_2_8_72_1 e_1_2_8_29_1 e_1_2_8_200_1 e_1_2_8_152_1 e_1_2_8_6_1 e_1_2_8_21_1 e_1_2_8_67_1 e_1_2_8_44_1 e_1_2_8_137_1 e_1_2_8_175_1 e_1_2_8_82_1 e_1_2_8_114_1 e_1_2_8_198_1 e_1_2_8_18_1 Ionescu I.A. (e_1_2_8_52_1) 2017; 68 e_1_2_8_79_1 e_1_2_8_94_1 e_1_2_8_163_1 e_1_2_8_140_1 e_1_2_8_10_1 e_1_2_8_56_1 e_1_2_8_33_1 e_1_2_8_102_1 e_1_2_8_148_1 e_1_2_8_186_1 e_1_2_8_71_1 e_1_2_8_125_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_201_1 e_1_2_8_3_1 e_1_2_8_130_1 e_1_2_8_153_1 e_1_2_8_138_1 e_1_2_8_62_1 e_1_2_8_85_1 e_1_2_8_115_1 e_1_2_8_176_1 e_1_2_8_199_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_190_1 e_1_2_8_141_1 e_1_2_8_164_1 e_1_2_8_97_1 e_1_2_8_149_1 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_103_1 e_1_2_8_126_1 e_1_2_8_187_1 e_1_2_8_46_1 e_1_2_8_69_1 e_1_2_8_180_1 e_1_2_8_154_1 e_1_2_8_4_1 e_1_2_8_192_1 e_1_2_8_116_1 e_1_2_8_23_1 e_1_2_8_139_1 e_1_2_8_84_1 e_1_2_8_61_1 e_1_2_8_177_1 e_1_2_8_35_1 e_1_2_8_58_1 e_1_2_8_191_1 e_1_2_8_165_1 e_1_2_8_96_1 e_1_2_8_142_1 e_1_2_8_127_1 e_1_2_8_12_1 e_1_2_8_73_1 e_1_2_8_50_1 e_1_2_8_104_1 e_1_2_8_188_1 |
References_xml | – volume: 21 start-page: 133 year: 2014 end-page: 139 article-title: ABA‐dependent and ABA‐independent signaling in response to osmotic stress in plants publication-title: Curr. Opin. Plant Biol. – volume: 236 start-page: 495 year: 2022b end-page: 511 article-title: TaSRO1 plays a dual role in suppressing TaSIP1 to fine tune mitochondrial retrograde signalling and enhance salinity stress tolerance publication-title: New Phytol. – volume: 43 start-page: 745 year: 2005 end-page: 757 article-title: The transcription factor ATAF2 represses the expression of pathogenesis‐related genes in publication-title: Plant J. – volume: 11 year: 2015 article-title: EIN3 and ORE1 accelerate degreening during ethylene‐mediated leaf senescence by directly activating chlorophyll catabolic genes in publication-title: PLoS Genet. – volume: 30 start-page: 2197 year: 2018 end-page: 2213 article-title: NAC transcription factors ANAC087 and ANAC046 control distinct aspects of programmed cell death in the columella and lateral root cap publication-title: Plant Cell – volume: 115 start-page: E4930 year: 2018 end-page: E4939 article-title: Time‐evolving genetic networks reveal a NAC troika that negatively regulates leaf senescence in Arabidopsis publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 6 start-page: 288 year: 2015 article-title: NAC‐MYB‐based transcriptional regulation of secondary cell wall biosynthesis in land plants publication-title: Front. Plant Sci. – volume: 181 start-page: 595 year: 2019 end-page: 608 article-title: LBD29‐involved auxin signaling represses NAC master regulators and fiber wall biosynthesis publication-title: Plant Physiol. – volume: 84 start-page: 597 year: 2015 end-page: 610 article-title: Jasmonic acid promotes degreening via MYC2/3/4‐ and ANAC019/055/072‐mediated regulation of major chlorophyll catabolic genes publication-title: Plant J. – volume: 190 start-page: 1960 year: 2022b end-page: 1977 article-title: NAC transcription factor TgNAP promotes tulip petal senescence publication-title: Plant Physiol. – volume: 71 start-page: 1078 year: 2020 end-page: 1091 article-title: Transcription factor CaNAC1 regulates low‐temperature‐induced phospholipid degradation in green bell pepper publication-title: J. Exp. Bot. – volume: 163 start-page: 775 year: 2013 end-page: 791 article-title: An NAC transcription factor controls ethylene‐regulated cell expansion in flower petals publication-title: Plant Physiol. – volume: 99 start-page: 15794 year: 2002 end-page: 15799 article-title: Visualization by comprehensive microarray analysis of gene expression programs during transdifferentiation of mesophyll cells into xylem cells publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 284 start-page: 173 year: 2010 end-page: 183 article-title: The abiotic stress‐responsive NAC‐type transcription factor OsNAC5 regulates stress‐inducible genes and stress tolerance in rice publication-title: Mol. Genet. Genomics – volume: 5 start-page: 481 year: 2010 end-page: 483 article-title: A membrane‐bound NAC transcription factor as an integrator of biotic and abiotic stress signals publication-title: Plant Signal. Behav. – volume: 203 start-page: 32 year: 2014 end-page: 43 article-title: Abiotic and biotic stress combinations publication-title: New Phytol. – volume: 190 start-page: 2045 year: 2022 end-page: 2058 article-title: STRONG STAYGREEN inhibits DNA binding of PvNAP transcription factors during leaf senescence in switchgrass publication-title: Plant Physiol. – volume: 41 start-page: 2463 year: 2018 end-page: 2474 article-title: The E3 ligase BRUTUS facilitates degradation of VOZ1/2 transcription factors publication-title: Plant Cell Environ. – volume: 186 start-page: 2169 year: 2021 end-page: 2189 article-title: Pepper NAC‐type transcription factor NAC2c balances the trade‐off between growth and defense responses publication-title: Plant Physiol. – volume: 57 start-page: 16 year: 2020 end-page: 23 article-title: Mechanical control of plant morphogenesis: concepts and progress publication-title: Curr. Opin. Plant Biol. – volume: 85 start-page: 159 year: 1996 end-page: 170 article-title: The no apical meristem gene of Petunia is required for pattern formation in embryos and flowers and is expressed at meristem and primordia boundaries publication-title: Cell – volume: 18 start-page: 3158 year: 2006 end-page: 3170 article-title: SND1, a NAC domain transcription factor, is a key regulator of secondary wall synthesis in fibers of publication-title: Plant Cell – volume: 14 start-page: 382 year: 2013a end-page: 388 article-title: ORE1 balances leaf senescence against maintenance by antagonizing G2‐like‐mediated transcription publication-title: EMBO Rep. – volume: 63 start-page: 5171 year: 2012 end-page: 5187 article-title: Molecular characterization of banana NAC transcription factors and their interactions with ethylene signalling component EIL during fruit ripening publication-title: J. Exp. Bot. – volume: 184 start-page: 1153 year: 2020 end-page: 1171 article-title: MaXB3 modulates MaNAC2, MaACS1, and MaACO1 stability to repress ethylene biosynthesis during banana fruit ripening publication-title: Plant Physiol. – volume: 8 start-page: 209 year: 2021 article-title: The NAM/ATAF1/2/CUC2 transcription factor PpNAC.A59 enhances expression to promote ethylene biosynthesis during peach fruit ripening publication-title: Hortic. Res. – volume: 12 start-page: 220 year: 2012 article-title: miRNA164‐directed cleavage of ZmNAC1 confers lateral root development in maize ( .) publication-title: BMC Plant Biol. – volume: 9 start-page: 310 year: 2018 article-title: Overexpression of improves drought tolerance in rice publication-title: Front. Plant Sci. – volume: 31 start-page: 186 year: 2011 end-page: 192 article-title: CBF‐dependent signaling pathway: a key responder to low temperature stress in plants publication-title: Crit. Rev. Biotechnol. – volume: 23 start-page: 12258 year: 2022 article-title: NAC1 maintains root meristem activity by repressing the transcription of E2Fa in publication-title: Int. J. Mol. Sci. – volume: 49 start-page: 190 year: 2021a end-page: 205 article-title: Histone methyltransferase ATX1 dynamically regulates fiber secondary cell wall biosynthesis in inflorescence stem publication-title: Nucleic Acids Res. – volume: 25 start-page: 4941 year: 2013b end-page: 4955 article-title: NAC transcription factor speedy hyponastic growth regulates flooding‐induced leaf movement in publication-title: Plant Cell – volume: 116 start-page: 11223 year: 2019 end-page: 11228 article-title: NAC‐type transcription factors regulate accumulation of starch and protein in maize seeds publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 12 year: 2021c article-title: DELLA‐NAC interactions mediate GA signaling to promote secondary cell wall formation in cotton stem publication-title: Front. Plant Sci. – volume: 21 start-page: 248 year: 2009 end-page: 266 article-title: MYB58 and MYB63 are transcriptional activators of the lignin biosynthetic pathway during secondary cell wall formation in publication-title: Plant Cell – volume: 225 start-page: 1531 year: 2020 end-page: 1544 article-title: KNAT2/6b, a class I KNOX gene, impedes xylem differentiation by regulating NAC domain transcription factors in poplar publication-title: New Phytol. – volume: 27 start-page: 1681 year: 2015 end-page: 1696 article-title: A gibberellin‐mediated DELLA‐NAC signaling cascade regulates cellulose synthesis in rice publication-title: Plant Cell – volume: 70 start-page: 2727 year: 2019 end-page: 2740 article-title: Tomato fruit ripening factor NOR controls leaf senescence publication-title: J. Exp. Bot. – volume: 280 start-page: 547 year: 2008 end-page: 563 article-title: Systematic sequence analysis and identification of tissue‐specific or stress‐responsive genes of NAC transcription factor family in rice publication-title: Mol. Genet. Genomics – volume: 71 start-page: 5794 year: 2020a end-page: 5807 article-title: The NAC transcription factor NAC019‐A1 is a negative regulator of starch synthesis in wheat developing endosperm publication-title: J. Exp. Bot. – volume: 184 start-page: 1389 year: 2020a end-page: 1406 article-title: MYB transcription factor161 mediates feedback regulation of secondary wall‐associated NAC‐Domain1 family genes for wood formation publication-title: Plant Physiol. – volume: 65 start-page: 2119 year: 2014 end-page: 2135 article-title: Conserved miR164‐targeted NAC genes negatively regulate drought resistance in rice publication-title: J. Exp. Bot. – volume: 58 start-page: 115 year: 2007 end-page: 136 article-title: Leaf senescence publication-title: Annu. Rev. Plant Biol. – volume: 111 start-page: 440 year: 2022 end-page: 456 article-title: The miR164a‐NAM3 module confers cold tolerance by inducing ethylene production in tomato publication-title: Plant J. – volume: 59 start-page: 651 year: 2008 end-page: 681 article-title: Mechanisms of salinity tolerance publication-title: Annu. Rev. Plant Biol. – volume: 13 year: 2022 article-title: MdNAC4 interacts with MdAPRR2 to regulate nitrogen deficiency‐induced leaf senescence in apple ( ) publication-title: Front. Plant Sci. – volume: 23 start-page: 1755 year: 2022 article-title: Drought‐responsive NAC transcription factor RcNAC72 is recognized by RcABF4, interacts with RcDREB2A to enhance drought tolerance in publication-title: Int. J. Mol. Sci. – volume: 83 start-page: 732 year: 2015 end-page: 742 article-title: A conserved role for CUP‐SHAPED COTYLEDON genes during ovule development publication-title: Plant J. – volume: 221 start-page: 74 year: 2018 end-page: 80 article-title: An apple NAC transcription factor negatively regulates cold tolerance via CBF‐dependent pathway publication-title: J. Plant Physiol. – volume: 13 year: 2022 article-title: The NAC transcription factor ANAC087 induces aerial rosette development and leaf senescence in publication-title: Front. Plant Sci. – volume: 34 start-page: 2001 year: 2022 end-page: 2018 article-title: The tomato OST1‐VOZ1 module regulates drought‐mediated flowering publication-title: Plant Cell – volume: 62 start-page: 250 year: 2010 end-page: 264 article-title: A gene regulatory network controlled by the NAC transcription factor ANAC092/AtNAC2/ORE1 during salt‐promoted senescence publication-title: Plant J. – volume: 9 start-page: uhac136 year: 2022 article-title: A natural mutation of the gene arrests secondary cell wall biosynthesis in the seed coat of a hull‐less pumpkin accession publication-title: Hortic. Res. – volume: 68 start-page: 2013 year: 2017 end-page: 2026 article-title: The legume miR1514a modulates a NAC transcription factor transcript to trigger phasiRNA formation in response to drought publication-title: J. Exp. Bot. – volume: 8 start-page: 214 year: 2021b article-title: The NAC transcription factor ClNAC68 positively regulates sugar content and seed development in watermelon by repressing ClINV and ClGH3.6 publication-title: Hortic. Res. – volume: 66 start-page: 4669 year: 2015 end-page: 4682 article-title: A novel NAP member GhNAP is involved in leaf senescence in publication-title: J. Exp. Bot. – volume: 72 start-page: 2947 year: 2021 end-page: 2964 article-title: A heat stress responsive NAC transcription factor heterodimer plays key roles in rice grain filling publication-title: J. Exp. Bot. – volume: 426 start-page: 183 year: 2010 end-page: 196 article-title: The Arabidopsis thaliana NAC transcription factor family: structure‐function relationships and determinants of ANAC019 stress signalling publication-title: Biochem. J. – volume: 105 start-page: 600 year: 2021 end-page: 618 article-title: Ectopic overexpression of a membrane‐tethered transcription factor gene from oilseed rape positively modulates programmed cell death and age‐triggered leaf senescence publication-title: Plant J. – volume: 10 start-page: 145 year: 2010 article-title: Comprehensive analysis of NAC domain transcription factor gene family in publication-title: BMC Plant Biol. – volume: 35 start-page: 1783 year: 2016 end-page: 1798 article-title: Identification and characterization of a novel NAC‐like gene in chrysanthemum ( ) publication-title: Plant Cell Rep. – volume: 68 start-page: 1104 year: 2011 end-page: 1114 article-title: NAC domain function and transcriptional control of a secondary cell wall master switch publication-title: Plant J. – volume: 26 start-page: 4862 year: 2014 end-page: 4874 article-title: A NAP‐AAO3 regulatory module promotes chlorophyll degradation via ABA biosynthesis in Arabidopsis leaves publication-title: Plant Cell – volume: 169 start-page: 391 year: 2015b end-page: 402 article-title: TRANSPARENT TESTA GLABRA1 regulates the accumulation of seed storage reserves in publication-title: Plant Physiol. – volume: 71 start-page: 1449 year: 2020 end-page: 1458 article-title: Modulation of NAC transcription factor NST1 activity by XYLEM NAC DOMAIN1 regulates secondary cell wall formation in publication-title: J. Exp. Bot. – volume: 70 start-page: 831 year: 2012 end-page: 844 article-title: A NAC transcription factor NTL4 promotes reactive oxygen species production during drought‐induced leaf senescence in publication-title: Plant J. – volume: 197 start-page: 696 year: 2013 end-page: 711 article-title: Senescence, ageing and death of the whole plant publication-title: New Phytol. – volume: 64 start-page: 5497 year: 2013 end-page: 5507 article-title: The tomato NAC transcription factor SlNAM2 is involved in flower‐boundary morphogenesis publication-title: J. Exp. Bot. – volume: 7 start-page: 1 year: 2020c end-page: 11 article-title: Transcriptomic and genetic approaches reveal an essential role of the NAC transcription factor SlNAP1 in the growth and defense response of tomato publication-title: Hortic. Res. – volume: 26 start-page: 438 year: 2014 end-page: 453 article-title: The protein phosphatase RCF2 and its interacting partner NAC019 are critical for heat stress‐responsive gene regulation and thermotolerance in publication-title: Plant Cell – volume: 171 start-page: 287 year: 2017 end-page: 304.e15 article-title: Insights into land plant evolution garnered from the marchantia polymorpha genome publication-title: Cell – volume: 65 start-page: 918 year: 2022 end-page: 933 article-title: Variations in OsSPL10 confer drought tolerance by directly regulating expression and ROS production in rice publication-title: J. Integr. Plant Biol. – volume: 17 start-page: 330 year: 2016 end-page: 338 article-title: Banana fruit NAC transcription factor MaNAC5 cooperates with MaWRKYs to enhance the expression of pathogenesis‐related genes against publication-title: Mol. Plant Pathol. – volume: 23 start-page: 9625 year: 2022 article-title: A transcription factor SlNAC10 gene of regulates proline synthesis and enhances salt and drought tolerance publication-title: Int. J. Mol. Sci. – volume: 5 start-page: 297 year: 2004 end-page: 303 article-title: Structure of the conserved domain of ANAC, a member of the NAC family of transcription factors publication-title: EMBO Rep. – volume: 140 start-page: 113 year: 2019 end-page: 121 article-title: Overexpression of the NAC transcription factor ( ) increases salinity tolerance in tomato publication-title: Plant Physiol. Biochem. – volume: 10 start-page: 79 year: 2005b end-page: 87 article-title: NAC transcription factors: structurally distinct, functionally diverse publication-title: Trends Plant Sci. – volume: 18 start-page: 1317 year: 2020b end-page: 1329 article-title: A membrane‐associated NAC transcription factor OsNTL3 is involved in thermotolerance in rice publication-title: Plant Biotechnol. J. – volume: 20 start-page: 2763 year: 2008 end-page: 2782 article-title: A battery of transcription factors involved in the regulation of secondary cell wall biosynthesis in publication-title: Plant Cell – volume: 8 start-page: 2118 year: 2017 article-title: JUNGBRUNNEN1 confers drought tolerance downstream of the HD‐Zip I transcription factor AtHB13 publication-title: Front. Plant Sci. – volume: 149 start-page: 1724 year: 2009 end-page: 1738 article-title: The low‐oxygen‐induced NAC domain transcription factor ANAC102 affects viability of seeds following low‐oxygen treatment publication-title: Plant Physiol. – volume: 43 start-page: 2287 year: 2020 end-page: 2300 article-title: The transcription factor ZmNAC126 accelerates leaf senescence downstream of the ethylene signalling pathway in maize publication-title: Plant Cell Environ. – volume: 70 start-page: 7 year: 2019 end-page: 15 article-title: The nitrogen cost of photosynthesis publication-title: J. Exp. Bot. – volume: 18 year: 2022 article-title: The nitrate‐inducible NAC transcription factor NAC056 controls nitrate assimilation and promotes lateral root growth in publication-title: PLoS Genet. – volume: 169 start-page: 785 year: 2005a end-page: 797 article-title: DNA‐binding specificity and molecular functions of NAC transcription factors publication-title: Plant Sci. – volume: 54 start-page: 1660 year: 2013 end-page: 1672 article-title: Mutation of the NAC016 transcription factor delays leaf senescence publication-title: Plant Cell Physiol. – volume: 32 start-page: 630 year: 2020 end-page: 649 article-title: Multilayered regulation of membrane‐bound ONAC054 is essential for abscisic acid‐induced leaf senescence in rice publication-title: Plant Cell – volume: 250 start-page: 30 year: 2016 end-page: 39 article-title: Membrane‐bound NAC transcription factors in maize and their contribution to the oxidative stress response publication-title: Plant Sci. – volume: 231 start-page: 1496 year: 2021 end-page: 1509 article-title: Xylem vessel‐specific SND5 and its homologs regulate secondary wall biosynthesis through activating secondary wall NAC binding elements publication-title: New Phytol. – volume: 10 start-page: 1334 year: 2017 end-page: 1348 article-title: Lamin‐like proteins negatively regulate plant immunity through NAC WITH TRANSMEMBRANE MOTIF1‐LIKE9 and NONEXPRESSOR OF PR GENES1 in publication-title: Mol. Plant – volume: 16 start-page: 709 year: 2023 end-page: 725 article-title: NAC1 regulates root ground tissue maturation through coordinating with SCR/SHR–CYCD6;1 module in publication-title: Mol. Plant – volume: 15 start-page: 303 year: 2005 end-page: 315 article-title: The early extra petals1 mutant uncovers a role for microRNA miR164c in regulating petal number in publication-title: Curr. Biol. – volume: 20 start-page: 3225 year: 2019 article-title: A stress‐responsive NAC transcription factor from tiger lily (LlNAC2) interacts with LlDREB1 and LlZHFD4 and enhances various abiotic stress tolerance in publication-title: Int. J. Mol. Sci. – volume: 232 start-page: 1033 year: 2010 end-page: 1043 article-title: Plant NAC‐type transcription factor proteins contain a NARD domain for repression of transcriptional activation publication-title: Planta – volume: 465 start-page: 30 year: 2010 end-page: 44 article-title: Genome‐wide analysis of NAC transcription factor family in rice publication-title: Gene – volume: 64 start-page: 771 year: 2022c end-page: 786 article-title: Regulation of cytokinin biosynthesis using PtRD26pro ‐IPT module improves drought tolerance through PtARR10‐PtYUC4/5‐mediated reactive oxygen species removal in publication-title: J. Integr. Plant Biol. – volume: 75 start-page: 26 year: 2013 end-page: 39 article-title: A local regulatory network around three NAC transcription factors in stress responses and senescence in leaves publication-title: Plant J. – volume: 27 start-page: 1771 year: 2015 end-page: 1787 article-title: The transcription factor NAC016 promotes drought stress responses by repressing transcription through a trifurcate feed‐forward regulatory loop involving NAP publication-title: Plant Cell – volume: 108 start-page: 394 year: 2021b end-page: 410 article-title: Glyoxalase I‐4 functions downstream of NAC72 to modulate downy mildew resistance in grapevine publication-title: Plant J. – volume: 517 start-page: 571 year: 2015 end-page: 575 article-title: An Arabidopsis gene regulatory network for secondary cell wall synthesis publication-title: Nature – volume: 16 start-page: 354 year: 2018 end-page: 366 article-title: NAC transcription factor JUNGBRUNNEN1 enhances drought tolerance in tomato publication-title: Plant Biotechnol. J. – volume: 15 start-page: 179 year: 2022b end-page: 188 article-title: CLE14 functions as a “brake signal” to suppress age‐dependent and stress‐induced leaf senescence by promoting JUB1‐mediated ROS scavenging in Arabidopsis publication-title: Mol. Plant – volume: 3 start-page: 321 year: 2013 end-page: 327 article-title: ATAF1 transcription factor directly regulates abscisic acid biosynthetic gene in Arabidopsis thaliana publication-title: FEBS Open Bio – volume: 37 start-page: 2116 year: 2014 end-page: 2127 article-title: Banana fruit NAC transcription factor MaNAC1 is a direct target of MaICE1 and involved in cold stress through interacting with MaCBF1 publication-title: Plant Cell Environ. – volume: 82 start-page: 302 year: 2015a end-page: 314 article-title: OsNAC2 encoding a NAC transcription factor that affects plant height through mediating the gibberellic acid pathway in rice publication-title: Plant J. – volume: 68 start-page: 369 year: 2017 end-page: 382 article-title: Chemical control of flowering time publication-title: J. Exp. Bot. – volume: 11 start-page: 695 year: 2008 end-page: 701 article-title: Membrane‐tethered transcription factors in thaliana: novel regulators in stress response and development publication-title: Curr. Opin. Plant Biol. – volume: 71 start-page: 3560 year: 2020 end-page: 3574 article-title: Re‐evaluation of the nor mutation and the role of the NAC‐NOR transcription factor in tomato fruit ripening publication-title: J. Exp. Bot. – volume: 74 start-page: 945 year: 2022a end-page: 963 article-title: A lily membrane‐associated NAC transcription factor LlNAC014 is involved in thermotolerance via activation of the DREB2‐HSFA3 module publication-title: J. Exp. Bot. – volume: 10 start-page: 1036 year: 2019 article-title: Overexpression of the soybean NAC gene increases lateral root formation and abiotic stress tolerance in transgenic plants publication-title: Front. Plant Sci. – volume: 235 start-page: 1913 year: 2022 end-page: 1926 article-title: The role and interaction between transcription factor NAC‐NOR and DNA demethylase SlDML2 in the biosynthesis of tomato fruit flavor volatiles publication-title: New Phytol. – volume: 5 start-page: 75 year: 2018 article-title: A NAC transcription factor, NOR‐like1, is a new positive regulator of tomato fruit ripening publication-title: Hortic. Res. – volume: 100 start-page: 923 year: 2019 end-page: 937 article-title: GSK3‐like kinase BIN2 phosphorylates RD26 to potentiate drought signaling in publication-title: Plant J. – volume: 65 start-page: 621 year: 2014 end-page: 639 article-title: The NAC‐like gene ANTHER INDEHISCENCE FACTOR acts as a repressor that controls anther dehiscence by regulating genes in the jasmonate biosynthesis pathway in publication-title: J. Exp. Bot. – volume: 9 start-page: uhac039 year: 2022 article-title: NAC‐mediated membrane lipid remodeling negatively regulates fruit cold tolerance publication-title: Hortic. Res. – volume: 71 start-page: 6142 year: 2020 end-page: 6158 article-title: Capsicum annum Hsp26.5 promotes defense responses against RNA viruses via ATAF2 but is hijacked as a chaperone for tobamovirus movement protein publication-title: J. Exp. Bot. – volume: 34 start-page: 2852 year: 2022 end-page: 2870 article-title: KIL1 terminates fertility in maize by controlling silk senescence publication-title: Plant Cell – volume: 172 start-page: 1532 year: 2016 end-page: 1547 article-title: A NAC transcription factor represses putrescine biosynthesis and affects drought tolerance publication-title: Plant Physiol. – volume: 56 start-page: 867 year: 2008 end-page: 880 article-title: Transcriptional regulation by an NAC (NAM‐ATAF1,2‐CUC2) transcription factor attenuates ABA signalling for efficient basal defence towards Blumeria graminis f. sp. hordei in Arabidopsis publication-title: Plant J. – volume: 108 start-page: 829 year: 2021c end-page: 840 article-title: TaNAC100 acts as an integrator of seed protein and starch synthesis exerting pleiotropic effects on agronomic traits in wheat publication-title: Plant J. – volume: 22 start-page: 261 year: 2022a article-title: Functional analysis of PagNAC045 transcription factor that improves salt and ABA tolerance in transgenic tobacco publication-title: BMC Plant Biol. – volume: 2 start-page: 1 year: 2016 end-page: 9 article-title: Arabidopsis NAC transcription factor JUB1 regulates GA/BR metabolism and signalling publication-title: Nat. Plants – volume: 71 start-page: 403 year: 2020 end-page: 433 article-title: Salt Tolerance Mechanisms of Plants publication-title: Annu. Rev. Plant Biol. – volume: 12 year: 2021 article-title: FHY3 and FAR1 function in age gating of leaf senescence publication-title: Front. Plant Sci. – volume: 17 start-page: 369 year: 2012 end-page: 381 article-title: NAC proteins: regulation and role in stress tolerance publication-title: Trends Plant Sci. – volume: 94 start-page: 454 year: 2018 end-page: 468 article-title: OsNAC2 positively affects salt‐induced cell death and binds to the OsAP37 and OsCOX11 promoters publication-title: Plant J. – volume: 53 start-page: 247 year: 2002 end-page: 273 article-title: Salt and drought stress signal transduction in plants publication-title: Annu. Rev. Plant Biol. – volume: 232 start-page: 237 year: 2021 end-page: 251 article-title: An ethylene‐hypersensitive methionine sulfoxide reductase regulated by NAC transcription factors increases methionine pool size and ethylene production during kiwifruit ripening publication-title: New Phytol. – volume: 191 start-page: 747 year: 2022a end-page: 771 article-title: The unique sweet potato NAC transcription factor IbNAC3 modulates combined salt and drought stresses publication-title: Plant Physiol. – volume: 46 start-page: 601 year: 2006 end-page: 612 article-title: AtNAP, a NAC family transcription factor, has an important role in leaf senescence publication-title: Plant J. – volume: 19 start-page: 1279 year: 2009 end-page: 1290 article-title: Dual function of Arabidopsis ATAF1 in abiotic and biotic stress responses publication-title: Cell Res. – volume: 225 start-page: 1618 year: 2020b end-page: 1634 article-title: Genome‐wide analysis of coding and non‐coding RNA reveals a conserved miR164‐NAC regulatory pathway for fruit ripening publication-title: New Phytol. – volume: 31 start-page: 2107 year: 2019 end-page: 2130 article-title: GmSIN1/GmNCED3s/GmRbohBs feed‐forward loop acts as a signal amplifier that regulates root growth in soybean exposed to salt stress publication-title: Plant Cell – volume: 7 start-page: 4 year: 2016 article-title: Overexpression of a stress‐responsive NAC transcription factor gene improves drought and salt tolerance in rice publication-title: Front. Plant Sci. – volume: 17 start-page: 2993 year: 2005 end-page: 3006 article-title: The NAC transcription factors NST1 and NST2 of Arabidopsis regulate secondary wall thickenings and are required for anther dehiscence publication-title: Plant Cell – volume: 65 start-page: 4023 year: 2014 end-page: 4036 article-title: Gene regulatory cascade of senescence‐associated NAC transcription factors activated by ETHYLENE‐INSENSITIVE2‐mediated leaf senescence signalling in publication-title: J. Exp. Bot. – volume: 189 start-page: 595 year: 2022 end-page: 610 article-title: The NAC factor LpNAL delays leaf senescence by repressing two chlorophyll catabolic genes in perennial ryegrass publication-title: Plant Physiol. – volume: 71 start-page: 3613 year: 2020 end-page: 3625 article-title: A NAC transcription factor and its interaction protein hinder abscisic acid biosynthesis by synergistically repressing in publication-title: J. Exp. Bot. – volume: 9 start-page: 841 year: 1997 end-page: 857 article-title: Genes involved in organ separation in : an analysis of the cup‐shaped cotyledon mutant publication-title: Plant Cell – volume: 148 start-page: 228 year: 2020 end-page: 236 article-title: Plant waterlogging/flooding stress responses: From seed germination to maturation publication-title: Plant Physiol. Biochem. – volume: 9 start-page: 383 year: 2018 article-title: Lateral root development in potato is mediated by Stu‐mi164 regulation of NAC transcription factor publication-title: Front. Plant Sci. – volume: 19 start-page: 2776 year: 2007 end-page: 2792 article-title: The MYB46 transcription factor is a direct target of SND1 and regulates secondary wall biosynthesis in publication-title: Plant Cell – volume: 10 start-page: 1136 year: 2021a article-title: Molecular and hormonal mechanisms regulating fleshy fruit ripening publication-title: Cell – volume: 13 start-page: 1539 year: 2022 article-title: De novo design and directed folding of disulfide‐bridged peptide heterodimers publication-title: Nat. Commun. – volume: 79 start-page: 1044 year: 2014 end-page: 1051 article-title: Identification of a NAC transcription factor, EPHEMERAL1, that controls petal senescence in Japanese morning glory publication-title: Plant J. – volume: 3 start-page: 1087 year: 2010 end-page: 1103 article-title: Global analysis of direct targets of secondary wall NAC master switches in publication-title: Mol. Plant – volume: 23 start-page: 2155 year: 2011 end-page: 2168 article-title: The NAC transcription factor VNI2 integrates abscisic acid signals into leaf senescence via the COR/RD genes publication-title: Plant Cell – volume: 43 start-page: 2272 year: 2020 end-page: 2286 article-title: Functions and regulatory framework of ZmNST3 in maize under lodging and drought stress publication-title: Plant Cell Environ. – volume: 189 start-page: 1296 year: 2022b end-page: 1313 article-title: OsNAC016 regulates plant architecture and drought tolerance by interacting with the kinases GSK2 and SAPK8 publication-title: Plant Physiol. – volume: 33 start-page: 603 year: 2021a end-page: 622 article-title: The endosperm‐specific transcription factor TaNAC019 regulates glutenin and starch accumulation and its elite allele improves wheat grain quality publication-title: Plant Cell – volume: 14 start-page: 3024 year: 2000 end-page: 3036 article-title: NAC1 transduces auxin signal downstream of TIR1 to promote lateral root development publication-title: Genes Dev. – volume: 39 start-page: 863 year: 2004 end-page: 876 article-title: A dehydration‐induced NAC protein, RD26, is involved in a novel ABA‐dependent stress‐signaling pathway publication-title: Plant J. – volume: 61 start-page: 661 year: 2010 end-page: 671 article-title: Cold activation of a plasma membrane‐tethered NAC transcription factor induces a pathogen resistance response in Arabidopsis publication-title: Plant J. – volume: 18 start-page: 1078 year: 2020b end-page: 1092 article-title: Regulatory changes in TaSNAC8‐6A are associated with drought tolerance in wheat seedlings publication-title: Plant Biotechnol. J. – volume: 43 start-page: 282 year: 2011 end-page: 294 article-title: Plants and colour: flowers and pollination publication-title: Opt. Laser Technol. – volume: 107 start-page: 22338 year: 2010 end-page: 22343 article-title: Mutation of WRKY transcription factors initiates pith secondary wall formation and increases stem biomass in dicotyledonous plants publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 400 start-page: 61 year: 1999 end-page: 63 article-title: Hydrologically defined niches reveal a basis for species richness in plant communities publication-title: Nature – volume: 64 start-page: 569 year: 2013 end-page: 583 article-title: The SNAC1‐targeted gene OsSRO1c modulates stomatal closure and oxidative stress tolerance by regulating hydrogen peroxide in rice publication-title: J. Exp. Bot. – volume: 19 start-page: 992 year: 2021 end-page: 1007 article-title: A novel NAC family transcription factor SPR suppresses seed storage protein synthesis in wheat publication-title: Plant Biotechnol. J. – volume: 11 start-page: 564 year: 2020 article-title: Genetic Interaction Among Phytochrome, Ethylene and Abscisic Acid Signaling During Dark‐Induced Senescence in publication-title: Front. Plant Sci. – volume: 18 start-page: 429 year: 2020a end-page: 442 article-title: OsNAC2 integrates auxin and cytokinin pathways to modulate rice root development publication-title: Plant Biotechnol. J. – volume: 73 start-page: 63 year: 2013 end-page: 76 article-title: MYB103 is required for FERULATE‐5‐HYDROXYLASE expression and syringyl lignin biosynthesis in Arabidopsis stems publication-title: Plant J. – volume: 24 start-page: 482 year: 2012 end-page: 506 article-title: JUNGBRUNNEN1, a reactive oxygen species‐responsive NAC transcription factor, regulates longevity in publication-title: Plant Cell – volume: 5 start-page: 4636 year: 2014 article-title: Phytochrome‐interacting transcription factors PIF4 and PIF5 induce leaf senescence in publication-title: Nat. Commun. – volume: 66 start-page: 579 year: 2011 end-page: 590 article-title: VASCULAR‐RELATED NAC‐DOMAIN7 directly regulates the expression of a broad range of genes for xylem vessel formation publication-title: Plant J. – volume: 177 start-page: 1286 year: 2018 end-page: 1302 article-title: The NAC transcription factor SlNAP2 regulates leaf senescence and fruit yield in tomato publication-title: Plant Physiol. – volume: 68 start-page: 302 year: 2011 end-page: 313 article-title: Soybean NAC transcription factors promote abiotic stress tolerance and lateral root formation in transgenic plants publication-title: Plant J. – volume: 343 start-page: 1505 year: 2014 end-page: 1508 article-title: Contribution of NAC transcription factors to plant adaptation to land publication-title: Science – volume: 236 start-page: 656 year: 2022a end-page: 670 article-title: GmNAC181 promotes symbiotic nodulation and salt tolerance of nodulation by directly regulating GmNINa expression in soybean publication-title: New Phytol. – volume: 115 start-page: E6085 year: 2018 end-page: E6094 article-title: A stress recovery signaling network for enhanced flooding tolerance in publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 108 start-page: 1317 year: 2021b end-page: 1331 article-title: A tomato NAC transcription factor, SlNAM1, positively regulates ethylene biosynthesis and the onset of tomato fruit ripening publication-title: Plant J. – volume: 13 year: 2022 article-title: ZmNAC074, a maize stress‐responsive NAC transcription factor, confers heat stress tolerance in transgenic publication-title: Front. Plant Sci. – volume: 13 start-page: 550 year: 2008 end-page: 556 article-title: Membrane‐bound transcription factors in plants publication-title: Trends Plant Sci. – volume: 6 start-page: 1438 year: 2013 end-page: 1452 article-title: NAC transcription factor ORE1 and senescence‐induced BIFUNCTIONAL NUCLEASE1 (BFN1) constitute a regulatory cascade in Arabidopsis publication-title: Mol. Plant – volume: 99 start-page: 81 year: 2019 end-page: 97 article-title: TsHD1 and TsNAC1 cooperatively play roles in plant growth and abiotic stress resistance of publication-title: Plant J. – volume: 118 year: 2021 article-title: Abscisic acid regulates secondary cell‐wall formation and lignin deposition in Arabidopsis thaliana through phosphorylation of NST1 publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 321 start-page: 330 year: 2008 end-page: 333 article-title: Agricultural research. Reinventing rice to feed the world publication-title: Science – volume: 4 start-page: 243 year: 2013 article-title: Plant tolerance to high temperature in a changing environment: scientific fundamentals and production of heat stress‐tolerant crops publication-title: Front. Plant Sci. – volume: 10 start-page: 239 year: 2003 end-page: 247 article-title: Comprehensive analysis of NAC family genes in publication-title: DNA Res. – volume: 13 start-page: 2191 year: 2001 end-page: 2209 article-title: The DEFECTIVE IN ANTHER DEHISCIENCE gene encodes a novel phospholipase A1 catalyzing the initial step of jasmonic acid biosynthesis, which synchronizes pollen maturation, anther dehiscence, and flower opening in Arabidopsis publication-title: Plant Cell – volume: 176 start-page: 773 year: 2018 end-page: 789 article-title: Transcription factors VND1‐VND3 contribute to cotyledon xylem vessel formation publication-title: Plant Physiol. – volume: 8 start-page: 277 year: 2008 end-page: 286 article-title: Genome‐wide analysis for identification of salt‐responsive genes in common wheat publication-title: Funct. Integr. Genom. – volume: 8 start-page: 1049 year: 2017 article-title: A novel NAC transcription factor, PbeNAC1, of confers cold and drought tolerance via interacting with PbeDREBs and activating the expression of stress‐responsive genes publication-title: Front. Plant Sci. – volume: 168 start-page: 1122 year: 2015 end-page: 1139 article-title: Transcription factor ATAF1 in Arabidopsis promotes senescence by direct regulation of key chloroplast maintenance and senescence transcriptional cascades publication-title: Plant Physiol. – volume: 2 start-page: 55 year: 2011 end-page: 63 article-title: A structural view of the conserved domain of rice stress‐responsive NAC1 publication-title: Protein Cell – volume: 174 start-page: 1747 year: 2017 end-page: 1763 article-title: A rice NAC transcription factor promotes leaf senescence via ABA biosynthesis publication-title: Plant Physiol. – volume: 167 start-page: 313 year: 2016 end-page: 324 article-title: Abiotic stress signaling and responses in plants publication-title: Cell – volume: 179 start-page: 700 year: 2019 end-page: 717 article-title: BpNAC012 positively regulates abiotic stress responses and secondary wall biosynthesis publication-title: Plant Physiol. – volume: 68 start-page: 405 year: 2017 end-page: 434 article-title: Genomics, physiology, and molecular breeding approaches for improving salt tolerance publication-title: Annu. Rev. Plant Biol. – volume: 19 start-page: 270 year: 2007 end-page: 280 article-title: NAC transcription factors, NST1 and NST3, are key regulators of the formation of secondary walls in woody tissues of publication-title: Plant Cell – volume: 53 start-page: 425 year: 2008 end-page: 436 article-title: XND1, a member of the NAC domain family in Arabidopsis thaliana, negatively regulates lignocellulose synthesis and programmed cell death in xylem publication-title: Plant J. – volume: 1 start-page: 32 year: 2010 end-page: 39 article-title: Potential utilization of NAC transcription factors to enhance abiotic stress tolerance in plants by biotechnological approach publication-title: GM Crops – volume: 12 year: 2021 article-title: Transcription factor NAC075 delays leaf senescence by deterring reactive oxygen species accumulation in publication-title: Front. Plant Sci. – volume: 22 start-page: 3461 year: 2010 end-page: 3473 article-title: VASCULAR‐RELATED NAC‐DOMAIN6 directly regulates the genes that govern programmed cell death and secondary wall formation during xylem differentiation publication-title: Plant Cell – volume: 5 start-page: 351 year: 2014 article-title: The role of the testa during development and in establishment of dormancy of the legume seed publication-title: Front. Plant Sci. – volume: 34 start-page: 1447 year: 2022 end-page: 1478 article-title: Thirty years of resistance: zig‐zag through the plant immune system publication-title: Plant Cell – volume: 14 start-page: 1901 year: 2021 end-page: 1917 article-title: Verticillium dahliae secretory effector PevD1 induces leaf senescence by promoting ORE1‐mediated ethylene biosynthesis publication-title: Mol. Plant – volume: 186 start-page: 2205 year: 2021 end-page: 2221 article-title: Increased expression of primes for accelerated senescence publication-title: Plant Physiol. – volume: 60 start-page: 112 year: 2004 end-page: 115 article-title: Preliminary crystallographic analysis of the NAC domain of ANAC, a member of the plant‐specific NAC transcription factor family publication-title: Acta Crystallogr. D Biol. Crystallogr. – volume: 15 start-page: 1671 year: 2015 end-page: 1679 article-title: Studies on the molecular mechanisms of seed germination publication-title: Proteomics – ident: e_1_2_8_165_1 doi: 10.1093/plphys/kiac397 – ident: e_1_2_8_180_1 doi: 10.1093/jxb/ers349 – ident: e_1_2_8_80_1 doi: 10.1093/hr/uhac136 – ident: e_1_2_8_73_1 doi: 10.1111/tpj.15485 – ident: e_1_2_8_108_1 doi: 10.1105/tpc.113.117861 – ident: e_1_2_8_172_1 doi: 10.1105/tpc.114.133769 – ident: e_1_2_8_77_1 doi: 10.1093/jxb/eraa333 – ident: e_1_2_8_50_1 doi: 10.1105/tpc.15.00015 – ident: e_1_2_8_179_1 doi: 10.1016/j.pbi.2014.07.009 – ident: e_1_2_8_3_1 doi: 10.1016/j.plaphy.2019.04.038 – ident: e_1_2_8_104_1 doi: 10.1104/pp.113.223388 – ident: e_1_2_8_72_1 doi: 10.1111/tpj.15447 – ident: e_1_2_8_160_1 doi: 10.1093/plphys/kiac146 – ident: e_1_2_8_115_1 doi: 10.4161/psb.11083 – ident: e_1_2_8_13_1 doi: 10.1111/tpj.12819 – ident: e_1_2_8_63_1 doi: 10.1093/pcp/pct113 – ident: e_1_2_8_163_1 doi: 10.1101/gad.852200 – ident: e_1_2_8_193_1 doi: 10.1093/mp/ssq062 – ident: e_1_2_8_173_1 doi: 10.1007/s00299-016-1996-9 – ident: e_1_2_8_187_1 doi: 10.1016/j.molp.2021.09.006 – ident: e_1_2_8_46_1 doi: 10.1111/tpj.12194 – ident: e_1_2_8_121_1 doi: 10.1111/mpp.12281 – ident: e_1_2_8_30_1 doi: 10.1111/j.1365-313X.2004.02171.x – ident: e_1_2_8_36_1 doi: 10.1104/pp.15.00567 – ident: e_1_2_8_105_1 doi: 10.1016/j.tplants.2012.02.004 – ident: e_1_2_8_57_1 doi: 10.1016/j.fob.2013.07.006 – ident: e_1_2_8_153_1 doi: 10.1111/nph.18340 – ident: e_1_2_8_17_1 doi: 10.1111/j.1365-313X.2005.02488.x – ident: e_1_2_8_47_1 doi: 10.3389/fpls.2016.00004 – ident: e_1_2_8_101_1 doi: 10.1016/j.plantsci.2005.05.035 – ident: e_1_2_8_27_1 doi: 10.1093/jxb/eru072 – ident: e_1_2_8_178_1 doi: 10.3390/ijms20133225 – ident: e_1_2_8_138_1 doi: 10.1111/nph.12047 – ident: e_1_2_8_162_1 doi: 10.3390/ijms232012258 – ident: e_1_2_8_194_1 doi: 10.1111/nph.17425 – ident: e_1_2_8_185_1 doi: 10.1016/j.molp.2021.07.014 – ident: e_1_2_8_4_1 doi: 10.1016/j.jplph.2017.12.009 – ident: e_1_2_8_39_1 doi: 10.1111/j.1365-313X.2006.02723.x – ident: e_1_2_8_7_1 doi: 10.3389/fpls.2013.00273 – ident: e_1_2_8_14_1 doi: 10.1104/pp.15.00943 – ident: e_1_2_8_60_1 doi: 10.3389/fpls.2017.01049 – ident: e_1_2_8_145_1 doi: 10.1016/j.plantsci.2016.05.019 – ident: e_1_2_8_29_1 doi: 10.1111/nph.17560 – ident: e_1_2_8_56_1 doi: 10.1042/BJ20091234 – ident: e_1_2_8_152_1 doi: 10.1111/nph.18343 – ident: e_1_2_8_103_1 doi: 10.1093/dnares/10.6.239 – ident: e_1_2_8_144_1 doi: 10.1111/j.1365-313X.2011.04764.x – ident: e_1_2_8_181_1 doi: 10.1093/plphys/kiac070 – ident: e_1_2_8_16_1 doi: 10.1104/pp.108.131912 – ident: e_1_2_8_79_1 doi: 10.1073/pnas.2010911118 – ident: e_1_2_8_8_1 doi: 10.1016/j.cell.2017.09.030 – ident: e_1_2_8_24_1 doi: 10.1093/jxb/ery366 – ident: e_1_2_8_146_1 doi: 10.1104/pp.20.01033 – ident: e_1_2_8_195_1 doi: 10.1105/tpc.108.063321 – ident: e_1_2_8_49_1 doi: 10.1104/pp.18.01167 – ident: e_1_2_8_97_1 doi: 10.1016/j.gene.2010.06.008 – ident: e_1_2_8_130_1 doi: 10.1093/hr/uhac039 – ident: e_1_2_8_91_1 doi: 10.1105/tpc.105.036004 – ident: e_1_2_8_19_1 doi: 10.1111/tpj.15807 – ident: e_1_2_8_139_1 doi: 10.4161/gmcr.1.1.10569 – ident: e_1_2_8_119_1 doi: 10.1093/jxb/ers178 – ident: e_1_2_8_140_1 doi: 10.3389/fpls.2020.00564 – ident: e_1_2_8_127_1 doi: 10.1038/21877 – ident: e_1_2_8_133_1 doi: 10.1111/nph.12797 – ident: e_1_2_8_112_1 doi: 10.1105/tpc.15.00222 – ident: e_1_2_8_40_1 doi: 10.1016/j.molp.2017.09.008 – ident: e_1_2_8_31_1 doi: 10.1038/s41438-018-0111-5 – ident: e_1_2_8_99_1 doi: 10.1111/tpj.12018 – ident: e_1_2_8_69_1 doi: 10.1186/1471-2229-12-220 – ident: e_1_2_8_33_1 doi: 10.1093/plcell/koaa040 – ident: e_1_2_8_6_1 doi: 10.1111/j.1365-313X.2010.04151.x – ident: e_1_2_8_18_1 doi: 10.1073/pnas.232590499 – ident: e_1_2_8_32_1 doi: 10.1093/jxb/eraa131 – ident: e_1_2_8_132_1 doi: 10.1016/S0092-8674(00)81093-4 – ident: e_1_2_8_12_1 doi: 10.1007/s13238-011-1010-9 – ident: e_1_2_8_150_1 doi: 10.1038/s41438-021-00649-1 – ident: e_1_2_8_107_1 doi: 10.1038/embor.2013.24 – ident: e_1_2_8_9_1 doi: 10.1093/plphys/kiab195 – ident: e_1_2_8_90_1 doi: 10.1016/j.optlastec.2008.12.018 – ident: e_1_2_8_59_1 doi: 10.1111/tpj.14484 – ident: e_1_2_8_149_1 doi: 10.1093/nar/gkaa1191 – ident: e_1_2_8_157_1 doi: 10.1105/tpc.111.090894 – ident: e_1_2_8_198_1 doi: 10.1146/annurev.arplant.53.091401.143329 – ident: e_1_2_8_88_1 doi: 10.1093/plphys/kiac508 – ident: e_1_2_8_199_1 doi: 10.1016/j.cell.2016.08.029 – ident: e_1_2_8_35_1 doi: 10.1111/nph.18301 – ident: e_1_2_8_75_1 doi: 10.1146/annurev.arplant.57.032905.105316 – ident: e_1_2_8_2_1 doi: 10.1105/tpc.9.6.841 – ident: e_1_2_8_45_1 doi: 10.1093/jxb/ert324 – ident: e_1_2_8_38_1 doi: 10.1105/tpc.113.118927 – ident: e_1_2_8_188_1 doi: 10.1111/j.1365-313X.2007.03350.x – ident: e_1_2_8_68_1 doi: 10.1104/pp.19.00148 – ident: e_1_2_8_67_1 doi: 10.1111/j.1365-313X.2012.04932.x – ident: e_1_2_8_61_1 doi: 10.3389/fpls.2021.634040 – ident: e_1_2_8_70_1 doi: 10.1105/tpc.18.00662 – ident: e_1_2_8_55_1 doi: 10.1111/j.1365-313X.2008.03646.x – ident: e_1_2_8_62_1 doi: 10.1007/s10142-008-0076-9 – ident: e_1_2_8_156_1 doi: 10.1038/cr.2009.108 – ident: e_1_2_8_125_1 doi: 10.1093/jxb/ert412 – volume: 5 start-page: 351 year: 2014 ident: e_1_2_8_129_1 article-title: The role of the testa during development and in establishment of dormancy of the legume seed publication-title: Front. Plant Sci. – ident: e_1_2_8_136_1 doi: 10.1038/nature14099 – ident: e_1_2_8_22_1 doi: 10.3389/fpls.2017.02118 – ident: e_1_2_8_197_1 doi: 10.1016/j.plaphy.2020.01.020 – ident: e_1_2_8_94_1 doi: 10.3389/fpls.2015.00288 – ident: e_1_2_8_166_1 doi: 10.1016/j.molp.2023.02.006 – ident: e_1_2_8_189_1 doi: 10.1111/nph.16036 – ident: e_1_2_8_176_1 doi: 10.1038/s41467-022-29210-x – ident: e_1_2_8_184_1 doi: 10.1093/jxb/erz513 – ident: e_1_2_8_84_1 doi: 10.1111/tpj.13867 – ident: e_1_2_8_177_1 doi: 10.1073/pnas.1803841115 – ident: e_1_2_8_143_1 doi: 10.1073/pnas.1016436107 – ident: e_1_2_8_196_1 doi: 10.3109/07388551.2010.505910 – volume: 71 start-page: 1078 year: 2020 ident: e_1_2_8_66_1 article-title: Transcription factor CaNAC1 regulates low‐temperature‐induced phospholipid degradation in green bell pepper publication-title: J. Exp. Bot. – ident: e_1_2_8_41_1 doi: 10.1038/s41438-021-00644-6 – ident: e_1_2_8_126_1 doi: 10.3389/fpls.2018.00310 – ident: e_1_2_8_120_1 doi: 10.1111/pce.12303 – ident: e_1_2_8_64_1 doi: 10.1093/jxb/eru112 – ident: e_1_2_8_78_1 doi: 10.1111/pbi.13297 – ident: e_1_2_8_109_1 doi: 10.1111/pce.13829 – ident: e_1_2_8_168_1 doi: 10.1371/journal.pgen.1010090 – ident: e_1_2_8_106_1 doi: 10.1371/journal.pgen.1005399 – ident: e_1_2_8_85_1 doi: 10.1111/pbi.13209 – ident: e_1_2_8_98_1 doi: 10.1105/tpc.110.075036 – ident: e_1_2_8_95_1 doi: 10.1093/plcell/koac041 – ident: e_1_2_8_48_1 doi: 10.1186/1471-2229-10-145 – ident: e_1_2_8_128_1 doi: 10.1093/plcell/koac151 – ident: e_1_2_8_83_1 doi: 10.1104/pp.17.00542 – ident: e_1_2_8_124_1 doi: 10.1111/tpj.12605 – ident: e_1_2_8_158_1 doi: 10.1104/pp.16.01096 – ident: e_1_2_8_10_1 doi: 10.1093/plphys/kiab190 – ident: e_1_2_8_81_1 doi: 10.1104/pp.18.00292 – ident: e_1_2_8_151_1 doi: 10.3389/fpls.2021.655127 – ident: e_1_2_8_110_1 doi: 10.1093/jxb/erab027 – ident: e_1_2_8_137_1 doi: 10.1111/pbi.12776 – ident: e_1_2_8_20_1 doi: 10.1016/j.pbi.2020.05.008 – ident: e_1_2_8_142_1 doi: 10.3389/fpls.2022.818107 – ident: e_1_2_8_164_1 doi: 10.3389/fpls.2021.770060 – ident: e_1_2_8_5_1 doi: 10.1016/j.cub.2005.02.017 – ident: e_1_2_8_25_1 doi: 10.1093/jxb/erv240 – ident: e_1_2_8_167_1 doi: 10.1126/science.1248417 – ident: e_1_2_8_44_1 doi: 10.1111/j.1365-313X.2011.04687.x – ident: e_1_2_8_92_1 doi: 10.1105/tpc.106.047043 – ident: e_1_2_8_15_1 doi: 10.1093/plcell/koac026 – ident: e_1_2_8_192_1 doi: 10.1105/tpc.108.061325 – ident: e_1_2_8_53_1 doi: 10.1105/tpc.010192 – ident: e_1_2_8_134_1 doi: 10.1007/s00438-010-0557-0 – ident: e_1_2_8_161_1 doi: 10.3389/fpls.2022.986628 – ident: e_1_2_8_96_1 doi: 10.1126/science.321.5887.330 – ident: e_1_2_8_82_1 doi: 10.1093/jxb/erz098 – ident: e_1_2_8_37_1 doi: 10.1111/tpj.12923 – ident: e_1_2_8_54_1 doi: 10.1146/annurev-arplant-042916-040936 – ident: e_1_2_8_100_1 doi: 10.1107/S0907444903022029 – ident: e_1_2_8_183_1 doi: 10.1073/pnas.1904995116 – ident: e_1_2_8_111_1 doi: 10.1038/ncomms5636 – ident: e_1_2_8_118_1 doi: 10.1038/nplants.2016.13 – ident: e_1_2_8_174_1 doi: 10.3389/fpls.2019.01036 – ident: e_1_2_8_42_1 doi: 10.1002/pmic.201400375 – ident: e_1_2_8_147_1 doi: 10.1111/nph.16233 – ident: e_1_2_8_23_1 doi: 10.1038/sj.embor.7400093 – ident: e_1_2_8_141_1 doi: 10.1146/annurev-arplant-050718-100005 – ident: e_1_2_8_11_1 doi: 10.1016/j.pbi.2008.10.005 – ident: e_1_2_8_86_1 doi: 10.1111/pbi.13277 – ident: e_1_2_8_154_1 doi: 10.1111/jipb.13218 – ident: e_1_2_8_102_1 doi: 10.1016/j.tplants.2004.12.010 – ident: e_1_2_8_191_1 doi: 10.1105/tpc.107.053678 – ident: e_1_2_8_171_1 doi: 10.1105/tpc.111.084913 – ident: e_1_2_8_114_1 doi: 10.1111/pce.13363 – ident: e_1_2_8_43_1 doi: 10.1007/s00425-010-1238-2 – ident: e_1_2_8_76_1 doi: 10.1111/tpj.14310 – ident: e_1_2_8_65_1 doi: 10.1073/pnas.1721523115 – ident: e_1_2_8_117_1 doi: 10.1111/j.1365-313X.2009.04091.x – ident: e_1_2_8_122_1 doi: 10.1104/pp.20.00313 – ident: e_1_2_8_21_1 doi: 10.3390/ijms23179625 – ident: e_1_2_8_71_1 doi: 10.3390/cells10051136 – ident: e_1_2_8_113_1 doi: 10.1105/tpc.19.00569 – ident: e_1_2_8_148_1 doi: 10.1038/s41438-020-00442-6 – ident: e_1_2_8_170_1 doi: 10.1111/tpj.15057 – ident: e_1_2_8_28_1 doi: 10.1093/jxb/eraa320 – ident: e_1_2_8_116_1 doi: 10.1016/j.tplants.2008.06.008 – volume: 68 start-page: 2013 year: 2017 ident: e_1_2_8_131_1 article-title: The legume miR1514a modulates a NAC transcription factor transcript to trigger phasiRNA formation in response to drought publication-title: J. Exp. Bot. – ident: e_1_2_8_190_1 doi: 10.1105/tpc.106.047399 – ident: e_1_2_8_182_1 doi: 10.3389/fpls.2018.00383 – ident: e_1_2_8_175_1 doi: 10.1111/pce.13803 – ident: e_1_2_8_93_1 doi: 10.1146/annurev.arplant.59.032607.092911 – ident: e_1_2_8_135_1 doi: 10.1104/pp.17.00461 – ident: e_1_2_8_51_1 doi: 10.1105/tpc.18.00293 – volume: 68 start-page: 369 year: 2017 ident: e_1_2_8_52_1 article-title: Chemical control of flowering time publication-title: J. Exp. Bot. – ident: e_1_2_8_201_1 doi: 10.1093/jxb/eraa118 – ident: e_1_2_8_34_1 doi: 10.1111/tpj.15512 – ident: e_1_2_8_186_1 doi: 10.1186/s12870-022-03623-8 – ident: e_1_2_8_159_1 doi: 10.1093/jxb/erac436 – ident: e_1_2_8_58_1 doi: 10.3390/ijms23031755 – ident: e_1_2_8_26_1 doi: 10.1007/s00438-008-0386-6 – ident: e_1_2_8_89_1 doi: 10.1093/plphys/kiac351 – ident: e_1_2_8_74_1 doi: 10.1111/jipb.13414 – ident: e_1_2_8_123_1 doi: 10.1111/pbi.13524 – ident: e_1_2_8_200_1 doi: 10.1111/tpj.13030 – ident: e_1_2_8_87_1 doi: 10.1093/mp/sst012 – ident: e_1_2_8_155_1 doi: 10.3389/fpls.2022.925035 – ident: e_1_2_8_169_1 doi: 10.1111/j.1365-313X.2011.04514.x |
SSID | ssj0021656 |
Score | 2.6265824 |
SecondaryResourceType | review_article |
Snippet | Summary
Plant‐specific NAC proteins constitute a major transcription factor family that is well‐known for its roles in plant growth, development, and responses... Plant‐specific NAC proteins constitute a major transcription factor family that is well‐known for its roles in plant growth, development, and responses to... Plant-specific NAC proteins constitute a major transcription factor family that is well-known for its roles in plant growth, development, and responses to... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2433 |
SubjectTerms | amino acid sequences Binding Biotechnology DNA-binding domains Flowers & plants functional diversity Gene Expression Regulation, Plant - genetics N-Terminus NAC transcription factors network Phylogeny plant development Plant Development - genetics Plant growth plant improvement Plant Proteins - metabolism Plants - genetics Plants - metabolism Proteins stress Stress, Physiological transcription (genetics) Transcription factors Transcription Factors - genetics Transcription Factors - metabolism |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwED90e9EH8dvpHFV88MFg2yRt9yRTJio4hij4VvI5BqOb-_j_vbTZRPx4K_Rok7vk8kvu8juACyuMDRWzREQsJkwZSaQUlrRFqmLGLSIGd1H4uZc8vLGnd_7uD9xmPq1y6RNLR63Hyp2RX7uAWOhietHN5IO4qlEuuupLaKxDHV1wltWgftvt9V9WWy7HLVPdL0pJiku_5xZyuTwTOUQ3ESXR9xXpB8z8jlrLZed-G7Y8Xgw6lYF3YM0Uu7DZGUw9Z4bZg1avcze7CgYVgTSaLRgWwWSEKgtGQ2v24e2--3r3QHzZA6IYbseIFJw6FrskNDgfY40QhirBdZom0mRZFLV1lpqYat5WIddWWdNmOI2Y5SJJE00PoFaMC3MEQcJlHGoVCcoTllkr8VvMRJm2GoGB5Q24XHY9V54T3JWmGOXLvQFqKS-11IDzleikIsL4Tai51F_u58Is_7JcA85Wr3EUu9CEKMx44WQc6Q6Cj_BvGYr-hnL8C23AYWWbVUvQTcYUwQ92qDTW303M-7eP5cPx_209gQ1XWb7KXGlCbT5dmFPEH3PZ8oPsEyEb1Zw priority: 102 providerName: ProQuest |
Title | NACs, generalist in plant life |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fpbi.14161 https://www.ncbi.nlm.nih.gov/pubmed/37623750 https://www.proquest.com/docview/2890058471 https://www.proquest.com/docview/2857855120 https://www.proquest.com/docview/3040351613 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8QwFH7oeNGD-zIupYoHD1baJmk7eBrFcQGHQRQ8CCWrDA51mOXir_elG64gXkohr21eky_5krx8ATg0XBtfUuPxgIYelVp4QnDjtXgsQ8oMMga7Ufi2G1090JtH9jgDp9VemEIfop5ws8jI22sLcC7GH0A-FH2EeZAPfWysliVEd7V0VGhVZYqdRbEXY6dfqgrZKJ76yc990TeC-Zmv5h1OZwmeqqwWcSYvJ9OJOJFvX1Qc_-nLMiyWRNRtFzVnBWZ0tgoL7edRKcah18Dpts_Hx-5zoUyN9cHtZ-5wgGXhDvpGr8ND5-L-_Morz1PwJMVxnic4I1YeL_I1Aj1UyI2I5EzFcSR0kgRBSyWxDoliLekzZaTRLYr4pIbxKI4U2YBG9prpLXAjJkJfyYATFtHEGIHvojpIlFHIOAxrwlH1Z1NZio3bMy8GaTXoQJfT3OUmHNSmw0Jh4yej3ap40hJk49Sukfp2mReT9-tkhIdd8-CZfp1aG6vmg6zG_92GYENGGH6FNGGzKPo6J9j-hgRZFTqUF-DvWUx7Z9f5zfbfTXdg3h5fX4TH7EJjMprqPSQ5E-HAbEh7eE06lw7MnV10e3dOPmHg5PX8HYic-G0 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB5ROFAOFdAWUig1FZV66Arbu2s7B1SF0JCQh3pIJG5mnyhS5KQEVPGn-hs760dQVNIbN0serXdnZme_8ezMAJxYYayvmCUiYCFhykgipbCkLmIVMm4RMbhE4f4gao_Y1TW_XoM_VS6Mu1ZZ2cTcUOupcv_IT11AzHcxveD77BdxXaNcdLVqoVGoRdc8_kaXbX7WuUD5fgnD1o9hs03KrgJEMfR2iBScuiJxkW9Q3UONCIEqwXUcR9IkSRDUdRKbkGpeVz7XVllTZ6ilzHIRxZGmOO4r2GAUT3KXmd66XDh4rpJNkc0UkxiBRlnJyN0cmskxGqUgCpbPv39A7TJGzg-51ja8KdGp1yjUaQfWTLYLW43bu7JCh3kLR4NGc_7Nuy3KVaOSeOPMm01QQN5kbM07GL0IO97DejbNzD54EZehr1UgKI9YYq3EsZgJEm01whDLa_C1WnqqygrkrhHGJK08EeRSmnOpBp8XpLOi7MZzRIcV_9Jy583TJz2pwfHiNe4ZFwgRmZk-OBpX4gehjr-ahqJ1oxy_QmuwV8hmMRM0yiFFqIULyoW1eorpz_NO_vDh_3P9BJvtYb-X9jqD7gG8dj3tizszh7B-f_dgPiLyuZdHubp5cPPS-v0XfG0Pew |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6FREJwqHgUSAnBIJB6YBXbu2s7B4TSNlFCIYqqVurN7DOKFDlpHqr4a_w6Zv0IqqDccrPk0Xp359vZbzy7MwAfrDDWV8wSEbCQMGUkkVJY0hWxChm3yBjcReHv42h4xb5e8-sa_KruwrhjlZVNzA21Xij3j7zjAmK-i-kFHVsei5icDb4sb4irIOUirVU5jQIi5-bnLbpv68-jM9T1xzAc9C9Ph6SsMEAUQ8-HSMGpSxgX-QahH2pkC1QJruM4kiZJgqCrk9iEVPOu8rm2ypouQ8Qyy0UUR5piuw-gETuvqA6Nk_54crFz91xem-JuU0xipB1lXiN3jmgpZ2iigii4uxv-RXHvMuZ8yxs8gYOSq3q9AlxPoWayZ_C4N12V-TrMc2iPe6frT960SF6NkPFmmbeco7q8-cyaQ7jay4S8gHq2yMwr8CIuQ1-rQFAescRaiW0xEyTaaiQlljfhuBp6qsp85K4sxjyt_BKcpTSfpSa834kuiyQc_xJqVfOXlutwnf5BTRPe7V7jCnJhEZGZxdbJuIQ_SHz8-2Uo2jrK8Su0CS8L3ex6giY6pEi8cEC5su7vYjo5GeUPR__v61t4iNhOv43G56_hkStwXxygaUF9s9qaN0iDNrJd4s2DH_uG-G_26xUN |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=NACs%2C+generalist+in+plant+life&rft.jtitle=Plant+biotechnology+journal&rft.au=Han%2C+Kunjin&rft.au=Zhao%2C+Ye&rft.au=Sun%2C+Yuhan&rft.au=Li%2C+Yun&rft.date=2023-12-01&rft.issn=1467-7644&rft.eissn=1467-7652&rft.volume=21&rft.issue=12&rft.spage=2433&rft.epage=2457&rft_id=info:doi/10.1111%2Fpbi.14161&rft.externalDBID=10.1111%252Fpbi.14161&rft.externalDocID=PBI14161 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1467-7644&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1467-7644&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1467-7644&client=summon |