NACs, generalist in plant life

Summary Plant‐specific NAC proteins constitute a major transcription factor family that is well‐known for its roles in plant growth, development, and responses to abiotic and biotic stresses. In recent years, there has been significant progress in understanding the functions of NAC proteins. NAC pro...

Full description

Saved in:
Bibliographic Details
Published inPlant biotechnology journal Vol. 21; no. 12; pp. 2433 - 2457
Main Authors Han, Kunjin, Zhao, Ye, Sun, Yuhan, Li, Yun
Format Journal Article
LanguageEnglish
Published England John Wiley & Sons, Inc 01.12.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Summary Plant‐specific NAC proteins constitute a major transcription factor family that is well‐known for its roles in plant growth, development, and responses to abiotic and biotic stresses. In recent years, there has been significant progress in understanding the functions of NAC proteins. NAC proteins have a highly conserved DNA‐binding domain; however, their functions are diverse. Previous understanding of the structure of NAC transcription factors can be used as the basis for their functional diversity. NAC transcription factors consist of a target‐binding domain at the N‐terminus and a highly versatile C‐terminal domain that interacts with other proteins. A growing body of research on NAC transcription factors helps us comprehend the intricate signalling network and transcriptional reprogramming facilitated by NAC‐mediated complexes. However, most studies of NAC proteins have been limited to a single function. Here, we discuss the upstream regulators, regulatory components and targets of NAC in the context of their prospective roles in plant improvement strategies via biotechnology intervention, highlighting the importance of the NAC transcription factor family in plants and the need for further research.
AbstractList Plant-specific NAC proteins constitute a major transcription factor family that is well-known for its roles in plant growth, development, and responses to abiotic and biotic stresses. In recent years, there has been significant progress in understanding the functions of NAC proteins. NAC proteins have a highly conserved DNA-binding domain; however, their functions are diverse. Previous understanding of the structure of NAC transcription factors can be used as the basis for their functional diversity. NAC transcription factors consist of a target-binding domain at the N-terminus and a highly versatile C-terminal domain that interacts with other proteins. A growing body of research on NAC transcription factors helps us comprehend the intricate signalling network and transcriptional reprogramming facilitated by NAC-mediated complexes. However, most studies of NAC proteins have been limited to a single function. Here, we discuss the upstream regulators, regulatory components and targets of NAC in the context of their prospective roles in plant improvement strategies via biotechnology intervention, highlighting the importance of the NAC transcription factor family in plants and the need for further research.
Plant-specific NAC proteins constitute a major transcription factor family that is well-known for its roles in plant growth, development, and responses to abiotic and biotic stresses. In recent years, there has been significant progress in understanding the functions of NAC proteins. NAC proteins have a highly conserved DNA-binding domain; however, their functions are diverse. Previous understanding of the structure of NAC transcription factors can be used as the basis for their functional diversity. NAC transcription factors consist of a target-binding domain at the N-terminus and a highly versatile C-terminal domain that interacts with other proteins. A growing body of research on NAC transcription factors helps us comprehend the intricate signalling network and transcriptional reprogramming facilitated by NAC-mediated complexes. However, most studies of NAC proteins have been limited to a single function. Here, we discuss the upstream regulators, regulatory components and targets of NAC in the context of their prospective roles in plant improvement strategies via biotechnology intervention, highlighting the importance of the NAC transcription factor family in plants and the need for further research.Plant-specific NAC proteins constitute a major transcription factor family that is well-known for its roles in plant growth, development, and responses to abiotic and biotic stresses. In recent years, there has been significant progress in understanding the functions of NAC proteins. NAC proteins have a highly conserved DNA-binding domain; however, their functions are diverse. Previous understanding of the structure of NAC transcription factors can be used as the basis for their functional diversity. NAC transcription factors consist of a target-binding domain at the N-terminus and a highly versatile C-terminal domain that interacts with other proteins. A growing body of research on NAC transcription factors helps us comprehend the intricate signalling network and transcriptional reprogramming facilitated by NAC-mediated complexes. However, most studies of NAC proteins have been limited to a single function. Here, we discuss the upstream regulators, regulatory components and targets of NAC in the context of their prospective roles in plant improvement strategies via biotechnology intervention, highlighting the importance of the NAC transcription factor family in plants and the need for further research.
Summary Plant‐specific NAC proteins constitute a major transcription factor family that is well‐known for its roles in plant growth, development, and responses to abiotic and biotic stresses. In recent years, there has been significant progress in understanding the functions of NAC proteins. NAC proteins have a highly conserved DNA‐binding domain; however, their functions are diverse. Previous understanding of the structure of NAC transcription factors can be used as the basis for their functional diversity. NAC transcription factors consist of a target‐binding domain at the N‐terminus and a highly versatile C‐terminal domain that interacts with other proteins. A growing body of research on NAC transcription factors helps us comprehend the intricate signalling network and transcriptional reprogramming facilitated by NAC‐mediated complexes. However, most studies of NAC proteins have been limited to a single function. Here, we discuss the upstream regulators, regulatory components and targets of NAC in the context of their prospective roles in plant improvement strategies via biotechnology intervention, highlighting the importance of the NAC transcription factor family in plants and the need for further research.
Author Sun, Yuhan
Li, Yun
Zhao, Ye
Han, Kunjin
Author_xml – sequence: 1
  givenname: Kunjin
  orcidid: 0009-0005-2253-5625
  surname: Han
  fullname: Han, Kunjin
  organization: Beijing Forestry University
– sequence: 2
  givenname: Ye
  surname: Zhao
  fullname: Zhao, Ye
  organization: Beijing Forestry University
– sequence: 3
  givenname: Yuhan
  surname: Sun
  fullname: Sun, Yuhan
  organization: Beijing Forestry University
– sequence: 4
  givenname: Yun
  orcidid: 0000-0002-8426-565X
  surname: Li
  fullname: Li, Yun
  email: yunli@bjfu.edu.cn
  organization: Beijing Forestry University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37623750$$D View this record in MEDLINE/PubMed
BookMark eNqFkctOwzAQRS1URB-w4AeqSGxAIq3fdpal4lGpAhawtpzEQa7SJNiJUP8eQ1sWFYjZzCzOvZqZOwS9qq4MAOcITlCoaZPaCaKIoyMwQJSLWHCGez8zpX0w9H4FIUac8RPQJ4JjIhgcgPHjbO6vozdTGadL69vIVlFT6qqNSluYU3Bc6NKbs10fgde725f5Q7x8ul_MZ8s4oxihONWMCIkhhwYKiHNJEpJplgvBUyMlQkkuhcEkZ0kGWV5khUkoJ5IWTHPBczICl1vfxtXvnfGtWlufmTIsYurOKwIpJCxcSP5FsWRCMoYwDOjFAbqqO1eFQwKVQMgkFShQ4x3VpWuTq8bZtXYbtX9SAKZbIHO1984UKrOtbm1dtU7bUiGovmJQIQb1HUNQXB0o9qa_sTv3D1uazd-ger5ZbBWfpLuRCQ
CitedBy_id crossref_primary_10_1016_j_jare_2024_05_032
crossref_primary_10_3390_plants12213755
crossref_primary_10_1111_pce_14944
crossref_primary_10_3390_horticulturae10121236
crossref_primary_10_1016_j_stress_2024_100559
crossref_primary_10_3390_agronomy15010251
crossref_primary_10_3390_horticulturae10060595
crossref_primary_10_1111_pce_15168
crossref_primary_10_3389_fgene_2024_1375488
crossref_primary_10_1093_plphys_kiae202
crossref_primary_10_1016_j_plantsci_2024_112283
crossref_primary_10_3390_ijms25020688
crossref_primary_10_1016_j_jia_2024_12_033
crossref_primary_10_3390_ijms25042037
crossref_primary_10_1016_j_plaphy_2025_109645
crossref_primary_10_1111_tpj_17173
crossref_primary_10_1093_plphys_kiae031
crossref_primary_10_1016_j_plaphy_2025_109676
crossref_primary_10_1016_j_indcrop_2025_120691
crossref_primary_10_1002_advs_202400930
crossref_primary_10_3389_fpls_2025_1563065
crossref_primary_10_1093_plphys_kiaf001
crossref_primary_10_1016_j_plaphy_2024_109098
crossref_primary_10_3390_f15030479
crossref_primary_10_1016_j_stress_2024_100724
crossref_primary_10_3390_ijms252312531
crossref_primary_10_1016_j_cj_2024_11_001
crossref_primary_10_1093_hr_uhae284
crossref_primary_10_1016_j_plantsci_2024_112258
crossref_primary_10_1007_s44154_024_00201_w
crossref_primary_10_3390_plants14060834
crossref_primary_10_1016_j_hpj_2024_06_007
crossref_primary_10_1016_j_postharvbio_2025_113459
crossref_primary_10_1111_pce_15291
crossref_primary_10_1016_j_plaphy_2024_108721
crossref_primary_10_1007_s00425_024_04438_7
crossref_primary_10_1111_ppl_70123
crossref_primary_10_3390_plants13101352
crossref_primary_10_1111_plb_13657
crossref_primary_10_1007_s00299_024_03402_9
crossref_primary_10_3389_fpls_2024_1474589
crossref_primary_10_1111_tpj_70077
crossref_primary_10_3390_ijms25063296
crossref_primary_10_3390_biom14020182
crossref_primary_10_1038_s41598_024_82151_x
crossref_primary_10_1016_j_indcrop_2024_120138
crossref_primary_10_3390_ijms251910355
crossref_primary_10_1016_j_indcrop_2025_120827
crossref_primary_10_1016_j_plaphy_2024_108629
crossref_primary_10_1016_j_plantsci_2025_112455
crossref_primary_10_1016_j_plaphy_2024_108828
crossref_primary_10_1016_j_plantsci_2024_112276
crossref_primary_10_1038_s41598_025_85615_w
Cites_doi 10.1093/plphys/kiac397
10.1093/jxb/ers349
10.1093/hr/uhac136
10.1111/tpj.15485
10.1105/tpc.113.117861
10.1105/tpc.114.133769
10.1093/jxb/eraa333
10.1105/tpc.15.00015
10.1016/j.pbi.2014.07.009
10.1016/j.plaphy.2019.04.038
10.1104/pp.113.223388
10.1111/tpj.15447
10.1093/plphys/kiac146
10.4161/psb.11083
10.1111/tpj.12819
10.1093/pcp/pct113
10.1101/gad.852200
10.1093/mp/ssq062
10.1007/s00299-016-1996-9
10.1016/j.molp.2021.09.006
10.1111/tpj.12194
10.1111/mpp.12281
10.1111/j.1365-313X.2004.02171.x
10.1104/pp.15.00567
10.1016/j.tplants.2012.02.004
10.1016/j.fob.2013.07.006
10.1111/nph.18340
10.1111/j.1365-313X.2005.02488.x
10.3389/fpls.2016.00004
10.1016/j.plantsci.2005.05.035
10.1093/jxb/eru072
10.3390/ijms20133225
10.1111/nph.12047
10.3390/ijms232012258
10.1111/nph.17425
10.1016/j.molp.2021.07.014
10.1016/j.jplph.2017.12.009
10.1111/j.1365-313X.2006.02723.x
10.3389/fpls.2013.00273
10.1104/pp.15.00943
10.3389/fpls.2017.01049
10.1016/j.plantsci.2016.05.019
10.1111/nph.17560
10.1042/BJ20091234
10.1111/nph.18343
10.1093/dnares/10.6.239
10.1111/j.1365-313X.2011.04764.x
10.1093/plphys/kiac070
10.1104/pp.108.131912
10.1073/pnas.2010911118
10.1016/j.cell.2017.09.030
10.1093/jxb/ery366
10.1104/pp.20.01033
10.1105/tpc.108.063321
10.1104/pp.18.01167
10.1016/j.gene.2010.06.008
10.1093/hr/uhac039
10.1105/tpc.105.036004
10.1111/tpj.15807
10.4161/gmcr.1.1.10569
10.1093/jxb/ers178
10.3389/fpls.2020.00564
10.1038/21877
10.1111/nph.12797
10.1105/tpc.15.00222
10.1016/j.molp.2017.09.008
10.1038/s41438-018-0111-5
10.1111/tpj.12018
10.1186/1471-2229-12-220
10.1093/plcell/koaa040
10.1111/j.1365-313X.2010.04151.x
10.1073/pnas.232590499
10.1093/jxb/eraa131
10.1016/S0092-8674(00)81093-4
10.1007/s13238-011-1010-9
10.1038/s41438-021-00649-1
10.1038/embor.2013.24
10.1093/plphys/kiab195
10.1016/j.optlastec.2008.12.018
10.1111/tpj.14484
10.1093/nar/gkaa1191
10.1105/tpc.111.090894
10.1146/annurev.arplant.53.091401.143329
10.1093/plphys/kiac508
10.1016/j.cell.2016.08.029
10.1111/nph.18301
10.1146/annurev.arplant.57.032905.105316
10.1105/tpc.9.6.841
10.1093/jxb/ert324
10.1105/tpc.113.118927
10.1111/j.1365-313X.2007.03350.x
10.1104/pp.19.00148
10.1111/j.1365-313X.2012.04932.x
10.3389/fpls.2021.634040
10.1105/tpc.18.00662
10.1111/j.1365-313X.2008.03646.x
10.1007/s10142-008-0076-9
10.1038/cr.2009.108
10.1093/jxb/ert412
10.1038/nature14099
10.3389/fpls.2017.02118
10.1016/j.plaphy.2020.01.020
10.3389/fpls.2015.00288
10.1016/j.molp.2023.02.006
10.1111/nph.16036
10.1038/s41467-022-29210-x
10.1093/jxb/erz513
10.1111/tpj.13867
10.1073/pnas.1803841115
10.1073/pnas.1016436107
10.3109/07388551.2010.505910
10.1038/s41438-021-00644-6
10.3389/fpls.2018.00310
10.1111/pce.12303
10.1093/jxb/eru112
10.1111/pbi.13297
10.1111/pce.13829
10.1371/journal.pgen.1010090
10.1371/journal.pgen.1005399
10.1111/pbi.13209
10.1105/tpc.110.075036
10.1093/plcell/koac041
10.1186/1471-2229-10-145
10.1093/plcell/koac151
10.1104/pp.17.00542
10.1111/tpj.12605
10.1104/pp.16.01096
10.1093/plphys/kiab190
10.1104/pp.18.00292
10.3389/fpls.2021.655127
10.1093/jxb/erab027
10.1111/pbi.12776
10.1016/j.pbi.2020.05.008
10.3389/fpls.2022.818107
10.3389/fpls.2021.770060
10.1016/j.cub.2005.02.017
10.1093/jxb/erv240
10.1126/science.1248417
10.1111/j.1365-313X.2011.04687.x
10.1105/tpc.106.047043
10.1093/plcell/koac026
10.1105/tpc.108.061325
10.1105/tpc.010192
10.1007/s00438-010-0557-0
10.3389/fpls.2022.986628
10.1126/science.321.5887.330
10.1093/jxb/erz098
10.1111/tpj.12923
10.1146/annurev-arplant-042916-040936
10.1107/S0907444903022029
10.1073/pnas.1904995116
10.1038/ncomms5636
10.1038/nplants.2016.13
10.3389/fpls.2019.01036
10.1002/pmic.201400375
10.1111/nph.16233
10.1038/sj.embor.7400093
10.1146/annurev-arplant-050718-100005
10.1016/j.pbi.2008.10.005
10.1111/pbi.13277
10.1111/jipb.13218
10.1016/j.tplants.2004.12.010
10.1105/tpc.107.053678
10.1105/tpc.111.084913
10.1111/pce.13363
10.1007/s00425-010-1238-2
10.1111/tpj.14310
10.1073/pnas.1721523115
10.1111/j.1365-313X.2009.04091.x
10.1104/pp.20.00313
10.3390/ijms23179625
10.3390/cells10051136
10.1105/tpc.19.00569
10.1038/s41438-020-00442-6
10.1111/tpj.15057
10.1093/jxb/eraa320
10.1016/j.tplants.2008.06.008
10.1105/tpc.106.047399
10.3389/fpls.2018.00383
10.1111/pce.13803
10.1146/annurev.arplant.59.032607.092911
10.1104/pp.17.00461
10.1105/tpc.18.00293
10.1093/jxb/eraa118
10.1111/tpj.15512
10.1186/s12870-022-03623-8
10.1093/jxb/erac436
10.3390/ijms23031755
10.1007/s00438-008-0386-6
10.1093/plphys/kiac351
10.1111/jipb.13414
10.1111/pbi.13524
10.1111/tpj.13030
10.1093/mp/sst012
10.3389/fpls.2022.925035
10.1111/j.1365-313X.2011.04514.x
ContentType Journal Article
Copyright 2023 The Authors. published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.
2023 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.
2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023 The Authors. published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.
– notice: 2023 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.
– notice: 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
8FE
8FG
8FH
ABJCF
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
L6V
LK8
M7P
M7S
P64
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
7S9
L.6
DOI 10.1111/pbi.14161
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Engineering Collection
Biological Sciences
Biological Science Database
ProQuest Engineering Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Engineering Collection
Biotechnology Research Abstracts
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
Engineering Collection
Engineering Database
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
Biological Science Database
ProQuest SciTech Collection
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
CrossRef
AGRICOLA
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access (WRLC)
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1467-7652
EndPage 2457
ExternalDocumentID 37623750
10_1111_pbi_14161
PBI14161
Genre reviewArticle
Research Support, Non-U.S. Gov't
Journal Article
Review
GrantInformation_xml – fundername: Fundamental Research Funds for the Central Universities
  funderid: PTYX202338
– fundername: National Natural Science Foundation of China
  funderid: 32171769
– fundername: Fundamental Research Funds for the Central Universities
  grantid: PTYX202338
– fundername: National Natural Science Foundation of China
  grantid: 32171769
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
1OC
24P
29O
31~
33P
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52W
52X
53G
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8FE
8FG
8FH
8UM
930
A03
A8Z
AAEVG
AAHBH
AAHHS
AANHP
AAONW
AAZKR
ABCQN
ABDBF
ABEML
ABIJN
ABJCF
ABPVW
ACBWZ
ACCFJ
ACCMX
ACIWK
ACPRK
ACRPL
ACSCC
ACUHS
ACXQS
ACYXJ
ADBBV
ADIZJ
ADKYN
ADNMO
ADZMN
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AEUYN
AFBPY
AFEBI
AFKRA
AFRAH
AFZJQ
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
ASPBG
ATUGU
AVUZU
AVWKF
AZBYB
AZFZN
BAFTC
BBNVY
BCNDV
BDRZF
BENPR
BFHJK
BGLVJ
BHPHI
BNHUX
BROTX
BRXPI
BY8
CAG
CCPQU
COF
CS3
D-E
D-F
DPXWK
DR2
DU5
EAD
EAP
EBD
EBS
ECGQY
EDH
EJD
EMK
EMOBN
EST
ESX
F00
F01
F04
F5P
FEDTE
G-S
G.N
GODZA
GROUPED_DOAJ
H.T
H.X
HCIFZ
HF~
HOLLA
HVGLF
HZ~
IAO
IEP
IGS
IHE
ITC
IX1
J0M
KQ8
L6V
LC2
LC3
LH4
LK8
LP6
LP7
LW6
M7P
M7S
MK4
ML0
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
P2P
P2X
P4D
PIMPY
PROAC
PTHSS
Q.N
Q11
QB0
QM4
QO4
R.K
ROL
RPM
RX1
SUPJJ
SV3
TUS
UB1
W8V
W99
WIH
WIN
WQJ
WRC
XG1
~IA
~KM
~WT
AAYXX
AGQPQ
CITATION
PHGZM
PHGZT
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
PQGLB
7QO
8FD
ABUWG
AZQEC
DWQXO
FR3
GNUQQ
P64
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
7S9
L.6
ID FETCH-LOGICAL-c4211-ba53782060e0702d8393ca5d776be88119d87e23d59c05dfcfe946384f5a676d3
IEDL.DBID DR2
ISSN 1467-7644
1467-7652
IngestDate Fri Jul 11 18:35:08 EDT 2025
Fri Jul 11 15:05:47 EDT 2025
Wed Aug 13 09:56:44 EDT 2025
Mon Jul 21 06:02:51 EDT 2025
Thu Apr 24 23:12:37 EDT 2025
Tue Jul 01 02:34:50 EDT 2025
Wed Jan 22 17:18:46 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords plant development
stress
NAC transcription factors
network
Language English
License Attribution
2023 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4211-ba53782060e0702d8393ca5d776be88119d87e23d59c05dfcfe946384f5a676d3
Notes These authors contributed equally to this work
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-8426-565X
0009-0005-2253-5625
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fpbi.14161
PMID 37623750
PQID 2890058471
PQPubID 1096352
PageCount 2457
ParticipantIDs proquest_miscellaneous_3040351613
proquest_miscellaneous_2857855120
proquest_journals_2890058471
pubmed_primary_37623750
crossref_citationtrail_10_1111_pbi_14161
crossref_primary_10_1111_pbi_14161
wiley_primary_10_1111_pbi_14161_PBI14161
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2023
2023-12-00
20231201
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: December 2023
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Southampton
PublicationTitle Plant biotechnology journal
PublicationTitleAlternate Plant Biotechnol J
PublicationYear 2023
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2020c; 7
2010; 10
2013; 3
2013; 4
2022c; 64
2010; 107
2013a; 14
2019; 99
2019; 10
2013; 64
2002; 99
2010; 465
2022; 23
2014; 26
2005b; 10
2004; 5
2021a; 49
2018; 41
2012; 17
2020; 11
2021; 72
2012; 12
2013; 6
1997; 9
2016; 35
2014; 21
2010; 22
2018; 177
2018; 9
2018; 176
2018; 5
2010; 1
2000; 14
2019; 20
2013; 54
2015; 84
2004; 39
2015; 83
2022b; 15
2022; 34
2010; 232
2011; 66
2011; 68
2018; 30
2021b; 8
2013; 197
2008; 20
2010; 3
2021c; 108
2009; 19
2012; 24
2010; 5
2022; 111
2022b; 189
2018; 221
2007; 19
2011; 2
2019; 31
2022; 190
2017; 68
2020; 148
2008; 59
2016; 167
2008; 56
2010; 284
2022b; 190
2020; 32
2008; 53
2016; 17
2019; 100
2022; 235
2022; 189
2016; 7
2019; 181
2016; 2
2006; 46
2013; 73
2021b; 108
2015; 66
2013; 75
2018; 115
2022; 9
2014; 37
2022; 13
2019; 179
1996; 85
2015; 517
2018; 94
2005; 15
2020a; 18
2005; 17
2018; 16
2022; 18
2016; 172
2017; 8
2004; 60
2010; 426
2002; 53
2008; 8
2020; 57
2013; 163
2022a; 191
1999; 400
2021c; 12
2022; 65
2022a; 236
2010; 62
2003; 10
2014; 65
2010; 61
2008; 280
2012; 70
2014; 5
2022b; 236
2020a; 71
2021; 118
2019; 116
2015a; 82
2021a; 10
2011; 23
2021; 232
2020b; 225
2020; 43
2021; 231
2001; 13
2022a; 22
2014; 203
2012; 63
2021; 8
2015; 15
2015; 6
2019; 70
2009; 21
2020; 184
2015; 168
2023; 16
2021; 105
2015; 11
2011; 31
2020; 225
2017; 171
2006; 18
2005; 43
2008; 13
2021; 186
2008; 11
2017; 174
2022a; 74
2019; 140
2008; 321
2007; 58
2021; 14
2020b; 18
2013b; 25
2020a; 184
2015; 27
2021; 12
2020; 71
2017; 10
2021; 19
2011; 43
2014; 79
2021a; 33
2015b; 169
2005a; 169
2009; 149
2016; 250
2014; 343
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_132_1
e_1_2_8_155_1
e_1_2_8_178_1
e_1_2_8_9_1
e_1_2_8_117_1
e_1_2_8_170_1
e_1_2_8_193_1
e_1_2_8_64_1
e_1_2_8_87_1
e_1_2_8_41_1
e_1_2_8_15_1
e_1_2_8_38_1
Sosa‐Valencia G. (e_1_2_8_131_1) 2017; 68
e_1_2_8_120_1
e_1_2_8_143_1
e_1_2_8_166_1
e_1_2_8_189_1
e_1_2_8_91_1
e_1_2_8_99_1
e_1_2_8_105_1
e_1_2_8_128_1
e_1_2_8_181_1
e_1_2_8_53_1
e_1_2_8_76_1
e_1_2_8_30_1
e_1_2_8_25_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_133_1
e_1_2_8_179_1
e_1_2_8_110_1
e_1_2_8_171_1
e_1_2_8_86_1
e_1_2_8_118_1
e_1_2_8_194_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_156_1
e_1_2_8_14_1
e_1_2_8_37_1
e_1_2_8_144_1
e_1_2_8_90_1
e_1_2_8_121_1
e_1_2_8_98_1
e_1_2_8_106_1
e_1_2_8_182_1
e_1_2_8_75_1
e_1_2_8_167_1
e_1_2_8_28_1
e_1_2_8_81_1
e_1_2_8_111_1
e_1_2_8_7_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_89_1
e_1_2_8_119_1
e_1_2_8_172_1
e_1_2_8_195_1
e_1_2_8_134_1
e_1_2_8_157_1
e_1_2_8_17_1
Smýkal P. (e_1_2_8_129_1) 2014; 5
e_1_2_8_70_1
e_1_2_8_122_1
e_1_2_8_160_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_78_1
e_1_2_8_107_1
e_1_2_8_183_1
e_1_2_8_145_1
e_1_2_8_168_1
e_1_2_8_93_1
e_1_2_8_27_1
e_1_2_8_80_1
e_1_2_8_150_1
e_1_2_8_8_1
e_1_2_8_42_1
e_1_2_8_88_1
e_1_2_8_65_1
e_1_2_8_173_1
e_1_2_8_112_1
e_1_2_8_158_1
e_1_2_8_196_1
e_1_2_8_135_1
e_1_2_8_39_1
e_1_2_8_16_1
e_1_2_8_92_1
e_1_2_8_100_1
e_1_2_8_161_1
e_1_2_8_31_1
e_1_2_8_77_1
e_1_2_8_54_1
e_1_2_8_108_1
e_1_2_8_184_1
e_1_2_8_123_1
e_1_2_8_169_1
e_1_2_8_146_1
e_1_2_8_68_1
e_1_2_8_5_1
e_1_2_8_151_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_113_1
e_1_2_8_136_1
e_1_2_8_159_1
e_1_2_8_174_1
e_1_2_8_197_1
e_1_2_8_60_1
e_1_2_8_83_1
e_1_2_8_19_1
e_1_2_8_109_1
e_1_2_8_57_1
e_1_2_8_95_1
e_1_2_8_162_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_101_1
e_1_2_8_124_1
e_1_2_8_147_1
e_1_2_8_185_1
Kong X.‐M. (e_1_2_8_66_1) 2020; 71
e_1_2_8_72_1
e_1_2_8_29_1
e_1_2_8_200_1
e_1_2_8_152_1
e_1_2_8_6_1
e_1_2_8_21_1
e_1_2_8_67_1
e_1_2_8_44_1
e_1_2_8_137_1
e_1_2_8_175_1
e_1_2_8_82_1
e_1_2_8_114_1
e_1_2_8_198_1
e_1_2_8_18_1
Ionescu I.A. (e_1_2_8_52_1) 2017; 68
e_1_2_8_79_1
e_1_2_8_94_1
e_1_2_8_163_1
e_1_2_8_140_1
e_1_2_8_10_1
e_1_2_8_56_1
e_1_2_8_33_1
e_1_2_8_102_1
e_1_2_8_148_1
e_1_2_8_186_1
e_1_2_8_71_1
e_1_2_8_125_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_201_1
e_1_2_8_3_1
e_1_2_8_130_1
e_1_2_8_153_1
e_1_2_8_138_1
e_1_2_8_62_1
e_1_2_8_85_1
e_1_2_8_115_1
e_1_2_8_176_1
e_1_2_8_199_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_190_1
e_1_2_8_141_1
e_1_2_8_164_1
e_1_2_8_97_1
e_1_2_8_149_1
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_103_1
e_1_2_8_126_1
e_1_2_8_187_1
e_1_2_8_46_1
e_1_2_8_69_1
e_1_2_8_180_1
e_1_2_8_154_1
e_1_2_8_4_1
e_1_2_8_192_1
e_1_2_8_116_1
e_1_2_8_23_1
e_1_2_8_139_1
e_1_2_8_84_1
e_1_2_8_61_1
e_1_2_8_177_1
e_1_2_8_35_1
e_1_2_8_58_1
e_1_2_8_191_1
e_1_2_8_165_1
e_1_2_8_96_1
e_1_2_8_142_1
e_1_2_8_127_1
e_1_2_8_12_1
e_1_2_8_73_1
e_1_2_8_50_1
e_1_2_8_104_1
e_1_2_8_188_1
References_xml – volume: 21
  start-page: 133
  year: 2014
  end-page: 139
  article-title: ABA‐dependent and ABA‐independent signaling in response to osmotic stress in plants
  publication-title: Curr. Opin. Plant Biol.
– volume: 236
  start-page: 495
  year: 2022b
  end-page: 511
  article-title: TaSRO1 plays a dual role in suppressing TaSIP1 to fine tune mitochondrial retrograde signalling and enhance salinity stress tolerance
  publication-title: New Phytol.
– volume: 43
  start-page: 745
  year: 2005
  end-page: 757
  article-title: The transcription factor ATAF2 represses the expression of pathogenesis‐related genes in
  publication-title: Plant J.
– volume: 11
  year: 2015
  article-title: EIN3 and ORE1 accelerate degreening during ethylene‐mediated leaf senescence by directly activating chlorophyll catabolic genes in
  publication-title: PLoS Genet.
– volume: 30
  start-page: 2197
  year: 2018
  end-page: 2213
  article-title: NAC transcription factors ANAC087 and ANAC046 control distinct aspects of programmed cell death in the columella and lateral root cap
  publication-title: Plant Cell
– volume: 115
  start-page: E4930
  year: 2018
  end-page: E4939
  article-title: Time‐evolving genetic networks reveal a NAC troika that negatively regulates leaf senescence in Arabidopsis
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 6
  start-page: 288
  year: 2015
  article-title: NAC‐MYB‐based transcriptional regulation of secondary cell wall biosynthesis in land plants
  publication-title: Front. Plant Sci.
– volume: 181
  start-page: 595
  year: 2019
  end-page: 608
  article-title: LBD29‐involved auxin signaling represses NAC master regulators and fiber wall biosynthesis
  publication-title: Plant Physiol.
– volume: 84
  start-page: 597
  year: 2015
  end-page: 610
  article-title: Jasmonic acid promotes degreening via MYC2/3/4‐ and ANAC019/055/072‐mediated regulation of major chlorophyll catabolic genes
  publication-title: Plant J.
– volume: 190
  start-page: 1960
  year: 2022b
  end-page: 1977
  article-title: NAC transcription factor TgNAP promotes tulip petal senescence
  publication-title: Plant Physiol.
– volume: 71
  start-page: 1078
  year: 2020
  end-page: 1091
  article-title: Transcription factor CaNAC1 regulates low‐temperature‐induced phospholipid degradation in green bell pepper
  publication-title: J. Exp. Bot.
– volume: 163
  start-page: 775
  year: 2013
  end-page: 791
  article-title: An NAC transcription factor controls ethylene‐regulated cell expansion in flower petals
  publication-title: Plant Physiol.
– volume: 99
  start-page: 15794
  year: 2002
  end-page: 15799
  article-title: Visualization by comprehensive microarray analysis of gene expression programs during transdifferentiation of mesophyll cells into xylem cells
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 284
  start-page: 173
  year: 2010
  end-page: 183
  article-title: The abiotic stress‐responsive NAC‐type transcription factor OsNAC5 regulates stress‐inducible genes and stress tolerance in rice
  publication-title: Mol. Genet. Genomics
– volume: 5
  start-page: 481
  year: 2010
  end-page: 483
  article-title: A membrane‐bound NAC transcription factor as an integrator of biotic and abiotic stress signals
  publication-title: Plant Signal. Behav.
– volume: 203
  start-page: 32
  year: 2014
  end-page: 43
  article-title: Abiotic and biotic stress combinations
  publication-title: New Phytol.
– volume: 190
  start-page: 2045
  year: 2022
  end-page: 2058
  article-title: STRONG STAYGREEN inhibits DNA binding of PvNAP transcription factors during leaf senescence in switchgrass
  publication-title: Plant Physiol.
– volume: 41
  start-page: 2463
  year: 2018
  end-page: 2474
  article-title: The E3 ligase BRUTUS facilitates degradation of VOZ1/2 transcription factors
  publication-title: Plant Cell Environ.
– volume: 186
  start-page: 2169
  year: 2021
  end-page: 2189
  article-title: Pepper NAC‐type transcription factor NAC2c balances the trade‐off between growth and defense responses
  publication-title: Plant Physiol.
– volume: 57
  start-page: 16
  year: 2020
  end-page: 23
  article-title: Mechanical control of plant morphogenesis: concepts and progress
  publication-title: Curr. Opin. Plant Biol.
– volume: 85
  start-page: 159
  year: 1996
  end-page: 170
  article-title: The no apical meristem gene of Petunia is required for pattern formation in embryos and flowers and is expressed at meristem and primordia boundaries
  publication-title: Cell
– volume: 18
  start-page: 3158
  year: 2006
  end-page: 3170
  article-title: SND1, a NAC domain transcription factor, is a key regulator of secondary wall synthesis in fibers of
  publication-title: Plant Cell
– volume: 14
  start-page: 382
  year: 2013a
  end-page: 388
  article-title: ORE1 balances leaf senescence against maintenance by antagonizing G2‐like‐mediated transcription
  publication-title: EMBO Rep.
– volume: 63
  start-page: 5171
  year: 2012
  end-page: 5187
  article-title: Molecular characterization of banana NAC transcription factors and their interactions with ethylene signalling component EIL during fruit ripening
  publication-title: J. Exp. Bot.
– volume: 184
  start-page: 1153
  year: 2020
  end-page: 1171
  article-title: MaXB3 modulates MaNAC2, MaACS1, and MaACO1 stability to repress ethylene biosynthesis during banana fruit ripening
  publication-title: Plant Physiol.
– volume: 8
  start-page: 209
  year: 2021
  article-title: The NAM/ATAF1/2/CUC2 transcription factor PpNAC.A59 enhances expression to promote ethylene biosynthesis during peach fruit ripening
  publication-title: Hortic. Res.
– volume: 12
  start-page: 220
  year: 2012
  article-title: miRNA164‐directed cleavage of ZmNAC1 confers lateral root development in maize ( .)
  publication-title: BMC Plant Biol.
– volume: 9
  start-page: 310
  year: 2018
  article-title: Overexpression of improves drought tolerance in rice
  publication-title: Front. Plant Sci.
– volume: 31
  start-page: 186
  year: 2011
  end-page: 192
  article-title: CBF‐dependent signaling pathway: a key responder to low temperature stress in plants
  publication-title: Crit. Rev. Biotechnol.
– volume: 23
  start-page: 12258
  year: 2022
  article-title: NAC1 maintains root meristem activity by repressing the transcription of E2Fa in
  publication-title: Int. J. Mol. Sci.
– volume: 49
  start-page: 190
  year: 2021a
  end-page: 205
  article-title: Histone methyltransferase ATX1 dynamically regulates fiber secondary cell wall biosynthesis in inflorescence stem
  publication-title: Nucleic Acids Res.
– volume: 25
  start-page: 4941
  year: 2013b
  end-page: 4955
  article-title: NAC transcription factor speedy hyponastic growth regulates flooding‐induced leaf movement in
  publication-title: Plant Cell
– volume: 116
  start-page: 11223
  year: 2019
  end-page: 11228
  article-title: NAC‐type transcription factors regulate accumulation of starch and protein in maize seeds
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 12
  year: 2021c
  article-title: DELLA‐NAC interactions mediate GA signaling to promote secondary cell wall formation in cotton stem
  publication-title: Front. Plant Sci.
– volume: 21
  start-page: 248
  year: 2009
  end-page: 266
  article-title: MYB58 and MYB63 are transcriptional activators of the lignin biosynthetic pathway during secondary cell wall formation in
  publication-title: Plant Cell
– volume: 225
  start-page: 1531
  year: 2020
  end-page: 1544
  article-title: KNAT2/6b, a class I KNOX gene, impedes xylem differentiation by regulating NAC domain transcription factors in poplar
  publication-title: New Phytol.
– volume: 27
  start-page: 1681
  year: 2015
  end-page: 1696
  article-title: A gibberellin‐mediated DELLA‐NAC signaling cascade regulates cellulose synthesis in rice
  publication-title: Plant Cell
– volume: 70
  start-page: 2727
  year: 2019
  end-page: 2740
  article-title: Tomato fruit ripening factor NOR controls leaf senescence
  publication-title: J. Exp. Bot.
– volume: 280
  start-page: 547
  year: 2008
  end-page: 563
  article-title: Systematic sequence analysis and identification of tissue‐specific or stress‐responsive genes of NAC transcription factor family in rice
  publication-title: Mol. Genet. Genomics
– volume: 71
  start-page: 5794
  year: 2020a
  end-page: 5807
  article-title: The NAC transcription factor NAC019‐A1 is a negative regulator of starch synthesis in wheat developing endosperm
  publication-title: J. Exp. Bot.
– volume: 184
  start-page: 1389
  year: 2020a
  end-page: 1406
  article-title: MYB transcription factor161 mediates feedback regulation of secondary wall‐associated NAC‐Domain1 family genes for wood formation
  publication-title: Plant Physiol.
– volume: 65
  start-page: 2119
  year: 2014
  end-page: 2135
  article-title: Conserved miR164‐targeted NAC genes negatively regulate drought resistance in rice
  publication-title: J. Exp. Bot.
– volume: 58
  start-page: 115
  year: 2007
  end-page: 136
  article-title: Leaf senescence
  publication-title: Annu. Rev. Plant Biol.
– volume: 111
  start-page: 440
  year: 2022
  end-page: 456
  article-title: The miR164a‐NAM3 module confers cold tolerance by inducing ethylene production in tomato
  publication-title: Plant J.
– volume: 59
  start-page: 651
  year: 2008
  end-page: 681
  article-title: Mechanisms of salinity tolerance
  publication-title: Annu. Rev. Plant Biol.
– volume: 13
  year: 2022
  article-title: MdNAC4 interacts with MdAPRR2 to regulate nitrogen deficiency‐induced leaf senescence in apple ( )
  publication-title: Front. Plant Sci.
– volume: 23
  start-page: 1755
  year: 2022
  article-title: Drought‐responsive NAC transcription factor RcNAC72 is recognized by RcABF4, interacts with RcDREB2A to enhance drought tolerance in
  publication-title: Int. J. Mol. Sci.
– volume: 83
  start-page: 732
  year: 2015
  end-page: 742
  article-title: A conserved role for CUP‐SHAPED COTYLEDON genes during ovule development
  publication-title: Plant J.
– volume: 221
  start-page: 74
  year: 2018
  end-page: 80
  article-title: An apple NAC transcription factor negatively regulates cold tolerance via CBF‐dependent pathway
  publication-title: J. Plant Physiol.
– volume: 13
  year: 2022
  article-title: The NAC transcription factor ANAC087 induces aerial rosette development and leaf senescence in
  publication-title: Front. Plant Sci.
– volume: 34
  start-page: 2001
  year: 2022
  end-page: 2018
  article-title: The tomato OST1‐VOZ1 module regulates drought‐mediated flowering
  publication-title: Plant Cell
– volume: 62
  start-page: 250
  year: 2010
  end-page: 264
  article-title: A gene regulatory network controlled by the NAC transcription factor ANAC092/AtNAC2/ORE1 during salt‐promoted senescence
  publication-title: Plant J.
– volume: 9
  start-page: uhac136
  year: 2022
  article-title: A natural mutation of the gene arrests secondary cell wall biosynthesis in the seed coat of a hull‐less pumpkin accession
  publication-title: Hortic. Res.
– volume: 68
  start-page: 2013
  year: 2017
  end-page: 2026
  article-title: The legume miR1514a modulates a NAC transcription factor transcript to trigger phasiRNA formation in response to drought
  publication-title: J. Exp. Bot.
– volume: 8
  start-page: 214
  year: 2021b
  article-title: The NAC transcription factor ClNAC68 positively regulates sugar content and seed development in watermelon by repressing ClINV and ClGH3.6
  publication-title: Hortic. Res.
– volume: 66
  start-page: 4669
  year: 2015
  end-page: 4682
  article-title: A novel NAP member GhNAP is involved in leaf senescence in
  publication-title: J. Exp. Bot.
– volume: 72
  start-page: 2947
  year: 2021
  end-page: 2964
  article-title: A heat stress responsive NAC transcription factor heterodimer plays key roles in rice grain filling
  publication-title: J. Exp. Bot.
– volume: 426
  start-page: 183
  year: 2010
  end-page: 196
  article-title: The Arabidopsis thaliana NAC transcription factor family: structure‐function relationships and determinants of ANAC019 stress signalling
  publication-title: Biochem. J.
– volume: 105
  start-page: 600
  year: 2021
  end-page: 618
  article-title: Ectopic overexpression of a membrane‐tethered transcription factor gene from oilseed rape positively modulates programmed cell death and age‐triggered leaf senescence
  publication-title: Plant J.
– volume: 10
  start-page: 145
  year: 2010
  article-title: Comprehensive analysis of NAC domain transcription factor gene family in
  publication-title: BMC Plant Biol.
– volume: 35
  start-page: 1783
  year: 2016
  end-page: 1798
  article-title: Identification and characterization of a novel NAC‐like gene in chrysanthemum ( )
  publication-title: Plant Cell Rep.
– volume: 68
  start-page: 1104
  year: 2011
  end-page: 1114
  article-title: NAC domain function and transcriptional control of a secondary cell wall master switch
  publication-title: Plant J.
– volume: 26
  start-page: 4862
  year: 2014
  end-page: 4874
  article-title: A NAP‐AAO3 regulatory module promotes chlorophyll degradation via ABA biosynthesis in Arabidopsis leaves
  publication-title: Plant Cell
– volume: 169
  start-page: 391
  year: 2015b
  end-page: 402
  article-title: TRANSPARENT TESTA GLABRA1 regulates the accumulation of seed storage reserves in
  publication-title: Plant Physiol.
– volume: 71
  start-page: 1449
  year: 2020
  end-page: 1458
  article-title: Modulation of NAC transcription factor NST1 activity by XYLEM NAC DOMAIN1 regulates secondary cell wall formation in
  publication-title: J. Exp. Bot.
– volume: 70
  start-page: 831
  year: 2012
  end-page: 844
  article-title: A NAC transcription factor NTL4 promotes reactive oxygen species production during drought‐induced leaf senescence in
  publication-title: Plant J.
– volume: 197
  start-page: 696
  year: 2013
  end-page: 711
  article-title: Senescence, ageing and death of the whole plant
  publication-title: New Phytol.
– volume: 64
  start-page: 5497
  year: 2013
  end-page: 5507
  article-title: The tomato NAC transcription factor SlNAM2 is involved in flower‐boundary morphogenesis
  publication-title: J. Exp. Bot.
– volume: 7
  start-page: 1
  year: 2020c
  end-page: 11
  article-title: Transcriptomic and genetic approaches reveal an essential role of the NAC transcription factor SlNAP1 in the growth and defense response of tomato
  publication-title: Hortic. Res.
– volume: 26
  start-page: 438
  year: 2014
  end-page: 453
  article-title: The protein phosphatase RCF2 and its interacting partner NAC019 are critical for heat stress‐responsive gene regulation and thermotolerance in
  publication-title: Plant Cell
– volume: 171
  start-page: 287
  year: 2017
  end-page: 304.e15
  article-title: Insights into land plant evolution garnered from the marchantia polymorpha genome
  publication-title: Cell
– volume: 65
  start-page: 918
  year: 2022
  end-page: 933
  article-title: Variations in OsSPL10 confer drought tolerance by directly regulating expression and ROS production in rice
  publication-title: J. Integr. Plant Biol.
– volume: 17
  start-page: 330
  year: 2016
  end-page: 338
  article-title: Banana fruit NAC transcription factor MaNAC5 cooperates with MaWRKYs to enhance the expression of pathogenesis‐related genes against
  publication-title: Mol. Plant Pathol.
– volume: 23
  start-page: 9625
  year: 2022
  article-title: A transcription factor SlNAC10 gene of regulates proline synthesis and enhances salt and drought tolerance
  publication-title: Int. J. Mol. Sci.
– volume: 5
  start-page: 297
  year: 2004
  end-page: 303
  article-title: Structure of the conserved domain of ANAC, a member of the NAC family of transcription factors
  publication-title: EMBO Rep.
– volume: 140
  start-page: 113
  year: 2019
  end-page: 121
  article-title: Overexpression of the NAC transcription factor ( ) increases salinity tolerance in tomato
  publication-title: Plant Physiol. Biochem.
– volume: 10
  start-page: 79
  year: 2005b
  end-page: 87
  article-title: NAC transcription factors: structurally distinct, functionally diverse
  publication-title: Trends Plant Sci.
– volume: 18
  start-page: 1317
  year: 2020b
  end-page: 1329
  article-title: A membrane‐associated NAC transcription factor OsNTL3 is involved in thermotolerance in rice
  publication-title: Plant Biotechnol. J.
– volume: 20
  start-page: 2763
  year: 2008
  end-page: 2782
  article-title: A battery of transcription factors involved in the regulation of secondary cell wall biosynthesis in
  publication-title: Plant Cell
– volume: 8
  start-page: 2118
  year: 2017
  article-title: JUNGBRUNNEN1 confers drought tolerance downstream of the HD‐Zip I transcription factor AtHB13
  publication-title: Front. Plant Sci.
– volume: 149
  start-page: 1724
  year: 2009
  end-page: 1738
  article-title: The low‐oxygen‐induced NAC domain transcription factor ANAC102 affects viability of seeds following low‐oxygen treatment
  publication-title: Plant Physiol.
– volume: 43
  start-page: 2287
  year: 2020
  end-page: 2300
  article-title: The transcription factor ZmNAC126 accelerates leaf senescence downstream of the ethylene signalling pathway in maize
  publication-title: Plant Cell Environ.
– volume: 70
  start-page: 7
  year: 2019
  end-page: 15
  article-title: The nitrogen cost of photosynthesis
  publication-title: J. Exp. Bot.
– volume: 18
  year: 2022
  article-title: The nitrate‐inducible NAC transcription factor NAC056 controls nitrate assimilation and promotes lateral root growth in
  publication-title: PLoS Genet.
– volume: 169
  start-page: 785
  year: 2005a
  end-page: 797
  article-title: DNA‐binding specificity and molecular functions of NAC transcription factors
  publication-title: Plant Sci.
– volume: 54
  start-page: 1660
  year: 2013
  end-page: 1672
  article-title: Mutation of the NAC016 transcription factor delays leaf senescence
  publication-title: Plant Cell Physiol.
– volume: 32
  start-page: 630
  year: 2020
  end-page: 649
  article-title: Multilayered regulation of membrane‐bound ONAC054 is essential for abscisic acid‐induced leaf senescence in rice
  publication-title: Plant Cell
– volume: 250
  start-page: 30
  year: 2016
  end-page: 39
  article-title: Membrane‐bound NAC transcription factors in maize and their contribution to the oxidative stress response
  publication-title: Plant Sci.
– volume: 231
  start-page: 1496
  year: 2021
  end-page: 1509
  article-title: Xylem vessel‐specific SND5 and its homologs regulate secondary wall biosynthesis through activating secondary wall NAC binding elements
  publication-title: New Phytol.
– volume: 10
  start-page: 1334
  year: 2017
  end-page: 1348
  article-title: Lamin‐like proteins negatively regulate plant immunity through NAC WITH TRANSMEMBRANE MOTIF1‐LIKE9 and NONEXPRESSOR OF PR GENES1 in
  publication-title: Mol. Plant
– volume: 16
  start-page: 709
  year: 2023
  end-page: 725
  article-title: NAC1 regulates root ground tissue maturation through coordinating with SCR/SHR–CYCD6;1 module in
  publication-title: Mol. Plant
– volume: 15
  start-page: 303
  year: 2005
  end-page: 315
  article-title: The early extra petals1 mutant uncovers a role for microRNA miR164c in regulating petal number in
  publication-title: Curr. Biol.
– volume: 20
  start-page: 3225
  year: 2019
  article-title: A stress‐responsive NAC transcription factor from tiger lily (LlNAC2) interacts with LlDREB1 and LlZHFD4 and enhances various abiotic stress tolerance in
  publication-title: Int. J. Mol. Sci.
– volume: 232
  start-page: 1033
  year: 2010
  end-page: 1043
  article-title: Plant NAC‐type transcription factor proteins contain a NARD domain for repression of transcriptional activation
  publication-title: Planta
– volume: 465
  start-page: 30
  year: 2010
  end-page: 44
  article-title: Genome‐wide analysis of NAC transcription factor family in rice
  publication-title: Gene
– volume: 64
  start-page: 771
  year: 2022c
  end-page: 786
  article-title: Regulation of cytokinin biosynthesis using PtRD26pro ‐IPT module improves drought tolerance through PtARR10‐PtYUC4/5‐mediated reactive oxygen species removal in
  publication-title: J. Integr. Plant Biol.
– volume: 75
  start-page: 26
  year: 2013
  end-page: 39
  article-title: A local regulatory network around three NAC transcription factors in stress responses and senescence in leaves
  publication-title: Plant J.
– volume: 27
  start-page: 1771
  year: 2015
  end-page: 1787
  article-title: The transcription factor NAC016 promotes drought stress responses by repressing transcription through a trifurcate feed‐forward regulatory loop involving NAP
  publication-title: Plant Cell
– volume: 108
  start-page: 394
  year: 2021b
  end-page: 410
  article-title: Glyoxalase I‐4 functions downstream of NAC72 to modulate downy mildew resistance in grapevine
  publication-title: Plant J.
– volume: 517
  start-page: 571
  year: 2015
  end-page: 575
  article-title: An Arabidopsis gene regulatory network for secondary cell wall synthesis
  publication-title: Nature
– volume: 16
  start-page: 354
  year: 2018
  end-page: 366
  article-title: NAC transcription factor JUNGBRUNNEN1 enhances drought tolerance in tomato
  publication-title: Plant Biotechnol. J.
– volume: 15
  start-page: 179
  year: 2022b
  end-page: 188
  article-title: CLE14 functions as a “brake signal” to suppress age‐dependent and stress‐induced leaf senescence by promoting JUB1‐mediated ROS scavenging in Arabidopsis
  publication-title: Mol. Plant
– volume: 3
  start-page: 321
  year: 2013
  end-page: 327
  article-title: ATAF1 transcription factor directly regulates abscisic acid biosynthetic gene in Arabidopsis thaliana
  publication-title: FEBS Open Bio
– volume: 37
  start-page: 2116
  year: 2014
  end-page: 2127
  article-title: Banana fruit NAC transcription factor MaNAC1 is a direct target of MaICE1 and involved in cold stress through interacting with MaCBF1
  publication-title: Plant Cell Environ.
– volume: 82
  start-page: 302
  year: 2015a
  end-page: 314
  article-title: OsNAC2 encoding a NAC transcription factor that affects plant height through mediating the gibberellic acid pathway in rice
  publication-title: Plant J.
– volume: 68
  start-page: 369
  year: 2017
  end-page: 382
  article-title: Chemical control of flowering time
  publication-title: J. Exp. Bot.
– volume: 11
  start-page: 695
  year: 2008
  end-page: 701
  article-title: Membrane‐tethered transcription factors in thaliana: novel regulators in stress response and development
  publication-title: Curr. Opin. Plant Biol.
– volume: 71
  start-page: 3560
  year: 2020
  end-page: 3574
  article-title: Re‐evaluation of the nor mutation and the role of the NAC‐NOR transcription factor in tomato fruit ripening
  publication-title: J. Exp. Bot.
– volume: 74
  start-page: 945
  year: 2022a
  end-page: 963
  article-title: A lily membrane‐associated NAC transcription factor LlNAC014 is involved in thermotolerance via activation of the DREB2‐HSFA3 module
  publication-title: J. Exp. Bot.
– volume: 10
  start-page: 1036
  year: 2019
  article-title: Overexpression of the soybean NAC gene increases lateral root formation and abiotic stress tolerance in transgenic plants
  publication-title: Front. Plant Sci.
– volume: 235
  start-page: 1913
  year: 2022
  end-page: 1926
  article-title: The role and interaction between transcription factor NAC‐NOR and DNA demethylase SlDML2 in the biosynthesis of tomato fruit flavor volatiles
  publication-title: New Phytol.
– volume: 5
  start-page: 75
  year: 2018
  article-title: A NAC transcription factor, NOR‐like1, is a new positive regulator of tomato fruit ripening
  publication-title: Hortic. Res.
– volume: 100
  start-page: 923
  year: 2019
  end-page: 937
  article-title: GSK3‐like kinase BIN2 phosphorylates RD26 to potentiate drought signaling in
  publication-title: Plant J.
– volume: 65
  start-page: 621
  year: 2014
  end-page: 639
  article-title: The NAC‐like gene ANTHER INDEHISCENCE FACTOR acts as a repressor that controls anther dehiscence by regulating genes in the jasmonate biosynthesis pathway in
  publication-title: J. Exp. Bot.
– volume: 9
  start-page: uhac039
  year: 2022
  article-title: NAC‐mediated membrane lipid remodeling negatively regulates fruit cold tolerance
  publication-title: Hortic. Res.
– volume: 71
  start-page: 6142
  year: 2020
  end-page: 6158
  article-title: Capsicum annum Hsp26.5 promotes defense responses against RNA viruses via ATAF2 but is hijacked as a chaperone for tobamovirus movement protein
  publication-title: J. Exp. Bot.
– volume: 34
  start-page: 2852
  year: 2022
  end-page: 2870
  article-title: KIL1 terminates fertility in maize by controlling silk senescence
  publication-title: Plant Cell
– volume: 172
  start-page: 1532
  year: 2016
  end-page: 1547
  article-title: A NAC transcription factor represses putrescine biosynthesis and affects drought tolerance
  publication-title: Plant Physiol.
– volume: 56
  start-page: 867
  year: 2008
  end-page: 880
  article-title: Transcriptional regulation by an NAC (NAM‐ATAF1,2‐CUC2) transcription factor attenuates ABA signalling for efficient basal defence towards Blumeria graminis f. sp. hordei in Arabidopsis
  publication-title: Plant J.
– volume: 108
  start-page: 829
  year: 2021c
  end-page: 840
  article-title: TaNAC100 acts as an integrator of seed protein and starch synthesis exerting pleiotropic effects on agronomic traits in wheat
  publication-title: Plant J.
– volume: 22
  start-page: 261
  year: 2022a
  article-title: Functional analysis of PagNAC045 transcription factor that improves salt and ABA tolerance in transgenic tobacco
  publication-title: BMC Plant Biol.
– volume: 2
  start-page: 1
  year: 2016
  end-page: 9
  article-title: Arabidopsis NAC transcription factor JUB1 regulates GA/BR metabolism and signalling
  publication-title: Nat. Plants
– volume: 71
  start-page: 403
  year: 2020
  end-page: 433
  article-title: Salt Tolerance Mechanisms of Plants
  publication-title: Annu. Rev. Plant Biol.
– volume: 12
  year: 2021
  article-title: FHY3 and FAR1 function in age gating of leaf senescence
  publication-title: Front. Plant Sci.
– volume: 17
  start-page: 369
  year: 2012
  end-page: 381
  article-title: NAC proteins: regulation and role in stress tolerance
  publication-title: Trends Plant Sci.
– volume: 94
  start-page: 454
  year: 2018
  end-page: 468
  article-title: OsNAC2 positively affects salt‐induced cell death and binds to the OsAP37 and OsCOX11 promoters
  publication-title: Plant J.
– volume: 53
  start-page: 247
  year: 2002
  end-page: 273
  article-title: Salt and drought stress signal transduction in plants
  publication-title: Annu. Rev. Plant Biol.
– volume: 232
  start-page: 237
  year: 2021
  end-page: 251
  article-title: An ethylene‐hypersensitive methionine sulfoxide reductase regulated by NAC transcription factors increases methionine pool size and ethylene production during kiwifruit ripening
  publication-title: New Phytol.
– volume: 191
  start-page: 747
  year: 2022a
  end-page: 771
  article-title: The unique sweet potato NAC transcription factor IbNAC3 modulates combined salt and drought stresses
  publication-title: Plant Physiol.
– volume: 46
  start-page: 601
  year: 2006
  end-page: 612
  article-title: AtNAP, a NAC family transcription factor, has an important role in leaf senescence
  publication-title: Plant J.
– volume: 19
  start-page: 1279
  year: 2009
  end-page: 1290
  article-title: Dual function of Arabidopsis ATAF1 in abiotic and biotic stress responses
  publication-title: Cell Res.
– volume: 225
  start-page: 1618
  year: 2020b
  end-page: 1634
  article-title: Genome‐wide analysis of coding and non‐coding RNA reveals a conserved miR164‐NAC regulatory pathway for fruit ripening
  publication-title: New Phytol.
– volume: 31
  start-page: 2107
  year: 2019
  end-page: 2130
  article-title: GmSIN1/GmNCED3s/GmRbohBs feed‐forward loop acts as a signal amplifier that regulates root growth in soybean exposed to salt stress
  publication-title: Plant Cell
– volume: 7
  start-page: 4
  year: 2016
  article-title: Overexpression of a stress‐responsive NAC transcription factor gene improves drought and salt tolerance in rice
  publication-title: Front. Plant Sci.
– volume: 17
  start-page: 2993
  year: 2005
  end-page: 3006
  article-title: The NAC transcription factors NST1 and NST2 of Arabidopsis regulate secondary wall thickenings and are required for anther dehiscence
  publication-title: Plant Cell
– volume: 65
  start-page: 4023
  year: 2014
  end-page: 4036
  article-title: Gene regulatory cascade of senescence‐associated NAC transcription factors activated by ETHYLENE‐INSENSITIVE2‐mediated leaf senescence signalling in
  publication-title: J. Exp. Bot.
– volume: 189
  start-page: 595
  year: 2022
  end-page: 610
  article-title: The NAC factor LpNAL delays leaf senescence by repressing two chlorophyll catabolic genes in perennial ryegrass
  publication-title: Plant Physiol.
– volume: 71
  start-page: 3613
  year: 2020
  end-page: 3625
  article-title: A NAC transcription factor and its interaction protein hinder abscisic acid biosynthesis by synergistically repressing in
  publication-title: J. Exp. Bot.
– volume: 9
  start-page: 841
  year: 1997
  end-page: 857
  article-title: Genes involved in organ separation in : an analysis of the cup‐shaped cotyledon mutant
  publication-title: Plant Cell
– volume: 148
  start-page: 228
  year: 2020
  end-page: 236
  article-title: Plant waterlogging/flooding stress responses: From seed germination to maturation
  publication-title: Plant Physiol. Biochem.
– volume: 9
  start-page: 383
  year: 2018
  article-title: Lateral root development in potato is mediated by Stu‐mi164 regulation of NAC transcription factor
  publication-title: Front. Plant Sci.
– volume: 19
  start-page: 2776
  year: 2007
  end-page: 2792
  article-title: The MYB46 transcription factor is a direct target of SND1 and regulates secondary wall biosynthesis in
  publication-title: Plant Cell
– volume: 10
  start-page: 1136
  year: 2021a
  article-title: Molecular and hormonal mechanisms regulating fleshy fruit ripening
  publication-title: Cell
– volume: 13
  start-page: 1539
  year: 2022
  article-title: De novo design and directed folding of disulfide‐bridged peptide heterodimers
  publication-title: Nat. Commun.
– volume: 79
  start-page: 1044
  year: 2014
  end-page: 1051
  article-title: Identification of a NAC transcription factor, EPHEMERAL1, that controls petal senescence in Japanese morning glory
  publication-title: Plant J.
– volume: 3
  start-page: 1087
  year: 2010
  end-page: 1103
  article-title: Global analysis of direct targets of secondary wall NAC master switches in
  publication-title: Mol. Plant
– volume: 23
  start-page: 2155
  year: 2011
  end-page: 2168
  article-title: The NAC transcription factor VNI2 integrates abscisic acid signals into leaf senescence via the COR/RD genes
  publication-title: Plant Cell
– volume: 43
  start-page: 2272
  year: 2020
  end-page: 2286
  article-title: Functions and regulatory framework of ZmNST3 in maize under lodging and drought stress
  publication-title: Plant Cell Environ.
– volume: 189
  start-page: 1296
  year: 2022b
  end-page: 1313
  article-title: OsNAC016 regulates plant architecture and drought tolerance by interacting with the kinases GSK2 and SAPK8
  publication-title: Plant Physiol.
– volume: 33
  start-page: 603
  year: 2021a
  end-page: 622
  article-title: The endosperm‐specific transcription factor TaNAC019 regulates glutenin and starch accumulation and its elite allele improves wheat grain quality
  publication-title: Plant Cell
– volume: 14
  start-page: 3024
  year: 2000
  end-page: 3036
  article-title: NAC1 transduces auxin signal downstream of TIR1 to promote lateral root development
  publication-title: Genes Dev.
– volume: 39
  start-page: 863
  year: 2004
  end-page: 876
  article-title: A dehydration‐induced NAC protein, RD26, is involved in a novel ABA‐dependent stress‐signaling pathway
  publication-title: Plant J.
– volume: 61
  start-page: 661
  year: 2010
  end-page: 671
  article-title: Cold activation of a plasma membrane‐tethered NAC transcription factor induces a pathogen resistance response in Arabidopsis
  publication-title: Plant J.
– volume: 18
  start-page: 1078
  year: 2020b
  end-page: 1092
  article-title: Regulatory changes in TaSNAC8‐6A are associated with drought tolerance in wheat seedlings
  publication-title: Plant Biotechnol. J.
– volume: 43
  start-page: 282
  year: 2011
  end-page: 294
  article-title: Plants and colour: flowers and pollination
  publication-title: Opt. Laser Technol.
– volume: 107
  start-page: 22338
  year: 2010
  end-page: 22343
  article-title: Mutation of WRKY transcription factors initiates pith secondary wall formation and increases stem biomass in dicotyledonous plants
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 400
  start-page: 61
  year: 1999
  end-page: 63
  article-title: Hydrologically defined niches reveal a basis for species richness in plant communities
  publication-title: Nature
– volume: 64
  start-page: 569
  year: 2013
  end-page: 583
  article-title: The SNAC1‐targeted gene OsSRO1c modulates stomatal closure and oxidative stress tolerance by regulating hydrogen peroxide in rice
  publication-title: J. Exp. Bot.
– volume: 19
  start-page: 992
  year: 2021
  end-page: 1007
  article-title: A novel NAC family transcription factor SPR suppresses seed storage protein synthesis in wheat
  publication-title: Plant Biotechnol. J.
– volume: 11
  start-page: 564
  year: 2020
  article-title: Genetic Interaction Among Phytochrome, Ethylene and Abscisic Acid Signaling During Dark‐Induced Senescence in
  publication-title: Front. Plant Sci.
– volume: 18
  start-page: 429
  year: 2020a
  end-page: 442
  article-title: OsNAC2 integrates auxin and cytokinin pathways to modulate rice root development
  publication-title: Plant Biotechnol. J.
– volume: 73
  start-page: 63
  year: 2013
  end-page: 76
  article-title: MYB103 is required for FERULATE‐5‐HYDROXYLASE expression and syringyl lignin biosynthesis in Arabidopsis stems
  publication-title: Plant J.
– volume: 24
  start-page: 482
  year: 2012
  end-page: 506
  article-title: JUNGBRUNNEN1, a reactive oxygen species‐responsive NAC transcription factor, regulates longevity in
  publication-title: Plant Cell
– volume: 5
  start-page: 4636
  year: 2014
  article-title: Phytochrome‐interacting transcription factors PIF4 and PIF5 induce leaf senescence in
  publication-title: Nat. Commun.
– volume: 66
  start-page: 579
  year: 2011
  end-page: 590
  article-title: VASCULAR‐RELATED NAC‐DOMAIN7 directly regulates the expression of a broad range of genes for xylem vessel formation
  publication-title: Plant J.
– volume: 177
  start-page: 1286
  year: 2018
  end-page: 1302
  article-title: The NAC transcription factor SlNAP2 regulates leaf senescence and fruit yield in tomato
  publication-title: Plant Physiol.
– volume: 68
  start-page: 302
  year: 2011
  end-page: 313
  article-title: Soybean NAC transcription factors promote abiotic stress tolerance and lateral root formation in transgenic plants
  publication-title: Plant J.
– volume: 343
  start-page: 1505
  year: 2014
  end-page: 1508
  article-title: Contribution of NAC transcription factors to plant adaptation to land
  publication-title: Science
– volume: 236
  start-page: 656
  year: 2022a
  end-page: 670
  article-title: GmNAC181 promotes symbiotic nodulation and salt tolerance of nodulation by directly regulating GmNINa expression in soybean
  publication-title: New Phytol.
– volume: 115
  start-page: E6085
  year: 2018
  end-page: E6094
  article-title: A stress recovery signaling network for enhanced flooding tolerance in
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 108
  start-page: 1317
  year: 2021b
  end-page: 1331
  article-title: A tomato NAC transcription factor, SlNAM1, positively regulates ethylene biosynthesis and the onset of tomato fruit ripening
  publication-title: Plant J.
– volume: 13
  year: 2022
  article-title: ZmNAC074, a maize stress‐responsive NAC transcription factor, confers heat stress tolerance in transgenic
  publication-title: Front. Plant Sci.
– volume: 13
  start-page: 550
  year: 2008
  end-page: 556
  article-title: Membrane‐bound transcription factors in plants
  publication-title: Trends Plant Sci.
– volume: 6
  start-page: 1438
  year: 2013
  end-page: 1452
  article-title: NAC transcription factor ORE1 and senescence‐induced BIFUNCTIONAL NUCLEASE1 (BFN1) constitute a regulatory cascade in Arabidopsis
  publication-title: Mol. Plant
– volume: 99
  start-page: 81
  year: 2019
  end-page: 97
  article-title: TsHD1 and TsNAC1 cooperatively play roles in plant growth and abiotic stress resistance of
  publication-title: Plant J.
– volume: 118
  year: 2021
  article-title: Abscisic acid regulates secondary cell‐wall formation and lignin deposition in Arabidopsis thaliana through phosphorylation of NST1
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 321
  start-page: 330
  year: 2008
  end-page: 333
  article-title: Agricultural research. Reinventing rice to feed the world
  publication-title: Science
– volume: 4
  start-page: 243
  year: 2013
  article-title: Plant tolerance to high temperature in a changing environment: scientific fundamentals and production of heat stress‐tolerant crops
  publication-title: Front. Plant Sci.
– volume: 10
  start-page: 239
  year: 2003
  end-page: 247
  article-title: Comprehensive analysis of NAC family genes in
  publication-title: DNA Res.
– volume: 13
  start-page: 2191
  year: 2001
  end-page: 2209
  article-title: The DEFECTIVE IN ANTHER DEHISCIENCE gene encodes a novel phospholipase A1 catalyzing the initial step of jasmonic acid biosynthesis, which synchronizes pollen maturation, anther dehiscence, and flower opening in Arabidopsis
  publication-title: Plant Cell
– volume: 176
  start-page: 773
  year: 2018
  end-page: 789
  article-title: Transcription factors VND1‐VND3 contribute to cotyledon xylem vessel formation
  publication-title: Plant Physiol.
– volume: 8
  start-page: 277
  year: 2008
  end-page: 286
  article-title: Genome‐wide analysis for identification of salt‐responsive genes in common wheat
  publication-title: Funct. Integr. Genom.
– volume: 8
  start-page: 1049
  year: 2017
  article-title: A novel NAC transcription factor, PbeNAC1, of confers cold and drought tolerance via interacting with PbeDREBs and activating the expression of stress‐responsive genes
  publication-title: Front. Plant Sci.
– volume: 168
  start-page: 1122
  year: 2015
  end-page: 1139
  article-title: Transcription factor ATAF1 in Arabidopsis promotes senescence by direct regulation of key chloroplast maintenance and senescence transcriptional cascades
  publication-title: Plant Physiol.
– volume: 2
  start-page: 55
  year: 2011
  end-page: 63
  article-title: A structural view of the conserved domain of rice stress‐responsive NAC1
  publication-title: Protein Cell
– volume: 174
  start-page: 1747
  year: 2017
  end-page: 1763
  article-title: A rice NAC transcription factor promotes leaf senescence via ABA biosynthesis
  publication-title: Plant Physiol.
– volume: 167
  start-page: 313
  year: 2016
  end-page: 324
  article-title: Abiotic stress signaling and responses in plants
  publication-title: Cell
– volume: 179
  start-page: 700
  year: 2019
  end-page: 717
  article-title: BpNAC012 positively regulates abiotic stress responses and secondary wall biosynthesis
  publication-title: Plant Physiol.
– volume: 68
  start-page: 405
  year: 2017
  end-page: 434
  article-title: Genomics, physiology, and molecular breeding approaches for improving salt tolerance
  publication-title: Annu. Rev. Plant Biol.
– volume: 19
  start-page: 270
  year: 2007
  end-page: 280
  article-title: NAC transcription factors, NST1 and NST3, are key regulators of the formation of secondary walls in woody tissues of
  publication-title: Plant Cell
– volume: 53
  start-page: 425
  year: 2008
  end-page: 436
  article-title: XND1, a member of the NAC domain family in Arabidopsis thaliana, negatively regulates lignocellulose synthesis and programmed cell death in xylem
  publication-title: Plant J.
– volume: 1
  start-page: 32
  year: 2010
  end-page: 39
  article-title: Potential utilization of NAC transcription factors to enhance abiotic stress tolerance in plants by biotechnological approach
  publication-title: GM Crops
– volume: 12
  year: 2021
  article-title: Transcription factor NAC075 delays leaf senescence by deterring reactive oxygen species accumulation in
  publication-title: Front. Plant Sci.
– volume: 22
  start-page: 3461
  year: 2010
  end-page: 3473
  article-title: VASCULAR‐RELATED NAC‐DOMAIN6 directly regulates the genes that govern programmed cell death and secondary wall formation during xylem differentiation
  publication-title: Plant Cell
– volume: 5
  start-page: 351
  year: 2014
  article-title: The role of the testa during development and in establishment of dormancy of the legume seed
  publication-title: Front. Plant Sci.
– volume: 34
  start-page: 1447
  year: 2022
  end-page: 1478
  article-title: Thirty years of resistance: zig‐zag through the plant immune system
  publication-title: Plant Cell
– volume: 14
  start-page: 1901
  year: 2021
  end-page: 1917
  article-title: Verticillium dahliae secretory effector PevD1 induces leaf senescence by promoting ORE1‐mediated ethylene biosynthesis
  publication-title: Mol. Plant
– volume: 186
  start-page: 2205
  year: 2021
  end-page: 2221
  article-title: Increased expression of primes for accelerated senescence
  publication-title: Plant Physiol.
– volume: 60
  start-page: 112
  year: 2004
  end-page: 115
  article-title: Preliminary crystallographic analysis of the NAC domain of ANAC, a member of the plant‐specific NAC transcription factor family
  publication-title: Acta Crystallogr. D Biol. Crystallogr.
– volume: 15
  start-page: 1671
  year: 2015
  end-page: 1679
  article-title: Studies on the molecular mechanisms of seed germination
  publication-title: Proteomics
– ident: e_1_2_8_165_1
  doi: 10.1093/plphys/kiac397
– ident: e_1_2_8_180_1
  doi: 10.1093/jxb/ers349
– ident: e_1_2_8_80_1
  doi: 10.1093/hr/uhac136
– ident: e_1_2_8_73_1
  doi: 10.1111/tpj.15485
– ident: e_1_2_8_108_1
  doi: 10.1105/tpc.113.117861
– ident: e_1_2_8_172_1
  doi: 10.1105/tpc.114.133769
– ident: e_1_2_8_77_1
  doi: 10.1093/jxb/eraa333
– ident: e_1_2_8_50_1
  doi: 10.1105/tpc.15.00015
– ident: e_1_2_8_179_1
  doi: 10.1016/j.pbi.2014.07.009
– ident: e_1_2_8_3_1
  doi: 10.1016/j.plaphy.2019.04.038
– ident: e_1_2_8_104_1
  doi: 10.1104/pp.113.223388
– ident: e_1_2_8_72_1
  doi: 10.1111/tpj.15447
– ident: e_1_2_8_160_1
  doi: 10.1093/plphys/kiac146
– ident: e_1_2_8_115_1
  doi: 10.4161/psb.11083
– ident: e_1_2_8_13_1
  doi: 10.1111/tpj.12819
– ident: e_1_2_8_63_1
  doi: 10.1093/pcp/pct113
– ident: e_1_2_8_163_1
  doi: 10.1101/gad.852200
– ident: e_1_2_8_193_1
  doi: 10.1093/mp/ssq062
– ident: e_1_2_8_173_1
  doi: 10.1007/s00299-016-1996-9
– ident: e_1_2_8_187_1
  doi: 10.1016/j.molp.2021.09.006
– ident: e_1_2_8_46_1
  doi: 10.1111/tpj.12194
– ident: e_1_2_8_121_1
  doi: 10.1111/mpp.12281
– ident: e_1_2_8_30_1
  doi: 10.1111/j.1365-313X.2004.02171.x
– ident: e_1_2_8_36_1
  doi: 10.1104/pp.15.00567
– ident: e_1_2_8_105_1
  doi: 10.1016/j.tplants.2012.02.004
– ident: e_1_2_8_57_1
  doi: 10.1016/j.fob.2013.07.006
– ident: e_1_2_8_153_1
  doi: 10.1111/nph.18340
– ident: e_1_2_8_17_1
  doi: 10.1111/j.1365-313X.2005.02488.x
– ident: e_1_2_8_47_1
  doi: 10.3389/fpls.2016.00004
– ident: e_1_2_8_101_1
  doi: 10.1016/j.plantsci.2005.05.035
– ident: e_1_2_8_27_1
  doi: 10.1093/jxb/eru072
– ident: e_1_2_8_178_1
  doi: 10.3390/ijms20133225
– ident: e_1_2_8_138_1
  doi: 10.1111/nph.12047
– ident: e_1_2_8_162_1
  doi: 10.3390/ijms232012258
– ident: e_1_2_8_194_1
  doi: 10.1111/nph.17425
– ident: e_1_2_8_185_1
  doi: 10.1016/j.molp.2021.07.014
– ident: e_1_2_8_4_1
  doi: 10.1016/j.jplph.2017.12.009
– ident: e_1_2_8_39_1
  doi: 10.1111/j.1365-313X.2006.02723.x
– ident: e_1_2_8_7_1
  doi: 10.3389/fpls.2013.00273
– ident: e_1_2_8_14_1
  doi: 10.1104/pp.15.00943
– ident: e_1_2_8_60_1
  doi: 10.3389/fpls.2017.01049
– ident: e_1_2_8_145_1
  doi: 10.1016/j.plantsci.2016.05.019
– ident: e_1_2_8_29_1
  doi: 10.1111/nph.17560
– ident: e_1_2_8_56_1
  doi: 10.1042/BJ20091234
– ident: e_1_2_8_152_1
  doi: 10.1111/nph.18343
– ident: e_1_2_8_103_1
  doi: 10.1093/dnares/10.6.239
– ident: e_1_2_8_144_1
  doi: 10.1111/j.1365-313X.2011.04764.x
– ident: e_1_2_8_181_1
  doi: 10.1093/plphys/kiac070
– ident: e_1_2_8_16_1
  doi: 10.1104/pp.108.131912
– ident: e_1_2_8_79_1
  doi: 10.1073/pnas.2010911118
– ident: e_1_2_8_8_1
  doi: 10.1016/j.cell.2017.09.030
– ident: e_1_2_8_24_1
  doi: 10.1093/jxb/ery366
– ident: e_1_2_8_146_1
  doi: 10.1104/pp.20.01033
– ident: e_1_2_8_195_1
  doi: 10.1105/tpc.108.063321
– ident: e_1_2_8_49_1
  doi: 10.1104/pp.18.01167
– ident: e_1_2_8_97_1
  doi: 10.1016/j.gene.2010.06.008
– ident: e_1_2_8_130_1
  doi: 10.1093/hr/uhac039
– ident: e_1_2_8_91_1
  doi: 10.1105/tpc.105.036004
– ident: e_1_2_8_19_1
  doi: 10.1111/tpj.15807
– ident: e_1_2_8_139_1
  doi: 10.4161/gmcr.1.1.10569
– ident: e_1_2_8_119_1
  doi: 10.1093/jxb/ers178
– ident: e_1_2_8_140_1
  doi: 10.3389/fpls.2020.00564
– ident: e_1_2_8_127_1
  doi: 10.1038/21877
– ident: e_1_2_8_133_1
  doi: 10.1111/nph.12797
– ident: e_1_2_8_112_1
  doi: 10.1105/tpc.15.00222
– ident: e_1_2_8_40_1
  doi: 10.1016/j.molp.2017.09.008
– ident: e_1_2_8_31_1
  doi: 10.1038/s41438-018-0111-5
– ident: e_1_2_8_99_1
  doi: 10.1111/tpj.12018
– ident: e_1_2_8_69_1
  doi: 10.1186/1471-2229-12-220
– ident: e_1_2_8_33_1
  doi: 10.1093/plcell/koaa040
– ident: e_1_2_8_6_1
  doi: 10.1111/j.1365-313X.2010.04151.x
– ident: e_1_2_8_18_1
  doi: 10.1073/pnas.232590499
– ident: e_1_2_8_32_1
  doi: 10.1093/jxb/eraa131
– ident: e_1_2_8_132_1
  doi: 10.1016/S0092-8674(00)81093-4
– ident: e_1_2_8_12_1
  doi: 10.1007/s13238-011-1010-9
– ident: e_1_2_8_150_1
  doi: 10.1038/s41438-021-00649-1
– ident: e_1_2_8_107_1
  doi: 10.1038/embor.2013.24
– ident: e_1_2_8_9_1
  doi: 10.1093/plphys/kiab195
– ident: e_1_2_8_90_1
  doi: 10.1016/j.optlastec.2008.12.018
– ident: e_1_2_8_59_1
  doi: 10.1111/tpj.14484
– ident: e_1_2_8_149_1
  doi: 10.1093/nar/gkaa1191
– ident: e_1_2_8_157_1
  doi: 10.1105/tpc.111.090894
– ident: e_1_2_8_198_1
  doi: 10.1146/annurev.arplant.53.091401.143329
– ident: e_1_2_8_88_1
  doi: 10.1093/plphys/kiac508
– ident: e_1_2_8_199_1
  doi: 10.1016/j.cell.2016.08.029
– ident: e_1_2_8_35_1
  doi: 10.1111/nph.18301
– ident: e_1_2_8_75_1
  doi: 10.1146/annurev.arplant.57.032905.105316
– ident: e_1_2_8_2_1
  doi: 10.1105/tpc.9.6.841
– ident: e_1_2_8_45_1
  doi: 10.1093/jxb/ert324
– ident: e_1_2_8_38_1
  doi: 10.1105/tpc.113.118927
– ident: e_1_2_8_188_1
  doi: 10.1111/j.1365-313X.2007.03350.x
– ident: e_1_2_8_68_1
  doi: 10.1104/pp.19.00148
– ident: e_1_2_8_67_1
  doi: 10.1111/j.1365-313X.2012.04932.x
– ident: e_1_2_8_61_1
  doi: 10.3389/fpls.2021.634040
– ident: e_1_2_8_70_1
  doi: 10.1105/tpc.18.00662
– ident: e_1_2_8_55_1
  doi: 10.1111/j.1365-313X.2008.03646.x
– ident: e_1_2_8_62_1
  doi: 10.1007/s10142-008-0076-9
– ident: e_1_2_8_156_1
  doi: 10.1038/cr.2009.108
– ident: e_1_2_8_125_1
  doi: 10.1093/jxb/ert412
– volume: 5
  start-page: 351
  year: 2014
  ident: e_1_2_8_129_1
  article-title: The role of the testa during development and in establishment of dormancy of the legume seed
  publication-title: Front. Plant Sci.
– ident: e_1_2_8_136_1
  doi: 10.1038/nature14099
– ident: e_1_2_8_22_1
  doi: 10.3389/fpls.2017.02118
– ident: e_1_2_8_197_1
  doi: 10.1016/j.plaphy.2020.01.020
– ident: e_1_2_8_94_1
  doi: 10.3389/fpls.2015.00288
– ident: e_1_2_8_166_1
  doi: 10.1016/j.molp.2023.02.006
– ident: e_1_2_8_189_1
  doi: 10.1111/nph.16036
– ident: e_1_2_8_176_1
  doi: 10.1038/s41467-022-29210-x
– ident: e_1_2_8_184_1
  doi: 10.1093/jxb/erz513
– ident: e_1_2_8_84_1
  doi: 10.1111/tpj.13867
– ident: e_1_2_8_177_1
  doi: 10.1073/pnas.1803841115
– ident: e_1_2_8_143_1
  doi: 10.1073/pnas.1016436107
– ident: e_1_2_8_196_1
  doi: 10.3109/07388551.2010.505910
– volume: 71
  start-page: 1078
  year: 2020
  ident: e_1_2_8_66_1
  article-title: Transcription factor CaNAC1 regulates low‐temperature‐induced phospholipid degradation in green bell pepper
  publication-title: J. Exp. Bot.
– ident: e_1_2_8_41_1
  doi: 10.1038/s41438-021-00644-6
– ident: e_1_2_8_126_1
  doi: 10.3389/fpls.2018.00310
– ident: e_1_2_8_120_1
  doi: 10.1111/pce.12303
– ident: e_1_2_8_64_1
  doi: 10.1093/jxb/eru112
– ident: e_1_2_8_78_1
  doi: 10.1111/pbi.13297
– ident: e_1_2_8_109_1
  doi: 10.1111/pce.13829
– ident: e_1_2_8_168_1
  doi: 10.1371/journal.pgen.1010090
– ident: e_1_2_8_106_1
  doi: 10.1371/journal.pgen.1005399
– ident: e_1_2_8_85_1
  doi: 10.1111/pbi.13209
– ident: e_1_2_8_98_1
  doi: 10.1105/tpc.110.075036
– ident: e_1_2_8_95_1
  doi: 10.1093/plcell/koac041
– ident: e_1_2_8_48_1
  doi: 10.1186/1471-2229-10-145
– ident: e_1_2_8_128_1
  doi: 10.1093/plcell/koac151
– ident: e_1_2_8_83_1
  doi: 10.1104/pp.17.00542
– ident: e_1_2_8_124_1
  doi: 10.1111/tpj.12605
– ident: e_1_2_8_158_1
  doi: 10.1104/pp.16.01096
– ident: e_1_2_8_10_1
  doi: 10.1093/plphys/kiab190
– ident: e_1_2_8_81_1
  doi: 10.1104/pp.18.00292
– ident: e_1_2_8_151_1
  doi: 10.3389/fpls.2021.655127
– ident: e_1_2_8_110_1
  doi: 10.1093/jxb/erab027
– ident: e_1_2_8_137_1
  doi: 10.1111/pbi.12776
– ident: e_1_2_8_20_1
  doi: 10.1016/j.pbi.2020.05.008
– ident: e_1_2_8_142_1
  doi: 10.3389/fpls.2022.818107
– ident: e_1_2_8_164_1
  doi: 10.3389/fpls.2021.770060
– ident: e_1_2_8_5_1
  doi: 10.1016/j.cub.2005.02.017
– ident: e_1_2_8_25_1
  doi: 10.1093/jxb/erv240
– ident: e_1_2_8_167_1
  doi: 10.1126/science.1248417
– ident: e_1_2_8_44_1
  doi: 10.1111/j.1365-313X.2011.04687.x
– ident: e_1_2_8_92_1
  doi: 10.1105/tpc.106.047043
– ident: e_1_2_8_15_1
  doi: 10.1093/plcell/koac026
– ident: e_1_2_8_192_1
  doi: 10.1105/tpc.108.061325
– ident: e_1_2_8_53_1
  doi: 10.1105/tpc.010192
– ident: e_1_2_8_134_1
  doi: 10.1007/s00438-010-0557-0
– ident: e_1_2_8_161_1
  doi: 10.3389/fpls.2022.986628
– ident: e_1_2_8_96_1
  doi: 10.1126/science.321.5887.330
– ident: e_1_2_8_82_1
  doi: 10.1093/jxb/erz098
– ident: e_1_2_8_37_1
  doi: 10.1111/tpj.12923
– ident: e_1_2_8_54_1
  doi: 10.1146/annurev-arplant-042916-040936
– ident: e_1_2_8_100_1
  doi: 10.1107/S0907444903022029
– ident: e_1_2_8_183_1
  doi: 10.1073/pnas.1904995116
– ident: e_1_2_8_111_1
  doi: 10.1038/ncomms5636
– ident: e_1_2_8_118_1
  doi: 10.1038/nplants.2016.13
– ident: e_1_2_8_174_1
  doi: 10.3389/fpls.2019.01036
– ident: e_1_2_8_42_1
  doi: 10.1002/pmic.201400375
– ident: e_1_2_8_147_1
  doi: 10.1111/nph.16233
– ident: e_1_2_8_23_1
  doi: 10.1038/sj.embor.7400093
– ident: e_1_2_8_141_1
  doi: 10.1146/annurev-arplant-050718-100005
– ident: e_1_2_8_11_1
  doi: 10.1016/j.pbi.2008.10.005
– ident: e_1_2_8_86_1
  doi: 10.1111/pbi.13277
– ident: e_1_2_8_154_1
  doi: 10.1111/jipb.13218
– ident: e_1_2_8_102_1
  doi: 10.1016/j.tplants.2004.12.010
– ident: e_1_2_8_191_1
  doi: 10.1105/tpc.107.053678
– ident: e_1_2_8_171_1
  doi: 10.1105/tpc.111.084913
– ident: e_1_2_8_114_1
  doi: 10.1111/pce.13363
– ident: e_1_2_8_43_1
  doi: 10.1007/s00425-010-1238-2
– ident: e_1_2_8_76_1
  doi: 10.1111/tpj.14310
– ident: e_1_2_8_65_1
  doi: 10.1073/pnas.1721523115
– ident: e_1_2_8_117_1
  doi: 10.1111/j.1365-313X.2009.04091.x
– ident: e_1_2_8_122_1
  doi: 10.1104/pp.20.00313
– ident: e_1_2_8_21_1
  doi: 10.3390/ijms23179625
– ident: e_1_2_8_71_1
  doi: 10.3390/cells10051136
– ident: e_1_2_8_113_1
  doi: 10.1105/tpc.19.00569
– ident: e_1_2_8_148_1
  doi: 10.1038/s41438-020-00442-6
– ident: e_1_2_8_170_1
  doi: 10.1111/tpj.15057
– ident: e_1_2_8_28_1
  doi: 10.1093/jxb/eraa320
– ident: e_1_2_8_116_1
  doi: 10.1016/j.tplants.2008.06.008
– volume: 68
  start-page: 2013
  year: 2017
  ident: e_1_2_8_131_1
  article-title: The legume miR1514a modulates a NAC transcription factor transcript to trigger phasiRNA formation in response to drought
  publication-title: J. Exp. Bot.
– ident: e_1_2_8_190_1
  doi: 10.1105/tpc.106.047399
– ident: e_1_2_8_182_1
  doi: 10.3389/fpls.2018.00383
– ident: e_1_2_8_175_1
  doi: 10.1111/pce.13803
– ident: e_1_2_8_93_1
  doi: 10.1146/annurev.arplant.59.032607.092911
– ident: e_1_2_8_135_1
  doi: 10.1104/pp.17.00461
– ident: e_1_2_8_51_1
  doi: 10.1105/tpc.18.00293
– volume: 68
  start-page: 369
  year: 2017
  ident: e_1_2_8_52_1
  article-title: Chemical control of flowering time
  publication-title: J. Exp. Bot.
– ident: e_1_2_8_201_1
  doi: 10.1093/jxb/eraa118
– ident: e_1_2_8_34_1
  doi: 10.1111/tpj.15512
– ident: e_1_2_8_186_1
  doi: 10.1186/s12870-022-03623-8
– ident: e_1_2_8_159_1
  doi: 10.1093/jxb/erac436
– ident: e_1_2_8_58_1
  doi: 10.3390/ijms23031755
– ident: e_1_2_8_26_1
  doi: 10.1007/s00438-008-0386-6
– ident: e_1_2_8_89_1
  doi: 10.1093/plphys/kiac351
– ident: e_1_2_8_74_1
  doi: 10.1111/jipb.13414
– ident: e_1_2_8_123_1
  doi: 10.1111/pbi.13524
– ident: e_1_2_8_200_1
  doi: 10.1111/tpj.13030
– ident: e_1_2_8_87_1
  doi: 10.1093/mp/sst012
– ident: e_1_2_8_155_1
  doi: 10.3389/fpls.2022.925035
– ident: e_1_2_8_169_1
  doi: 10.1111/j.1365-313X.2011.04514.x
SSID ssj0021656
Score 2.6265824
SecondaryResourceType review_article
Snippet Summary Plant‐specific NAC proteins constitute a major transcription factor family that is well‐known for its roles in plant growth, development, and responses...
Plant‐specific NAC proteins constitute a major transcription factor family that is well‐known for its roles in plant growth, development, and responses to...
Plant-specific NAC proteins constitute a major transcription factor family that is well-known for its roles in plant growth, development, and responses to...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2433
SubjectTerms amino acid sequences
Binding
Biotechnology
DNA-binding domains
Flowers & plants
functional diversity
Gene Expression Regulation, Plant - genetics
N-Terminus
NAC transcription factors
network
Phylogeny
plant development
Plant Development - genetics
Plant growth
plant improvement
Plant Proteins - metabolism
Plants - genetics
Plants - metabolism
Proteins
stress
Stress, Physiological
transcription (genetics)
Transcription factors
Transcription Factors - genetics
Transcription Factors - metabolism
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwED90e9EH8dvpHFV88MFg2yRt9yRTJio4hij4VvI5BqOb-_j_vbTZRPx4K_Rok7vk8kvu8juACyuMDRWzREQsJkwZSaQUlrRFqmLGLSIGd1H4uZc8vLGnd_7uD9xmPq1y6RNLR63Hyp2RX7uAWOhietHN5IO4qlEuuupLaKxDHV1wltWgftvt9V9WWy7HLVPdL0pJiku_5xZyuTwTOUQ3ESXR9xXpB8z8jlrLZed-G7Y8Xgw6lYF3YM0Uu7DZGUw9Z4bZg1avcze7CgYVgTSaLRgWwWSEKgtGQ2v24e2--3r3QHzZA6IYbseIFJw6FrskNDgfY40QhirBdZom0mRZFLV1lpqYat5WIddWWdNmOI2Y5SJJE00PoFaMC3MEQcJlHGoVCcoTllkr8VvMRJm2GoGB5Q24XHY9V54T3JWmGOXLvQFqKS-11IDzleikIsL4Tai51F_u58Is_7JcA85Wr3EUu9CEKMx44WQc6Q6Cj_BvGYr-hnL8C23AYWWbVUvQTcYUwQ92qDTW303M-7eP5cPx_209gQ1XWb7KXGlCbT5dmFPEH3PZ8oPsEyEb1Zw
  priority: 102
  providerName: ProQuest
Title NACs, generalist in plant life
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fpbi.14161
https://www.ncbi.nlm.nih.gov/pubmed/37623750
https://www.proquest.com/docview/2890058471
https://www.proquest.com/docview/2857855120
https://www.proquest.com/docview/3040351613
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8QwFH7oeNGD-zIupYoHD1baJmk7eBrFcQGHQRQ8CCWrDA51mOXir_elG64gXkohr21eky_5krx8ATg0XBtfUuPxgIYelVp4QnDjtXgsQ8oMMga7Ufi2G1090JtH9jgDp9VemEIfop5ws8jI22sLcC7GH0A-FH2EeZAPfWysliVEd7V0VGhVZYqdRbEXY6dfqgrZKJ76yc990TeC-Zmv5h1OZwmeqqwWcSYvJ9OJOJFvX1Qc_-nLMiyWRNRtFzVnBWZ0tgoL7edRKcah18Dpts_Hx-5zoUyN9cHtZ-5wgGXhDvpGr8ND5-L-_Morz1PwJMVxnic4I1YeL_I1Aj1UyI2I5EzFcSR0kgRBSyWxDoliLekzZaTRLYr4pIbxKI4U2YBG9prpLXAjJkJfyYATFtHEGIHvojpIlFHIOAxrwlH1Z1NZio3bMy8GaTXoQJfT3OUmHNSmw0Jh4yej3ap40hJk49Sukfp2mReT9-tkhIdd8-CZfp1aG6vmg6zG_92GYENGGH6FNGGzKPo6J9j-hgRZFTqUF-DvWUx7Z9f5zfbfTXdg3h5fX4TH7EJjMprqPSQ5E-HAbEh7eE06lw7MnV10e3dOPmHg5PX8HYic-G0
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB5ROFAOFdAWUig1FZV66Arbu2s7B1SF0JCQh3pIJG5mnyhS5KQEVPGn-hs760dQVNIbN0serXdnZme_8ezMAJxYYayvmCUiYCFhykgipbCkLmIVMm4RMbhE4f4gao_Y1TW_XoM_VS6Mu1ZZ2cTcUOupcv_IT11AzHcxveD77BdxXaNcdLVqoVGoRdc8_kaXbX7WuUD5fgnD1o9hs03KrgJEMfR2iBScuiJxkW9Q3UONCIEqwXUcR9IkSRDUdRKbkGpeVz7XVllTZ6ilzHIRxZGmOO4r2GAUT3KXmd66XDh4rpJNkc0UkxiBRlnJyN0cmskxGqUgCpbPv39A7TJGzg-51ja8KdGp1yjUaQfWTLYLW43bu7JCh3kLR4NGc_7Nuy3KVaOSeOPMm01QQN5kbM07GL0IO97DejbNzD54EZehr1UgKI9YYq3EsZgJEm01whDLa_C1WnqqygrkrhHGJK08EeRSmnOpBp8XpLOi7MZzRIcV_9Jy583TJz2pwfHiNe4ZFwgRmZk-OBpX4gehjr-ahqJ1oxy_QmuwV8hmMRM0yiFFqIULyoW1eorpz_NO_vDh_3P9BJvtYb-X9jqD7gG8dj3tizszh7B-f_dgPiLyuZdHubp5cPPS-v0XfG0Pew
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6FREJwqHgUSAnBIJB6YBXbu2s7B4TSNlFCIYqqVurN7DOKFDlpHqr4a_w6Zv0IqqDccrPk0Xp359vZbzy7MwAfrDDWV8wSEbCQMGUkkVJY0hWxChm3yBjcReHv42h4xb5e8-sa_KruwrhjlZVNzA21Xij3j7zjAmK-i-kFHVsei5icDb4sb4irIOUirVU5jQIi5-bnLbpv68-jM9T1xzAc9C9Ph6SsMEAUQ8-HSMGpSxgX-QahH2pkC1QJruM4kiZJgqCrk9iEVPOu8rm2ypouQ8Qyy0UUR5piuw-gETuvqA6Nk_54crFz91xem-JuU0xipB1lXiN3jmgpZ2iigii4uxv-RXHvMuZ8yxs8gYOSq3q9AlxPoWayZ_C4N12V-TrMc2iPe6frT960SF6NkPFmmbeco7q8-cyaQ7jay4S8gHq2yMwr8CIuQ1-rQFAescRaiW0xEyTaaiQlljfhuBp6qsp85K4sxjyt_BKcpTSfpSa834kuiyQc_xJqVfOXlutwnf5BTRPe7V7jCnJhEZGZxdbJuIQ_SHz8-2Uo2jrK8Su0CS8L3ex6giY6pEi8cEC5su7vYjo5GeUPR__v61t4iNhOv43G56_hkStwXxygaUF9s9qaN0iDNrJd4s2DH_uG-G_26xUN
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=NACs%2C+generalist+in+plant+life&rft.jtitle=Plant+biotechnology+journal&rft.au=Han%2C+Kunjin&rft.au=Zhao%2C+Ye&rft.au=Sun%2C+Yuhan&rft.au=Li%2C+Yun&rft.date=2023-12-01&rft.issn=1467-7644&rft.eissn=1467-7652&rft.volume=21&rft.issue=12&rft.spage=2433&rft.epage=2457&rft_id=info:doi/10.1111%2Fpbi.14161&rft.externalDBID=10.1111%252Fpbi.14161&rft.externalDocID=PBI14161
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1467-7644&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1467-7644&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1467-7644&client=summon