Bio‐organic soil amendment promotes the suppression of Ralstonia solanacearum by inducing changes in the functionality and composition of rhizosphere bacterial communities
Summary Stimulating the development of soil suppressiveness against certain pathogens represents a sustainable solution toward reducing pesticide use in agriculture. However, understanding the dynamics of suppressiveness and the mechanisms leading to pathogen control remain largely elusive. Here, we...
Saved in:
Published in | The New phytologist Vol. 235; no. 4; pp. 1558 - 1574 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Wiley Subscription Services, Inc
01.08.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Summary
Stimulating the development of soil suppressiveness against certain pathogens represents a sustainable solution toward reducing pesticide use in agriculture. However, understanding the dynamics of suppressiveness and the mechanisms leading to pathogen control remain largely elusive.
Here, we investigated the mechanisms used by the rhizosphere microbiome induces bacterial wilt disease suppression in a long‐term field experiment where continuous application of bio‐organic fertilizers (BFs) triggered disease suppressiveness when compared to chemical fertilizer application. We further demonstrated in a glasshouse experiment that the suppressiveness of the rhizosphere bacterial communities was triggered mainly by changes in community composition rather than only by the abundance of the introduced biocontrol strain.
Metagenomics approaches revealed that members of the families Sphingomonadaceae and Xanthomonadaceae with the ability to produce secondary metabolites were enriched in the BF plant rhizosphere but only upon pathogen invasion. We experimentally validated this observation by inoculating bacterial isolates belonging to the families Sphingomonadaceae and Xanthomonadaceae into conducive soil, which led to a significant reduction in pathogen abundance and increase in nonribosomal peptide synthetase gene abundance.
We conclude that priming of the soil microbiome with BF amendment fostered reactive bacterial communities in the rhizosphere of tomato plants in response to biotic disturbance. |
---|---|
AbstractList | Summary
Stimulating the development of soil suppressiveness against certain pathogens represents a sustainable solution toward reducing pesticide use in agriculture. However, understanding the dynamics of suppressiveness and the mechanisms leading to pathogen control remain largely elusive.
Here, we investigated the mechanisms used by the rhizosphere microbiome induces bacterial wilt disease suppression in a long‐term field experiment where continuous application of bio‐organic fertilizers (BFs) triggered disease suppressiveness when compared to chemical fertilizer application. We further demonstrated in a glasshouse experiment that the suppressiveness of the rhizosphere bacterial communities was triggered mainly by changes in community composition rather than only by the abundance of the introduced biocontrol strain.
Metagenomics approaches revealed that members of the families Sphingomonadaceae and Xanthomonadaceae with the ability to produce secondary metabolites were enriched in the BF plant rhizosphere but only upon pathogen invasion. We experimentally validated this observation by inoculating bacterial isolates belonging to the families Sphingomonadaceae and Xanthomonadaceae into conducive soil, which led to a significant reduction in pathogen abundance and increase in nonribosomal peptide synthetase gene abundance.
We conclude that priming of the soil microbiome with BF amendment fostered reactive bacterial communities in the rhizosphere of tomato plants in response to biotic disturbance. Stimulating the development of soil suppressiveness against certain pathogens represents a sustainable solution toward reducing pesticide use in agriculture. However, understanding the dynamics of suppressiveness and the mechanisms leading to pathogen control remain largely elusive.Here, we investigated the mechanisms used by the rhizosphere microbiome induces bacterial wilt disease suppression in a long‐term field experiment where continuous application of bio‐organic fertilizers (BFs) triggered disease suppressiveness when compared to chemical fertilizer application. We further demonstrated in a glasshouse experiment that the suppressiveness of the rhizosphere bacterial communities was triggered mainly by changes in community composition rather than only by the abundance of the introduced biocontrol strain.Metagenomics approaches revealed that members of the families Sphingomonadaceae and Xanthomonadaceae with the ability to produce secondary metabolites were enriched in the BF plant rhizosphere but only upon pathogen invasion. We experimentally validated this observation by inoculating bacterial isolates belonging to the families Sphingomonadaceae and Xanthomonadaceae into conducive soil, which led to a significant reduction in pathogen abundance and increase in nonribosomal peptide synthetase gene abundance.We conclude that priming of the soil microbiome with BF amendment fostered reactive bacterial communities in the rhizosphere of tomato plants in response to biotic disturbance. Stimulating the development of soil suppressiveness against certain pathogens represents a sustainable solution toward reducing pesticide use in agriculture. However, understanding the dynamics of suppressiveness and the mechanisms leading to pathogen control remain largely elusive. Here, we investigated the mechanisms used by the rhizosphere microbiome induces bacterial wilt disease suppression in a long‐term field experiment where continuous application of bio‐organic fertilizers (BFs) triggered disease suppressiveness when compared to chemical fertilizer application. We further demonstrated in a glasshouse experiment that the suppressiveness of the rhizosphere bacterial communities was triggered mainly by changes in community composition rather than only by the abundance of the introduced biocontrol strain. Metagenomics approaches revealed that members of the families Sphingomonadaceae and Xanthomonadaceae with the ability to produce secondary metabolites were enriched in the BF plant rhizosphere but only upon pathogen invasion. We experimentally validated this observation by inoculating bacterial isolates belonging to the families Sphingomonadaceae and Xanthomonadaceae into conducive soil, which led to a significant reduction in pathogen abundance and increase in nonribosomal peptide synthetase gene abundance. We conclude that priming of the soil microbiome with BF amendment fostered reactive bacterial communities in the rhizosphere of tomato plants in response to biotic disturbance. Stimulating the development of soil suppressiveness against certain pathogens represents a sustainable solution toward reducing pesticide use in agriculture. However, understanding the dynamics of suppressiveness and the mechanisms leading to pathogen control remain largely elusive. Here, we investigated the mechanisms used by the rhizosphere microbiome induces bacterial wilt disease suppression in a long-term field experiment where continuous application of bio-organic (BF) fertilizers triggered disease suppressiveness when compared to chemical fertilizer (CF) application. We further demonstrated in a greenhouse experiment that the suppressiveness of the rhizosphere bacterial communities was triggered mainly by changes in community composition rather than only by the abundance of the introduced biocontrol strain. Metagenomics approaches revealed that members of the families Sphingomonadaceae and Xanthomonadaceae with the ability to produce secondary metabolites were enriched in the BF plant rhizosphere but only upon pathogen invasion. We experimentally validated this observation by inoculating bacterial isolates belonging to the families Sphingomonadaceae and Xanthomonadaceae into conducive soil, which led to a significant reduction in pathogen abundance and increase in non-ribosomal peptide synthetase (NRPS) gene abundance. We conclude that priming of the soil microbiome with bio-organic fertilizer amendment fostered reactive bacterial communities in the rhizosphere of tomato plants in response to biotic disturbance. Stimulating the development of soil suppressiveness against certain pathogens represents a sustainable solution toward reducing pesticide use in agriculture. However, understanding the dynamics of suppressiveness and the mechanisms leading to pathogen control remain largely elusive. Here, we investigated the mechanisms used by the rhizosphere microbiome induces bacterial wilt disease suppression in a long-term field experiment where continuous application of bio-organic fertilizers (BFs) triggered disease suppressiveness when compared to chemical fertilizer application. We further demonstrated in a glasshouse experiment that the suppressiveness of the rhizosphere bacterial communities was triggered mainly by changes in community composition rather than only by the abundance of the introduced biocontrol strain. Metagenomics approaches revealed that members of the families Sphingomonadaceae and Xanthomonadaceae with the ability to produce secondary metabolites were enriched in the BF plant rhizosphere but only upon pathogen invasion. We experimentally validated this observation by inoculating bacterial isolates belonging to the families Sphingomonadaceae and Xanthomonadaceae into conducive soil, which led to a significant reduction in pathogen abundance and increase in nonribosomal peptide synthetase gene abundance. We conclude that priming of the soil microbiome with BF amendment fostered reactive bacterial communities in the rhizosphere of tomato plants in response to biotic disturbance.Stimulating the development of soil suppressiveness against certain pathogens represents a sustainable solution toward reducing pesticide use in agriculture. However, understanding the dynamics of suppressiveness and the mechanisms leading to pathogen control remain largely elusive. Here, we investigated the mechanisms used by the rhizosphere microbiome induces bacterial wilt disease suppression in a long-term field experiment where continuous application of bio-organic fertilizers (BFs) triggered disease suppressiveness when compared to chemical fertilizer application. We further demonstrated in a glasshouse experiment that the suppressiveness of the rhizosphere bacterial communities was triggered mainly by changes in community composition rather than only by the abundance of the introduced biocontrol strain. Metagenomics approaches revealed that members of the families Sphingomonadaceae and Xanthomonadaceae with the ability to produce secondary metabolites were enriched in the BF plant rhizosphere but only upon pathogen invasion. We experimentally validated this observation by inoculating bacterial isolates belonging to the families Sphingomonadaceae and Xanthomonadaceae into conducive soil, which led to a significant reduction in pathogen abundance and increase in nonribosomal peptide synthetase gene abundance. We conclude that priming of the soil microbiome with BF amendment fostered reactive bacterial communities in the rhizosphere of tomato plants in response to biotic disturbance. |
Author | Zhu, Chengzhi Li, Rong Shen, Qirong Deng, Xuhui Falcao Salles, Joana Li, Yuchan Bai, Yang Zhang, Na Liu, Hongjun Qu, Baoyuan |
Author_xml | – sequence: 1 givenname: Xuhui orcidid: 0000-0002-5680-8100 surname: Deng fullname: Deng, Xuhui organization: University of Groningen – sequence: 2 givenname: Na orcidid: 0000-0002-8951-7502 surname: Zhang fullname: Zhang, Na organization: Nanjing Agricultural University – sequence: 3 givenname: Yuchan orcidid: 0000-0001-9374-5914 surname: Li fullname: Li, Yuchan organization: Nanjing Agricultural University – sequence: 4 givenname: Chengzhi surname: Zhu fullname: Zhu, Chengzhi organization: Nanjing Agricultural University – sequence: 5 givenname: Baoyuan orcidid: 0000-0002-9101-4461 surname: Qu fullname: Qu, Baoyuan organization: Chinese Academy of Sciences (CAS) – sequence: 6 givenname: Hongjun orcidid: 0000-0001-9985-6906 surname: Liu fullname: Liu, Hongjun organization: Nanjing Agricultural University – sequence: 7 givenname: Rong orcidid: 0000-0002-2599-5476 surname: Li fullname: Li, Rong email: lirong@njau.edu.cn organization: Nanjing Agricultural University – sequence: 8 givenname: Yang orcidid: 0000-0003-2652-7022 surname: Bai fullname: Bai, Yang organization: University of Chinese Academy of Sciences – sequence: 9 givenname: Qirong orcidid: 0000-0002-5662-9620 surname: Shen fullname: Shen, Qirong organization: Nanjing Agricultural University – sequence: 10 givenname: Joana orcidid: 0000-0003-4317-7263 surname: Falcao Salles fullname: Falcao Salles, Joana organization: University of Groningen |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35569105$$D View this record in MEDLINE/PubMed |
BookMark | eNqFksFu1DAURS1URKeFBT-ALLGBRVrbcWJnCRVQpAoQAold9OK8zLhK7GA7QsOKT-BH-Cm-BE9nYFEJeJLlzbnXetf3hBw575CQh5yd8Tznbt6ccS0Ev0NWXNZNoXmpjsiKMaGLWtafjslJjNeMsaaqxT1yXFZV3XBWrciP59b__PbdhzU4a2j0dqQwoevzSXQOfvIJI00bpHGZ54AxWu-oH-h7GGPyzkIWjeDAIIRlot2WWtcvxro1NRtw66y27sZgWJxJWQ2jTVsKrqfGT7OPNh0sw8Z-9XHeYEDagUkYLIw7aFpchjDeJ3eH_Cw-ONyn5OPLFx8uLourt69eXzy7KowUnBcgByVRAatY3-mq40L0qPoOe4mlUoNQXVfmKHTVaAlNCRoaJYeyxLqvBs3KU_Jk75sD-LxgTO1ko8Ex74l-ia1QOe6mFqz6P1rXUulSKpXRx7fQa7-EHMeO0nlkJUSmHh2opZuwb-dgJwjb9vefZeDpHjDBxxhw-INw1u760OY-tDd9yOz5LdbYBLu8UwA7_kvxxY64_bt1--bd5V7xC_wHyzs |
CitedBy_id | crossref_primary_10_1002_ps_8222 crossref_primary_10_1016_j_envint_2024_108896 crossref_primary_10_1111_gcb_16703 crossref_primary_10_1007_s42832_023_0223_1 crossref_primary_10_1128_spectrum_03572_22 crossref_primary_10_1016_j_jenvman_2023_117673 crossref_primary_10_3390_pathogens11101120 crossref_primary_10_1016_j_apsoil_2025_106012 crossref_primary_10_1093_jambio_lxae073 crossref_primary_10_3390_horticulturae11030271 crossref_primary_10_1007_s11104_023_06433_5 crossref_primary_10_3389_fmicb_2022_1033824 crossref_primary_10_1111_nph_19086 crossref_primary_10_3390_agronomy12123029 crossref_primary_10_1016_j_pestbp_2024_105875 crossref_primary_10_3389_fmicb_2025_1554981 crossref_primary_10_1038_s41467_024_45150_0 crossref_primary_10_1038_s43705_023_00286_w crossref_primary_10_1016_j_pmpp_2025_102591 crossref_primary_10_1111_1462_2920_16587 crossref_primary_10_1016_j_onehlt_2023_100481 crossref_primary_10_3389_fpls_2024_1325141 crossref_primary_10_1016_j_mib_2023_102286 crossref_primary_10_1111_pbi_13951 crossref_primary_10_3390_ijms241512470 crossref_primary_10_3390_agronomy13051356 crossref_primary_10_3390_horticulturae9080924 crossref_primary_10_1016_j_agee_2022_108135 crossref_primary_10_3390_plants11212816 crossref_primary_10_1007_s11104_022_05680_2 crossref_primary_10_1016_j_apsoil_2025_105912 crossref_primary_10_1021_acsnano_4c05875 crossref_primary_10_3389_fmicb_2023_979835 crossref_primary_10_3389_fmicb_2024_1426893 crossref_primary_10_1093_ismejo_wrae180 crossref_primary_10_1111_pce_15215 crossref_primary_10_1093_hr_uhad112 crossref_primary_10_3389_frans_2023_1205583 crossref_primary_10_3390_agronomy13092310 crossref_primary_10_1016_j_ecoenv_2023_115050 crossref_primary_10_1016_j_snb_2023_135139 crossref_primary_10_1126_sciadv_ads5089 crossref_primary_10_1016_j_jclepro_2022_134960 crossref_primary_10_1128_msphere_00665_23 crossref_primary_10_1007_s00374_024_01868_z crossref_primary_10_1016_j_plaphy_2024_109345 crossref_primary_10_1039_D4EN00511B crossref_primary_10_3390_microorganisms12112350 crossref_primary_10_1016_j_agee_2023_108721 crossref_primary_10_1128_aem_01572_24 crossref_primary_10_1016_j_scitotenv_2023_168216 crossref_primary_10_1016_j_apsoil_2023_105226 crossref_primary_10_1016_j_micres_2023_127491 crossref_primary_10_3389_fmicb_2024_1391428 crossref_primary_10_1146_annurev_phyto_021622_104551 crossref_primary_10_1007_s11104_022_05671_3 crossref_primary_10_1016_j_scitotenv_2023_165814 crossref_primary_10_1186_s40793_025_00680_y crossref_primary_10_1007_s10340_024_01753_6 crossref_primary_10_1016_j_jes_2024_01_056 crossref_primary_10_3389_fpls_2023_1180576 crossref_primary_10_1016_j_jia_2024_07_011 crossref_primary_10_1016_j_jenvman_2025_124115 crossref_primary_10_3390_fermentation9070597 crossref_primary_10_3389_fpls_2024_1499966 crossref_primary_10_1016_j_chemosphere_2023_139325 crossref_primary_10_1016_j_apsoil_2024_105592 crossref_primary_10_3389_fpls_2022_1006303 crossref_primary_10_1016_j_micres_2025_128150 crossref_primary_10_1111_nph_19653 crossref_primary_10_1111_nph_19697 crossref_primary_10_1016_j_pmpp_2024_102461 crossref_primary_10_1016_j_envres_2023_117977 crossref_primary_10_1016_j_jclepro_2025_144911 crossref_primary_10_1016_j_jenvman_2023_117963 crossref_primary_10_3389_fmicb_2023_1129614 crossref_primary_10_1021_acs_jafc_3c06410 crossref_primary_10_1038_s41559_024_02437_1 crossref_primary_10_1038_s41522_024_00627_0 crossref_primary_10_1007_s11104_023_06445_1 crossref_primary_10_1016_j_scitotenv_2023_164569 crossref_primary_10_3389_fmicb_2024_1475485 crossref_primary_10_3390_microorganisms11051114 crossref_primary_10_1007_s00374_024_01845_6 crossref_primary_10_3390_microorganisms10081514 crossref_primary_10_3390_microorganisms12071370 crossref_primary_10_1111_pce_15395 crossref_primary_10_1007_s11368_024_03785_y crossref_primary_10_1186_s40168_024_01947_1 |
Cites_doi | 10.1007/s00248-014-0559-2 10.1016/j.tree.2016.02.016 10.1111/ele.12109 10.1016/j.tplants.2018.03.013 10.1186/s40168-020-00892-z 10.1126/science.aaa8764 10.1111/1758-2229.12454 10.1038/s41467-021-23553-7 10.5772/58981 10.1371/journal.pone.0098420 10.1038/s41467-018-04964-5 10.1016/j.cropro.2012.08.003 10.1016/0167-8809(92)90081-L 10.1146/annurev-phyto-072910-095232 10.1093/nar/gkr466 10.1016/j.soilbio.2016.10.008 10.1039/C5NP00082C 10.1890/08-0296.1 10.1038/ismej.2015.41 10.1126/science.216.4553.1376 10.1016/S0167-1987(03)00087-4 10.1128/AEM.71.8.4840-4849.2005 10.1038/nbt.4232 10.1111/1574-6968.12457 10.1007/BF02933490 10.1016/j.apsoil.2015.04.013 10.1038/ismej.2015.82 10.1094/PHYTO.1997.87.11.1118 10.1007/s00374-011-0617-6 10.1007/s00248-004-0249-6 10.1105/tpc.15.00496 10.1016/j.soilbio.2009.10.012 10.1038/nmeth.2604 10.1038/ncomms9413 10.3389/fmicb.2015.01243 10.1016/j.soilbio.2018.02.003 10.1038/s41587-019-0104-4 10.1016/j.rhisph.2020.100192 10.1038/ni.2611 10.1016/j.micres.2020.126424 10.1038/nrmicro1129 10.1038/ismej.2015.95 10.1038/s41559-016-0015 10.1016/j.jhazmat.2010.09.082 10.1126/science.aay2832 10.1080/07388551.2019.1709793 10.1111/j.1365-2672.2009.04471.x 10.1128/mBio.01790-16 10.1016/j.soilbio.2010.11.005 10.1007/s13593-011-0028-y 10.1016/j.soilbio.2017.01.010 10.1038/s41596-020-00444-7 10.1038/s41396-017-0003-y 10.1126/science.aaw9285 10.3390/ijms19082394 10.1038/nature11237 10.1007/s11104-012-1425-y 10.1038/s41522-021-00204-9 10.1016/j.apsoil.2011.03.013 10.1126/science.282.5386.63 10.1007/s11104-008-9568-6 10.1038/ismej.2014.210 10.1126/science.1203980 10.1038/nrmicro2163 10.1016/j.jes.2020.12.019 10.1016/j.soilbio.2020.107874 10.1016/S1074-5521(00)80001-0 10.1016/j.tplants.2012.04.001 10.1128/AEM.00062-07 10.1073/pnas.1318021111 10.1038/ismej.2012.154 10.1146/annurev.phyto.42.012604.135455 10.1016/j.tim.2015.07.013 10.1146/annurev.phyto.37.1.427 10.1007/s11104-017-3504-6 10.1016/j.apsoil.2018.08.022 10.1126/science.aaf3252 10.1038/s41396-018-0234-6 10.1073/pnas.0801925105 10.1016/j.soilbio.2017.07.016 10.1128/AEM.69.12.7248-7256.2003 10.1038/nature16192 10.1007/s10295-019-02136-y 10.1093/nar/gkv437 10.1016/j.soilbio.2009.11.033 10.1186/s40168-018-0525-1 10.1016/S1074-5521(00)00056-9 |
ContentType | Journal Article |
Copyright | 2022 The Authors. © 2022 New Phytologist Foundation. This article is protected by copyright. All rights reserved. Copyright © 2022 New Phytologist Trust 2022 The Authors. New Phytologist © 2022 New Phytologist Foundation. |
Copyright_xml | – notice: 2022 The Authors. © 2022 New Phytologist Foundation. – notice: This article is protected by copyright. All rights reserved. – notice: Copyright © 2022 New Phytologist Trust – notice: 2022 The Authors. New Phytologist © 2022 New Phytologist Foundation. |
DBID | AAYXX CITATION NPM 7QO 7SN 8FD C1K F1W FR3 H95 L.G M7N P64 RC3 7X8 7S9 L.6 |
DOI | 10.1111/nph.18221 |
DatabaseName | CrossRef PubMed Biotechnology Research Abstracts Ecology Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed Aquatic Science & Fisheries Abstracts (ASFA) Professional Genetics Abstracts Biotechnology Research Abstracts Technology Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Ecology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional AGRICOLA CrossRef PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1469-8137 |
EndPage | 1574 |
ExternalDocumentID | 35569105 10_1111_nph_18221 NPH18221 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Priority Academic Program Development of the Jiangsu Higher Education Institutions (PAPD) – fundername: National Natural Science Foundation of China funderid: 32002132; 41977044; 42090065 – fundername: Natural Science Foundation of Jiangsu Province funderid: BK20200562 – fundername: China Postdoctoral Science Foundation funderid: 2020M671520 – fundername: Fundamental Research Funds for the Central Universities funderid: KJQN202114 |
GroupedDBID | --- -~X .3N .GA .Y3 05W 0R~ 10A 123 1OC 24P 29N 2WC 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5VS 66C 702 79B 7PT 8-0 8-1 8-3 8-4 8-5 85S 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHKG AAHQN AAISJ AAKGQ AAMNL AANLZ AAONW AASGY AASVR AAXRX AAYCA AAZKR ABBHK ABCQN ABCUV ABEFU ABEML ABLJU ABPLY ABPVW ABTLG ABVKB ABXSQ ACAHQ ACCFJ ACCZN ACFBH ACGFS ACHIC ACNCT ACPOU ACQPF ACSCC ACSTJ ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADULT ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUPB AEUQT AEUYR AFAZZ AFBPY AFEBI AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AHXOZ AILXY AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB AQVQM AS~ ATUGU AUFTA AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG CBGCD COF CS3 CUYZI D-E D-F DCZOG DEVKO DIK DOOOF DPXWK DR2 DRFUL DRSTM E3Z EBS ECGQY EJD ESX F00 F01 F04 F5P FIJ G-S G.N GODZA GTFYD H.T H.X HF~ HGD HGLYW HQ2 HTVGU HZI HZ~ IHE IPNFZ IPSME IX1 J0M JAAYA JBMMH JBS JEB JENOY JHFFW JKQEH JLS JLXEF JPM JSODD JST K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LPU LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NEJ NF~ O66 O9- OIG OK1 P2P P2W P2X P4D Q.N Q11 QB0 R.K RCA RIG ROL RX1 SA0 SUPJJ TN5 TR2 UB1 W8V W99 WBKPD WHG WIH WIK WIN WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 XOL YNT YQT YXE ZCG ZZTAW ~02 ~IA ~KM ~WT AAYXX ABGDZ ABSQW ADXHL AEYWJ AGHNM AGUYK AGYGG CITATION NPM 7QO 7SN 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K F1W FR3 H95 L.G M7N P64 RC3 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c4211-a4f74e7a050db85b122de7dbed4e377f27bb395685984a93a8a974f33e6d5f803 |
IEDL.DBID | DR2 |
ISSN | 0028-646X 1469-8137 |
IngestDate | Fri Jul 11 18:24:54 EDT 2025 Fri Jul 11 08:56:54 EDT 2025 Sun Jul 13 04:47:56 EDT 2025 Thu Apr 03 07:06:57 EDT 2025 Thu Apr 24 23:01:35 EDT 2025 Tue Jul 01 02:28:42 EDT 2025 Wed Jan 22 16:25:45 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Ralstonia solanacearum invasion rhizosphere bacteria suppressiveness function responsiveness |
Language | English |
License | This article is protected by copyright. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4211-a4f74e7a050db85b122de7dbed4e377f27bb395685984a93a8a974f33e6d5f803 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-9985-6906 0000-0001-9374-5914 0000-0002-5662-9620 0000-0002-5680-8100 0000-0003-2652-7022 0000-0002-2599-5476 0000-0003-4317-7263 0000-0002-9101-4461 0000-0002-8951-7502 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/nph.18221 |
PMID | 35569105 |
PQID | 2688884522 |
PQPubID | 2026848 |
PageCount | 1574 |
ParticipantIDs | proquest_miscellaneous_2718296205 proquest_miscellaneous_2664783477 proquest_journals_2688884522 pubmed_primary_35569105 crossref_primary_10_1111_nph_18221 crossref_citationtrail_10_1111_nph_18221 wiley_primary_10_1111_nph_18221_NPH18221 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2022 |
PublicationDateYYYYMMDD | 2022-08-01 |
PublicationDate_xml | – month: 08 year: 2022 text: August 2022 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Lancaster |
PublicationTitle | The New phytologist |
PublicationTitleAlternate | New Phytol |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2018; 120 2017; 1 1997; 87 2010; 108 2015; 70 2004; 9 2016; 31 2019; 366 2013; 366 2017b; 107 2008; 105 2020; 13 2012; 17 2015; 349 2007; 73 2012; 488 2013; 7 2016; 33 2020; 8 2018; 6 2018; 9 2018; 132 2013; 14 2013; 16 2013; 10 1982; 216 2009; 90 2015; 43 2009; 321 2016; 352 2005; 71 2014; 9 1998; 282 1992; 40 2018; 36 2017a; 114 2021; 7 2004; 42 2015; 6 2015; 93 2013; 43 2020; 40 2021; 104 2018; 423 2019; 37 2016; 10 2020; 148 2015; 528 2018; 23 2011; 39 2005; 49 2014; 111 2015; 9 2003; 72 1999; 6 2012; 32 2011; 332 2014; 355 2015; 23 2018; 19 2021; 16 2010; 42 2016; 7 2021; 12 2019; 46 1999; 37 2001; 8 2003; 69 2011; 43 2009; 7 2015 2005; 3 2011; 48 2020; 234 2012; 48 2018; 12 2011; 185 2016; 28 2011; 49 2017; 104 2016; 8 e_1_2_9_75_1 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_73_1 e_1_2_9_79_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_56_1 e_1_2_9_77_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_54_1 e_1_2_9_71_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_58_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_87_1 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_83_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_85_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_81_1 e_1_2_9_4_1 e_1_2_9_60_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_74_1 e_1_2_9_51_1 e_1_2_9_72_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_78_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_76_1 e_1_2_9_70_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_63_1 e_1_2_9_88_1 e_1_2_9_40_1 e_1_2_9_61_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_67_1 e_1_2_9_84_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_65_1 e_1_2_9_86_1 e_1_2_9_7_1 e_1_2_9_80_1 e_1_2_9_5_1 e_1_2_9_82_1 e_1_2_9_3_1 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_69_1 e_1_2_9_29_1 |
References_xml | – volume: 40 start-page: 138 year: 2020 end-page: 152 article-title: : from diversity and genomics to functional role in environmental remediation and plant growth publication-title: Critical Reviews in Biotechnology – volume: 10 start-page: 119 year: 2016 end-page: 129 article-title: Microbial and biochemical basis of a wilt‐suppressive soil publication-title: ISME Journal – volume: 6 start-page: 1243 year: 2015 article-title: Diversity and activity of species from disease suppressive soils publication-title: Frontiers in Microbiology – volume: 332 start-page: 1097 year: 2011 end-page: 1100 article-title: Deciphering the rhizosphere microbiome for disease‐suppressive bacteria publication-title: Science – volume: 42 start-page: 243 year: 2004 end-page: 270 article-title: Microbial diversity in soil: selection of microbial populations by plant and soil type and implications for disease suppressiveness publication-title: Annual Review of Phytopathology – volume: 49 start-page: 47 year: 2011 end-page: 67 article-title: A coevolutionary framework for managing disease‐suppressive soils publication-title: Annual Review of Phytopathology – volume: 36 start-page: 1100 year: 2018 end-page: 1109 article-title: Rhizosphere microbiome structure alters to enable wilt resistance in tomato publication-title: Nature Biotechnology – volume: 366 start-page: 886 year: 2019 end-page: 890 article-title: The role of multiple global change factors in driving soil functions and microbial biodiversity publication-title: Science – volume: 46 start-page: 301 year: 2019 end-page: 311 article-title: Toward a global picture of bacterial secondary metabolism publication-title: Journal of Industrial Microbiology and Biotechnology – volume: 8 start-page: 59 year: 2001 end-page: 69 article-title: Novel features in a combined polyketide synthase/non‐ribosomal peptide synthetase: the myxalamid biosynthetic gene cluster of the myxobacterium Sga15 publication-title: Chemistry and Biology – volume: 3 start-page: 307 year: 2005 end-page: 319 article-title: Biological control of soil‐borne pathogens by fluorescent publication-title: Nature Reviews Microbiology – volume: 111 start-page: 3757 year: 2014 end-page: 3762 article-title: Chemical‐biogeographic survey of secondary metabolism in soil publication-title: Proceedings of the National Academy of Sciences, USA – volume: 10 start-page: 996 year: 2013 end-page: 998 article-title: U : highly accurate OTU sequences from microbial amplicon reads publication-title: Nature Methods – volume: 6 start-page: 142 year: 2018 article-title: Resilience of the resident soil microbiome to organic and inorganic amendment disturbances and to temporary bacterial invasion publication-title: Microbiome – volume: 28 start-page: 102 year: 2016 end-page: 129 article-title: Pipecolic acid orchestrates plant systemic acquired resistance and defense priming via salicylic acid‐dependent and ‐independent pathways publication-title: Plant Cell – volume: 185 start-page: 549 year: 2011 end-page: 574 article-title: Role of organic amendments on enhanced bioremediation of heavy metal (loid) contaminated soils publication-title: Journal of Hazardous Materials – volume: 43 start-page: 385 year: 2011 end-page: 392 article-title: Taxa‐specific changes in soil microbial community composition induced by pyrogenic carbon amendments publication-title: Soil Biology and Biochemistry – volume: 42 start-page: 136 year: 2010 end-page: 144 article-title: Identifying the characteristics of organic soil amendments that suppress soilborne plant diseases publication-title: Soil Biology and Biochemistry – volume: 87 start-page: 1118 year: 1997 end-page: 1124 article-title: Soil chemical and physical properties associated with suppression of take‐all of wheat by publication-title: Phytopathology – volume: 104 start-page: 39 year: 2017 end-page: 48 article-title: Inducing the rhizosphere microbiome by biofertilizer application to suppress banana wilt disease publication-title: Soil Biology and Biochemistry – volume: 423 start-page: 229 year: 2018 end-page: 240 article-title: Continuous application of different organic additives can suppress tomato disease by inducing the healthy rhizospheric microbiota through alterations to the bulk soil microflora publication-title: Plant and Soil – volume: 23 start-page: 467 year: 2018 end-page: 469 article-title: Embracing community ecology in plant microbiome research publication-title: Trends in Plant Science – start-page: 29 year: 2015 end-page: 42 – volume: 114 start-page: 238 year: 2017a end-page: 247 article-title: Bio‐fertilizer application induces soil suppressiveness against wilt disease by reshaping the soil microbiome publication-title: Soil Biology and Biochemistry – volume: 31 start-page: 440 year: 2016 end-page: 452 article-title: An underground revolution: biodiversity and soil ecological engineering for agricultural sustainability publication-title: Trends in Ecology and Evolution – volume: 48 start-page: 191 year: 2012 end-page: 203 article-title: Control of cotton wilt and fungal diversity of rhizosphere soils by bio‐organic fertilizer publication-title: Biology and Fertility of Soils – volume: 488 start-page: 86 year: 2012 end-page: 90 article-title: Defining the core root microbiome publication-title: Nature – volume: 14 start-page: 660 year: 2013 end-page: 667 article-title: The role of the immune system in governing host‐microbe interactions in the intestine publication-title: Nature Immunology – volume: 71 start-page: 4840 year: 2005 end-page: 4849 article-title: Metagenomic analysis reveals diverse polyketide synthase gene clusters in microorganisms associated with the marine sponge publication-title: Applied and Environmental Microbiology – volume: 37 start-page: 676 year: 2019 end-page: 684 article-title: NRT1.1B is associated with root microbiota composition and nitrogen use in field‐grown rice publication-title: Nature Biotechnology – volume: 93 start-page: 111 year: 2015 end-page: 119 article-title: Effect of biofertilizer for suppressing Fusarium wilt disease of banana as well as enhancing microbial and chemical properties of soil under greenhouse trial publication-title: Applied Soil Ecology – volume: 12 start-page: 3038 year: 2018 end-page: 3042 article-title: Breeding for soil‐borne pathogen resistance impacts active rhizosphere microbiome of common bean publication-title: ISME Journal – volume: 19 start-page: 2394 year: 2018 article-title: Comparative metagenomic analysis of rhizosphere microbial community composition and functional potentials under consecutive monoculture publication-title: International Journal of Molecular Sciences – volume: 12 start-page: 3209 year: 2021 article-title: Genome‐resolved metagenomics reveals role of iron metabolism in drought‐induced rhizosphere microbiome dynamics publication-title: Nature Communications – volume: 216 start-page: 1376 year: 1982 end-page: 1381 article-title: Disease‐suppressive soil and root‐colonizing bacteria publication-title: Science – volume: 48 start-page: 152 year: 2011 end-page: 159 article-title: Efficacy of ‐fortified organic fertiliser in controlling bacterial wilt of tomato in the field publication-title: Applied Soil Ecology – volume: 7 year: 2016 article-title: Probiotic diversity enhances rhizosphere microbiome function and plant disease suppression publication-title: mBio – volume: 7 start-page: 33 year: 2021 article-title: Soil microbiome manipulation triggers direct and possible indirect suppression against and publication-title: NPJ Biofilms and Microbiomes – volume: 37 start-page: 427 year: 1999 end-page: 446 article-title: Biocontrol within the context of soil microbial communities: a substrate‐dependent phenomenon publication-title: Annual Review of Phytopathology – volume: 43 start-page: 134 year: 2013 end-page: 140 article-title: Two B strains isolated using the competitive tomato root enrichment method and their effects on suppressing and promoting tomato plant growth publication-title: Crop Protection – volume: 72 start-page: 181 year: 2003 end-page: 192 article-title: Developing disease‐suppressive soils through crop rotation and tillage management practices publication-title: Soil and Tillage Research – volume: 9 start-page: e98420 year: 2014 article-title: Deep 16S rRNA pyrosequencing reveals a bacterial community associated with banana wilt disease suppression induced by bio‐organic fertilizer application publication-title: PLoS ONE – volume: 9 start-page: 1 year: 2018 end-page: 8 article-title: Clustering huge protein sequence sets in linear time publication-title: Nature Communications – volume: 148 year: 2020 article-title: Deliberate introduction of invisible invaders: a critical appraisal of the impact of microbial inoculants on soil microbial communities publication-title: Soil Biology and Biochemistry – volume: 73 start-page: 5261 year: 2007 end-page: 5267 article-title: Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy publication-title: Applied and Environmental Microbiology – volume: 69 start-page: 7248 year: 2003 end-page: 7256 article-title: Specific and sensitive detection of in soil on the basis of PCR amplification of fliC fragments publication-title: Applied and Environmental Microbiology – volume: 9 start-page: 1177 year: 2015 end-page: 1194 article-title: Distinct soil microbial diversity under long‐term organic and conventional farming publication-title: ISME Journal – volume: 70 start-page: 255 year: 2015 end-page: 265 article-title: Soil‐borne microbiome: linking diversity to function publication-title: Microbial Ecology – volume: 39 start-page: W339 year: 2011 end-page: W346 article-title: S : rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences publication-title: Nucleic Acids Research – volume: 6 start-page: 8413 year: 2015 article-title: Trophic network architecture of root‐associated bacterial communities determines pathogen invasion and plant health publication-title: Nature Communications – volume: 8 start-page: 896 year: 2016 end-page: 904 article-title: Role of phenazines and cyclic lipopeptides produced by . CMR12a in induced systemic resistance on rice and bean publication-title: Environmental Microbiology Reports – volume: 132 start-page: 83 year: 2018 end-page: 90 article-title: Microflora that harbor the NRPS gene are responsible for wilt disease‐suppressive soil publication-title: Applied Soil Ecology – volume: 9 start-page: 2349 year: 2015 end-page: 2359 article-title: Stability and succession of the rhizosphere microbiota depends upon plant type and soil composition publication-title: ISME Journal – volume: 32 start-page: 227 year: 2012 end-page: 243 article-title: Impact of root exudates and plant defense signaling on bacterial communities in the rhizosphere. A review publication-title: Agronomy for Sustainable Development – volume: 12 start-page: 728 year: 2018 end-page: 741 article-title: The impact of failure: unsuccessful bacterial invasions steer the soil microbial community away from the invader's niche publication-title: ISME Journal – volume: 43 start-page: W237 year: 2015 end-page: W243 article-title: S 3.0 – a comprehensive resource for the genome mining of biosynthetic gene clusters publication-title: Nucleic Acids Research – volume: 40 start-page: 25 year: 1992 end-page: 36 article-title: A review: long‐term effects of agricultural systems on soil biochemical and microbial parameters publication-title: Agriculture, Ecosystems and Environment – volume: 355 start-page: 170 year: 2014 end-page: 176 article-title: Involvement of both PKS and NRPS in antibacterial activity in OH11 publication-title: FEMS Microbiology Letters – volume: 42 start-page: 567 year: 2010 end-page: 575 article-title: Bacterial diversity in cucumber ( ) rhizosphere in response to salinity, soil pH, and boron publication-title: Soil Biology and Biochemistry – volume: 234 year: 2020 article-title: The rhizosphere signature on the cell motility, biofilm formation and secondary metabolite production of a plant‐associated strain publication-title: Microbiological Research – volume: 7 start-page: 514 year: 2009 end-page: 525 article-title: The versatility and adaptation of bacteria from the genus publication-title: Nature Reviews Microbiology – volume: 8 start-page: 137 year: 2020 article-title: Bio‐organic fertilizers stimulate indigenous soil populations to enhance plant disease suppression publication-title: Microbiome – volume: 352 start-page: 1392 year: 2016 end-page: 1393 article-title: Soil immune responses publication-title: Science – volume: 108 start-page: 756 year: 2010 end-page: 770 article-title: and : ubiquitous plant‐associated proteobacteria of developing significance in applied microbiology publication-title: Journal of Applied Microbiology – volume: 321 start-page: 341 year: 2009 end-page: 361 article-title: The rhizosphere: a playground and battlefield for soilborne pathogens and beneficial microorganisms publication-title: Plant and Soil – volume: 366 start-page: 453 year: 2013 end-page: 466 article-title: Evaluation of rhizosphere bacteria and derived bio‐organic fertilizers as potential biocontrol agents against bacterial wilt ( ) of potato publication-title: Plant and Soil – volume: 1 start-page: 1 year: 2017 end-page: 12 article-title: High taxonomic variability despite stable functional structure across microbial communities publication-title: Nature Ecology & Evolution – volume: 104 start-page: 387 year: 2021 end-page: 398 article-title: Root‐associated (rhizosphere and endosphere) microbiomes of the and their response to the heavy metal contamination publication-title: Journal of Environmental Sciences – volume: 528 start-page: 364 year: 2015 end-page: 369 article-title: Functional overlap of the leaf and root microbiota publication-title: Nature – volume: 107 start-page: 198 year: 2017b end-page: 207 article-title: Distinct roles for soil fungal and bacterial communities associated with the suppression of vanilla wilt disease publication-title: Soil Biology and Biochemistry – volume: 7 start-page: 868 year: 2013 end-page: 879 article-title: Microbial composition affects the functioning of estuarine sediments publication-title: ISME Journal – volume: 49 start-page: 10 year: 2005 end-page: 24 article-title: New PCR primers for the screening of NRPS and PKS‐I systems in actinomycetes: detection and distribution of these biosynthetic gene sequences in major taxonomic groups publication-title: Microbial Ecology – volume: 33 start-page: 136 year: 2016 end-page: 140 article-title: A structural model for multimodular NRPS assembly lines publication-title: Natural Product Reports – volume: 120 start-page: 126 year: 2018 end-page: 133 article-title: Decreasing soil microbial diversity is associated with decreasing microbial biomass under nitrogen addition publication-title: Soil Biology and Biochemistry – volume: 282 start-page: 63 year: 1998 end-page: 68 article-title: Harnessing the biosynthetic code: combinations, permutations, and mutations publication-title: Science – volume: 16 start-page: 128 year: 2013 end-page: 139 article-title: Microbial community responses to anthropogenically induced environmental change: towards a systems approach publication-title: Ecology Letters – volume: 349 start-page: 860 year: 2015 end-page: 864 article-title: Salicylic acid modulates colonization of the root microbiome by specific bacterial taxa publication-title: Science – volume: 16 start-page: 988 year: 2021 end-page: 1012 article-title: High‐throughput cultivation and identification of bacteria from the plant root microbiota publication-title: Nature Protocols – volume: 105 start-page: 11512 year: 2008 end-page: 11519 article-title: Resistance, resilience, and redundancy in microbial communities publication-title: Proceedings of the National Academy of Sciences, USA – volume: 10 start-page: 265 year: 2016 end-page: 268 article-title: Fungal invasion of the rhizosphere microbiome publication-title: ISME Journal – volume: 6 start-page: R319 year: 1999 end-page: R325 article-title: The parallel and convergent universes of polyketide synthases and nonribosomal peptide synthetases publication-title: Chemistry and Biology – volume: 366 start-page: 606 year: 2019 end-page: 612 article-title: Pathogen‐induced activation of disease‐suppressive functions in the endophytic root microbiome publication-title: Science – volume: 17 start-page: 478 year: 2012 end-page: 486 article-title: The rhizosphere microbiome and plant health publication-title: Trends in Plant Science – volume: 13 year: 2020 article-title: Disease‐suppressive compost enhances natural soil suppressiveness against soil‐borne plant pathogens: a critical review publication-title: Rhizosphere – volume: 23 start-page: 719 year: 2015 end-page: 729 article-title: Microbial invasions: the process, patterns, and mechanisms publication-title: Trends in Microbiology – volume: 9 start-page: 482 year: 2004 end-page: 489 article-title: Quantification of species in a wastewater treatment system by the molecular analyses publication-title: Biotechnology and Bioprocess Engineering – volume: 90 start-page: 441 year: 2009 end-page: 451 article-title: Testing the functional significance of microbial community composition publication-title: Ecology – ident: e_1_2_9_54_1 doi: 10.1007/s00248-014-0559-2 – ident: e_1_2_9_6_1 doi: 10.1016/j.tree.2016.02.016 – ident: e_1_2_9_9_1 doi: 10.1111/ele.12109 – ident: e_1_2_9_23_1 doi: 10.1016/j.tplants.2018.03.013 – ident: e_1_2_9_74_1 doi: 10.1186/s40168-020-00892-z – ident: e_1_2_9_41_1 doi: 10.1126/science.aaa8764 – ident: e_1_2_9_46_1 doi: 10.1111/1758-2229.12454 – ident: e_1_2_9_84_1 doi: 10.1038/s41467-021-23553-7 – ident: e_1_2_9_36_1 doi: 10.5772/58981 – ident: e_1_2_9_68_1 doi: 10.1371/journal.pone.0098420 – ident: e_1_2_9_70_1 doi: 10.1038/s41467-018-04964-5 – ident: e_1_2_9_73_1 doi: 10.1016/j.cropro.2012.08.003 – ident: e_1_2_9_21_1 doi: 10.1016/0167-8809(92)90081-L – ident: e_1_2_9_38_1 doi: 10.1146/annurev-phyto-072910-095232 – ident: e_1_2_9_51_1 doi: 10.1093/nar/gkr466 – ident: e_1_2_9_27_1 doi: 10.1016/j.soilbio.2016.10.008 – ident: e_1_2_9_49_1 doi: 10.1039/C5NP00082C – ident: e_1_2_9_71_1 doi: 10.1890/08-0296.1 – ident: e_1_2_9_75_1 doi: 10.1038/ismej.2015.41 – ident: e_1_2_9_65_1 doi: 10.1126/science.216.4553.1376 – ident: e_1_2_9_57_1 doi: 10.1016/S0167-1987(03)00087-4 – ident: e_1_2_9_63_1 doi: 10.1128/AEM.71.8.4840-4849.2005 – ident: e_1_2_9_39_1 doi: 10.1038/nbt.4232 – ident: e_1_2_9_85_1 doi: 10.1111/1574-6968.12457 – ident: e_1_2_9_55_1 doi: 10.1007/BF02933490 – ident: e_1_2_9_67_1 doi: 10.1016/j.apsoil.2015.04.013 – ident: e_1_2_9_17_1 doi: 10.1038/ismej.2015.82 – ident: e_1_2_9_25_1 doi: 10.1094/PHYTO.1997.87.11.1118 – ident: e_1_2_9_40_1 doi: 10.1007/s00374-011-0617-6 – ident: e_1_2_9_4_1 doi: 10.1007/s00248-004-0249-6 – ident: e_1_2_9_8_1 doi: 10.1105/tpc.15.00496 – ident: e_1_2_9_10_1 doi: 10.1016/j.soilbio.2009.10.012 – ident: e_1_2_9_26_1 doi: 10.1038/nmeth.2604 – ident: e_1_2_9_79_1 doi: 10.1038/ncomms9413 – ident: e_1_2_9_29_1 doi: 10.3389/fmicb.2015.01243 – ident: e_1_2_9_77_1 doi: 10.1016/j.soilbio.2018.02.003 – ident: e_1_2_9_87_1 doi: 10.1038/s41587-019-0104-4 – ident: e_1_2_9_19_1 doi: 10.1016/j.rhisph.2020.100192 – ident: e_1_2_9_12_1 doi: 10.1038/ni.2611 – ident: e_1_2_9_11_1 doi: 10.1016/j.micres.2020.126424 – ident: e_1_2_9_30_1 doi: 10.1038/nrmicro1129 – ident: e_1_2_9_16_1 doi: 10.1038/ismej.2015.95 – ident: e_1_2_9_43_1 doi: 10.1038/s41559-016-0015 – ident: e_1_2_9_56_1 doi: 10.1016/j.jhazmat.2010.09.082 – ident: e_1_2_9_61_1 doi: 10.1126/science.aay2832 – ident: e_1_2_9_3_1 doi: 10.1080/07388551.2019.1709793 – ident: e_1_2_9_32_1 doi: 10.1111/j.1365-2672.2009.04471.x – ident: e_1_2_9_34_1 doi: 10.1128/mBio.01790-16 – ident: e_1_2_9_37_1 doi: 10.1016/j.soilbio.2010.11.005 – ident: e_1_2_9_24_1 doi: 10.1007/s13593-011-0028-y – ident: e_1_2_9_83_1 doi: 10.1016/j.soilbio.2017.01.010 – ident: e_1_2_9_86_1 doi: 10.1038/s41596-020-00444-7 – ident: e_1_2_9_48_1 doi: 10.1038/s41396-017-0003-y – ident: e_1_2_9_15_1 doi: 10.1126/science.aaw9285 – ident: e_1_2_9_81_1 doi: 10.3390/ijms19082394 – ident: e_1_2_9_45_1 doi: 10.1038/nature11237 – ident: e_1_2_9_22_1 doi: 10.1007/s11104-012-1425-y – ident: e_1_2_9_20_1 doi: 10.1038/s41522-021-00204-9 – ident: e_1_2_9_80_1 doi: 10.1016/j.apsoil.2011.03.013 – ident: e_1_2_9_14_1 doi: 10.1126/science.282.5386.63 – ident: e_1_2_9_59_1 doi: 10.1007/s11104-008-9568-6 – ident: e_1_2_9_31_1 doi: 10.1038/ismej.2014.210 – ident: e_1_2_9_52_1 doi: 10.1126/science.1203980 – ident: e_1_2_9_62_1 doi: 10.1038/nrmicro2163 – ident: e_1_2_9_72_1 doi: 10.1016/j.jes.2020.12.019 – ident: e_1_2_9_50_1 doi: 10.1016/j.soilbio.2020.107874 – ident: e_1_2_9_13_1 doi: 10.1016/S1074-5521(00)80001-0 – ident: e_1_2_9_7_1 doi: 10.1016/j.tplants.2012.04.001 – ident: e_1_2_9_76_1 doi: 10.1128/AEM.00062-07 – ident: e_1_2_9_18_1 doi: 10.1073/pnas.1318021111 – ident: e_1_2_9_60_1 doi: 10.1038/ismej.2012.154 – ident: e_1_2_9_28_1 doi: 10.1146/annurev.phyto.42.012604.135455 – ident: e_1_2_9_47_1 doi: 10.1016/j.tim.2015.07.013 – ident: e_1_2_9_33_1 doi: 10.1146/annurev.phyto.37.1.427 – ident: e_1_2_9_42_1 doi: 10.1007/s11104-017-3504-6 – ident: e_1_2_9_88_1 doi: 10.1016/j.apsoil.2018.08.022 – ident: e_1_2_9_58_1 doi: 10.1126/science.aaf3252 – ident: e_1_2_9_53_1 doi: 10.1038/s41396-018-0234-6 – ident: e_1_2_9_2_1 doi: 10.1073/pnas.0801925105 – ident: e_1_2_9_82_1 doi: 10.1016/j.soilbio.2017.07.016 – ident: e_1_2_9_64_1 doi: 10.1128/AEM.69.12.7248-7256.2003 – ident: e_1_2_9_5_1 doi: 10.1038/nature16192 – ident: e_1_2_9_66_1 doi: 10.1007/s10295-019-02136-y – ident: e_1_2_9_78_1 doi: 10.1093/nar/gkv437 – ident: e_1_2_9_35_1 doi: 10.1016/j.soilbio.2009.11.033 – ident: e_1_2_9_44_1 doi: 10.1186/s40168-018-0525-1 – ident: e_1_2_9_69_1 doi: 10.1016/S1074-5521(00)00056-9 |
SSID | ssj0009562 |
Score | 2.656176 |
Snippet | Summary
Stimulating the development of soil suppressiveness against certain pathogens represents a sustainable solution toward reducing pesticide use in... Stimulating the development of soil suppressiveness against certain pathogens represents a sustainable solution toward reducing pesticide use in agriculture.... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1558 |
SubjectTerms | Abundance Agrochemicals Bacteria bacterial wilt Biological control Chemical fertilizers Community composition community structure Composition disease control Fertilizer application Fertilizers field experimentation function genes greenhouse experimentation Greenhouses Inoculation invasion Metabolites Metagenomics microbiome Microbiomes mineral fertilizers nonribosomal peptides Organic fertilizers Organic soils Pathogens Pesticide use reduction Pesticides Priming Ralstonia solanacearum responsiveness Rhizosphere rhizosphere bacteria Secondary metabolites Soil Soil amendment soil amendments Soil microorganisms Soils Sphingomonadaceae suppressiveness Tomatoes Wilt Xanthomonadaceae |
Title | Bio‐organic soil amendment promotes the suppression of Ralstonia solanacearum by inducing changes in the functionality and composition of rhizosphere bacterial communities |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.18221 https://www.ncbi.nlm.nih.gov/pubmed/35569105 https://www.proquest.com/docview/2688884522 https://www.proquest.com/docview/2664783477 https://www.proquest.com/docview/2718296205 |
Volume | 235 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NatwwEBYh9NBLm_5vkxa19NCLF1uyLC85NaVhKTSU0MAeCkZ_pks38hKvD8kpj9AX6UvlSToj2SbpH6V7WtZjM_LOWN_I33wi5BWkDFQNViV1VqoEn5JJKVKVSK4ZAGauao39zh-OivlJ_n4hFltkf-iFifoQ44IbZkZ4XmOCK91eS3K__jIFcByayJGrhYDomF0T3C3YoMBc5MWiVxVCFs945s256BeAeROvhgnn8C75PLgaeSZfp91GT83FTyqO_zmWHXKnB6L0TYyce2TL-fvk1kEDYPH8Afl-sGyuLr_FPZ8MbZvliqpT5y0uJtJ14PC5lgJ6pG237sm0njY1PYZ4Bjy5VHDSSnllIJW6U6rPKVT_nYGZksZm4xZ-CBfAqTWuSEJFQJW3FHnuPZkML3mGvMAW9Q8c1VFdGjw3sbUFBWEfkpPDd5_ezpN-Z4fE5FBxJiqvZe6kSkVqdSl0xph10mpnc8elrJnUmmMjo5iVuZpxVSqoe2rOXWFFXab8Edn2jXdPCLVZIaSWQmbK5U7MdCkZM3WdWSNTbcSEvB7-48r0sue4-8aqGsofuPlVuPkT8nI0XUetj98Z7Q2BUvXp3lasKOGD4vQT8mI8DImKb1-Ud02HNtjWy3Mp_2IDSAFShKXg9uMYhKMnAAwLwHY4oBBKf3axOvo4D1-e_rvpLrnNsLEjUBv3yPbmrHPPAG5t9POQVz8AfNcrqg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwELZKQaIX_n8WChgEEpesEieOswcOlFJtabtCVSvtLfgvYtWts2o2QsuJR-BB4FF4CZ6EmThZtfyJSw_kFCUTa2J7Jt84M58JeQomA1GDkUERZTJALxlkPJSBiBUDwBzLQmG9894oHR4mb8Z8vEK-dLUwnh9iueCGltH4azRwXJA-ZeVu9r4P6JhFbUrljl18gICterG9CaP7jLGt1wevhkG7p0CgE4h1ApkUIrFChjw0KuMqYsxYYZQ1iY2FKJhQKsYSOj7IEjmIZSYBcRdxbFPDiyyMod0L5CLuII5M_Zv77BTFb8o6zuc0ScctjxHmDS1VPfv1-wXSnkXIzSdu6yr51nWOz2w56tdz1dcff-KN_F967xq50mJt-tIbx3WyYt0NcmmjBDy8uEm-bkzK758--22tNK3KyZTKY-sMrpfSWZOmaCsKAJlW9azNF3a0LOg-mCxA5omEh6bSSQ2vVh9TtaATZ2oNYID6euoKLjQNIHrwi64Q9FDpDMVU_jZfDps8wdTHCikeLFWeQBs01756Bzlvb5HDc-mq22TVlc7eJdREKRdKcBFJm1g-UJlgTBdFZLQIleY98rybVLlumd1xg5Fp3kV4MNh5M9g98mQpOvN0Jr8TWu9mZt56tCpnaQYH8u_3yOPlbfBF-INJOlvWKIOVy3EixF9kAAyBF2AhqH3Hz_qlJoB9U4Cv-ELN3P2zivno7bA5uffvoo_I5eHB3m6-uz3auU_WGNaxNJmc62R1flLbB4Au5-phY9SUvDtvO_gBm5eJIA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwELZKQYgL_z8LBQwCiUtWiRPH2QMHyrLaUlhVFZX2FuzYESu2TtRshJYTj8B7IN6Ep-BJmImTqOVPXHogpyiZWBPbM_nGmflMyCMwGYgatPTyIJEeekkv4b70RKgYAOZQ5grrnV_P4ulB9HLO5xvkS1cL4_gh-gU3tIzGX6OBlzo_ZuS2fDcEcMyCNqNy16w_QLxWPd0Zw-A-Zmzy4s3zqdduKeBlEYQ6noxyERkhfe5rlXAVMKaN0MroyIRC5EwoFWIFHR8lkRyFMpEAuPMwNLHmeeKH0O4ZcjaK_RHuEzHeZ8cYfmPWUT7HUTxvaYwwbahX9eTH7xdEexIgN1-4ySXyresbl9jyfliv1DD7-BNt5H_SeZfJxRZp02fONK6QDWOvknPbBaDh9TXydXtRfP_02W1qldGqWCypPDRW42opLZskRVNRgMe0qss2W9jSIqf7YLAAmBcSHlpKKzN4tfqQqjVdWF1nAAWoq6au4ELTAGIHt-QKIQ-VVlNM5G-z5bDJI0x8rJDgwVDl6LNB88zV7iDj7XVycCpddYNs2sKaW4TqIOZCCS4CaSLDRyoRjGV5HuhM-CrjA_Kkm1Np1vK64_Yiy7SL72Cw02awB-RhL1o6MpPfCW11EzNt_VmVsjiBA9n3B-RBfxs8Ef5ektYUNcpg3XIYCfEXGYBC4AOYD2rfdJO-1wSQbwzgFV-ombp_VjGd7U2bk9v_LnqfnN8bT9JXO7PdO-QCwyKWJo1zi2yujmpzF6DlSt1rTJqSt6dtBj8AdWCHzw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bio%E2%80%90organic+soil+amendment+promotes+the+suppression+of+Ralstonia+solanacearum+by+inducing+changes+in+the+functionality+and+composition+of+rhizosphere+bacterial+communities&rft.jtitle=The+New+phytologist&rft.au=Deng%2C+Xuhui&rft.au=Zhang%2C+Na&rft.au=Li%2C+Yuchan&rft.au=Zhu%2C+Chengzhi&rft.date=2022-08-01&rft.issn=0028-646X&rft.volume=235&rft.issue=4+p.1558-1574&rft.spage=1558&rft.epage=1574&rft_id=info:doi/10.1111%2Fnph.18221&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-646X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-646X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-646X&client=summon |