Bio‐organic soil amendment promotes the suppression of Ralstonia solanacearum by inducing changes in the functionality and composition of rhizosphere bacterial communities

Summary Stimulating the development of soil suppressiveness against certain pathogens represents a sustainable solution toward reducing pesticide use in agriculture. However, understanding the dynamics of suppressiveness and the mechanisms leading to pathogen control remain largely elusive. Here, we...

Full description

Saved in:
Bibliographic Details
Published inThe New phytologist Vol. 235; no. 4; pp. 1558 - 1574
Main Authors Deng, Xuhui, Zhang, Na, Li, Yuchan, Zhu, Chengzhi, Qu, Baoyuan, Liu, Hongjun, Li, Rong, Bai, Yang, Shen, Qirong, Falcao Salles, Joana
Format Journal Article
LanguageEnglish
Published England Wiley Subscription Services, Inc 01.08.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Summary Stimulating the development of soil suppressiveness against certain pathogens represents a sustainable solution toward reducing pesticide use in agriculture. However, understanding the dynamics of suppressiveness and the mechanisms leading to pathogen control remain largely elusive. Here, we investigated the mechanisms used by the rhizosphere microbiome induces bacterial wilt disease suppression in a long‐term field experiment where continuous application of bio‐organic fertilizers (BFs) triggered disease suppressiveness when compared to chemical fertilizer application. We further demonstrated in a glasshouse experiment that the suppressiveness of the rhizosphere bacterial communities was triggered mainly by changes in community composition rather than only by the abundance of the introduced biocontrol strain. Metagenomics approaches revealed that members of the families Sphingomonadaceae and Xanthomonadaceae with the ability to produce secondary metabolites were enriched in the BF plant rhizosphere but only upon pathogen invasion. We experimentally validated this observation by inoculating bacterial isolates belonging to the families Sphingomonadaceae and Xanthomonadaceae into conducive soil, which led to a significant reduction in pathogen abundance and increase in nonribosomal peptide synthetase gene abundance. We conclude that priming of the soil microbiome with BF amendment fostered reactive bacterial communities in the rhizosphere of tomato plants in response to biotic disturbance.
AbstractList Summary Stimulating the development of soil suppressiveness against certain pathogens represents a sustainable solution toward reducing pesticide use in agriculture. However, understanding the dynamics of suppressiveness and the mechanisms leading to pathogen control remain largely elusive. Here, we investigated the mechanisms used by the rhizosphere microbiome induces bacterial wilt disease suppression in a long‐term field experiment where continuous application of bio‐organic fertilizers (BFs) triggered disease suppressiveness when compared to chemical fertilizer application. We further demonstrated in a glasshouse experiment that the suppressiveness of the rhizosphere bacterial communities was triggered mainly by changes in community composition rather than only by the abundance of the introduced biocontrol strain. Metagenomics approaches revealed that members of the families Sphingomonadaceae and Xanthomonadaceae with the ability to produce secondary metabolites were enriched in the BF plant rhizosphere but only upon pathogen invasion. We experimentally validated this observation by inoculating bacterial isolates belonging to the families Sphingomonadaceae and Xanthomonadaceae into conducive soil, which led to a significant reduction in pathogen abundance and increase in nonribosomal peptide synthetase gene abundance. We conclude that priming of the soil microbiome with BF amendment fostered reactive bacterial communities in the rhizosphere of tomato plants in response to biotic disturbance.
Stimulating the development of soil suppressiveness against certain pathogens represents a sustainable solution toward reducing pesticide use in agriculture. However, understanding the dynamics of suppressiveness and the mechanisms leading to pathogen control remain largely elusive.Here, we investigated the mechanisms used by the rhizosphere microbiome induces bacterial wilt disease suppression in a long‐term field experiment where continuous application of bio‐organic fertilizers (BFs) triggered disease suppressiveness when compared to chemical fertilizer application. We further demonstrated in a glasshouse experiment that the suppressiveness of the rhizosphere bacterial communities was triggered mainly by changes in community composition rather than only by the abundance of the introduced biocontrol strain.Metagenomics approaches revealed that members of the families Sphingomonadaceae and Xanthomonadaceae with the ability to produce secondary metabolites were enriched in the BF plant rhizosphere but only upon pathogen invasion. We experimentally validated this observation by inoculating bacterial isolates belonging to the families Sphingomonadaceae and Xanthomonadaceae into conducive soil, which led to a significant reduction in pathogen abundance and increase in nonribosomal peptide synthetase gene abundance.We conclude that priming of the soil microbiome with BF amendment fostered reactive bacterial communities in the rhizosphere of tomato plants in response to biotic disturbance.
Stimulating the development of soil suppressiveness against certain pathogens represents a sustainable solution toward reducing pesticide use in agriculture. However, understanding the dynamics of suppressiveness and the mechanisms leading to pathogen control remain largely elusive. Here, we investigated the mechanisms used by the rhizosphere microbiome induces bacterial wilt disease suppression in a long‐term field experiment where continuous application of bio‐organic fertilizers (BFs) triggered disease suppressiveness when compared to chemical fertilizer application. We further demonstrated in a glasshouse experiment that the suppressiveness of the rhizosphere bacterial communities was triggered mainly by changes in community composition rather than only by the abundance of the introduced biocontrol strain. Metagenomics approaches revealed that members of the families Sphingomonadaceae and Xanthomonadaceae with the ability to produce secondary metabolites were enriched in the BF plant rhizosphere but only upon pathogen invasion. We experimentally validated this observation by inoculating bacterial isolates belonging to the families Sphingomonadaceae and Xanthomonadaceae into conducive soil, which led to a significant reduction in pathogen abundance and increase in nonribosomal peptide synthetase gene abundance. We conclude that priming of the soil microbiome with BF amendment fostered reactive bacterial communities in the rhizosphere of tomato plants in response to biotic disturbance.
Stimulating the development of soil suppressiveness against certain pathogens represents a sustainable solution toward reducing pesticide use in agriculture. However, understanding the dynamics of suppressiveness and the mechanisms leading to pathogen control remain largely elusive. Here, we investigated the mechanisms used by the rhizosphere microbiome induces bacterial wilt disease suppression in a long-term field experiment where continuous application of bio-organic (BF) fertilizers triggered disease suppressiveness when compared to chemical fertilizer (CF) application. We further demonstrated in a greenhouse experiment that the suppressiveness of the rhizosphere bacterial communities was triggered mainly by changes in community composition rather than only by the abundance of the introduced biocontrol strain. Metagenomics approaches revealed that members of the families Sphingomonadaceae and Xanthomonadaceae with the ability to produce secondary metabolites were enriched in the BF plant rhizosphere but only upon pathogen invasion. We experimentally validated this observation by inoculating bacterial isolates belonging to the families Sphingomonadaceae and Xanthomonadaceae into conducive soil, which led to a significant reduction in pathogen abundance and increase in non-ribosomal peptide synthetase (NRPS) gene abundance. We conclude that priming of the soil microbiome with bio-organic fertilizer amendment fostered reactive bacterial communities in the rhizosphere of tomato plants in response to biotic disturbance.
Stimulating the development of soil suppressiveness against certain pathogens represents a sustainable solution toward reducing pesticide use in agriculture. However, understanding the dynamics of suppressiveness and the mechanisms leading to pathogen control remain largely elusive. Here, we investigated the mechanisms used by the rhizosphere microbiome induces bacterial wilt disease suppression in a long-term field experiment where continuous application of bio-organic fertilizers (BFs) triggered disease suppressiveness when compared to chemical fertilizer application. We further demonstrated in a glasshouse experiment that the suppressiveness of the rhizosphere bacterial communities was triggered mainly by changes in community composition rather than only by the abundance of the introduced biocontrol strain. Metagenomics approaches revealed that members of the families Sphingomonadaceae and Xanthomonadaceae with the ability to produce secondary metabolites were enriched in the BF plant rhizosphere but only upon pathogen invasion. We experimentally validated this observation by inoculating bacterial isolates belonging to the families Sphingomonadaceae and Xanthomonadaceae into conducive soil, which led to a significant reduction in pathogen abundance and increase in nonribosomal peptide synthetase gene abundance. We conclude that priming of the soil microbiome with BF amendment fostered reactive bacterial communities in the rhizosphere of tomato plants in response to biotic disturbance.Stimulating the development of soil suppressiveness against certain pathogens represents a sustainable solution toward reducing pesticide use in agriculture. However, understanding the dynamics of suppressiveness and the mechanisms leading to pathogen control remain largely elusive. Here, we investigated the mechanisms used by the rhizosphere microbiome induces bacterial wilt disease suppression in a long-term field experiment where continuous application of bio-organic fertilizers (BFs) triggered disease suppressiveness when compared to chemical fertilizer application. We further demonstrated in a glasshouse experiment that the suppressiveness of the rhizosphere bacterial communities was triggered mainly by changes in community composition rather than only by the abundance of the introduced biocontrol strain. Metagenomics approaches revealed that members of the families Sphingomonadaceae and Xanthomonadaceae with the ability to produce secondary metabolites were enriched in the BF plant rhizosphere but only upon pathogen invasion. We experimentally validated this observation by inoculating bacterial isolates belonging to the families Sphingomonadaceae and Xanthomonadaceae into conducive soil, which led to a significant reduction in pathogen abundance and increase in nonribosomal peptide synthetase gene abundance. We conclude that priming of the soil microbiome with BF amendment fostered reactive bacterial communities in the rhizosphere of tomato plants in response to biotic disturbance.
Author Zhu, Chengzhi
Li, Rong
Shen, Qirong
Deng, Xuhui
Falcao Salles, Joana
Li, Yuchan
Bai, Yang
Zhang, Na
Liu, Hongjun
Qu, Baoyuan
Author_xml – sequence: 1
  givenname: Xuhui
  orcidid: 0000-0002-5680-8100
  surname: Deng
  fullname: Deng, Xuhui
  organization: University of Groningen
– sequence: 2
  givenname: Na
  orcidid: 0000-0002-8951-7502
  surname: Zhang
  fullname: Zhang, Na
  organization: Nanjing Agricultural University
– sequence: 3
  givenname: Yuchan
  orcidid: 0000-0001-9374-5914
  surname: Li
  fullname: Li, Yuchan
  organization: Nanjing Agricultural University
– sequence: 4
  givenname: Chengzhi
  surname: Zhu
  fullname: Zhu, Chengzhi
  organization: Nanjing Agricultural University
– sequence: 5
  givenname: Baoyuan
  orcidid: 0000-0002-9101-4461
  surname: Qu
  fullname: Qu, Baoyuan
  organization: Chinese Academy of Sciences (CAS)
– sequence: 6
  givenname: Hongjun
  orcidid: 0000-0001-9985-6906
  surname: Liu
  fullname: Liu, Hongjun
  organization: Nanjing Agricultural University
– sequence: 7
  givenname: Rong
  orcidid: 0000-0002-2599-5476
  surname: Li
  fullname: Li, Rong
  email: lirong@njau.edu.cn
  organization: Nanjing Agricultural University
– sequence: 8
  givenname: Yang
  orcidid: 0000-0003-2652-7022
  surname: Bai
  fullname: Bai, Yang
  organization: University of Chinese Academy of Sciences
– sequence: 9
  givenname: Qirong
  orcidid: 0000-0002-5662-9620
  surname: Shen
  fullname: Shen, Qirong
  organization: Nanjing Agricultural University
– sequence: 10
  givenname: Joana
  orcidid: 0000-0003-4317-7263
  surname: Falcao Salles
  fullname: Falcao Salles, Joana
  organization: University of Groningen
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35569105$$D View this record in MEDLINE/PubMed
BookMark eNqFksFu1DAURS1URKeFBT-ALLGBRVrbcWJnCRVQpAoQAold9OK8zLhK7GA7QsOKT-BH-Cm-BE9nYFEJeJLlzbnXetf3hBw575CQh5yd8Tznbt6ccS0Ev0NWXNZNoXmpjsiKMaGLWtafjslJjNeMsaaqxT1yXFZV3XBWrciP59b__PbdhzU4a2j0dqQwoevzSXQOfvIJI00bpHGZ54AxWu-oH-h7GGPyzkIWjeDAIIRlot2WWtcvxro1NRtw66y27sZgWJxJWQ2jTVsKrqfGT7OPNh0sw8Z-9XHeYEDagUkYLIw7aFpchjDeJ3eH_Cw-ONyn5OPLFx8uLourt69eXzy7KowUnBcgByVRAatY3-mq40L0qPoOe4mlUoNQXVfmKHTVaAlNCRoaJYeyxLqvBs3KU_Jk75sD-LxgTO1ko8Ex74l-ia1QOe6mFqz6P1rXUulSKpXRx7fQa7-EHMeO0nlkJUSmHh2opZuwb-dgJwjb9vefZeDpHjDBxxhw-INw1u760OY-tDd9yOz5LdbYBLu8UwA7_kvxxY64_bt1--bd5V7xC_wHyzs
CitedBy_id crossref_primary_10_1002_ps_8222
crossref_primary_10_1016_j_envint_2024_108896
crossref_primary_10_1111_gcb_16703
crossref_primary_10_1007_s42832_023_0223_1
crossref_primary_10_1128_spectrum_03572_22
crossref_primary_10_1016_j_jenvman_2023_117673
crossref_primary_10_3390_pathogens11101120
crossref_primary_10_1016_j_apsoil_2025_106012
crossref_primary_10_1093_jambio_lxae073
crossref_primary_10_3390_horticulturae11030271
crossref_primary_10_1007_s11104_023_06433_5
crossref_primary_10_3389_fmicb_2022_1033824
crossref_primary_10_1111_nph_19086
crossref_primary_10_3390_agronomy12123029
crossref_primary_10_1016_j_pestbp_2024_105875
crossref_primary_10_3389_fmicb_2025_1554981
crossref_primary_10_1038_s41467_024_45150_0
crossref_primary_10_1038_s43705_023_00286_w
crossref_primary_10_1016_j_pmpp_2025_102591
crossref_primary_10_1111_1462_2920_16587
crossref_primary_10_1016_j_onehlt_2023_100481
crossref_primary_10_3389_fpls_2024_1325141
crossref_primary_10_1016_j_mib_2023_102286
crossref_primary_10_1111_pbi_13951
crossref_primary_10_3390_ijms241512470
crossref_primary_10_3390_agronomy13051356
crossref_primary_10_3390_horticulturae9080924
crossref_primary_10_1016_j_agee_2022_108135
crossref_primary_10_3390_plants11212816
crossref_primary_10_1007_s11104_022_05680_2
crossref_primary_10_1016_j_apsoil_2025_105912
crossref_primary_10_1021_acsnano_4c05875
crossref_primary_10_3389_fmicb_2023_979835
crossref_primary_10_3389_fmicb_2024_1426893
crossref_primary_10_1093_ismejo_wrae180
crossref_primary_10_1111_pce_15215
crossref_primary_10_1093_hr_uhad112
crossref_primary_10_3389_frans_2023_1205583
crossref_primary_10_3390_agronomy13092310
crossref_primary_10_1016_j_ecoenv_2023_115050
crossref_primary_10_1016_j_snb_2023_135139
crossref_primary_10_1126_sciadv_ads5089
crossref_primary_10_1016_j_jclepro_2022_134960
crossref_primary_10_1128_msphere_00665_23
crossref_primary_10_1007_s00374_024_01868_z
crossref_primary_10_1016_j_plaphy_2024_109345
crossref_primary_10_1039_D4EN00511B
crossref_primary_10_3390_microorganisms12112350
crossref_primary_10_1016_j_agee_2023_108721
crossref_primary_10_1128_aem_01572_24
crossref_primary_10_1016_j_scitotenv_2023_168216
crossref_primary_10_1016_j_apsoil_2023_105226
crossref_primary_10_1016_j_micres_2023_127491
crossref_primary_10_3389_fmicb_2024_1391428
crossref_primary_10_1146_annurev_phyto_021622_104551
crossref_primary_10_1007_s11104_022_05671_3
crossref_primary_10_1016_j_scitotenv_2023_165814
crossref_primary_10_1186_s40793_025_00680_y
crossref_primary_10_1007_s10340_024_01753_6
crossref_primary_10_1016_j_jes_2024_01_056
crossref_primary_10_3389_fpls_2023_1180576
crossref_primary_10_1016_j_jia_2024_07_011
crossref_primary_10_1016_j_jenvman_2025_124115
crossref_primary_10_3390_fermentation9070597
crossref_primary_10_3389_fpls_2024_1499966
crossref_primary_10_1016_j_chemosphere_2023_139325
crossref_primary_10_1016_j_apsoil_2024_105592
crossref_primary_10_3389_fpls_2022_1006303
crossref_primary_10_1016_j_micres_2025_128150
crossref_primary_10_1111_nph_19653
crossref_primary_10_1111_nph_19697
crossref_primary_10_1016_j_pmpp_2024_102461
crossref_primary_10_1016_j_envres_2023_117977
crossref_primary_10_1016_j_jclepro_2025_144911
crossref_primary_10_1016_j_jenvman_2023_117963
crossref_primary_10_3389_fmicb_2023_1129614
crossref_primary_10_1021_acs_jafc_3c06410
crossref_primary_10_1038_s41559_024_02437_1
crossref_primary_10_1038_s41522_024_00627_0
crossref_primary_10_1007_s11104_023_06445_1
crossref_primary_10_1016_j_scitotenv_2023_164569
crossref_primary_10_3389_fmicb_2024_1475485
crossref_primary_10_3390_microorganisms11051114
crossref_primary_10_1007_s00374_024_01845_6
crossref_primary_10_3390_microorganisms10081514
crossref_primary_10_3390_microorganisms12071370
crossref_primary_10_1111_pce_15395
crossref_primary_10_1007_s11368_024_03785_y
crossref_primary_10_1186_s40168_024_01947_1
Cites_doi 10.1007/s00248-014-0559-2
10.1016/j.tree.2016.02.016
10.1111/ele.12109
10.1016/j.tplants.2018.03.013
10.1186/s40168-020-00892-z
10.1126/science.aaa8764
10.1111/1758-2229.12454
10.1038/s41467-021-23553-7
10.5772/58981
10.1371/journal.pone.0098420
10.1038/s41467-018-04964-5
10.1016/j.cropro.2012.08.003
10.1016/0167-8809(92)90081-L
10.1146/annurev-phyto-072910-095232
10.1093/nar/gkr466
10.1016/j.soilbio.2016.10.008
10.1039/C5NP00082C
10.1890/08-0296.1
10.1038/ismej.2015.41
10.1126/science.216.4553.1376
10.1016/S0167-1987(03)00087-4
10.1128/AEM.71.8.4840-4849.2005
10.1038/nbt.4232
10.1111/1574-6968.12457
10.1007/BF02933490
10.1016/j.apsoil.2015.04.013
10.1038/ismej.2015.82
10.1094/PHYTO.1997.87.11.1118
10.1007/s00374-011-0617-6
10.1007/s00248-004-0249-6
10.1105/tpc.15.00496
10.1016/j.soilbio.2009.10.012
10.1038/nmeth.2604
10.1038/ncomms9413
10.3389/fmicb.2015.01243
10.1016/j.soilbio.2018.02.003
10.1038/s41587-019-0104-4
10.1016/j.rhisph.2020.100192
10.1038/ni.2611
10.1016/j.micres.2020.126424
10.1038/nrmicro1129
10.1038/ismej.2015.95
10.1038/s41559-016-0015
10.1016/j.jhazmat.2010.09.082
10.1126/science.aay2832
10.1080/07388551.2019.1709793
10.1111/j.1365-2672.2009.04471.x
10.1128/mBio.01790-16
10.1016/j.soilbio.2010.11.005
10.1007/s13593-011-0028-y
10.1016/j.soilbio.2017.01.010
10.1038/s41596-020-00444-7
10.1038/s41396-017-0003-y
10.1126/science.aaw9285
10.3390/ijms19082394
10.1038/nature11237
10.1007/s11104-012-1425-y
10.1038/s41522-021-00204-9
10.1016/j.apsoil.2011.03.013
10.1126/science.282.5386.63
10.1007/s11104-008-9568-6
10.1038/ismej.2014.210
10.1126/science.1203980
10.1038/nrmicro2163
10.1016/j.jes.2020.12.019
10.1016/j.soilbio.2020.107874
10.1016/S1074-5521(00)80001-0
10.1016/j.tplants.2012.04.001
10.1128/AEM.00062-07
10.1073/pnas.1318021111
10.1038/ismej.2012.154
10.1146/annurev.phyto.42.012604.135455
10.1016/j.tim.2015.07.013
10.1146/annurev.phyto.37.1.427
10.1007/s11104-017-3504-6
10.1016/j.apsoil.2018.08.022
10.1126/science.aaf3252
10.1038/s41396-018-0234-6
10.1073/pnas.0801925105
10.1016/j.soilbio.2017.07.016
10.1128/AEM.69.12.7248-7256.2003
10.1038/nature16192
10.1007/s10295-019-02136-y
10.1093/nar/gkv437
10.1016/j.soilbio.2009.11.033
10.1186/s40168-018-0525-1
10.1016/S1074-5521(00)00056-9
ContentType Journal Article
Copyright 2022 The Authors. © 2022 New Phytologist Foundation.
This article is protected by copyright. All rights reserved.
Copyright © 2022 New Phytologist Trust
2022 The Authors. New Phytologist © 2022 New Phytologist Foundation.
Copyright_xml – notice: 2022 The Authors. © 2022 New Phytologist Foundation.
– notice: This article is protected by copyright. All rights reserved.
– notice: Copyright © 2022 New Phytologist Trust
– notice: 2022 The Authors. New Phytologist © 2022 New Phytologist Foundation.
DBID AAYXX
CITATION
NPM
7QO
7SN
8FD
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
7X8
7S9
L.6
DOI 10.1111/nph.18221
DatabaseName CrossRef
PubMed
Biotechnology Research Abstracts
Ecology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Ecology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
Aquatic Science & Fisheries Abstracts (ASFA) Professional
AGRICOLA
CrossRef
PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1469-8137
EndPage 1574
ExternalDocumentID 35569105
10_1111_nph_18221
NPH18221
Genre article
Journal Article
GrantInformation_xml – fundername: Priority Academic Program Development of the Jiangsu Higher Education Institutions (PAPD)
– fundername: National Natural Science Foundation of China
  funderid: 32002132; 41977044; 42090065
– fundername: Natural Science Foundation of Jiangsu Province
  funderid: BK20200562
– fundername: China Postdoctoral Science Foundation
  funderid: 2020M671520
– fundername: Fundamental Research Funds for the Central Universities
  funderid: KJQN202114
GroupedDBID ---
-~X
.3N
.GA
.Y3
05W
0R~
10A
123
1OC
24P
29N
2WC
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
79B
7PT
8-0
8-1
8-3
8-4
8-5
85S
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHKG
AAHQN
AAISJ
AAKGQ
AAMNL
AANLZ
AAONW
AASGY
AASVR
AAXRX
AAYCA
AAZKR
ABBHK
ABCQN
ABCUV
ABEFU
ABEML
ABLJU
ABPLY
ABPVW
ABTLG
ABVKB
ABXSQ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACHIC
ACNCT
ACPOU
ACQPF
ACSCC
ACSTJ
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADULT
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUPB
AEUQT
AEUYR
AFAZZ
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AHXOZ
AILXY
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
AQVQM
AS~
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
CBGCD
COF
CS3
CUYZI
D-E
D-F
DCZOG
DEVKO
DIK
DOOOF
DPXWK
DR2
DRFUL
DRSTM
E3Z
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
FIJ
G-S
G.N
GODZA
GTFYD
H.T
H.X
HF~
HGD
HGLYW
HQ2
HTVGU
HZI
HZ~
IHE
IPNFZ
IPSME
IX1
J0M
JAAYA
JBMMH
JBS
JEB
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSODD
JST
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LPU
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NEJ
NF~
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
RCA
RIG
ROL
RX1
SA0
SUPJJ
TN5
TR2
UB1
W8V
W99
WBKPD
WHG
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XOL
YNT
YQT
YXE
ZCG
ZZTAW
~02
~IA
~KM
~WT
AAYXX
ABGDZ
ABSQW
ADXHL
AEYWJ
AGHNM
AGUYK
AGYGG
CITATION
NPM
7QO
7SN
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
7X8
7S9
L.6
ID FETCH-LOGICAL-c4211-a4f74e7a050db85b122de7dbed4e377f27bb395685984a93a8a974f33e6d5f803
IEDL.DBID DR2
ISSN 0028-646X
1469-8137
IngestDate Fri Jul 11 18:24:54 EDT 2025
Fri Jul 11 08:56:54 EDT 2025
Sun Jul 13 04:47:56 EDT 2025
Thu Apr 03 07:06:57 EDT 2025
Thu Apr 24 23:01:35 EDT 2025
Tue Jul 01 02:28:42 EDT 2025
Wed Jan 22 16:25:45 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Ralstonia solanacearum
invasion
rhizosphere bacteria
suppressiveness
function
responsiveness
Language English
License This article is protected by copyright. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4211-a4f74e7a050db85b122de7dbed4e377f27bb395685984a93a8a974f33e6d5f803
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9985-6906
0000-0001-9374-5914
0000-0002-5662-9620
0000-0002-5680-8100
0000-0003-2652-7022
0000-0002-2599-5476
0000-0003-4317-7263
0000-0002-9101-4461
0000-0002-8951-7502
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/nph.18221
PMID 35569105
PQID 2688884522
PQPubID 2026848
PageCount 1574
ParticipantIDs proquest_miscellaneous_2718296205
proquest_miscellaneous_2664783477
proquest_journals_2688884522
pubmed_primary_35569105
crossref_primary_10_1111_nph_18221
crossref_citationtrail_10_1111_nph_18221
wiley_primary_10_1111_nph_18221_NPH18221
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2022
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: August 2022
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Lancaster
PublicationTitle The New phytologist
PublicationTitleAlternate New Phytol
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2018; 120
2017; 1
1997; 87
2010; 108
2015; 70
2004; 9
2016; 31
2019; 366
2013; 366
2017b; 107
2008; 105
2020; 13
2012; 17
2015; 349
2007; 73
2012; 488
2013; 7
2016; 33
2020; 8
2018; 6
2018; 9
2018; 132
2013; 14
2013; 16
2013; 10
1982; 216
2009; 90
2015; 43
2009; 321
2016; 352
2005; 71
2014; 9
1998; 282
1992; 40
2018; 36
2017a; 114
2021; 7
2004; 42
2015; 6
2015; 93
2013; 43
2020; 40
2021; 104
2018; 423
2019; 37
2016; 10
2020; 148
2015; 528
2018; 23
2011; 39
2005; 49
2014; 111
2015; 9
2003; 72
1999; 6
2012; 32
2011; 332
2014; 355
2015; 23
2018; 19
2021; 16
2010; 42
2016; 7
2021; 12
2019; 46
1999; 37
2001; 8
2003; 69
2011; 43
2009; 7
2015
2005; 3
2011; 48
2020; 234
2012; 48
2018; 12
2011; 185
2016; 28
2011; 49
2017; 104
2016; 8
e_1_2_9_75_1
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_73_1
e_1_2_9_79_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_77_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
e_1_2_9_71_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_58_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_87_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_83_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_85_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_81_1
e_1_2_9_4_1
e_1_2_9_60_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_74_1
e_1_2_9_51_1
e_1_2_9_72_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_78_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_76_1
e_1_2_9_70_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_63_1
e_1_2_9_88_1
e_1_2_9_40_1
e_1_2_9_61_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_67_1
e_1_2_9_84_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_65_1
e_1_2_9_86_1
e_1_2_9_7_1
e_1_2_9_80_1
e_1_2_9_5_1
e_1_2_9_82_1
e_1_2_9_3_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_69_1
e_1_2_9_29_1
References_xml – volume: 40
  start-page: 138
  year: 2020
  end-page: 152
  article-title: : from diversity and genomics to functional role in environmental remediation and plant growth
  publication-title: Critical Reviews in Biotechnology
– volume: 10
  start-page: 119
  year: 2016
  end-page: 129
  article-title: Microbial and biochemical basis of a wilt‐suppressive soil
  publication-title: ISME Journal
– volume: 6
  start-page: 1243
  year: 2015
  article-title: Diversity and activity of species from disease suppressive soils
  publication-title: Frontiers in Microbiology
– volume: 332
  start-page: 1097
  year: 2011
  end-page: 1100
  article-title: Deciphering the rhizosphere microbiome for disease‐suppressive bacteria
  publication-title: Science
– volume: 42
  start-page: 243
  year: 2004
  end-page: 270
  article-title: Microbial diversity in soil: selection of microbial populations by plant and soil type and implications for disease suppressiveness
  publication-title: Annual Review of Phytopathology
– volume: 49
  start-page: 47
  year: 2011
  end-page: 67
  article-title: A coevolutionary framework for managing disease‐suppressive soils
  publication-title: Annual Review of Phytopathology
– volume: 36
  start-page: 1100
  year: 2018
  end-page: 1109
  article-title: Rhizosphere microbiome structure alters to enable wilt resistance in tomato
  publication-title: Nature Biotechnology
– volume: 366
  start-page: 886
  year: 2019
  end-page: 890
  article-title: The role of multiple global change factors in driving soil functions and microbial biodiversity
  publication-title: Science
– volume: 46
  start-page: 301
  year: 2019
  end-page: 311
  article-title: Toward a global picture of bacterial secondary metabolism
  publication-title: Journal of Industrial Microbiology and Biotechnology
– volume: 8
  start-page: 59
  year: 2001
  end-page: 69
  article-title: Novel features in a combined polyketide synthase/non‐ribosomal peptide synthetase: the myxalamid biosynthetic gene cluster of the myxobacterium Sga15
  publication-title: Chemistry and Biology
– volume: 3
  start-page: 307
  year: 2005
  end-page: 319
  article-title: Biological control of soil‐borne pathogens by fluorescent
  publication-title: Nature Reviews Microbiology
– volume: 111
  start-page: 3757
  year: 2014
  end-page: 3762
  article-title: Chemical‐biogeographic survey of secondary metabolism in soil
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 10
  start-page: 996
  year: 2013
  end-page: 998
  article-title: U : highly accurate OTU sequences from microbial amplicon reads
  publication-title: Nature Methods
– volume: 6
  start-page: 142
  year: 2018
  article-title: Resilience of the resident soil microbiome to organic and inorganic amendment disturbances and to temporary bacterial invasion
  publication-title: Microbiome
– volume: 28
  start-page: 102
  year: 2016
  end-page: 129
  article-title: Pipecolic acid orchestrates plant systemic acquired resistance and defense priming via salicylic acid‐dependent and ‐independent pathways
  publication-title: Plant Cell
– volume: 185
  start-page: 549
  year: 2011
  end-page: 574
  article-title: Role of organic amendments on enhanced bioremediation of heavy metal (loid) contaminated soils
  publication-title: Journal of Hazardous Materials
– volume: 43
  start-page: 385
  year: 2011
  end-page: 392
  article-title: Taxa‐specific changes in soil microbial community composition induced by pyrogenic carbon amendments
  publication-title: Soil Biology and Biochemistry
– volume: 42
  start-page: 136
  year: 2010
  end-page: 144
  article-title: Identifying the characteristics of organic soil amendments that suppress soilborne plant diseases
  publication-title: Soil Biology and Biochemistry
– volume: 87
  start-page: 1118
  year: 1997
  end-page: 1124
  article-title: Soil chemical and physical properties associated with suppression of take‐all of wheat by
  publication-title: Phytopathology
– volume: 104
  start-page: 39
  year: 2017
  end-page: 48
  article-title: Inducing the rhizosphere microbiome by biofertilizer application to suppress banana wilt disease
  publication-title: Soil Biology and Biochemistry
– volume: 423
  start-page: 229
  year: 2018
  end-page: 240
  article-title: Continuous application of different organic additives can suppress tomato disease by inducing the healthy rhizospheric microbiota through alterations to the bulk soil microflora
  publication-title: Plant and Soil
– volume: 23
  start-page: 467
  year: 2018
  end-page: 469
  article-title: Embracing community ecology in plant microbiome research
  publication-title: Trends in Plant Science
– start-page: 29
  year: 2015
  end-page: 42
– volume: 114
  start-page: 238
  year: 2017a
  end-page: 247
  article-title: Bio‐fertilizer application induces soil suppressiveness against wilt disease by reshaping the soil microbiome
  publication-title: Soil Biology and Biochemistry
– volume: 31
  start-page: 440
  year: 2016
  end-page: 452
  article-title: An underground revolution: biodiversity and soil ecological engineering for agricultural sustainability
  publication-title: Trends in Ecology and Evolution
– volume: 48
  start-page: 191
  year: 2012
  end-page: 203
  article-title: Control of cotton wilt and fungal diversity of rhizosphere soils by bio‐organic fertilizer
  publication-title: Biology and Fertility of Soils
– volume: 488
  start-page: 86
  year: 2012
  end-page: 90
  article-title: Defining the core root microbiome
  publication-title: Nature
– volume: 14
  start-page: 660
  year: 2013
  end-page: 667
  article-title: The role of the immune system in governing host‐microbe interactions in the intestine
  publication-title: Nature Immunology
– volume: 71
  start-page: 4840
  year: 2005
  end-page: 4849
  article-title: Metagenomic analysis reveals diverse polyketide synthase gene clusters in microorganisms associated with the marine sponge
  publication-title: Applied and Environmental Microbiology
– volume: 37
  start-page: 676
  year: 2019
  end-page: 684
  article-title: NRT1.1B is associated with root microbiota composition and nitrogen use in field‐grown rice
  publication-title: Nature Biotechnology
– volume: 93
  start-page: 111
  year: 2015
  end-page: 119
  article-title: Effect of biofertilizer for suppressing Fusarium wilt disease of banana as well as enhancing microbial and chemical properties of soil under greenhouse trial
  publication-title: Applied Soil Ecology
– volume: 12
  start-page: 3038
  year: 2018
  end-page: 3042
  article-title: Breeding for soil‐borne pathogen resistance impacts active rhizosphere microbiome of common bean
  publication-title: ISME Journal
– volume: 19
  start-page: 2394
  year: 2018
  article-title: Comparative metagenomic analysis of rhizosphere microbial community composition and functional potentials under consecutive monoculture
  publication-title: International Journal of Molecular Sciences
– volume: 12
  start-page: 3209
  year: 2021
  article-title: Genome‐resolved metagenomics reveals role of iron metabolism in drought‐induced rhizosphere microbiome dynamics
  publication-title: Nature Communications
– volume: 216
  start-page: 1376
  year: 1982
  end-page: 1381
  article-title: Disease‐suppressive soil and root‐colonizing bacteria
  publication-title: Science
– volume: 48
  start-page: 152
  year: 2011
  end-page: 159
  article-title: Efficacy of ‐fortified organic fertiliser in controlling bacterial wilt of tomato in the field
  publication-title: Applied Soil Ecology
– volume: 7
  year: 2016
  article-title: Probiotic diversity enhances rhizosphere microbiome function and plant disease suppression
  publication-title: mBio
– volume: 7
  start-page: 33
  year: 2021
  article-title: Soil microbiome manipulation triggers direct and possible indirect suppression against and
  publication-title: NPJ Biofilms and Microbiomes
– volume: 37
  start-page: 427
  year: 1999
  end-page: 446
  article-title: Biocontrol within the context of soil microbial communities: a substrate‐dependent phenomenon
  publication-title: Annual Review of Phytopathology
– volume: 43
  start-page: 134
  year: 2013
  end-page: 140
  article-title: Two B strains isolated using the competitive tomato root enrichment method and their effects on suppressing and promoting tomato plant growth
  publication-title: Crop Protection
– volume: 72
  start-page: 181
  year: 2003
  end-page: 192
  article-title: Developing disease‐suppressive soils through crop rotation and tillage management practices
  publication-title: Soil and Tillage Research
– volume: 9
  start-page: e98420
  year: 2014
  article-title: Deep 16S rRNA pyrosequencing reveals a bacterial community associated with banana wilt disease suppression induced by bio‐organic fertilizer application
  publication-title: PLoS ONE
– volume: 9
  start-page: 1
  year: 2018
  end-page: 8
  article-title: Clustering huge protein sequence sets in linear time
  publication-title: Nature Communications
– volume: 148
  year: 2020
  article-title: Deliberate introduction of invisible invaders: a critical appraisal of the impact of microbial inoculants on soil microbial communities
  publication-title: Soil Biology and Biochemistry
– volume: 73
  start-page: 5261
  year: 2007
  end-page: 5267
  article-title: Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy
  publication-title: Applied and Environmental Microbiology
– volume: 69
  start-page: 7248
  year: 2003
  end-page: 7256
  article-title: Specific and sensitive detection of in soil on the basis of PCR amplification of fliC fragments
  publication-title: Applied and Environmental Microbiology
– volume: 9
  start-page: 1177
  year: 2015
  end-page: 1194
  article-title: Distinct soil microbial diversity under long‐term organic and conventional farming
  publication-title: ISME Journal
– volume: 70
  start-page: 255
  year: 2015
  end-page: 265
  article-title: Soil‐borne microbiome: linking diversity to function
  publication-title: Microbial Ecology
– volume: 39
  start-page: W339
  year: 2011
  end-page: W346
  article-title: S : rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences
  publication-title: Nucleic Acids Research
– volume: 6
  start-page: 8413
  year: 2015
  article-title: Trophic network architecture of root‐associated bacterial communities determines pathogen invasion and plant health
  publication-title: Nature Communications
– volume: 8
  start-page: 896
  year: 2016
  end-page: 904
  article-title: Role of phenazines and cyclic lipopeptides produced by . CMR12a in induced systemic resistance on rice and bean
  publication-title: Environmental Microbiology Reports
– volume: 132
  start-page: 83
  year: 2018
  end-page: 90
  article-title: Microflora that harbor the NRPS gene are responsible for wilt disease‐suppressive soil
  publication-title: Applied Soil Ecology
– volume: 9
  start-page: 2349
  year: 2015
  end-page: 2359
  article-title: Stability and succession of the rhizosphere microbiota depends upon plant type and soil composition
  publication-title: ISME Journal
– volume: 32
  start-page: 227
  year: 2012
  end-page: 243
  article-title: Impact of root exudates and plant defense signaling on bacterial communities in the rhizosphere. A review
  publication-title: Agronomy for Sustainable Development
– volume: 12
  start-page: 728
  year: 2018
  end-page: 741
  article-title: The impact of failure: unsuccessful bacterial invasions steer the soil microbial community away from the invader's niche
  publication-title: ISME Journal
– volume: 43
  start-page: W237
  year: 2015
  end-page: W243
  article-title: S 3.0 – a comprehensive resource for the genome mining of biosynthetic gene clusters
  publication-title: Nucleic Acids Research
– volume: 40
  start-page: 25
  year: 1992
  end-page: 36
  article-title: A review: long‐term effects of agricultural systems on soil biochemical and microbial parameters
  publication-title: Agriculture, Ecosystems and Environment
– volume: 355
  start-page: 170
  year: 2014
  end-page: 176
  article-title: Involvement of both PKS and NRPS in antibacterial activity in OH11
  publication-title: FEMS Microbiology Letters
– volume: 42
  start-page: 567
  year: 2010
  end-page: 575
  article-title: Bacterial diversity in cucumber ( ) rhizosphere in response to salinity, soil pH, and boron
  publication-title: Soil Biology and Biochemistry
– volume: 234
  year: 2020
  article-title: The rhizosphere signature on the cell motility, biofilm formation and secondary metabolite production of a plant‐associated strain
  publication-title: Microbiological Research
– volume: 7
  start-page: 514
  year: 2009
  end-page: 525
  article-title: The versatility and adaptation of bacteria from the genus
  publication-title: Nature Reviews Microbiology
– volume: 8
  start-page: 137
  year: 2020
  article-title: Bio‐organic fertilizers stimulate indigenous soil populations to enhance plant disease suppression
  publication-title: Microbiome
– volume: 352
  start-page: 1392
  year: 2016
  end-page: 1393
  article-title: Soil immune responses
  publication-title: Science
– volume: 108
  start-page: 756
  year: 2010
  end-page: 770
  article-title: and : ubiquitous plant‐associated proteobacteria of developing significance in applied microbiology
  publication-title: Journal of Applied Microbiology
– volume: 321
  start-page: 341
  year: 2009
  end-page: 361
  article-title: The rhizosphere: a playground and battlefield for soilborne pathogens and beneficial microorganisms
  publication-title: Plant and Soil
– volume: 366
  start-page: 453
  year: 2013
  end-page: 466
  article-title: Evaluation of rhizosphere bacteria and derived bio‐organic fertilizers as potential biocontrol agents against bacterial wilt ( ) of potato
  publication-title: Plant and Soil
– volume: 1
  start-page: 1
  year: 2017
  end-page: 12
  article-title: High taxonomic variability despite stable functional structure across microbial communities
  publication-title: Nature Ecology & Evolution
– volume: 104
  start-page: 387
  year: 2021
  end-page: 398
  article-title: Root‐associated (rhizosphere and endosphere) microbiomes of the and their response to the heavy metal contamination
  publication-title: Journal of Environmental Sciences
– volume: 528
  start-page: 364
  year: 2015
  end-page: 369
  article-title: Functional overlap of the leaf and root microbiota
  publication-title: Nature
– volume: 107
  start-page: 198
  year: 2017b
  end-page: 207
  article-title: Distinct roles for soil fungal and bacterial communities associated with the suppression of vanilla wilt disease
  publication-title: Soil Biology and Biochemistry
– volume: 7
  start-page: 868
  year: 2013
  end-page: 879
  article-title: Microbial composition affects the functioning of estuarine sediments
  publication-title: ISME Journal
– volume: 49
  start-page: 10
  year: 2005
  end-page: 24
  article-title: New PCR primers for the screening of NRPS and PKS‐I systems in actinomycetes: detection and distribution of these biosynthetic gene sequences in major taxonomic groups
  publication-title: Microbial Ecology
– volume: 33
  start-page: 136
  year: 2016
  end-page: 140
  article-title: A structural model for multimodular NRPS assembly lines
  publication-title: Natural Product Reports
– volume: 120
  start-page: 126
  year: 2018
  end-page: 133
  article-title: Decreasing soil microbial diversity is associated with decreasing microbial biomass under nitrogen addition
  publication-title: Soil Biology and Biochemistry
– volume: 282
  start-page: 63
  year: 1998
  end-page: 68
  article-title: Harnessing the biosynthetic code: combinations, permutations, and mutations
  publication-title: Science
– volume: 16
  start-page: 128
  year: 2013
  end-page: 139
  article-title: Microbial community responses to anthropogenically induced environmental change: towards a systems approach
  publication-title: Ecology Letters
– volume: 349
  start-page: 860
  year: 2015
  end-page: 864
  article-title: Salicylic acid modulates colonization of the root microbiome by specific bacterial taxa
  publication-title: Science
– volume: 16
  start-page: 988
  year: 2021
  end-page: 1012
  article-title: High‐throughput cultivation and identification of bacteria from the plant root microbiota
  publication-title: Nature Protocols
– volume: 105
  start-page: 11512
  year: 2008
  end-page: 11519
  article-title: Resistance, resilience, and redundancy in microbial communities
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 10
  start-page: 265
  year: 2016
  end-page: 268
  article-title: Fungal invasion of the rhizosphere microbiome
  publication-title: ISME Journal
– volume: 6
  start-page: R319
  year: 1999
  end-page: R325
  article-title: The parallel and convergent universes of polyketide synthases and nonribosomal peptide synthetases
  publication-title: Chemistry and Biology
– volume: 366
  start-page: 606
  year: 2019
  end-page: 612
  article-title: Pathogen‐induced activation of disease‐suppressive functions in the endophytic root microbiome
  publication-title: Science
– volume: 17
  start-page: 478
  year: 2012
  end-page: 486
  article-title: The rhizosphere microbiome and plant health
  publication-title: Trends in Plant Science
– volume: 13
  year: 2020
  article-title: Disease‐suppressive compost enhances natural soil suppressiveness against soil‐borne plant pathogens: a critical review
  publication-title: Rhizosphere
– volume: 23
  start-page: 719
  year: 2015
  end-page: 729
  article-title: Microbial invasions: the process, patterns, and mechanisms
  publication-title: Trends in Microbiology
– volume: 9
  start-page: 482
  year: 2004
  end-page: 489
  article-title: Quantification of species in a wastewater treatment system by the molecular analyses
  publication-title: Biotechnology and Bioprocess Engineering
– volume: 90
  start-page: 441
  year: 2009
  end-page: 451
  article-title: Testing the functional significance of microbial community composition
  publication-title: Ecology
– ident: e_1_2_9_54_1
  doi: 10.1007/s00248-014-0559-2
– ident: e_1_2_9_6_1
  doi: 10.1016/j.tree.2016.02.016
– ident: e_1_2_9_9_1
  doi: 10.1111/ele.12109
– ident: e_1_2_9_23_1
  doi: 10.1016/j.tplants.2018.03.013
– ident: e_1_2_9_74_1
  doi: 10.1186/s40168-020-00892-z
– ident: e_1_2_9_41_1
  doi: 10.1126/science.aaa8764
– ident: e_1_2_9_46_1
  doi: 10.1111/1758-2229.12454
– ident: e_1_2_9_84_1
  doi: 10.1038/s41467-021-23553-7
– ident: e_1_2_9_36_1
  doi: 10.5772/58981
– ident: e_1_2_9_68_1
  doi: 10.1371/journal.pone.0098420
– ident: e_1_2_9_70_1
  doi: 10.1038/s41467-018-04964-5
– ident: e_1_2_9_73_1
  doi: 10.1016/j.cropro.2012.08.003
– ident: e_1_2_9_21_1
  doi: 10.1016/0167-8809(92)90081-L
– ident: e_1_2_9_38_1
  doi: 10.1146/annurev-phyto-072910-095232
– ident: e_1_2_9_51_1
  doi: 10.1093/nar/gkr466
– ident: e_1_2_9_27_1
  doi: 10.1016/j.soilbio.2016.10.008
– ident: e_1_2_9_49_1
  doi: 10.1039/C5NP00082C
– ident: e_1_2_9_71_1
  doi: 10.1890/08-0296.1
– ident: e_1_2_9_75_1
  doi: 10.1038/ismej.2015.41
– ident: e_1_2_9_65_1
  doi: 10.1126/science.216.4553.1376
– ident: e_1_2_9_57_1
  doi: 10.1016/S0167-1987(03)00087-4
– ident: e_1_2_9_63_1
  doi: 10.1128/AEM.71.8.4840-4849.2005
– ident: e_1_2_9_39_1
  doi: 10.1038/nbt.4232
– ident: e_1_2_9_85_1
  doi: 10.1111/1574-6968.12457
– ident: e_1_2_9_55_1
  doi: 10.1007/BF02933490
– ident: e_1_2_9_67_1
  doi: 10.1016/j.apsoil.2015.04.013
– ident: e_1_2_9_17_1
  doi: 10.1038/ismej.2015.82
– ident: e_1_2_9_25_1
  doi: 10.1094/PHYTO.1997.87.11.1118
– ident: e_1_2_9_40_1
  doi: 10.1007/s00374-011-0617-6
– ident: e_1_2_9_4_1
  doi: 10.1007/s00248-004-0249-6
– ident: e_1_2_9_8_1
  doi: 10.1105/tpc.15.00496
– ident: e_1_2_9_10_1
  doi: 10.1016/j.soilbio.2009.10.012
– ident: e_1_2_9_26_1
  doi: 10.1038/nmeth.2604
– ident: e_1_2_9_79_1
  doi: 10.1038/ncomms9413
– ident: e_1_2_9_29_1
  doi: 10.3389/fmicb.2015.01243
– ident: e_1_2_9_77_1
  doi: 10.1016/j.soilbio.2018.02.003
– ident: e_1_2_9_87_1
  doi: 10.1038/s41587-019-0104-4
– ident: e_1_2_9_19_1
  doi: 10.1016/j.rhisph.2020.100192
– ident: e_1_2_9_12_1
  doi: 10.1038/ni.2611
– ident: e_1_2_9_11_1
  doi: 10.1016/j.micres.2020.126424
– ident: e_1_2_9_30_1
  doi: 10.1038/nrmicro1129
– ident: e_1_2_9_16_1
  doi: 10.1038/ismej.2015.95
– ident: e_1_2_9_43_1
  doi: 10.1038/s41559-016-0015
– ident: e_1_2_9_56_1
  doi: 10.1016/j.jhazmat.2010.09.082
– ident: e_1_2_9_61_1
  doi: 10.1126/science.aay2832
– ident: e_1_2_9_3_1
  doi: 10.1080/07388551.2019.1709793
– ident: e_1_2_9_32_1
  doi: 10.1111/j.1365-2672.2009.04471.x
– ident: e_1_2_9_34_1
  doi: 10.1128/mBio.01790-16
– ident: e_1_2_9_37_1
  doi: 10.1016/j.soilbio.2010.11.005
– ident: e_1_2_9_24_1
  doi: 10.1007/s13593-011-0028-y
– ident: e_1_2_9_83_1
  doi: 10.1016/j.soilbio.2017.01.010
– ident: e_1_2_9_86_1
  doi: 10.1038/s41596-020-00444-7
– ident: e_1_2_9_48_1
  doi: 10.1038/s41396-017-0003-y
– ident: e_1_2_9_15_1
  doi: 10.1126/science.aaw9285
– ident: e_1_2_9_81_1
  doi: 10.3390/ijms19082394
– ident: e_1_2_9_45_1
  doi: 10.1038/nature11237
– ident: e_1_2_9_22_1
  doi: 10.1007/s11104-012-1425-y
– ident: e_1_2_9_20_1
  doi: 10.1038/s41522-021-00204-9
– ident: e_1_2_9_80_1
  doi: 10.1016/j.apsoil.2011.03.013
– ident: e_1_2_9_14_1
  doi: 10.1126/science.282.5386.63
– ident: e_1_2_9_59_1
  doi: 10.1007/s11104-008-9568-6
– ident: e_1_2_9_31_1
  doi: 10.1038/ismej.2014.210
– ident: e_1_2_9_52_1
  doi: 10.1126/science.1203980
– ident: e_1_2_9_62_1
  doi: 10.1038/nrmicro2163
– ident: e_1_2_9_72_1
  doi: 10.1016/j.jes.2020.12.019
– ident: e_1_2_9_50_1
  doi: 10.1016/j.soilbio.2020.107874
– ident: e_1_2_9_13_1
  doi: 10.1016/S1074-5521(00)80001-0
– ident: e_1_2_9_7_1
  doi: 10.1016/j.tplants.2012.04.001
– ident: e_1_2_9_76_1
  doi: 10.1128/AEM.00062-07
– ident: e_1_2_9_18_1
  doi: 10.1073/pnas.1318021111
– ident: e_1_2_9_60_1
  doi: 10.1038/ismej.2012.154
– ident: e_1_2_9_28_1
  doi: 10.1146/annurev.phyto.42.012604.135455
– ident: e_1_2_9_47_1
  doi: 10.1016/j.tim.2015.07.013
– ident: e_1_2_9_33_1
  doi: 10.1146/annurev.phyto.37.1.427
– ident: e_1_2_9_42_1
  doi: 10.1007/s11104-017-3504-6
– ident: e_1_2_9_88_1
  doi: 10.1016/j.apsoil.2018.08.022
– ident: e_1_2_9_58_1
  doi: 10.1126/science.aaf3252
– ident: e_1_2_9_53_1
  doi: 10.1038/s41396-018-0234-6
– ident: e_1_2_9_2_1
  doi: 10.1073/pnas.0801925105
– ident: e_1_2_9_82_1
  doi: 10.1016/j.soilbio.2017.07.016
– ident: e_1_2_9_64_1
  doi: 10.1128/AEM.69.12.7248-7256.2003
– ident: e_1_2_9_5_1
  doi: 10.1038/nature16192
– ident: e_1_2_9_66_1
  doi: 10.1007/s10295-019-02136-y
– ident: e_1_2_9_78_1
  doi: 10.1093/nar/gkv437
– ident: e_1_2_9_35_1
  doi: 10.1016/j.soilbio.2009.11.033
– ident: e_1_2_9_44_1
  doi: 10.1186/s40168-018-0525-1
– ident: e_1_2_9_69_1
  doi: 10.1016/S1074-5521(00)00056-9
SSID ssj0009562
Score 2.656176
Snippet Summary Stimulating the development of soil suppressiveness against certain pathogens represents a sustainable solution toward reducing pesticide use in...
Stimulating the development of soil suppressiveness against certain pathogens represents a sustainable solution toward reducing pesticide use in agriculture....
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1558
SubjectTerms Abundance
Agrochemicals
Bacteria
bacterial wilt
Biological control
Chemical fertilizers
Community composition
community structure
Composition
disease control
Fertilizer application
Fertilizers
field experimentation
function
genes
greenhouse experimentation
Greenhouses
Inoculation
invasion
Metabolites
Metagenomics
microbiome
Microbiomes
mineral fertilizers
nonribosomal peptides
Organic fertilizers
Organic soils
Pathogens
Pesticide use reduction
Pesticides
Priming
Ralstonia solanacearum
responsiveness
Rhizosphere
rhizosphere bacteria
Secondary metabolites
Soil
Soil amendment
soil amendments
Soil microorganisms
Soils
Sphingomonadaceae
suppressiveness
Tomatoes
Wilt
Xanthomonadaceae
Title Bio‐organic soil amendment promotes the suppression of Ralstonia solanacearum by inducing changes in the functionality and composition of rhizosphere bacterial communities
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.18221
https://www.ncbi.nlm.nih.gov/pubmed/35569105
https://www.proquest.com/docview/2688884522
https://www.proquest.com/docview/2664783477
https://www.proquest.com/docview/2718296205
Volume 235
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NatwwEBYh9NBLm_5vkxa19NCLF1uyLC85NaVhKTSU0MAeCkZ_pks38hKvD8kpj9AX6UvlSToj2SbpH6V7WtZjM_LOWN_I33wi5BWkDFQNViV1VqoEn5JJKVKVSK4ZAGauao39zh-OivlJ_n4hFltkf-iFifoQ44IbZkZ4XmOCK91eS3K__jIFcByayJGrhYDomF0T3C3YoMBc5MWiVxVCFs945s256BeAeROvhgnn8C75PLgaeSZfp91GT83FTyqO_zmWHXKnB6L0TYyce2TL-fvk1kEDYPH8Afl-sGyuLr_FPZ8MbZvliqpT5y0uJtJ14PC5lgJ6pG237sm0njY1PYZ4Bjy5VHDSSnllIJW6U6rPKVT_nYGZksZm4xZ-CBfAqTWuSEJFQJW3FHnuPZkML3mGvMAW9Q8c1VFdGjw3sbUFBWEfkpPDd5_ezpN-Z4fE5FBxJiqvZe6kSkVqdSl0xph10mpnc8elrJnUmmMjo5iVuZpxVSqoe2rOXWFFXab8Edn2jXdPCLVZIaSWQmbK5U7MdCkZM3WdWSNTbcSEvB7-48r0sue4-8aqGsofuPlVuPkT8nI0XUetj98Z7Q2BUvXp3lasKOGD4vQT8mI8DImKb1-Ud02HNtjWy3Mp_2IDSAFShKXg9uMYhKMnAAwLwHY4oBBKf3axOvo4D1-e_rvpLrnNsLEjUBv3yPbmrHPPAG5t9POQVz8AfNcrqg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwELZKQaIX_n8WChgEEpesEieOswcOlFJtabtCVSvtLfgvYtWts2o2QsuJR-BB4FF4CZ6EmThZtfyJSw_kFCUTa2J7Jt84M58JeQomA1GDkUERZTJALxlkPJSBiBUDwBzLQmG9894oHR4mb8Z8vEK-dLUwnh9iueCGltH4azRwXJA-ZeVu9r4P6JhFbUrljl18gICterG9CaP7jLGt1wevhkG7p0CgE4h1ApkUIrFChjw0KuMqYsxYYZQ1iY2FKJhQKsYSOj7IEjmIZSYBcRdxbFPDiyyMod0L5CLuII5M_Zv77BTFb8o6zuc0ScctjxHmDS1VPfv1-wXSnkXIzSdu6yr51nWOz2w56tdz1dcff-KN_F967xq50mJt-tIbx3WyYt0NcmmjBDy8uEm-bkzK758--22tNK3KyZTKY-sMrpfSWZOmaCsKAJlW9azNF3a0LOg-mCxA5omEh6bSSQ2vVh9TtaATZ2oNYID6euoKLjQNIHrwi64Q9FDpDMVU_jZfDps8wdTHCikeLFWeQBs01756Bzlvb5HDc-mq22TVlc7eJdREKRdKcBFJm1g-UJlgTBdFZLQIleY98rybVLlumd1xg5Fp3kV4MNh5M9g98mQpOvN0Jr8TWu9mZt56tCpnaQYH8u_3yOPlbfBF-INJOlvWKIOVy3EixF9kAAyBF2AhqH3Hz_qlJoB9U4Cv-ELN3P2zivno7bA5uffvoo_I5eHB3m6-uz3auU_WGNaxNJmc62R1flLbB4Au5-phY9SUvDtvO_gBm5eJIA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwELZKQYgL_z8LBQwCiUtWiRPH2QMHyrLaUlhVFZX2FuzYESu2TtRshJYTj8B7IN6Ep-BJmImTqOVPXHogpyiZWBPbM_nGmflMyCMwGYgatPTyIJEeekkv4b70RKgYAOZQ5grrnV_P4ulB9HLO5xvkS1cL4_gh-gU3tIzGX6OBlzo_ZuS2fDcEcMyCNqNy16w_QLxWPd0Zw-A-Zmzy4s3zqdduKeBlEYQ6noxyERkhfe5rlXAVMKaN0MroyIRC5EwoFWIFHR8lkRyFMpEAuPMwNLHmeeKH0O4ZcjaK_RHuEzHeZ8cYfmPWUT7HUTxvaYwwbahX9eTH7xdEexIgN1-4ySXyresbl9jyfliv1DD7-BNt5H_SeZfJxRZp02fONK6QDWOvknPbBaDh9TXydXtRfP_02W1qldGqWCypPDRW42opLZskRVNRgMe0qss2W9jSIqf7YLAAmBcSHlpKKzN4tfqQqjVdWF1nAAWoq6au4ELTAGIHt-QKIQ-VVlNM5G-z5bDJI0x8rJDgwVDl6LNB88zV7iDj7XVycCpddYNs2sKaW4TqIOZCCS4CaSLDRyoRjGV5HuhM-CrjA_Kkm1Np1vK64_Yiy7SL72Cw02awB-RhL1o6MpPfCW11EzNt_VmVsjiBA9n3B-RBfxs8Ef5ektYUNcpg3XIYCfEXGYBC4AOYD2rfdJO-1wSQbwzgFV-ombp_VjGd7U2bk9v_LnqfnN8bT9JXO7PdO-QCwyKWJo1zi2yujmpzF6DlSt1rTJqSt6dtBj8AdWCHzw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bio%E2%80%90organic+soil+amendment+promotes+the+suppression+of+Ralstonia+solanacearum+by+inducing+changes+in+the+functionality+and+composition+of+rhizosphere+bacterial+communities&rft.jtitle=The+New+phytologist&rft.au=Deng%2C+Xuhui&rft.au=Zhang%2C+Na&rft.au=Li%2C+Yuchan&rft.au=Zhu%2C+Chengzhi&rft.date=2022-08-01&rft.issn=0028-646X&rft.volume=235&rft.issue=4+p.1558-1574&rft.spage=1558&rft.epage=1574&rft_id=info:doi/10.1111%2Fnph.18221&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-646X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-646X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-646X&client=summon