An Ultrabroadband Mid‐Infrared Pulsed Optical Switch Employing Solution‐Processed Bismuth Oxyselenide
Pulsed lasers operating in the mid‐infrared (3–25 µm) are increasingly becoming the light source of choice for a wide range of industrial and scientific applications such as spectroscopy, biomedical research, sensing, imaging, and communication. Up to now, one of the factors limiting the mid‐infrare...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 30; no. 31; pp. e1801021 - n/a |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
02.08.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 0935-9648 1521-4095 1521-4095 |
DOI | 10.1002/adma.201801021 |
Cover
Loading…
Abstract | Pulsed lasers operating in the mid‐infrared (3–25 µm) are increasingly becoming the light source of choice for a wide range of industrial and scientific applications such as spectroscopy, biomedical research, sensing, imaging, and communication. Up to now, one of the factors limiting the mid‐infrared pulsed lasers is the lack of optical switch with a capability of pulse generation, especially for those with wideband response. Here, a semiconductor material of bismuth oxyselenide (Bi2O2Se) with a facile processibility, constituting an ultrabroadband saturable absorber for the mid‐infrared (actually from the near‐infrared to mid‐infrared: 0.8–5.0 µm) is exhibited. Significantly, it is found that the optical response is associated with a strong nonlinear character, showing picosecond response time and response amplitude up to ≈330.1% at 5.0 µm. Combined with facile processibility and low cost, these solution‐processed Bi2O2Se materials may offer a scalable and printable mid‐infrared optical switch to open up the long‐sought parameter space which is crucial for the exploitation of compact and high‐performance mid‐infrared pulsed laser sources.
An ultrabroadband mid‐infrared saturable absorber based on facilely prepared Bi2O2Se is associated with a strong nonlinear character, revealing picosecond response time from 1.55 to 5.0 µm and modulation response up to ≈330.1% at 5.0 µm. A 2.86 µm Ho3+/Pr3+‐codoped fluoride fiber laser passively Q‐switched by a Bi2O2Se‐based saturable absorber is investigated. |
---|---|
AbstractList | Pulsed lasers operating in the mid-infrared (3-25 µm) are increasingly becoming the light source of choice for a wide range of industrial and scientific applications such as spectroscopy, biomedical research, sensing, imaging, and communication. Up to now, one of the factors limiting the mid-infrared pulsed lasers is the lack of optical switch with a capability of pulse generation, especially for those with wideband response. Here, a semiconductor material of bismuth oxyselenide (Bi
O
Se) with a facile processibility, constituting an ultrabroadband saturable absorber for the mid-infrared (actually from the near-infrared to mid-infrared: 0.8-5.0 µm) is exhibited. Significantly, it is found that the optical response is associated with a strong nonlinear character, showing picosecond response time and response amplitude up to ≈330.1% at 5.0 µm. Combined with facile processibility and low cost, these solution-processed Bi
O
Se materials may offer a scalable and printable mid-infrared optical switch to open up the long-sought parameter space which is crucial for the exploitation of compact and high-performance mid-infrared pulsed laser sources. Pulsed lasers operating in the mid‐infrared (3–25 µm) are increasingly becoming the light source of choice for a wide range of industrial and scientific applications such as spectroscopy, biomedical research, sensing, imaging, and communication. Up to now, one of the factors limiting the mid‐infrared pulsed lasers is the lack of optical switch with a capability of pulse generation, especially for those with wideband response. Here, a semiconductor material of bismuth oxyselenide (Bi2O2Se) with a facile processibility, constituting an ultrabroadband saturable absorber for the mid‐infrared (actually from the near‐infrared to mid‐infrared: 0.8–5.0 µm) is exhibited. Significantly, it is found that the optical response is associated with a strong nonlinear character, showing picosecond response time and response amplitude up to ≈330.1% at 5.0 µm. Combined with facile processibility and low cost, these solution‐processed Bi2O2Se materials may offer a scalable and printable mid‐infrared optical switch to open up the long‐sought parameter space which is crucial for the exploitation of compact and high‐performance mid‐infrared pulsed laser sources. Pulsed lasers operating in the mid‐infrared (3–25 µm) are increasingly becoming the light source of choice for a wide range of industrial and scientific applications such as spectroscopy, biomedical research, sensing, imaging, and communication. Up to now, one of the factors limiting the mid‐infrared pulsed lasers is the lack of optical switch with a capability of pulse generation, especially for those with wideband response. Here, a semiconductor material of bismuth oxyselenide (Bi2O2Se) with a facile processibility, constituting an ultrabroadband saturable absorber for the mid‐infrared (actually from the near‐infrared to mid‐infrared: 0.8–5.0 µm) is exhibited. Significantly, it is found that the optical response is associated with a strong nonlinear character, showing picosecond response time and response amplitude up to ≈330.1% at 5.0 µm. Combined with facile processibility and low cost, these solution‐processed Bi2O2Se materials may offer a scalable and printable mid‐infrared optical switch to open up the long‐sought parameter space which is crucial for the exploitation of compact and high‐performance mid‐infrared pulsed laser sources. An ultrabroadband mid‐infrared saturable absorber based on facilely prepared Bi2O2Se is associated with a strong nonlinear character, revealing picosecond response time from 1.55 to 5.0 µm and modulation response up to ≈330.1% at 5.0 µm. A 2.86 µm Ho3+/Pr3+‐codoped fluoride fiber laser passively Q‐switched by a Bi2O2Se‐based saturable absorber is investigated. Pulsed lasers operating in the mid-infrared (3-25 µm) are increasingly becoming the light source of choice for a wide range of industrial and scientific applications such as spectroscopy, biomedical research, sensing, imaging, and communication. Up to now, one of the factors limiting the mid-infrared pulsed lasers is the lack of optical switch with a capability of pulse generation, especially for those with wideband response. Here, a semiconductor material of bismuth oxyselenide (Bi2 O2 Se) with a facile processibility, constituting an ultrabroadband saturable absorber for the mid-infrared (actually from the near-infrared to mid-infrared: 0.8-5.0 µm) is exhibited. Significantly, it is found that the optical response is associated with a strong nonlinear character, showing picosecond response time and response amplitude up to ≈330.1% at 5.0 µm. Combined with facile processibility and low cost, these solution-processed Bi2 O2 Se materials may offer a scalable and printable mid-infrared optical switch to open up the long-sought parameter space which is crucial for the exploitation of compact and high-performance mid-infrared pulsed laser sources.Pulsed lasers operating in the mid-infrared (3-25 µm) are increasingly becoming the light source of choice for a wide range of industrial and scientific applications such as spectroscopy, biomedical research, sensing, imaging, and communication. Up to now, one of the factors limiting the mid-infrared pulsed lasers is the lack of optical switch with a capability of pulse generation, especially for those with wideband response. Here, a semiconductor material of bismuth oxyselenide (Bi2 O2 Se) with a facile processibility, constituting an ultrabroadband saturable absorber for the mid-infrared (actually from the near-infrared to mid-infrared: 0.8-5.0 µm) is exhibited. Significantly, it is found that the optical response is associated with a strong nonlinear character, showing picosecond response time and response amplitude up to ≈330.1% at 5.0 µm. Combined with facile processibility and low cost, these solution-processed Bi2 O2 Se materials may offer a scalable and printable mid-infrared optical switch to open up the long-sought parameter space which is crucial for the exploitation of compact and high-performance mid-infrared pulsed laser sources. Pulsed lasers operating in the mid‐infrared (3–25 µm) are increasingly becoming the light source of choice for a wide range of industrial and scientific applications such as spectroscopy, biomedical research, sensing, imaging, and communication. Up to now, one of the factors limiting the mid‐infrared pulsed lasers is the lack of optical switch with a capability of pulse generation, especially for those with wideband response. Here, a semiconductor material of bismuth oxyselenide (Bi 2 O 2 Se) with a facile processibility, constituting an ultrabroadband saturable absorber for the mid‐infrared (actually from the near‐infrared to mid‐infrared: 0.8–5.0 µm) is exhibited. Significantly, it is found that the optical response is associated with a strong nonlinear character, showing picosecond response time and response amplitude up to ≈330.1% at 5.0 µm. Combined with facile processibility and low cost, these solution‐processed Bi 2 O 2 Se materials may offer a scalable and printable mid‐infrared optical switch to open up the long‐sought parameter space which is crucial for the exploitation of compact and high‐performance mid‐infrared pulsed laser sources. |
Author | Zhu, Chunhui Qiu, Jianrong Wang, Fengqiu Li, Jianfeng Yang, Dandan Tian, Xiangling Guo, Qianyi Wei, Rongfei Luo, Hongyu |
Author_xml | – sequence: 1 givenname: Xiangling orcidid: 0000-0002-8141-5720 surname: Tian fullname: Tian, Xiangling organization: South China University of Technology – sequence: 2 givenname: Hongyu surname: Luo fullname: Luo, Hongyu organization: University of Electronic Science and Technology of China – sequence: 3 givenname: Rongfei surname: Wei fullname: Wei, Rongfei organization: Zhejiang Normal University – sequence: 4 givenname: Chunhui surname: Zhu fullname: Zhu, Chunhui organization: Nanjing University – sequence: 5 givenname: Qianyi surname: Guo fullname: Guo, Qianyi organization: South China University of Technology – sequence: 6 givenname: Dandan surname: Yang fullname: Yang, Dandan organization: South China University of Technology – sequence: 7 givenname: Fengqiu surname: Wang fullname: Wang, Fengqiu organization: Nanjing University – sequence: 8 givenname: Jianfeng surname: Li fullname: Li, Jianfeng email: lijianfeng@uestc.edu.cn organization: University of Electronic Science and Technology of China – sequence: 9 givenname: Jianrong surname: Qiu fullname: Qiu, Jianrong email: qjr@zju.edu.cn organization: Zhejiang University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29923356$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkcFq3DAQhkVJaTZprj0WQy-9eDuSJa_nuE3SJpCwgSRnI0tyoyBLW8km3Vsfoc_YJ6mWTVIIlJ6Gge-bGeY_IHs-eEPIOwpzCsA-ST3IOQPaAAVGX5EZFYyWHFDskRlgJUqsebNPDlK6BwCsoX5D9hkiqypRz4hd-uLWjVF2MUjdSa-LS6t___x17vsoo9HF1eRSLqv1aJV0xfWDHdVdcTqsXdhY_624Dm4abfDZuYpBmbSlP9s0TONdsfqxScYZb7V5S173Mo86eqyH5PbL6c3xWXmx-np-vLwoFWeUlqJHLRlD2mjsFk1leG64YkwKzqSWHGuqEE2-HwQgcN71SrOaC2BSdX11SD7u5q5j-D6ZNLaDTco4J70JU2oZiAWvsMY6ox9eoPdhij5fl6kGFtBgQzP1_pGausHodh3tIOOmfXpiBuY7QMWQUjT9M0Kh3abUblNqn1PKAn8hKDvK7RNzENb9W8Od9mCd2fxnSbs8uVz-df8Az7KnuQ |
CitedBy_id | crossref_primary_10_1016_j_optlastec_2023_109237 crossref_primary_10_1002_adfm_202307234 crossref_primary_10_1002_lpor_201800327 crossref_primary_10_1364_OE_26_031276 crossref_primary_10_1002_inf2_12215 crossref_primary_10_1007_s10853_019_03963_1 crossref_primary_10_1039_D4TC01025F crossref_primary_10_1021_acs_jpcc_9b02943 crossref_primary_10_1021_acsnano_1c00842 crossref_primary_10_1063_5_0052300 crossref_primary_10_1007_s12274_022_5046_3 crossref_primary_10_1002_qute_202100052 crossref_primary_10_1002_adfm_202106930 crossref_primary_10_1021_acsami_0c14447 crossref_primary_10_1039_D4NR04101A crossref_primary_10_1364_OE_450554 crossref_primary_10_1021_acsami_2c00616 crossref_primary_10_1039_C8NR09946D crossref_primary_10_1002_apxr_202400079 crossref_primary_10_7498_aps_69_20201044 crossref_primary_10_1002_adom_202400659 crossref_primary_10_1515_nanoph_2019_0557 crossref_primary_10_1002_adom_201901490 crossref_primary_10_1021_acsaelm_0c00344 crossref_primary_10_1016_j_jcis_2023_08_034 crossref_primary_10_1016_j_commatsci_2020_109684 crossref_primary_10_1021_acs_inorgchem_4c04151 crossref_primary_10_1021_acsphotonics_9b00012 crossref_primary_10_1039_C9NA00694J crossref_primary_10_1039_D3NR05625B crossref_primary_10_1002_adom_202403138 crossref_primary_10_1364_OE_464682 crossref_primary_10_1039_C9NR06374A crossref_primary_10_1021_acsnano_0c05300 crossref_primary_10_1039_D4DT01212G crossref_primary_10_1016_j_optlastec_2022_108898 crossref_primary_10_1002_smll_201904482 crossref_primary_10_1364_OME_502375 crossref_primary_10_1021_acsami_2c23266 crossref_primary_10_1103_PhysRevB_100_115417 crossref_primary_10_1021_acsaelm_4c02144 crossref_primary_10_1002_smll_202006416 crossref_primary_10_1088_1361_6528_ac0a16 crossref_primary_10_1063_5_0223948 crossref_primary_10_1109_LPT_2019_2917472 crossref_primary_10_1364_OE_27_008727 crossref_primary_10_1063_5_0072201 crossref_primary_10_1007_s10854_023_10156_9 crossref_primary_10_1002_mop_32118 crossref_primary_10_1111_jace_16826 crossref_primary_10_1039_D2TC02885A crossref_primary_10_1016_j_jssc_2021_122487 crossref_primary_10_1021_acs_nanolett_9b00381 crossref_primary_10_1039_D3CP05357A crossref_primary_10_1002_smll_202309595 crossref_primary_10_1039_D0TC04352D crossref_primary_10_1002_inf2_12539 crossref_primary_10_1016_j_optmat_2021_111272 crossref_primary_10_1002_smll_202106078 crossref_primary_10_1021_acs_inorgchem_3c04030 crossref_primary_10_1021_acsami_9b10949 crossref_primary_10_1021_acs_chemmater_0c00194 crossref_primary_10_1142_S0218863523400088 crossref_primary_10_1021_accountsmr_1c00130 crossref_primary_10_1002_adom_202102483 crossref_primary_10_1002_smll_202302289 crossref_primary_10_1016_j_cej_2024_153937 crossref_primary_10_1016_j_pmatsci_2021_100814 crossref_primary_10_1021_acsanm_4c03594 crossref_primary_10_1002_adfm_202400077 crossref_primary_10_1002_adom_202100622 crossref_primary_10_1002_adfm_202008351 crossref_primary_10_1186_s11671_019_3179_4 crossref_primary_10_1002_adfm_201905806 crossref_primary_10_1002_smll_201902811 crossref_primary_10_1016_j_chemphys_2020_111017 crossref_primary_10_1021_acsami_1c23053 crossref_primary_10_1002_adom_202201812 crossref_primary_10_1021_acsnano_1c00811 crossref_primary_10_1002_adfm_202201020 crossref_primary_10_1063_5_0149922 crossref_primary_10_1002_adom_201901567 crossref_primary_10_1021_acsami_2c15947 crossref_primary_10_1103_PhysRevApplied_14_064051 crossref_primary_10_1063_5_0049368 crossref_primary_10_1016_j_mattod_2021_09_021 crossref_primary_10_1002_adfm_202004480 crossref_primary_10_1016_j_jhazmat_2022_129808 crossref_primary_10_1021_acs_nanolett_0c00025 crossref_primary_10_1002_admt_202000180 crossref_primary_10_1109_LED_2020_3016186 crossref_primary_10_1002_adma_202420043 crossref_primary_10_1109_JPHOT_2019_2917941 crossref_primary_10_1103_PhysRevB_100_235307 crossref_primary_10_1039_C9NR04337C crossref_primary_10_1021_acs_nanolett_9b02312 crossref_primary_10_1109_LPT_2022_3206007 crossref_primary_10_1007_s10854_023_10207_1 crossref_primary_10_1002_adpr_202000064 crossref_primary_10_1021_acsnano_9b07000 crossref_primary_10_1002_adma_202204227 crossref_primary_10_1021_acs_jpcc_3c04836 crossref_primary_10_1002_smll_202206648 crossref_primary_10_1021_acs_chemmater_0c02682 crossref_primary_10_1088_1361_6528_ad0bd3 crossref_primary_10_1002_adom_202101664 |
Cites_doi | 10.1063/1.479310 10.1016/S0925-4005(99)00164-1 10.1002/adma.201502154 10.1126/science.1250564 10.1002/adma.201704060 10.1364/OL.38.003233 10.1021/acsphotonics.7b00598 10.1021/am5092159 10.1002/lpor.201700082 10.1103/PhysRevB.90.075413 10.1038/srep10770 10.1364/OL.41.000540 10.1002/adma.201101350 10.1038/nphoton.2016.14 10.1103/PhysRevB.83.081419 10.1002/adfm.201602664 10.1103/PhysRevLett.105.077001 10.1038/nphoton.2012.149 10.1364/OE.23.024713 10.1039/C5NR08457A 10.1021/acs.nanolett.7b03020 10.1103/PhysRevLett.106.057401 10.1039/C7NR08662H 10.1021/nl200773n 10.1038/nature11721 10.1364/OL.32.001138 10.1021/acs.nanolett.7b00335 10.1364/OE.18.026704 10.1002/adfm.200901007 10.1088/1612-2011/13/10/105108 10.1038/nphoton.2014.213 10.1088/1612-2011/10/4/045107 10.1038/nphys3419 10.1021/nn405419h 10.1021/acsnano.6b05116 10.1364/OL.40.003659 10.1021/nl401561r 10.1002/adma.200901122 10.1088/0957-4484/27/30/305203 10.1364/OE.24.025337 10.1039/C4NR02634A 10.1038/ncomms14111 10.1364/OL.28.000370 10.1038/nnano.2008.312 10.1021/nn200556h 10.1002/adfm.201706437 10.1021/nn901703e 10.1038/nphoton.2012.244 10.1038/nature01938 10.1002/adom.201700762 10.1039/C7NR08874D 10.1002/adma.201504927 10.1002/adfm.200902368 10.1103/PhysRevB.89.125427 10.1038/nphoton.2013.304 10.1126/science.aae0330 10.1038/nnano.2017.43 10.1103/PhysRevLett.105.097401 |
ContentType | Journal Article |
Copyright | 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.201801021 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | PubMed Materials Research Database MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 29923356 10_1002_adma_201801021 ADMA201801021 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Fundamental Research Funds for the Central Universities funderid: 2013ZM0001 – fundername: State Key Laboratory of Precision Spectroscopy of East China Normal University – fundername: Natural Science Foundation of Zhejiang Province funderid: LQ18A040004 – fundername: South China University of Technology funderid: 2018‐skllmd‐13 – fundername: National Natural Science Foundation of China funderid: 51472091; 51772270; 61722503; 61435003; 51472091; 51772270 – fundername: State Key Laboratory of High Field Laser Physics of Shanghai Institute of Optics and Fine Mechanics – fundername: Chinese Academy of Science – fundername: Guangdong Natural Science Foundation funderid: S2011030001349 – fundername: Open Fund of the State Key Laboratory of Luminescent Materials and Devices |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AANHP AAYOK AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AETEA AEYWJ AFFNX AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION FEDTE FOJGT HF~ HVGLF M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 NPM 7SR 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 7X8 |
ID | FETCH-LOGICAL-c4211-5f9da22918d9b783e42294c22a542ada4961c99e2330509044bfcd264502acbf3 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Thu Jul 10 23:08:46 EDT 2025 Fri Jul 25 02:28:26 EDT 2025 Thu Apr 03 07:06:29 EDT 2025 Thu Apr 24 22:59:49 EDT 2025 Tue Jul 01 00:44:43 EDT 2025 Wed Jan 22 17:08:39 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 31 |
Keywords | Q-switching nonlinear optical mid-infrared Bi2O2Se saturable absorption |
Language | English |
License | 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4211-5f9da22918d9b783e42294c22a542ada4961c99e2330509044bfcd264502acbf3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-8141-5720 |
PMID | 29923356 |
PQID | 2080708981 |
PQPubID | 2045203 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2057439696 proquest_journals_2080708981 pubmed_primary_29923356 crossref_primary_10_1002_adma_201801021 crossref_citationtrail_10_1002_adma_201801021 wiley_primary_10_1002_adma_201801021_ADMA201801021 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2, 2018 |
PublicationDateYYYYMMDD | 2018-08-02 |
PublicationDate_xml | – month: 08 year: 2018 text: August 2, 2018 day: 02 |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2018 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 5 2017; 8 2017; 4 2010; 18 2010; 105 2011; 11 2008; 3 2013; 7 2007; 32 2010; 20 2013; 10 2013; 13 2015; 40 1999; 56 2016; 41 2016; 352 2011; 23 2014; 8 2009; 19 2010; 4 2014; 6 2018; 28 2015; 5 2009; 21 2014; 90 2015; 11 2011; 83 2016; 10 2017; 29 2015; 7 2011; 5 2014; 89 2016; 13 2015; 23 2015; 28 2003; 424 2011; 106 2013; 38 2017; 17 2017; 12 2003; 28 2013; 493 1999; 111 2012; 6 2018; 12 2016; 28 2018; 10 2016; 27 2016; 26 2016; 8 2016; 24 2014; 344 e_1_2_5_27_1 e_1_2_5_25_1 e_1_2_5_48_1 e_1_2_5_23_1 e_1_2_5_46_1 e_1_2_5_21_1 e_1_2_5_44_1 e_1_2_5_29_1 e_1_2_5_42_1 e_1_2_5_40_1 e_1_2_5_15_1 e_1_2_5_38_1 e_1_2_5_17_1 e_1_2_5_36_1 e_1_2_5_9_1 e_1_2_5_11_1 e_1_2_5_34_1 e_1_2_5_57_1 e_1_2_5_7_1 e_1_2_5_13_1 e_1_2_5_32_1 e_1_2_5_55_1 e_1_2_5_5_1 e_1_2_5_3_1 e_1_2_5_1_1 e_1_2_5_19_1 e_1_2_5_30_1 e_1_2_5_53_1 e_1_2_5_51_1 e_1_2_5_28_1 e_1_2_5_49_1 e_1_2_5_26_1 e_1_2_5_47_1 e_1_2_5_24_1 e_1_2_5_45_1 e_1_2_5_22_1 e_1_2_5_43_1 e_1_2_5_20_1 e_1_2_5_41_1 e_1_2_5_14_1 e_1_2_5_39_1 e_1_2_5_16_1 e_1_2_5_37_1 e_1_2_5_58_1 e_1_2_5_8_1 e_1_2_5_10_1 e_1_2_5_35_1 e_1_2_5_56_1 e_1_2_5_6_1 e_1_2_5_12_1 e_1_2_5_33_1 e_1_2_5_54_1 e_1_2_5_4_1 e_1_2_5_2_1 e_1_2_5_18_1 e_1_2_5_31_1 e_1_2_5_52_1 e_1_2_5_50_1 |
References_xml | – volume: 111 start-page: 1255 year: 1999 publication-title: J. Chem. Phys. – volume: 7 start-page: 4442 year: 2015 publication-title: ACS Appl. Mater. Interfaces – volume: 21 start-page: 3874 year: 2009 publication-title: Adv. Mater. – volume: 11 start-page: 830 year: 2015 publication-title: Nat. Phys. – volume: 90 start-page: 075413 year: 2014 publication-title: Phys. Rev. B – volume: 12 start-page: 1700082 year: 2018 publication-title: Laser Photonics Rev. – volume: 10 start-page: 045107 year: 2013 publication-title: Laser Phys. Lett. – volume: 26 start-page: 7454 year: 2016 publication-title: Adv. Funct. Mater. – volume: 28 start-page: 276 year: 2015 publication-title: Adv. Mater. – volume: 6 start-page: 423 year: 2012 publication-title: Nat. Photonics – volume: 5 start-page: 10770 year: 2015 publication-title: Sci. Rep. – volume: 8 start-page: 7704 year: 2016 publication-title: Nanoscale – volume: 344 start-page: 488 year: 2014 publication-title: Science – volume: 106 start-page: 057401 year: 2011 publication-title: Phys. Rev. Lett. – volume: 10 start-page: 267 year: 2016 publication-title: Nat. Photonics – volume: 17 start-page: 6309 year: 2017 publication-title: Nano Lett. – volume: 5 start-page: 1700762 year: 2017 publication-title: Adv. Opt. Mater. – volume: 10 start-page: 752 year: 2018 publication-title: Nanoscale – volume: 38 start-page: 3233 year: 2013 publication-title: Opt. Lett. – volume: 105 start-page: 097401 year: 2010 publication-title: Phys. Rev. Lett. – volume: 8 start-page: 830 year: 2014 publication-title: Nat. Photonics – volume: 4 start-page: 3063 year: 2017 publication-title: ACS Photonics – volume: 11 start-page: 2407 year: 2011 publication-title: Nano Lett. – volume: 20 start-page: 1937 year: 2010 publication-title: Adv. Funct. Mater. – volume: 13 start-page: 105108 year: 2016 publication-title: Laser Phys. Lett. – volume: 40 start-page: 3659 year: 2015 publication-title: Opt. Lett. – volume: 424 start-page: 831 year: 2003 publication-title: Nature – volume: 7 start-page: 11087 year: 2013 publication-title: ACS Nano – volume: 28 start-page: 370 year: 2003 publication-title: Opt. Lett. – volume: 27 start-page: 305203 year: 2016 publication-title: Nanotechnology – volume: 10 start-page: 2704 year: 2018 publication-title: Nanoscale – volume: 24 start-page: 25337 year: 2016 publication-title: Opt. Express – volume: 83 start-page: 081419 year: 2011 publication-title: Phys. Rev. B – volume: 8 start-page: 14111 year: 2017 publication-title: Nat. Commun. – volume: 23 start-page: 4295 year: 2011 publication-title: Adv. Mater. – volume: 41 start-page: 540 year: 2016 publication-title: Opt. Lett. – volume: 493 start-page: 504 year: 2013 publication-title: Nature – volume: 32 start-page: 1138 year: 2007 publication-title: Opt. Lett. – volume: 13 start-page: 3329 year: 2013 publication-title: Nano Lett. – volume: 89 start-page: 125427 year: 2014 publication-title: Phys. Rev. B – volume: 17 start-page: 3021 year: 2017 publication-title: Nano Lett. – volume: 3 start-page: 738 year: 2008 publication-title: Nat. Nanotechnol. – volume: 6 start-page: 737 year: 2012 publication-title: Nat. Photonics – volume: 29 start-page: 1704060 year: 2017 publication-title: Adv. Mater. – volume: 28 start-page: 1706437 year: 2018 publication-title: Adv. Funct. Mater. – volume: 28 start-page: 3535 year: 2016 publication-title: Adv. Mater. – volume: 56 start-page: 98 year: 1999 publication-title: Sens. Actuators, B – volume: 23 start-page: 24713 year: 2015 publication-title: Opt. Express – volume: 19 start-page: 3077 year: 2009 publication-title: Adv. Funct. Mater. – volume: 18 start-page: 26704 year: 2010 publication-title: Opt. Express – volume: 12 start-page: 530 year: 2017 publication-title: Nat. Nanotechnol. – volume: 4 start-page: 803 year: 2010 publication-title: ACS Nano – volume: 5 start-page: 4698 year: 2011 publication-title: ACS Nano – volume: 6 start-page: 10530 year: 2014 publication-title: Nanoscale – volume: 352 start-page: 795 year: 2016 publication-title: Science – volume: 10 start-page: 10099 year: 2016 publication-title: ACS Nano – volume: 7 start-page: 842 year: 2013 publication-title: Nat. Photonics – volume: 105 start-page: 077001 year: 2010 publication-title: Phys. Rev. Lett. – ident: e_1_2_5_15_1 doi: 10.1063/1.479310 – ident: e_1_2_5_43_1 doi: 10.1016/S0925-4005(99)00164-1 – ident: e_1_2_5_50_1 doi: 10.1002/adma.201502154 – ident: e_1_2_5_34_1 doi: 10.1126/science.1250564 – ident: e_1_2_5_30_1 doi: 10.1002/adma.201704060 – ident: e_1_2_5_54_1 doi: 10.1364/OL.38.003233 – ident: e_1_2_5_22_1 doi: 10.1021/acsphotonics.7b00598 – ident: e_1_2_5_39_1 doi: 10.1021/am5092159 – ident: e_1_2_5_38_1 doi: 10.1002/lpor.201700082 – ident: e_1_2_5_44_1 doi: 10.1103/PhysRevB.90.075413 – ident: e_1_2_5_11_1 doi: 10.1038/srep10770 – ident: e_1_2_5_4_1 doi: 10.1364/OL.41.000540 – ident: e_1_2_5_16_1 doi: 10.1002/adma.201101350 – ident: e_1_2_5_19_1 doi: 10.1038/nphoton.2016.14 – ident: e_1_2_5_26_1 doi: 10.1103/PhysRevB.83.081419 – ident: e_1_2_5_21_1 doi: 10.1002/adfm.201602664 – ident: e_1_2_5_33_1 doi: 10.1103/PhysRevLett.105.077001 – ident: e_1_2_5_3_1 doi: 10.1038/nphoton.2012.149 – ident: e_1_2_5_53_1 doi: 10.1364/OE.23.024713 – ident: e_1_2_5_23_1 doi: 10.1039/C5NR08457A – ident: e_1_2_5_28_1 doi: 10.1021/acs.nanolett.7b03020 – ident: e_1_2_5_37_1 doi: 10.1103/PhysRevLett.106.057401 – ident: e_1_2_5_41_1 doi: 10.1039/C7NR08662H – ident: e_1_2_5_42_1 doi: 10.1021/nl200773n – ident: e_1_2_5_49_1 doi: 10.1038/nature11721 – ident: e_1_2_5_9_1 doi: 10.1364/OL.32.001138 – ident: e_1_2_5_31_1 doi: 10.1021/acs.nanolett.7b00335 – ident: e_1_2_5_5_1 doi: 10.1364/OE.18.026704 – ident: e_1_2_5_7_1 doi: 10.1002/adfm.200901007 – ident: e_1_2_5_56_1 doi: 10.1088/1612-2011/13/10/105108 – ident: e_1_2_5_1_1 doi: 10.1038/nphoton.2014.213 – ident: e_1_2_5_24_1 doi: 10.1088/1612-2011/10/4/045107 – ident: e_1_2_5_52_1 doi: 10.1038/nphys3419 – ident: e_1_2_5_45_1 doi: 10.1021/nn405419h – ident: e_1_2_5_51_1 doi: 10.1021/acsnano.6b05116 – ident: e_1_2_5_55_1 doi: 10.1364/OL.40.003659 – ident: e_1_2_5_36_1 doi: 10.1021/nl401561r – ident: e_1_2_5_8_1 doi: 10.1002/adma.200901122 – ident: e_1_2_5_58_1 doi: 10.1088/0957-4484/27/30/305203 – ident: e_1_2_5_57_1 doi: 10.1364/OE.24.025337 – ident: e_1_2_5_46_1 doi: 10.1039/C4NR02634A – ident: e_1_2_5_10_1 doi: 10.1038/ncomms14111 – ident: e_1_2_5_2_1 doi: 10.1364/OL.28.000370 – ident: e_1_2_5_13_1 doi: 10.1038/nnano.2008.312 – ident: e_1_2_5_40_1 doi: 10.1021/nn200556h – ident: e_1_2_5_29_1 doi: 10.1002/adfm.201706437 – ident: e_1_2_5_14_1 doi: 10.1021/nn901703e – ident: e_1_2_5_47_1 doi: 10.1038/nphoton.2012.244 – ident: e_1_2_5_6_1 doi: 10.1038/nature01938 – ident: e_1_2_5_20_1 doi: 10.1002/adom.201700762 – ident: e_1_2_5_32_1 doi: 10.1039/C7NR08874D – ident: e_1_2_5_17_1 doi: 10.1002/adma.201504927 – ident: e_1_2_5_12_1 doi: 10.1002/adfm.200902368 – ident: e_1_2_5_48_1 doi: 10.1103/PhysRevB.89.125427 – ident: e_1_2_5_25_1 doi: 10.1038/nphoton.2013.304 – ident: e_1_2_5_18_1 doi: 10.1126/science.aae0330 – ident: e_1_2_5_27_1 doi: 10.1038/nnano.2017.43 – ident: e_1_2_5_35_1 doi: 10.1103/PhysRevLett.105.097401 |
SSID | ssj0009606 |
Score | 2.5918179 |
Snippet | Pulsed lasers operating in the mid‐infrared (3–25 µm) are increasingly becoming the light source of choice for a wide range of industrial and scientific... Pulsed lasers operating in the mid-infrared (3-25 µm) are increasingly becoming the light source of choice for a wide range of industrial and scientific... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e1801021 |
SubjectTerms | Bi2O2Se Biomedical materials Bismuth Broadband Infrared lasers Materials science Materials selection mid‐infrared nonlinear optical Nonlinear response Optical switching Pulsed lasers Q‐switching Response time saturable absorption Semiconductor materials |
Title | An Ultrabroadband Mid‐Infrared Pulsed Optical Switch Employing Solution‐Processed Bismuth Oxyselenide |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201801021 https://www.ncbi.nlm.nih.gov/pubmed/29923356 https://www.proquest.com/docview/2080708981 https://www.proquest.com/docview/2057439696 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaqnugBCi2wtCAjIXFKm3Wc1D5ugaogLUWFlXqLxo-IiJKtdhPxOPET-I39Jcw4j3ZBqBLcEs048WPGM7bH3zD2LNG2kPYAooK0EIUCIuWFj7IitgR_V4iYLgpP32bHM_nmLD27dou_xYcYNtxIM8J8TQoOZrl_BRoKLuAGjVXITo2TMAVskVd0eoUfRe55ANtL0khnUvWojbHYXy2-apX-cDVXPddgeo7uMOgr3UacfNprarNnv_-G5_g_rdpktzu_lE9aQbrL1nx1j21cQyvcYuWk4rPzegFmMQdnoHJ8WrrLHz9fV8WC4tj5uwYNreMnF2GDnL__UqJM8DapMH6C93twWKa7oIDch-Xyc1N_5Cdfv1Hmp6p0fpvNjl59eHEcdZkaIitxBRmlhXYghB4rp82BSrzEF2mFgFQKcCB1NrZae5EkhDcTS2kK69AXS2MB1hTJfbZezSv_kHFjDNltOgKyUrkUVGaTceZQdJwH8CMW9SOV2w7GnLJpnOctALPIqQvzoQtH7PnAf9ECePyVc7cf-LxT5CVSFU6KSiskPx3IqIJ0rgKVnzfEk9KyLtPZiD1oBWb4FVp7bHSKFBGG_YY65JOX08nw9uhfCu2wW_QcghTFLluvF41_jI5TbZ4E5fgFk6QQ6Q |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zb9QwEB5BeQAeuI-FAkZC4ilt1nFS-3E5qi10WwRdibfIV0TUNlttE3E88RP4jfwSZpyjLAghwaPjceJjJjMej78BeJIoWwi7paOCpBCZQkfScx9lRWwJ_q7gMV0Unu1l07l49T7townpLkyLDzE43Egywv-aBJwc0ptnqKHaBeCgsQzpqc_DBUrrHXZVb88QpMhAD3B7SRqpTMgetzHmm6vtV_XSb8bmqu0alM_2VTB9t9uYk8ONpjYb9ssviI7_Na5rcKUzTdmk5aXrcM5XN-DyT4CFN6GcVGx-VC-1WS60M7pybFa671-_7VTFkkLZ2ZsGda1j-yfBR87efSyRLVibVxhfwXo3HLbp7igg9bPy9LipP7D9T58p-VNVOn8L5tsvD55Poy5ZQ2QFbiKjtFBOc67G0imzJRMvsCAs5zoVXDstVDa2SnmeJAQ5EwthCuvQHEtjrq0pktuwVi0qfxeYMYZUN50CWSFdqmVmk3HmkHuc19qPIOqXKrcdkjkl1DjKWwxmntMU5sMUjuDpQH_SYnj8kXK9X_m8k-VTrJX4X5RKYvXjoRqlkI5WdOUXDdGktLPLVDaCOy3HDJ9ChY-DTrGGh3X_Sx_yyYvZZCjd-5dGj-Di9GC2m-_u7L2-D5foeYhZ5OuwVi8b_wDtqNo8DJLyA5dlFQQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zb9QwELZKKyF44D4WChgJiae0Wcdx7ceFZdUC21bASn2LfEVElOxqmwjoU38Cv5FfwoxztAtCSPBozzjxMeMZX98Q8ixRNud2R0c5aiEIhY6kZz4SeWwR_i5nMT4Unu6L3Rl_fZQeXXjF3-BD9BtuqBlhvkYFX7h8-xw0VLuAGzSUITr1JbLBRSxRrsfvzgGk0D8PaHtJGinBZQfbGLPt1fKrZuk3X3PVdQ22Z3Kd6K7WzZWTT1t1Zbbs6S-Ajv_TrBvkWuuY0lEjSTfJmi9vkasX4Apvk2JU0tlxtdRmOdfO6NLRaeF-nH3fK_MlXmSnhzVYWkcPFmGHnL7_UoBQ0CaqMHyCdptwUKZ9oQDcL4qTz3X1kR58_Yahn8rC-TtkNnn14eVu1IZqiCyHJWSU5sppxtRQOmV2ZOI5JLhlTKecaae5EkOrlGdJgoAzMecmtw6csTRm2po8uUvWy3np7xNqjEHDjWdAlkuXailsMhQOZMd5rf2ARN1IZbbFMcdwGsdZg8DMMuzCrO_CAXne8y8aBI8_cm52A5-1mnwCVAmzolQSyE97MuggHqzo0s9r5ElxXSeUGJB7jcD0vwJzD41OgcLCsP-lDtloPB31qQf_UugJuXw4nmRv9_bfPCRXMDtcWGSbZL1a1v4ROFGVeRz05CdikhO8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Ultrabroadband+Mid%E2%80%90Infrared+Pulsed+Optical+Switch+Employing+Solution%E2%80%90Processed+Bismuth+Oxyselenide&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Tian%2C+Xiangling&rft.au=Luo%2C+Hongyu&rft.au=Rongfei+Wei&rft.au=Zhu%2C+Chunhui&rft.date=2018-08-02&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=30&rft.issue=31&rft_id=info:doi/10.1002%2Fadma.201801021&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |