An Ultrabroadband Mid‐Infrared Pulsed Optical Switch Employing Solution‐Processed Bismuth Oxyselenide

Pulsed lasers operating in the mid‐infrared (3–25 µm) are increasingly becoming the light source of choice for a wide range of industrial and scientific applications such as spectroscopy, biomedical research, sensing, imaging, and communication. Up to now, one of the factors limiting the mid‐infrare...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 30; no. 31; pp. e1801021 - n/a
Main Authors Tian, Xiangling, Luo, Hongyu, Wei, Rongfei, Zhu, Chunhui, Guo, Qianyi, Yang, Dandan, Wang, Fengqiu, Li, Jianfeng, Qiu, Jianrong
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 02.08.2018
Subjects
Online AccessGet full text
ISSN0935-9648
1521-4095
1521-4095
DOI10.1002/adma.201801021

Cover

Loading…
Abstract Pulsed lasers operating in the mid‐infrared (3–25 µm) are increasingly becoming the light source of choice for a wide range of industrial and scientific applications such as spectroscopy, biomedical research, sensing, imaging, and communication. Up to now, one of the factors limiting the mid‐infrared pulsed lasers is the lack of optical switch with a capability of pulse generation, especially for those with wideband response. Here, a semiconductor material of bismuth oxyselenide (Bi2O2Se) with a facile processibility, constituting an ultrabroadband saturable absorber for the mid‐infrared (actually from the near‐infrared to mid‐infrared: 0.8–5.0 µm) is exhibited. Significantly, it is found that the optical response is associated with a strong nonlinear character, showing picosecond response time and response amplitude up to ≈330.1% at 5.0 µm. Combined with facile processibility and low cost, these solution‐processed Bi2O2Se materials may offer a scalable and printable mid‐infrared optical switch to open up the long‐sought parameter space which is crucial for the exploitation of compact and high‐performance mid‐infrared pulsed laser sources. An ultrabroadband mid‐infrared saturable absorber based on facilely prepared Bi2O2Se is associated with a strong nonlinear character, revealing picosecond response time from 1.55 to 5.0 µm and modulation response up to ≈330.1% at 5.0 µm. A 2.86 µm Ho3+/Pr3+‐codoped fluoride fiber laser passively Q‐switched by a Bi2O2Se‐based saturable absorber is investigated.
AbstractList Pulsed lasers operating in the mid-infrared (3-25 µm) are increasingly becoming the light source of choice for a wide range of industrial and scientific applications such as spectroscopy, biomedical research, sensing, imaging, and communication. Up to now, one of the factors limiting the mid-infrared pulsed lasers is the lack of optical switch with a capability of pulse generation, especially for those with wideband response. Here, a semiconductor material of bismuth oxyselenide (Bi O Se) with a facile processibility, constituting an ultrabroadband saturable absorber for the mid-infrared (actually from the near-infrared to mid-infrared: 0.8-5.0 µm) is exhibited. Significantly, it is found that the optical response is associated with a strong nonlinear character, showing picosecond response time and response amplitude up to ≈330.1% at 5.0 µm. Combined with facile processibility and low cost, these solution-processed Bi O Se materials may offer a scalable and printable mid-infrared optical switch to open up the long-sought parameter space which is crucial for the exploitation of compact and high-performance mid-infrared pulsed laser sources.
Pulsed lasers operating in the mid‐infrared (3–25 µm) are increasingly becoming the light source of choice for a wide range of industrial and scientific applications such as spectroscopy, biomedical research, sensing, imaging, and communication. Up to now, one of the factors limiting the mid‐infrared pulsed lasers is the lack of optical switch with a capability of pulse generation, especially for those with wideband response. Here, a semiconductor material of bismuth oxyselenide (Bi2O2Se) with a facile processibility, constituting an ultrabroadband saturable absorber for the mid‐infrared (actually from the near‐infrared to mid‐infrared: 0.8–5.0 µm) is exhibited. Significantly, it is found that the optical response is associated with a strong nonlinear character, showing picosecond response time and response amplitude up to ≈330.1% at 5.0 µm. Combined with facile processibility and low cost, these solution‐processed Bi2O2Se materials may offer a scalable and printable mid‐infrared optical switch to open up the long‐sought parameter space which is crucial for the exploitation of compact and high‐performance mid‐infrared pulsed laser sources.
Pulsed lasers operating in the mid‐infrared (3–25 µm) are increasingly becoming the light source of choice for a wide range of industrial and scientific applications such as spectroscopy, biomedical research, sensing, imaging, and communication. Up to now, one of the factors limiting the mid‐infrared pulsed lasers is the lack of optical switch with a capability of pulse generation, especially for those with wideband response. Here, a semiconductor material of bismuth oxyselenide (Bi2O2Se) with a facile processibility, constituting an ultrabroadband saturable absorber for the mid‐infrared (actually from the near‐infrared to mid‐infrared: 0.8–5.0 µm) is exhibited. Significantly, it is found that the optical response is associated with a strong nonlinear character, showing picosecond response time and response amplitude up to ≈330.1% at 5.0 µm. Combined with facile processibility and low cost, these solution‐processed Bi2O2Se materials may offer a scalable and printable mid‐infrared optical switch to open up the long‐sought parameter space which is crucial for the exploitation of compact and high‐performance mid‐infrared pulsed laser sources. An ultrabroadband mid‐infrared saturable absorber based on facilely prepared Bi2O2Se is associated with a strong nonlinear character, revealing picosecond response time from 1.55 to 5.0 µm and modulation response up to ≈330.1% at 5.0 µm. A 2.86 µm Ho3+/Pr3+‐codoped fluoride fiber laser passively Q‐switched by a Bi2O2Se‐based saturable absorber is investigated.
Pulsed lasers operating in the mid-infrared (3-25 µm) are increasingly becoming the light source of choice for a wide range of industrial and scientific applications such as spectroscopy, biomedical research, sensing, imaging, and communication. Up to now, one of the factors limiting the mid-infrared pulsed lasers is the lack of optical switch with a capability of pulse generation, especially for those with wideband response. Here, a semiconductor material of bismuth oxyselenide (Bi2 O2 Se) with a facile processibility, constituting an ultrabroadband saturable absorber for the mid-infrared (actually from the near-infrared to mid-infrared: 0.8-5.0 µm) is exhibited. Significantly, it is found that the optical response is associated with a strong nonlinear character, showing picosecond response time and response amplitude up to ≈330.1% at 5.0 µm. Combined with facile processibility and low cost, these solution-processed Bi2 O2 Se materials may offer a scalable and printable mid-infrared optical switch to open up the long-sought parameter space which is crucial for the exploitation of compact and high-performance mid-infrared pulsed laser sources.Pulsed lasers operating in the mid-infrared (3-25 µm) are increasingly becoming the light source of choice for a wide range of industrial and scientific applications such as spectroscopy, biomedical research, sensing, imaging, and communication. Up to now, one of the factors limiting the mid-infrared pulsed lasers is the lack of optical switch with a capability of pulse generation, especially for those with wideband response. Here, a semiconductor material of bismuth oxyselenide (Bi2 O2 Se) with a facile processibility, constituting an ultrabroadband saturable absorber for the mid-infrared (actually from the near-infrared to mid-infrared: 0.8-5.0 µm) is exhibited. Significantly, it is found that the optical response is associated with a strong nonlinear character, showing picosecond response time and response amplitude up to ≈330.1% at 5.0 µm. Combined with facile processibility and low cost, these solution-processed Bi2 O2 Se materials may offer a scalable and printable mid-infrared optical switch to open up the long-sought parameter space which is crucial for the exploitation of compact and high-performance mid-infrared pulsed laser sources.
Pulsed lasers operating in the mid‐infrared (3–25 µm) are increasingly becoming the light source of choice for a wide range of industrial and scientific applications such as spectroscopy, biomedical research, sensing, imaging, and communication. Up to now, one of the factors limiting the mid‐infrared pulsed lasers is the lack of optical switch with a capability of pulse generation, especially for those with wideband response. Here, a semiconductor material of bismuth oxyselenide (Bi 2 O 2 Se) with a facile processibility, constituting an ultrabroadband saturable absorber for the mid‐infrared (actually from the near‐infrared to mid‐infrared: 0.8–5.0 µm) is exhibited. Significantly, it is found that the optical response is associated with a strong nonlinear character, showing picosecond response time and response amplitude up to ≈330.1% at 5.0 µm. Combined with facile processibility and low cost, these solution‐processed Bi 2 O 2 Se materials may offer a scalable and printable mid‐infrared optical switch to open up the long‐sought parameter space which is crucial for the exploitation of compact and high‐performance mid‐infrared pulsed laser sources.
Author Zhu, Chunhui
Qiu, Jianrong
Wang, Fengqiu
Li, Jianfeng
Yang, Dandan
Tian, Xiangling
Guo, Qianyi
Wei, Rongfei
Luo, Hongyu
Author_xml – sequence: 1
  givenname: Xiangling
  orcidid: 0000-0002-8141-5720
  surname: Tian
  fullname: Tian, Xiangling
  organization: South China University of Technology
– sequence: 2
  givenname: Hongyu
  surname: Luo
  fullname: Luo, Hongyu
  organization: University of Electronic Science and Technology of China
– sequence: 3
  givenname: Rongfei
  surname: Wei
  fullname: Wei, Rongfei
  organization: Zhejiang Normal University
– sequence: 4
  givenname: Chunhui
  surname: Zhu
  fullname: Zhu, Chunhui
  organization: Nanjing University
– sequence: 5
  givenname: Qianyi
  surname: Guo
  fullname: Guo, Qianyi
  organization: South China University of Technology
– sequence: 6
  givenname: Dandan
  surname: Yang
  fullname: Yang, Dandan
  organization: South China University of Technology
– sequence: 7
  givenname: Fengqiu
  surname: Wang
  fullname: Wang, Fengqiu
  organization: Nanjing University
– sequence: 8
  givenname: Jianfeng
  surname: Li
  fullname: Li, Jianfeng
  email: lijianfeng@uestc.edu.cn
  organization: University of Electronic Science and Technology of China
– sequence: 9
  givenname: Jianrong
  surname: Qiu
  fullname: Qiu, Jianrong
  email: qjr@zju.edu.cn
  organization: Zhejiang University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29923356$$D View this record in MEDLINE/PubMed
BookMark eNqFkcFq3DAQhkVJaTZprj0WQy-9eDuSJa_nuE3SJpCwgSRnI0tyoyBLW8km3Vsfoc_YJ6mWTVIIlJ6Gge-bGeY_IHs-eEPIOwpzCsA-ST3IOQPaAAVGX5EZFYyWHFDskRlgJUqsebNPDlK6BwCsoX5D9hkiqypRz4hd-uLWjVF2MUjdSa-LS6t___x17vsoo9HF1eRSLqv1aJV0xfWDHdVdcTqsXdhY_624Dm4abfDZuYpBmbSlP9s0TONdsfqxScYZb7V5S173Mo86eqyH5PbL6c3xWXmx-np-vLwoFWeUlqJHLRlD2mjsFk1leG64YkwKzqSWHGuqEE2-HwQgcN71SrOaC2BSdX11SD7u5q5j-D6ZNLaDTco4J70JU2oZiAWvsMY6ox9eoPdhij5fl6kGFtBgQzP1_pGausHodh3tIOOmfXpiBuY7QMWQUjT9M0Kh3abUblNqn1PKAn8hKDvK7RNzENb9W8Od9mCd2fxnSbs8uVz-df8Az7KnuQ
CitedBy_id crossref_primary_10_1016_j_optlastec_2023_109237
crossref_primary_10_1002_adfm_202307234
crossref_primary_10_1002_lpor_201800327
crossref_primary_10_1364_OE_26_031276
crossref_primary_10_1002_inf2_12215
crossref_primary_10_1007_s10853_019_03963_1
crossref_primary_10_1039_D4TC01025F
crossref_primary_10_1021_acs_jpcc_9b02943
crossref_primary_10_1021_acsnano_1c00842
crossref_primary_10_1063_5_0052300
crossref_primary_10_1007_s12274_022_5046_3
crossref_primary_10_1002_qute_202100052
crossref_primary_10_1002_adfm_202106930
crossref_primary_10_1021_acsami_0c14447
crossref_primary_10_1039_D4NR04101A
crossref_primary_10_1364_OE_450554
crossref_primary_10_1021_acsami_2c00616
crossref_primary_10_1039_C8NR09946D
crossref_primary_10_1002_apxr_202400079
crossref_primary_10_7498_aps_69_20201044
crossref_primary_10_1002_adom_202400659
crossref_primary_10_1515_nanoph_2019_0557
crossref_primary_10_1002_adom_201901490
crossref_primary_10_1021_acsaelm_0c00344
crossref_primary_10_1016_j_jcis_2023_08_034
crossref_primary_10_1016_j_commatsci_2020_109684
crossref_primary_10_1021_acs_inorgchem_4c04151
crossref_primary_10_1021_acsphotonics_9b00012
crossref_primary_10_1039_C9NA00694J
crossref_primary_10_1039_D3NR05625B
crossref_primary_10_1002_adom_202403138
crossref_primary_10_1364_OE_464682
crossref_primary_10_1039_C9NR06374A
crossref_primary_10_1021_acsnano_0c05300
crossref_primary_10_1039_D4DT01212G
crossref_primary_10_1016_j_optlastec_2022_108898
crossref_primary_10_1002_smll_201904482
crossref_primary_10_1364_OME_502375
crossref_primary_10_1021_acsami_2c23266
crossref_primary_10_1103_PhysRevB_100_115417
crossref_primary_10_1021_acsaelm_4c02144
crossref_primary_10_1002_smll_202006416
crossref_primary_10_1088_1361_6528_ac0a16
crossref_primary_10_1063_5_0223948
crossref_primary_10_1109_LPT_2019_2917472
crossref_primary_10_1364_OE_27_008727
crossref_primary_10_1063_5_0072201
crossref_primary_10_1007_s10854_023_10156_9
crossref_primary_10_1002_mop_32118
crossref_primary_10_1111_jace_16826
crossref_primary_10_1039_D2TC02885A
crossref_primary_10_1016_j_jssc_2021_122487
crossref_primary_10_1021_acs_nanolett_9b00381
crossref_primary_10_1039_D3CP05357A
crossref_primary_10_1002_smll_202309595
crossref_primary_10_1039_D0TC04352D
crossref_primary_10_1002_inf2_12539
crossref_primary_10_1016_j_optmat_2021_111272
crossref_primary_10_1002_smll_202106078
crossref_primary_10_1021_acs_inorgchem_3c04030
crossref_primary_10_1021_acsami_9b10949
crossref_primary_10_1021_acs_chemmater_0c00194
crossref_primary_10_1142_S0218863523400088
crossref_primary_10_1021_accountsmr_1c00130
crossref_primary_10_1002_adom_202102483
crossref_primary_10_1002_smll_202302289
crossref_primary_10_1016_j_cej_2024_153937
crossref_primary_10_1016_j_pmatsci_2021_100814
crossref_primary_10_1021_acsanm_4c03594
crossref_primary_10_1002_adfm_202400077
crossref_primary_10_1002_adom_202100622
crossref_primary_10_1002_adfm_202008351
crossref_primary_10_1186_s11671_019_3179_4
crossref_primary_10_1002_adfm_201905806
crossref_primary_10_1002_smll_201902811
crossref_primary_10_1016_j_chemphys_2020_111017
crossref_primary_10_1021_acsami_1c23053
crossref_primary_10_1002_adom_202201812
crossref_primary_10_1021_acsnano_1c00811
crossref_primary_10_1002_adfm_202201020
crossref_primary_10_1063_5_0149922
crossref_primary_10_1002_adom_201901567
crossref_primary_10_1021_acsami_2c15947
crossref_primary_10_1103_PhysRevApplied_14_064051
crossref_primary_10_1063_5_0049368
crossref_primary_10_1016_j_mattod_2021_09_021
crossref_primary_10_1002_adfm_202004480
crossref_primary_10_1016_j_jhazmat_2022_129808
crossref_primary_10_1021_acs_nanolett_0c00025
crossref_primary_10_1002_admt_202000180
crossref_primary_10_1109_LED_2020_3016186
crossref_primary_10_1002_adma_202420043
crossref_primary_10_1109_JPHOT_2019_2917941
crossref_primary_10_1103_PhysRevB_100_235307
crossref_primary_10_1039_C9NR04337C
crossref_primary_10_1021_acs_nanolett_9b02312
crossref_primary_10_1109_LPT_2022_3206007
crossref_primary_10_1007_s10854_023_10207_1
crossref_primary_10_1002_adpr_202000064
crossref_primary_10_1021_acsnano_9b07000
crossref_primary_10_1002_adma_202204227
crossref_primary_10_1021_acs_jpcc_3c04836
crossref_primary_10_1002_smll_202206648
crossref_primary_10_1021_acs_chemmater_0c02682
crossref_primary_10_1088_1361_6528_ad0bd3
crossref_primary_10_1002_adom_202101664
Cites_doi 10.1063/1.479310
10.1016/S0925-4005(99)00164-1
10.1002/adma.201502154
10.1126/science.1250564
10.1002/adma.201704060
10.1364/OL.38.003233
10.1021/acsphotonics.7b00598
10.1021/am5092159
10.1002/lpor.201700082
10.1103/PhysRevB.90.075413
10.1038/srep10770
10.1364/OL.41.000540
10.1002/adma.201101350
10.1038/nphoton.2016.14
10.1103/PhysRevB.83.081419
10.1002/adfm.201602664
10.1103/PhysRevLett.105.077001
10.1038/nphoton.2012.149
10.1364/OE.23.024713
10.1039/C5NR08457A
10.1021/acs.nanolett.7b03020
10.1103/PhysRevLett.106.057401
10.1039/C7NR08662H
10.1021/nl200773n
10.1038/nature11721
10.1364/OL.32.001138
10.1021/acs.nanolett.7b00335
10.1364/OE.18.026704
10.1002/adfm.200901007
10.1088/1612-2011/13/10/105108
10.1038/nphoton.2014.213
10.1088/1612-2011/10/4/045107
10.1038/nphys3419
10.1021/nn405419h
10.1021/acsnano.6b05116
10.1364/OL.40.003659
10.1021/nl401561r
10.1002/adma.200901122
10.1088/0957-4484/27/30/305203
10.1364/OE.24.025337
10.1039/C4NR02634A
10.1038/ncomms14111
10.1364/OL.28.000370
10.1038/nnano.2008.312
10.1021/nn200556h
10.1002/adfm.201706437
10.1021/nn901703e
10.1038/nphoton.2012.244
10.1038/nature01938
10.1002/adom.201700762
10.1039/C7NR08874D
10.1002/adma.201504927
10.1002/adfm.200902368
10.1103/PhysRevB.89.125427
10.1038/nphoton.2013.304
10.1126/science.aae0330
10.1038/nnano.2017.43
10.1103/PhysRevLett.105.097401
ContentType Journal Article
Copyright 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.201801021
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList PubMed
Materials Research Database

MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 29923356
10_1002_adma_201801021
ADMA201801021
Genre article
Journal Article
GrantInformation_xml – fundername: Fundamental Research Funds for the Central Universities
  funderid: 2013ZM0001
– fundername: State Key Laboratory of Precision Spectroscopy of East China Normal University
– fundername: Natural Science Foundation of Zhejiang Province
  funderid: LQ18A040004
– fundername: South China University of Technology
  funderid: 2018‐skllmd‐13
– fundername: National Natural Science Foundation of China
  funderid: 51472091; 51772270; 61722503; 61435003; 51472091; 51772270
– fundername: State Key Laboratory of High Field Laser Physics of Shanghai Institute of Optics and Fine Mechanics
– fundername: Chinese Academy of Science
– fundername: Guangdong Natural Science Foundation
  funderid: S2011030001349
– fundername: Open Fund of the State Key Laboratory of Luminescent Materials and Devices
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AANHP
AAYOK
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
FEDTE
FOJGT
HF~
HVGLF
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
NPM
7SR
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
7X8
ID FETCH-LOGICAL-c4211-5f9da22918d9b783e42294c22a542ada4961c99e2330509044bfcd264502acbf3
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Thu Jul 10 23:08:46 EDT 2025
Fri Jul 25 02:28:26 EDT 2025
Thu Apr 03 07:06:29 EDT 2025
Thu Apr 24 22:59:49 EDT 2025
Tue Jul 01 00:44:43 EDT 2025
Wed Jan 22 17:08:39 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 31
Keywords Q-switching
nonlinear optical
mid-infrared
Bi2O2Se
saturable absorption
Language English
License 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4211-5f9da22918d9b783e42294c22a542ada4961c99e2330509044bfcd264502acbf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8141-5720
PMID 29923356
PQID 2080708981
PQPubID 2045203
PageCount 8
ParticipantIDs proquest_miscellaneous_2057439696
proquest_journals_2080708981
pubmed_primary_29923356
crossref_primary_10_1002_adma_201801021
crossref_citationtrail_10_1002_adma_201801021
wiley_primary_10_1002_adma_201801021_ADMA201801021
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2, 2018
PublicationDateYYYYMMDD 2018-08-02
PublicationDate_xml – month: 08
  year: 2018
  text: August 2, 2018
  day: 02
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 5
2017; 8
2017; 4
2010; 18
2010; 105
2011; 11
2008; 3
2013; 7
2007; 32
2010; 20
2013; 10
2013; 13
2015; 40
1999; 56
2016; 41
2016; 352
2011; 23
2014; 8
2009; 19
2010; 4
2014; 6
2018; 28
2015; 5
2009; 21
2014; 90
2015; 11
2011; 83
2016; 10
2017; 29
2015; 7
2011; 5
2014; 89
2016; 13
2015; 23
2015; 28
2003; 424
2011; 106
2013; 38
2017; 17
2017; 12
2003; 28
2013; 493
1999; 111
2012; 6
2018; 12
2016; 28
2018; 10
2016; 27
2016; 26
2016; 8
2016; 24
2014; 344
e_1_2_5_27_1
e_1_2_5_25_1
e_1_2_5_48_1
e_1_2_5_23_1
e_1_2_5_46_1
e_1_2_5_21_1
e_1_2_5_44_1
e_1_2_5_29_1
e_1_2_5_42_1
e_1_2_5_40_1
e_1_2_5_15_1
e_1_2_5_38_1
e_1_2_5_17_1
e_1_2_5_36_1
e_1_2_5_9_1
e_1_2_5_11_1
e_1_2_5_34_1
e_1_2_5_57_1
e_1_2_5_7_1
e_1_2_5_13_1
e_1_2_5_32_1
e_1_2_5_55_1
e_1_2_5_5_1
e_1_2_5_3_1
e_1_2_5_1_1
e_1_2_5_19_1
e_1_2_5_30_1
e_1_2_5_53_1
e_1_2_5_51_1
e_1_2_5_28_1
e_1_2_5_49_1
e_1_2_5_26_1
e_1_2_5_47_1
e_1_2_5_24_1
e_1_2_5_45_1
e_1_2_5_22_1
e_1_2_5_43_1
e_1_2_5_20_1
e_1_2_5_41_1
e_1_2_5_14_1
e_1_2_5_39_1
e_1_2_5_16_1
e_1_2_5_37_1
e_1_2_5_58_1
e_1_2_5_8_1
e_1_2_5_10_1
e_1_2_5_35_1
e_1_2_5_56_1
e_1_2_5_6_1
e_1_2_5_12_1
e_1_2_5_33_1
e_1_2_5_54_1
e_1_2_5_4_1
e_1_2_5_2_1
e_1_2_5_18_1
e_1_2_5_31_1
e_1_2_5_52_1
e_1_2_5_50_1
References_xml – volume: 111
  start-page: 1255
  year: 1999
  publication-title: J. Chem. Phys.
– volume: 7
  start-page: 4442
  year: 2015
  publication-title: ACS Appl. Mater. Interfaces
– volume: 21
  start-page: 3874
  year: 2009
  publication-title: Adv. Mater.
– volume: 11
  start-page: 830
  year: 2015
  publication-title: Nat. Phys.
– volume: 90
  start-page: 075413
  year: 2014
  publication-title: Phys. Rev. B
– volume: 12
  start-page: 1700082
  year: 2018
  publication-title: Laser Photonics Rev.
– volume: 10
  start-page: 045107
  year: 2013
  publication-title: Laser Phys. Lett.
– volume: 26
  start-page: 7454
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 28
  start-page: 276
  year: 2015
  publication-title: Adv. Mater.
– volume: 6
  start-page: 423
  year: 2012
  publication-title: Nat. Photonics
– volume: 5
  start-page: 10770
  year: 2015
  publication-title: Sci. Rep.
– volume: 8
  start-page: 7704
  year: 2016
  publication-title: Nanoscale
– volume: 344
  start-page: 488
  year: 2014
  publication-title: Science
– volume: 106
  start-page: 057401
  year: 2011
  publication-title: Phys. Rev. Lett.
– volume: 10
  start-page: 267
  year: 2016
  publication-title: Nat. Photonics
– volume: 17
  start-page: 6309
  year: 2017
  publication-title: Nano Lett.
– volume: 5
  start-page: 1700762
  year: 2017
  publication-title: Adv. Opt. Mater.
– volume: 10
  start-page: 752
  year: 2018
  publication-title: Nanoscale
– volume: 38
  start-page: 3233
  year: 2013
  publication-title: Opt. Lett.
– volume: 105
  start-page: 097401
  year: 2010
  publication-title: Phys. Rev. Lett.
– volume: 8
  start-page: 830
  year: 2014
  publication-title: Nat. Photonics
– volume: 4
  start-page: 3063
  year: 2017
  publication-title: ACS Photonics
– volume: 11
  start-page: 2407
  year: 2011
  publication-title: Nano Lett.
– volume: 20
  start-page: 1937
  year: 2010
  publication-title: Adv. Funct. Mater.
– volume: 13
  start-page: 105108
  year: 2016
  publication-title: Laser Phys. Lett.
– volume: 40
  start-page: 3659
  year: 2015
  publication-title: Opt. Lett.
– volume: 424
  start-page: 831
  year: 2003
  publication-title: Nature
– volume: 7
  start-page: 11087
  year: 2013
  publication-title: ACS Nano
– volume: 28
  start-page: 370
  year: 2003
  publication-title: Opt. Lett.
– volume: 27
  start-page: 305203
  year: 2016
  publication-title: Nanotechnology
– volume: 10
  start-page: 2704
  year: 2018
  publication-title: Nanoscale
– volume: 24
  start-page: 25337
  year: 2016
  publication-title: Opt. Express
– volume: 83
  start-page: 081419
  year: 2011
  publication-title: Phys. Rev. B
– volume: 8
  start-page: 14111
  year: 2017
  publication-title: Nat. Commun.
– volume: 23
  start-page: 4295
  year: 2011
  publication-title: Adv. Mater.
– volume: 41
  start-page: 540
  year: 2016
  publication-title: Opt. Lett.
– volume: 493
  start-page: 504
  year: 2013
  publication-title: Nature
– volume: 32
  start-page: 1138
  year: 2007
  publication-title: Opt. Lett.
– volume: 13
  start-page: 3329
  year: 2013
  publication-title: Nano Lett.
– volume: 89
  start-page: 125427
  year: 2014
  publication-title: Phys. Rev. B
– volume: 17
  start-page: 3021
  year: 2017
  publication-title: Nano Lett.
– volume: 3
  start-page: 738
  year: 2008
  publication-title: Nat. Nanotechnol.
– volume: 6
  start-page: 737
  year: 2012
  publication-title: Nat. Photonics
– volume: 29
  start-page: 1704060
  year: 2017
  publication-title: Adv. Mater.
– volume: 28
  start-page: 1706437
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 28
  start-page: 3535
  year: 2016
  publication-title: Adv. Mater.
– volume: 56
  start-page: 98
  year: 1999
  publication-title: Sens. Actuators, B
– volume: 23
  start-page: 24713
  year: 2015
  publication-title: Opt. Express
– volume: 19
  start-page: 3077
  year: 2009
  publication-title: Adv. Funct. Mater.
– volume: 18
  start-page: 26704
  year: 2010
  publication-title: Opt. Express
– volume: 12
  start-page: 530
  year: 2017
  publication-title: Nat. Nanotechnol.
– volume: 4
  start-page: 803
  year: 2010
  publication-title: ACS Nano
– volume: 5
  start-page: 4698
  year: 2011
  publication-title: ACS Nano
– volume: 6
  start-page: 10530
  year: 2014
  publication-title: Nanoscale
– volume: 352
  start-page: 795
  year: 2016
  publication-title: Science
– volume: 10
  start-page: 10099
  year: 2016
  publication-title: ACS Nano
– volume: 7
  start-page: 842
  year: 2013
  publication-title: Nat. Photonics
– volume: 105
  start-page: 077001
  year: 2010
  publication-title: Phys. Rev. Lett.
– ident: e_1_2_5_15_1
  doi: 10.1063/1.479310
– ident: e_1_2_5_43_1
  doi: 10.1016/S0925-4005(99)00164-1
– ident: e_1_2_5_50_1
  doi: 10.1002/adma.201502154
– ident: e_1_2_5_34_1
  doi: 10.1126/science.1250564
– ident: e_1_2_5_30_1
  doi: 10.1002/adma.201704060
– ident: e_1_2_5_54_1
  doi: 10.1364/OL.38.003233
– ident: e_1_2_5_22_1
  doi: 10.1021/acsphotonics.7b00598
– ident: e_1_2_5_39_1
  doi: 10.1021/am5092159
– ident: e_1_2_5_38_1
  doi: 10.1002/lpor.201700082
– ident: e_1_2_5_44_1
  doi: 10.1103/PhysRevB.90.075413
– ident: e_1_2_5_11_1
  doi: 10.1038/srep10770
– ident: e_1_2_5_4_1
  doi: 10.1364/OL.41.000540
– ident: e_1_2_5_16_1
  doi: 10.1002/adma.201101350
– ident: e_1_2_5_19_1
  doi: 10.1038/nphoton.2016.14
– ident: e_1_2_5_26_1
  doi: 10.1103/PhysRevB.83.081419
– ident: e_1_2_5_21_1
  doi: 10.1002/adfm.201602664
– ident: e_1_2_5_33_1
  doi: 10.1103/PhysRevLett.105.077001
– ident: e_1_2_5_3_1
  doi: 10.1038/nphoton.2012.149
– ident: e_1_2_5_53_1
  doi: 10.1364/OE.23.024713
– ident: e_1_2_5_23_1
  doi: 10.1039/C5NR08457A
– ident: e_1_2_5_28_1
  doi: 10.1021/acs.nanolett.7b03020
– ident: e_1_2_5_37_1
  doi: 10.1103/PhysRevLett.106.057401
– ident: e_1_2_5_41_1
  doi: 10.1039/C7NR08662H
– ident: e_1_2_5_42_1
  doi: 10.1021/nl200773n
– ident: e_1_2_5_49_1
  doi: 10.1038/nature11721
– ident: e_1_2_5_9_1
  doi: 10.1364/OL.32.001138
– ident: e_1_2_5_31_1
  doi: 10.1021/acs.nanolett.7b00335
– ident: e_1_2_5_5_1
  doi: 10.1364/OE.18.026704
– ident: e_1_2_5_7_1
  doi: 10.1002/adfm.200901007
– ident: e_1_2_5_56_1
  doi: 10.1088/1612-2011/13/10/105108
– ident: e_1_2_5_1_1
  doi: 10.1038/nphoton.2014.213
– ident: e_1_2_5_24_1
  doi: 10.1088/1612-2011/10/4/045107
– ident: e_1_2_5_52_1
  doi: 10.1038/nphys3419
– ident: e_1_2_5_45_1
  doi: 10.1021/nn405419h
– ident: e_1_2_5_51_1
  doi: 10.1021/acsnano.6b05116
– ident: e_1_2_5_55_1
  doi: 10.1364/OL.40.003659
– ident: e_1_2_5_36_1
  doi: 10.1021/nl401561r
– ident: e_1_2_5_8_1
  doi: 10.1002/adma.200901122
– ident: e_1_2_5_58_1
  doi: 10.1088/0957-4484/27/30/305203
– ident: e_1_2_5_57_1
  doi: 10.1364/OE.24.025337
– ident: e_1_2_5_46_1
  doi: 10.1039/C4NR02634A
– ident: e_1_2_5_10_1
  doi: 10.1038/ncomms14111
– ident: e_1_2_5_2_1
  doi: 10.1364/OL.28.000370
– ident: e_1_2_5_13_1
  doi: 10.1038/nnano.2008.312
– ident: e_1_2_5_40_1
  doi: 10.1021/nn200556h
– ident: e_1_2_5_29_1
  doi: 10.1002/adfm.201706437
– ident: e_1_2_5_14_1
  doi: 10.1021/nn901703e
– ident: e_1_2_5_47_1
  doi: 10.1038/nphoton.2012.244
– ident: e_1_2_5_6_1
  doi: 10.1038/nature01938
– ident: e_1_2_5_20_1
  doi: 10.1002/adom.201700762
– ident: e_1_2_5_32_1
  doi: 10.1039/C7NR08874D
– ident: e_1_2_5_17_1
  doi: 10.1002/adma.201504927
– ident: e_1_2_5_12_1
  doi: 10.1002/adfm.200902368
– ident: e_1_2_5_48_1
  doi: 10.1103/PhysRevB.89.125427
– ident: e_1_2_5_25_1
  doi: 10.1038/nphoton.2013.304
– ident: e_1_2_5_18_1
  doi: 10.1126/science.aae0330
– ident: e_1_2_5_27_1
  doi: 10.1038/nnano.2017.43
– ident: e_1_2_5_35_1
  doi: 10.1103/PhysRevLett.105.097401
SSID ssj0009606
Score 2.5918179
Snippet Pulsed lasers operating in the mid‐infrared (3–25 µm) are increasingly becoming the light source of choice for a wide range of industrial and scientific...
Pulsed lasers operating in the mid-infrared (3-25 µm) are increasingly becoming the light source of choice for a wide range of industrial and scientific...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e1801021
SubjectTerms Bi2O2Se
Biomedical materials
Bismuth
Broadband
Infrared lasers
Materials science
Materials selection
mid‐infrared
nonlinear optical
Nonlinear response
Optical switching
Pulsed lasers
Q‐switching
Response time
saturable absorption
Semiconductor materials
Title An Ultrabroadband Mid‐Infrared Pulsed Optical Switch Employing Solution‐Processed Bismuth Oxyselenide
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201801021
https://www.ncbi.nlm.nih.gov/pubmed/29923356
https://www.proquest.com/docview/2080708981
https://www.proquest.com/docview/2057439696
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaqnugBCi2wtCAjIXFKm3Wc1D5ugaogLUWFlXqLxo-IiJKtdhPxOPET-I39Jcw4j3ZBqBLcEs048WPGM7bH3zD2LNG2kPYAooK0EIUCIuWFj7IitgR_V4iYLgpP32bHM_nmLD27dou_xYcYNtxIM8J8TQoOZrl_BRoKLuAGjVXITo2TMAVskVd0eoUfRe55ANtL0khnUvWojbHYXy2-apX-cDVXPddgeo7uMOgr3UacfNprarNnv_-G5_g_rdpktzu_lE9aQbrL1nx1j21cQyvcYuWk4rPzegFmMQdnoHJ8WrrLHz9fV8WC4tj5uwYNreMnF2GDnL__UqJM8DapMH6C93twWKa7oIDch-Xyc1N_5Cdfv1Hmp6p0fpvNjl59eHEcdZkaIitxBRmlhXYghB4rp82BSrzEF2mFgFQKcCB1NrZae5EkhDcTS2kK69AXS2MB1hTJfbZezSv_kHFjDNltOgKyUrkUVGaTceZQdJwH8CMW9SOV2w7GnLJpnOctALPIqQvzoQtH7PnAf9ECePyVc7cf-LxT5CVSFU6KSiskPx3IqIJ0rgKVnzfEk9KyLtPZiD1oBWb4FVp7bHSKFBGG_YY65JOX08nw9uhfCu2wW_QcghTFLluvF41_jI5TbZ4E5fgFk6QQ6Q
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zb9QwEB5BeQAeuI-FAkZC4ilt1nFS-3E5qi10WwRdibfIV0TUNlttE3E88RP4jfwSZpyjLAghwaPjceJjJjMej78BeJIoWwi7paOCpBCZQkfScx9lRWwJ_q7gMV0Unu1l07l49T7townpLkyLDzE43Egywv-aBJwc0ptnqKHaBeCgsQzpqc_DBUrrHXZVb88QpMhAD3B7SRqpTMgetzHmm6vtV_XSb8bmqu0alM_2VTB9t9uYk8ONpjYb9ssviI7_Na5rcKUzTdmk5aXrcM5XN-DyT4CFN6GcVGx-VC-1WS60M7pybFa671-_7VTFkkLZ2ZsGda1j-yfBR87efSyRLVibVxhfwXo3HLbp7igg9bPy9LipP7D9T58p-VNVOn8L5tsvD55Poy5ZQ2QFbiKjtFBOc67G0imzJRMvsCAs5zoVXDstVDa2SnmeJAQ5EwthCuvQHEtjrq0pktuwVi0qfxeYMYZUN50CWSFdqmVmk3HmkHuc19qPIOqXKrcdkjkl1DjKWwxmntMU5sMUjuDpQH_SYnj8kXK9X_m8k-VTrJX4X5RKYvXjoRqlkI5WdOUXDdGktLPLVDaCOy3HDJ9ChY-DTrGGh3X_Sx_yyYvZZCjd-5dGj-Di9GC2m-_u7L2-D5foeYhZ5OuwVi8b_wDtqNo8DJLyA5dlFQQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zb9QwELZKKyF44D4WChgJiae0Wcdx7ceFZdUC21bASn2LfEVElOxqmwjoU38Cv5FfwoxztAtCSPBozzjxMeMZX98Q8ixRNud2R0c5aiEIhY6kZz4SeWwR_i5nMT4Unu6L3Rl_fZQeXXjF3-BD9BtuqBlhvkYFX7h8-xw0VLuAGzSUITr1JbLBRSxRrsfvzgGk0D8PaHtJGinBZQfbGLPt1fKrZuk3X3PVdQ22Z3Kd6K7WzZWTT1t1Zbbs6S-Ajv_TrBvkWuuY0lEjSTfJmi9vkasX4Apvk2JU0tlxtdRmOdfO6NLRaeF-nH3fK_MlXmSnhzVYWkcPFmGHnL7_UoBQ0CaqMHyCdptwUKZ9oQDcL4qTz3X1kR58_Yahn8rC-TtkNnn14eVu1IZqiCyHJWSU5sppxtRQOmV2ZOI5JLhlTKecaae5EkOrlGdJgoAzMecmtw6csTRm2po8uUvWy3np7xNqjEHDjWdAlkuXailsMhQOZMd5rf2ARN1IZbbFMcdwGsdZg8DMMuzCrO_CAXne8y8aBI8_cm52A5-1mnwCVAmzolQSyE97MuggHqzo0s9r5ElxXSeUGJB7jcD0vwJzD41OgcLCsP-lDtloPB31qQf_UugJuXw4nmRv9_bfPCRXMDtcWGSbZL1a1v4ROFGVeRz05CdikhO8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Ultrabroadband+Mid%E2%80%90Infrared+Pulsed+Optical+Switch+Employing+Solution%E2%80%90Processed+Bismuth+Oxyselenide&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Tian%2C+Xiangling&rft.au=Luo%2C+Hongyu&rft.au=Rongfei+Wei&rft.au=Zhu%2C+Chunhui&rft.date=2018-08-02&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=30&rft.issue=31&rft_id=info:doi/10.1002%2Fadma.201801021&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon