How woody plants adjust above‐ and below‐ground traits in response to sustained drought
Summary Future increases in drought severity and frequency are predicted to have substantial impacts on plant function and survival. However, there is considerable uncertainty concerning what drought adjustment is and whether plants can adjust to sustained drought. This review focuses on woody plant...
Saved in:
Published in | The New phytologist Vol. 239; no. 4; pp. 1173 - 1189 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
Wiley Subscription Services, Inc
01.08.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 0028-646X 1469-8137 1469-8137 |
DOI | 10.1111/nph.19000 |
Cover
Abstract | Summary
Future increases in drought severity and frequency are predicted to have substantial impacts on plant function and survival. However, there is considerable uncertainty concerning what drought adjustment is and whether plants can adjust to sustained drought. This review focuses on woody plants and synthesises the evidence for drought adjustment in a selection of key above‐ground and below‐ground plant traits. We assess whether evaluating the drought adjustment of single traits, or selections of traits that operate on the same plant functional axis (e.g. photosynthetic traits) is sufficient, or whether a multi‐trait approach, integrating across multiple axes, is required. We conclude that studies on drought adjustments in woody plants might overestimate the capacity for adjustment to drier environments if spatial studies along gradients are used, without complementary experimental approaches. We provide evidence that drought adjustment is common in above‐ground and below‐ground traits; however, whether this is adaptive and sufficient to respond to future droughts remains uncertain for most species. To address this uncertainty, we must move towards studying trait integration within and across multiple axes of plant function (e.g. above‐ground and below‐ground) to gain a holistic view of drought adjustments at the whole‐plant scale and how these influence plant survival. |
---|---|
AbstractList | Future increases in drought severity and frequency are predicted to have substantial impacts on plant function and survival. However, there is considerable uncertainty concerning what drought adjustment is and whether plants can adjust to sustained drought. This review focuses on woody plants and synthesises the evidence for drought adjustment in a selection of key above‐ground and below‐ground plant traits. We assess whether evaluating the drought adjustment of single traits, or selections of traits that operate on the same plant functional axis (e.g. photosynthetic traits) is sufficient, or whether a multi‐trait approach, integrating across multiple axes, is required. We conclude that studies on drought adjustments in woody plants might overestimate the capacity for adjustment to drier environments if spatial studies along gradients are used, without complementary experimental approaches. We provide evidence that drought adjustment is common in above‐ground and below‐ground traits; however, whether this is adaptive and sufficient to respond to future droughts remains uncertain for most species. To address this uncertainty, we must move towards studying trait integration within and across multiple axes of plant function (e.g. above‐ground and below‐ground) to gain a holistic view of drought adjustments at the whole‐plant scale and how these influence plant survival. Future increases in drought severity and frequency are predicted to have substantial impacts on plant function and survival. However, there is considerable uncertainty concerning what drought adjustment is and whether plants can adjust to sustained drought. This review focuses on woody plants and synthesises the evidence for drought adjustment in a selection of key above-ground and below-ground plant traits. We assess whether evaluating the drought adjustment of single traits, or selections of traits that operate on the same plant functional axis (e.g. photosynthetic traits) is sufficient, or whether a multi-trait approach, integrating across multiple axes, is required. We conclude that studies on drought adjustments in woody plants might overestimate the capacity for adjustment to drier environments if spatial studies along gradients are used, without complementary experimental approaches. We provide evidence that drought adjustment is common in above-ground and below-ground traits; however, whether this is adaptive and sufficient to respond to future droughts remains uncertain for most species. To address this uncertainty, we must move towards studying trait integration within and across multiple axes of plant function (e.g. above-ground and below-ground) to gain a holistic view of drought adjustments at the whole-plant scale and how these influence plant survival.Future increases in drought severity and frequency are predicted to have substantial impacts on plant function and survival. However, there is considerable uncertainty concerning what drought adjustment is and whether plants can adjust to sustained drought. This review focuses on woody plants and synthesises the evidence for drought adjustment in a selection of key above-ground and below-ground plant traits. We assess whether evaluating the drought adjustment of single traits, or selections of traits that operate on the same plant functional axis (e.g. photosynthetic traits) is sufficient, or whether a multi-trait approach, integrating across multiple axes, is required. We conclude that studies on drought adjustments in woody plants might overestimate the capacity for adjustment to drier environments if spatial studies along gradients are used, without complementary experimental approaches. We provide evidence that drought adjustment is common in above-ground and below-ground traits; however, whether this is adaptive and sufficient to respond to future droughts remains uncertain for most species. To address this uncertainty, we must move towards studying trait integration within and across multiple axes of plant function (e.g. above-ground and below-ground) to gain a holistic view of drought adjustments at the whole-plant scale and how these influence plant survival. Summary Future increases in drought severity and frequency are predicted to have substantial impacts on plant function and survival. However, there is considerable uncertainty concerning what drought adjustment is and whether plants can adjust to sustained drought. This review focuses on woody plants and synthesises the evidence for drought adjustment in a selection of key above‐ground and below‐ground plant traits. We assess whether evaluating the drought adjustment of single traits, or selections of traits that operate on the same plant functional axis (e.g. photosynthetic traits) is sufficient, or whether a multi‐trait approach, integrating across multiple axes, is required. We conclude that studies on drought adjustments in woody plants might overestimate the capacity for adjustment to drier environments if spatial studies along gradients are used, without complementary experimental approaches. We provide evidence that drought adjustment is common in above‐ground and below‐ground traits; however, whether this is adaptive and sufficient to respond to future droughts remains uncertain for most species. To address this uncertainty, we must move towards studying trait integration within and across multiple axes of plant function (e.g. above‐ground and below‐ground) to gain a holistic view of drought adjustments at the whole‐plant scale and how these influence plant survival. |
Author | Mencuccini, Maurizio Rowland, Lucy Ramírez‐Valiente, Jose‐Alberto Hartley, Iain P. |
Author_xml | – sequence: 1 givenname: Lucy orcidid: 0000-0002-0774-3216 surname: Rowland fullname: Rowland, Lucy email: rowland@exeter.ac.uk organization: University of Exeter – sequence: 2 givenname: Jose‐Alberto orcidid: 0000-0002-5951-2938 surname: Ramírez‐Valiente fullname: Ramírez‐Valiente, Jose‐Alberto organization: CREAF – sequence: 3 givenname: Iain P. orcidid: 0000-0002-9183-6617 surname: Hartley fullname: Hartley, Iain P. organization: University of Exeter – sequence: 4 givenname: Maurizio orcidid: 0000-0003-0840-1477 surname: Mencuccini fullname: Mencuccini, Maurizio organization: ICREA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37306017$$D View this record in MEDLINE/PubMed |
BookMark | eNqN0c1KHEEQB_AmKLqaHPICoSGX5LDaH9NfxyAmK4jmkEAgh6FnpkZnme2edM-47C2PkGf0SSxd9SAkpC9Nw6-K_lcdkJ0QAxDylrMjjuc4DNdH3DHGXpEZL7SbWy7NDpkxJuxcF_rHPjnIeYnAKS32yL40kmnGzYz8XMQ1XcfYbOjQ-zBm6pvllEfqq3gDt7__UB8aWkEf1_i4SnHC55h8h7ILNEEeYshAx0gzlvkuQEMbZFfX42uy2_o-w5vH-5B8_3z67WQxP7_8cnby6XxeF4Iz_CDT1hntgFvRFqA1KK9ajOBsq-umFZobUVvFmRCVqdrC-NpJqxSrnQUpD8mHbd8hxV8T5LFcdbmGHvNAnHIpbOEsJnf8P6hQXBVKOqTvX9BlnFLAIKik5kIablC9e1RTtYKmHFK38mlTPk0YwcctqFPMOUH7TDgr77dX4vbKh-2hPX5h6270YxfD_cT7f1Wsux42f29dXnxdbCvuAI5Fqrw |
CitedBy_id | crossref_primary_10_1186_s12870_024_05051_2 crossref_primary_10_3390_s24227315 crossref_primary_10_1093_jxb_eraf006 crossref_primary_10_1016_j_agrformet_2025_110429 crossref_primary_10_1007_s40725_023_00199_w crossref_primary_10_1016_j_jag_2024_104297 crossref_primary_10_1080_15592324_2024_2329842 crossref_primary_10_1093_treephys_tpad127 crossref_primary_10_1186_s13595_024_01227_w crossref_primary_10_1016_j_jhydrol_2025_132945 crossref_primary_10_1016_j_scienta_2024_113234 crossref_primary_10_1111_nph_70055 crossref_primary_10_1111_pce_14846 crossref_primary_10_48130_forres_0024_0008 crossref_primary_10_1016_j_agrformet_2023_109799 crossref_primary_10_1016_j_envexpbot_2024_106053 crossref_primary_10_1111_pce_14874 crossref_primary_10_3389_fevo_2024_1407882 crossref_primary_10_3390_f14122320 crossref_primary_10_1016_j_plaphy_2024_108833 crossref_primary_10_1111_gcb_17237 crossref_primary_10_1111_nph_20294 crossref_primary_10_1093_jxb_erae418 crossref_primary_10_1016_j_agrformet_2025_110423 crossref_primary_10_1111_ppl_14586 crossref_primary_10_1111_nph_19257 crossref_primary_10_1111_nph_20127 crossref_primary_10_1111_brv_13083 crossref_primary_10_1111_nph_19138 crossref_primary_10_1007_s11104_025_07369_8 crossref_primary_10_1186_s12870_025_06130_8 crossref_primary_10_1111_1365_2745_14209 crossref_primary_10_2179_0008_7475_89_1_96 crossref_primary_10_1007_s11120_024_01110_9 crossref_primary_10_1016_j_foreco_2024_121900 crossref_primary_10_1111_1365_2435_14460 crossref_primary_10_1016_j_scitotenv_2024_175805 crossref_primary_10_1016_j_envexpbot_2024_105871 crossref_primary_10_1016_j_envexpbot_2024_105970 crossref_primary_10_1007_s12042_024_09364_2 crossref_primary_10_1016_j_envexpbot_2023_105598 |
Cites_doi | 10.1093/aob/mcab132 10.1007/978-3-030-21001-4_9 10.1016/j.tree.2018.10.011 10.1007/s00468-011-0578-2 10.1007/s40626-022-00243-3 10.1111/ele.12670 10.1038/nature16512 10.1071/FP09139 10.1111/nph.17968 10.1111/nph.18280 10.1093/treephys/tps054 10.1111/nph.18157 10.1111/gcb.16040 10.1016/j.tree.2016.01.004 10.1038/hdy.2014.92 10.1111/pce.12646 10.1093/jxb/eru063 10.1890/02-0538 10.1111/evo.14464 10.1111/ele.12374 10.1098/rstb.2019.0527 10.3389/fpls.2017.01056 10.1007/s11104-019-04057-2 10.3389/fpls.2021.715127 10.1111/nph.15235 10.1002/ecs2.3399 10.1111/j.1365-2435.2007.01323.x 10.1016/j.apsoil.2016.04.009 10.1111/nph.17558 10.1111/jbi.12326 10.1038/s41559-020-01340-9 10.1093/jxb/ern185 10.1007/BF00328731 10.1007/PL00008865 10.1111/j.1365-2435.2009.01577.x 10.1111/j.1469-8137.1991.tb00035.x 10.1111/j.1365-2486.2011.02451.x 10.3389/ffgc.2021.742392 10.1111/gcb.15869 10.1111/gcb.16388 10.1086/374192 10.1111/j.1365-2745.2006.01176.x 10.1111/j.1600-0706.2009.17884.x 10.1038/s41559-022-01685-3 10.1093/jpe/rtaa015 10.1093/treephys/tpq054 10.1038/s41586-020-2035-0 10.1002/ecy.3472 10.1111/gcb.13148 10.1016/j.actao.2014.11.008 10.1016/j.tplants.2022.02.004 10.3389/fmicb.2019.02277 10.1007/s10682-010-9373-6 10.1111/j.1399-3054.2010.01367.x 10.1071/FP08175 10.1111/nph.16582 10.1016/j.scitotenv.2019.04.030 10.1111/1365-2435.13689 10.3732/ajb.1200558 10.1111/j.1365-3040.2010.02269.x 10.1007/s00572-010-0348-9 10.1111/j.1749-6632.2010.05704.x 10.1098/rstb.1976.0026 10.1038/nplants.2015.139 10.1111/gcb.16270 10.1111/pce.13838 10.1055/s-2004-820867 10.1111/j.1469-8137.2009.02830.x 10.1111/nph.16223 10.1038/nature15539 10.1093/jxb/eraa381 10.1073/pnas.1705884114 10.1111/1365-2435.13534 10.1098/rstb.2017.0311 10.1086/422050 10.3389/fpls.2016.01601 10.1111/nph.16116 10.1371/journal.pone.0023476 10.1007/BF00378740 10.1111/nph.17242 10.1111/nph.15998 10.1111/j.1365-3040.2005.01430.x 10.1038/s41467-020-16839-9 10.1016/j.agrformet.2021.108717 10.1186/s12870-021-02945-3 10.3389/ffgc.2021.704670 10.1139/cjss-2018-0114 10.1111/j.0014-3820.2006.tb01176.x 10.1111/nph.17085 10.1111/j.1365-3040.2010.02164.x 10.1111/nph.17536 10.1111/nph.15684 10.1016/j.fcr.2014.03.017 10.1093/jxb/eru364 10.1111/j.1742-4658.2007.00021.x 10.1111/1365-2745.12755 10.1093/aob/mcaa060 10.1007/s13595-020-00949-x 10.1111/pce.14326 10.1111/nph.16795 10.1111/gcb.15040 10.1111/pce.12182 10.1093/jxb/eraa157 10.1093/aob/mcv161 10.1093/treephys/tpu101 10.1111/j.1469-8137.2009.02954.x 10.1111/ele.13584 10.1093/treephys/tpp018 10.1111/nph.16972 10.1371/journal.pgen.1009034 10.1111/1365-2745.12931 10.1111/nph.17029 10.1111/ele.13827 10.1098/rspb.1979.0086 10.1890/06-0727 10.1038/s41598-018-30150-0 10.1093/aob/mcaa181 10.1016/S0169-5347(01)02384-9 10.1007/PL00008875 10.1093/treephys/tpab121 10.1111/j.1365-2435.2007.01283.x 10.1111/gcb.12215 10.1016/j.advwatres.2021.103896 10.1111/nph.17185 10.3389/fpls.2018.00301 10.1111/j.1469-8137.2004.01296.x 10.1073/pnas.1604088113 10.1111/nph.15450 10.1093/treephys/tpr092 10.1016/j.foreco.2009.09.001 10.1093/aob/mcf164 10.1093/treephys/tpr101 10.1111/nph.16320 10.1111/pce.14376 10.1111/pce.12852 10.1111/gcb.12100 10.1029/2021JG006612 10.1126/sciadv.aao6969 10.1016/j.tree.2018.01.013 10.1890/0012-9615(2000)070[0517:IAIVFS]2.0.CO;2 |
ContentType | Journal Article |
Copyright | 2023 The Authors. © 2023 New Phytologist Foundation 2023 The Authors. New Phytologist © 2023 New Phytologist Foundation. 2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2023 The Authors. © 2023 New Phytologist Foundation – notice: 2023 The Authors. New Phytologist © 2023 New Phytologist Foundation. – notice: 2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7SN 8FD C1K F1W FR3 H95 L.G M7N P64 RC3 7X8 7S9 L.6 |
DOI | 10.1111/nph.19000 |
DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Ecology Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Aquatic Science & Fisheries Abstracts (ASFA) Professional Genetics Abstracts Biotechnology Research Abstracts Technology Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Ecology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic CrossRef MEDLINE Aquatic Science & Fisheries Abstracts (ASFA) Professional |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Journals (Open Access) url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1469-8137 |
EndPage | 1189 |
ExternalDocumentID | 37306017 10_1111_nph_19000 NPH19000 |
Genre | reviewArticle Research Support, Non-U.S. Gov't Journal Article Review |
GrantInformation_xml | – fundername: Natural Environment Research Council funderid: NE/N014022/1; NE/V000071/1 – fundername: Spanish MINECO funderid: CGL2017‐89149‐C2‐1‐R – fundername: Horizon 2020 Framework Programme funderid: 862221 |
GroupedDBID | --- -~X .3N .GA .Y3 05W 0R~ 10A 123 1OC 24P 29N 2WC 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5VS 66C 702 79B 7PT 8-0 8-1 8-3 8-4 8-5 85S 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHKG AAHQN AAISJ AAKGQ AAMNL AANLZ AAONW AASGY AASVR AAXRX AAYCA AAZKR ABBHK ABCQN ABCUV ABEFU ABEML ABLJU ABPLY ABPVW ABTLG ABVKB ABXSQ ACAHQ ACCFJ ACCZN ACFBH ACGFS ACHIC ACNCT ACPOU ACQPF ACSCC ACSTJ ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADULT ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUPB AEUQT AEUYR AFAZZ AFBPY AFEBI AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AHXOZ AILXY AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB AQVQM AS~ ATUGU AUFTA AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG CBGCD COF CS3 CUYZI D-E D-F DCZOG DEVKO DIK DOOOF DPXWK DR2 DRFUL DRSTM E3Z EBS ECGQY EJD ESX F00 F01 F04 F5P FIJ G-S G.N GODZA GTFYD H.T H.X HF~ HGD HGLYW HQ2 HTVGU HZI HZ~ IHE IPNFZ IPSME IX1 J0M JAAYA JBMMH JBS JEB JENOY JHFFW JKQEH JLS JLXEF JPM JSODD JST K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LPU LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NEJ NF~ O66 O9- OIG OK1 P2P P2W P2X P4D Q.N Q11 QB0 R.K RCA RIG ROL RX1 SA0 SUPJJ TN5 TR2 UB1 W8V W99 WBKPD WHG WIH WIK WIN WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 XOL YNT YQT YXE ZCG ZZTAW ~02 ~IA ~KM ~WT AAYXX ABGDZ ABSQW ADXHL AEYWJ AGHNM AGUYK AGYGG CITATION CGR CUY CVF ECM EIF NPM 7QO 7SN 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K F1W FR3 H95 L.G M7N P64 RC3 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c4210-640689769e182f4e66e5a5f13798f6cdf26172c851022b7bf47ac938550c98e33 |
IEDL.DBID | 24P |
ISSN | 0028-646X 1469-8137 |
IngestDate | Fri Sep 05 17:31:48 EDT 2025 Fri Sep 05 14:15:18 EDT 2025 Fri Jul 25 12:08:09 EDT 2025 Thu Apr 03 06:57:35 EDT 2025 Thu Apr 24 23:12:28 EDT 2025 Tue Jul 01 02:28:46 EDT 2025 Wed Jan 22 16:21:43 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | below-ground traits plasticity plant hydraulics drought above-ground traits plant adjustment |
Language | English |
License | Attribution 2023 The Authors. New Phytologist © 2023 New Phytologist Foundation. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4210-640689769e182f4e66e5a5f13798f6cdf26172c851022b7bf47ac938550c98e33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-0774-3216 0000-0003-0840-1477 0000-0002-5951-2938 0000-0002-9183-6617 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.19000 |
PMID | 37306017 |
PQID | 2836123717 |
PQPubID | 2026848 |
PageCount | 1189 |
ParticipantIDs | proquest_miscellaneous_2849895691 proquest_miscellaneous_2825154539 proquest_journals_2836123717 pubmed_primary_37306017 crossref_primary_10_1111_nph_19000 crossref_citationtrail_10_1111_nph_19000 wiley_primary_10_1111_nph_19000_NPH19000 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2023 2023-08-00 20230801 |
PublicationDateYYYYMMDD | 2023-08-01 |
PublicationDate_xml | – month: 08 year: 2023 text: August 2023 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Lancaster |
PublicationTitle | The New phytologist |
PublicationTitleAlternate | New Phytol |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2002; 17 2004; 165 2019; 99 2019; 10 2016; 31 2020; 16 2004; 6 2008; 35 2020; 13 2020; 11 2009; 118 2016; 39 2021; 71 2022; 27 2022; 28 1991; 119 2018; 9 2018; 8 2018; 4 2010; 24 2000; 124 2010; 1206 2022; 34 2006; 29 2021; 151 2020; 579 2019; 439 2007; 61 2018; 219 2002; 90 2014; 17 2018; 33 2010; 30 2019; 672 2003; 164 2010; 33 2010; 37 2016; 19 2018; 106 2009; 182 2019; 34 2013; 100 2008; 59 2019; 223 2000; 70 2019; 224 2015; 528 2020; 35 2020; 34 2014; 41 2011; 6 2012; 32 2019; 221 2022; 234 2022; 235 2016; 7 2015; 115 2022; 6 2015; 63 2014; 37 2020; 26 2009; 184 2020; 23 2007; 88 2016; 22 2015; 35 2017; 40 2021; 24 2021; 27 2017; 8 2021; 21 2021; 128 2021; 127 2016; 105 2011; 17 2017; 114 2014; 65 1996; 105 2013; 19 2018; 373 2006; 60 1976; 273 1989; 78 2016; 113 2011; 21 2021; 230 2016; 117 2020; 375 2022; 76 2020; 43 2011; 25 2021; 231 2014; 165 2007; 21 2022; 129 2022; 127 2009; 23 2015; 1 2004; 85 2021; 5 2021; 4 2006; 94 2021; 102 1979; 205 2021; 229 2022; 45 2011; 31 2020; 225 2020; 227 2011; 34 2022; 42 2020; 77 2009; 29 2022; 312 2021; 12 2005; 166 2010; 259 2010; 139 2020 2020; 71 2016; 530 2017; 105 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_68_1 e_1_2_8_132_1 e_1_2_8_5_1 e_1_2_8_9_1 e_1_2_8_117_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_87_1 e_1_2_8_113_1 e_1_2_8_136_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_83_1 e_1_2_8_19_1 e_1_2_8_109_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_120_1 e_1_2_8_91_1 e_1_2_8_95_1 e_1_2_8_99_1 e_1_2_8_105_1 e_1_2_8_128_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_76_1 e_1_2_8_101_1 e_1_2_8_124_1 e_1_2_8_30_1 e_1_2_8_72_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_133_1 e_1_2_8_110_1 e_1_2_8_6_1 e_1_2_8_21_1 e_1_2_8_67_1 e_1_2_8_44_1 e_1_2_8_86_1 e_1_2_8_118_1 e_1_2_8_63_1 e_1_2_8_137_1 e_1_2_8_40_1 e_1_2_8_82_1 e_1_2_8_114_1 e_1_2_8_18_1 e_1_2_8_14_1 e_1_2_8_37_1 e_1_2_8_79_1 e_1_2_8_94_1 e_1_2_8_90_1 e_1_2_8_121_1 e_1_2_8_98_1 e_1_2_8_140_1 e_1_2_8_10_1 e_1_2_8_56_1 e_1_2_8_106_1 e_1_2_8_33_1 e_1_2_8_75_1 e_1_2_8_129_1 e_1_2_8_52_1 e_1_2_8_102_1 e_1_2_8_71_1 e_1_2_8_125_1 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_3_1 e_1_2_8_81_1 e_1_2_8_111_1 e_1_2_8_130_1 e_1_2_8_7_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_89_1 e_1_2_8_119_1 e_1_2_8_138_1 e_1_2_8_62_1 e_1_2_8_85_1 e_1_2_8_115_1 e_1_2_8_134_1 e_1_2_8_17_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_70_1 e_1_2_8_122_1 e_1_2_8_141_1 e_1_2_8_97_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_78_1 e_1_2_8_107_1 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_103_1 e_1_2_8_126_1 e_1_2_8_93_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_69_1 e_1_2_8_80_1 e_1_2_8_4_1 e_1_2_8_131_1 e_1_2_8_8_1 e_1_2_8_42_1 e_1_2_8_88_1 e_1_2_8_116_1 e_1_2_8_23_1 e_1_2_8_65_1 e_1_2_8_139_1 e_1_2_8_84_1 e_1_2_8_112_1 e_1_2_8_61_1 e_1_2_8_135_1 e_1_2_8_39_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_58_1 e_1_2_8_92_1 e_1_2_8_96_1 e_1_2_8_100_1 e_1_2_8_142_1 e_1_2_8_31_1 e_1_2_8_77_1 e_1_2_8_127_1 e_1_2_8_12_1 e_1_2_8_54_1 e_1_2_8_108_1 e_1_2_8_73_1 e_1_2_8_123_1 e_1_2_8_50_1 e_1_2_8_104_1 |
References_xml | – volume: 166 start-page: 49 year: 2005 end-page: 60 article-title: Constraints on the evolution of adaptive phenotypic plasticity in plants publication-title: New Phytologist – volume: 373 start-page: 20170311 year: 2018 article-title: Short‐term effects of drought on tropical forest do not fully predict impacts of repeated or long‐term drought: gas exchange versus growth publication-title: Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences – volume: 17 start-page: 66 year: 2002 end-page: 70 article-title: Testing the beneficial acclimation hypothesis publication-title: Trends in Ecology & Evolution – volume: 78 start-page: 496 year: 1989 end-page: 501 article-title: Phenotypic plasticity in : II. Plasticity of character correlations publication-title: Oecologia – volume: 12 year: 2021 article-title: Leaf shedding and non‐stomatal limitations of photosynthesis mitigate hydraulic conductance losses in Scots pine saplings during severe drought stress publication-title: Frontiers in Plant Science – volume: 71 start-page: 6623 year: 2021 end-page: 6637 article-title: Non‐invasive imaging reveals convergence in root and stem vulnerability to cavitation across five tree species publication-title: Journal of Experimental Botany – volume: 34 start-page: 643 year: 2011 end-page: 654 article-title: Climate‐related trends in sapwood biophysical properties in two conifers: avoidance of hydraulic dysfunction through coordinated adjustments in xylem efficiency, safety and capacitance publication-title: Plant, Cell & Environment – start-page: 129 year: 2020 end-page: 153 – volume: 17 start-page: 1580 year: 2014 end-page: 1590 article-title: Global analysis of plasticity in turgor loss point, a key drought tolerance trait publication-title: Ecology Letters – volume: 6 start-page: 269 year: 2004 end-page: 279 article-title: Diffusive and metabolic limitations to photosynthesis under drought and salinity in C plants publication-title: Plant Biology – volume: 31 start-page: 1175 year: 2011 end-page: 1182 article-title: Genotypic variability and phenotypic plasticity of cavitation resistance in L. across Europe publication-title: Tree Physiology – volume: 151 year: 2021 article-title: Root lateral interactions drive water uptake patterns under water limitation publication-title: Advances in Water Resources – volume: 117 start-page: 133 year: 2016 end-page: 144 article-title: Long‐term water stress leads to acclimation of drought sensitivity of photosynthetic capacity in xeric but not riparian species publication-title: Annals of Botany – volume: 27 start-page: 6454 year: 2021 end-page: 6466 article-title: Stability of tropical forest tree carbon‐water relations in a rainfall exclusion treatment through shifts in effective water uptake depth publication-title: Global Change Biology – volume: 225 start-page: 546 year: 2020 end-page: 557 article-title: Natural selection acting on integrated phenotypes: covariance among functional leaf traits increases plant fitness publication-title: New Phytologist – volume: 231 start-page: 2125 year: 2021 end-page: 2141 article-title: Eco‐evolutionary optimality as a means to improve vegetation and land‐surface models publication-title: New Phytologist – volume: 23 start-page: 1599 year: 2020 end-page: 1610 article-title: Adaptation and coordinated evolution of plant hydraulic traits publication-title: Ecology Letters – volume: 259 start-page: 660 year: 2010 end-page: 684 article-title: A global overview of drought and heat‐induced tree mortality reveals emerging climate change risks for forests publication-title: Forest Ecology and Management – volume: 224 start-page: 1544 year: 2019 end-page: 1556 article-title: Leaf economics and plant hydraulics drive leaf: wood area ratios publication-title: New Phytologist – volume: 4 year: 2018 article-title: Drought will not leave your glass empty: low risk of hydraulic failure revealed by long‐term drought observations in world's top wine regions publication-title: Science Advances – volume: 99 start-page: 1 year: 2019 end-page: 11 article-title: Effects of precipitation change on fine root morphology and dynamics at a global scale: a meta‐analysis publication-title: Canadian Journal of Soil Science – volume: 22 start-page: 1029 year: 2016 end-page: 1045 article-title: Drought stress limits the geographic ranges of two tree species via different physiological mechanisms publication-title: Global Change Biology – volume: 10 start-page: 2277 year: 2019 article-title: Plant growth and soil microbial impacts of enhancing licorice with inoculating dark septate endophytes under drought stress publication-title: Frontiers in Microbiology – volume: 90 start-page: 199 year: 2002 end-page: 207 article-title: Phenotypic plasticity and integration in response to flooded conditions in natural accessions of (L.) Heynh (Brassicaceae) publication-title: Annals of Botany – volume: 32 start-page: 880 year: 2012 end-page: 893 article-title: Hydraulic differences along the water transport system of South American species: do leaves protect the stem functionality? publication-title: Tree Physiology – volume: 43 start-page: 2380 year: 2020 end-page: 2393 article-title: Small tropical forest trees have a greater capacity to adjust carbon metabolism to long‐term drought than large canopy trees publication-title: Plant, Cell & Environment – volume: 41 start-page: 1697 year: 2014 end-page: 1709 article-title: subsp. (Moraceae) reveals the role of ecology in the phylogeography of widespread Neotropical rain forest tree species publication-title: Journal of Biogeography – volume: 85 start-page: 2184 year: 2004 end-page: 2199 article-title: Adaptive variation in the vulnerability of woody plants to xylem cavitation publication-title: Ecology – volume: 37 start-page: 117 year: 2010 article-title: Adaptive phenotypic plasticity and plant water use publication-title: Functional Plant Biology – volume: 273 start-page: 479 year: 1976 end-page: 500 article-title: Water stress, growth and osmotic adjustment publication-title: Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences – volume: 113 start-page: 13098 year: 2016 end-page: 13103 article-title: The correlations and sequence of plant stomatal, hydraulic, and wilting responses to drought publication-title: Proceedings of the National Academy of Sciences, USA – volume: 26 start-page: 3569 year: 2020 end-page: 3584 article-title: Amazonia trees have limited capacity to acclimate plant hydraulic properties in response to long‐term drought publication-title: Global Change Biology – volume: 34 start-page: 215 year: 2022 end-page: 225 article-title: Long‐term drought adaptation of unirrigated grapevines ( L.) publication-title: Theoretical and Experimental Plant Physiology – volume: 530 start-page: 211 year: 2016 end-page: 214 article-title: Biomass resilience of Neotropical secondary forests publication-title: Nature – volume: 27 start-page: 717 year: 2022 end-page: 728 article-title: Active and adaptive plasticity in a changing climate publication-title: Trends in Plant Science – volume: 184 start-page: 353 year: 2009 end-page: 364 article-title: Hydraulic adjustment of Scots pine across Europe publication-title: New Phytologist – volume: 439 start-page: 259 year: 2019 end-page: 272 article-title: Dark septate endophytes improve the growth of host and non‐host plants under drought stress through altered root development publication-title: Plant and Soil – volume: 76 start-page: 858 year: 2022 end-page: 869 article-title: Why study plasticity in multiple traits? New hypotheses for how phenotypically plastic traits interact during development and selection publication-title: Evolution – volume: 34 start-page: 1015 year: 2020 end-page: 1028 article-title: Distinguishing between active plasticity due to thermal acclimation and passive plasticity due to effects: why methodology matters publication-title: Functional Ecology – volume: 225 start-page: 1899 year: 2020 end-page: 1905 article-title: Plant root exudation under drought: implications for ecosystem functioning publication-title: New Phytologist – volume: 77 start-page: 49 year: 2020 article-title: How do social status and tree architecture influence radial growth, wood density and drought response in spontaneously established oak forests? publication-title: Annals of Forest Science – volume: 45 start-page: 1967 year: 2022 end-page: 1984 article-title: Drought acclimation of leaves improves tolerance to moderate drought but not resistance to severe water stress publication-title: Plant, Cell & Environment – volume: 118 start-page: 1924 year: 2009 end-page: 1928 article-title: Phenotypic integration may constrain phenotypic plasticity in plants publication-title: Oikos – volume: 230 start-page: 27 year: 2021 end-page: 45 article-title: Positive pressure in xylem and its role in hydraulic function publication-title: New Phytologist – volume: 65 start-page: 6457 year: 2014 end-page: 6469 article-title: Multivariate genetic analysis of plant responses to water deficit and high temperature revealed contrasting adaptive strategies publication-title: Journal of Experimental Botany – volume: 28 start-page: 6905 year: 2022 end-page: 6889 article-title: Dynamics of initial carbon allocation after drought release in mature Norway spruce – increased belowground allocation of current photoassimilates covers only half of the carbon used for fine‐root growth publication-title: Global Change Biology – volume: 106 start-page: 1673 year: 2018 end-page: 1682 article-title: Shock and stabilisation following long‐term drought in tropical forest from 15 years of litterfall dynamics publication-title: Journal of Ecology – volume: 124 start-page: 8 year: 2000 end-page: 18 article-title: Changes in drought response strategies with ontogeny in : implications for scaling from seedlings to mature trees publication-title: Oecologia – volume: 37 start-page: 617 year: 2014 end-page: 626 article-title: Rapid hydraulic recovery in after drought: linkages between stem hydraulics and leaf gas exchange publication-title: Plant, Cell & Environment – volume: 182 start-page: 565 year: 2009 end-page: 588 article-title: Causes and consequences of variation in leaf mass per area (LMA): a meta‐analysis publication-title: New Phytologist – volume: 227 start-page: 1081 year: 2020 end-page: 1096 article-title: Determinants of legacy effects in pine trees – implications from an irrigation‐stop experiment publication-title: New Phytologist – volume: 312 year: 2022 article-title: Stress memory and phyllosphere/soil legacy underlie tolerance and plasticity of to periodic drought risk publication-title: Agricultural and Forest Meteorology – volume: 221 start-page: 669 year: 2019 end-page: 692 article-title: Diversification, adaptation, and community assembly of the American oaks ( ), a model clade for integrating ecology and evolution publication-title: New Phytologist – volume: 21 start-page: 1063 year: 2007 end-page: 1071 article-title: Adjustment of structure and function of Hawaiian at high vs. low precipitation publication-title: Functional Ecology – volume: 105 start-page: 109 year: 2016 end-page: 125 article-title: Bacterial‐mediated drought tolerance: current and future prospects publication-title: Applied Soil Ecology – volume: 127 start-page: 519 year: 2021 end-page: 531 article-title: Intraspecific trait variation influences physiological performance and fitness in the South Africa shrub genus (Proteaceae) publication-title: Annals of Botany – volume: 128 start-page: 1 year: 2021 end-page: 16 article-title: Significance of root hairs for plant performance under contrasting field conditions and water deficit publication-title: Annals of Botany – volume: 1206 start-page: 35 year: 2010 end-page: 55 article-title: Global change and the evolution of phenotypic plasticity in plants publication-title: Annals of the New York Academy of Sciences – volume: 30 start-page: 1001 year: 2010 end-page: 1015 article-title: Variable conductivity and embolism in roots and branches of four contrasting tree species and their impacts on whole‐plant hydraulic performance under future atmospheric CO concentration publication-title: Tree Physiology – volume: 9 start-page: 301 year: 2018 article-title: Arbuscular mycorrhiza improves substrate hydraulic conductivity in the plant available moisture range under root growth exclusion publication-title: Frontiers in Plant Science – volume: 5 start-page: 174 year: 2021 end-page: 183 article-title: The interspecific growth‐mortality trade‐off is not a general framework for tropical forest community structure publication-title: Nature Ecology & Evolution – volume: 19 start-page: 2413 year: 2013 end-page: 2426 article-title: The temporal response to drought in a Mediterranean evergreen tree: comparing a regional precipitation gradient and a throughfall exclusion experiment publication-title: Global Change Biology – volume: 6 start-page: 540 year: 2022 end-page: 545 article-title: Field experiments underestimate aboveground biomass response to drought publication-title: Nature Ecology & Evolution – volume: 70 start-page: 517 year: 2000 end-page: 537 article-title: Intra‐and interspecific variation for summer precipitation use in pinyon‐juniper woodlands publication-title: Ecological Monographs – volume: 12 year: 2021 article-title: The Kroof experiment: realization and efficacy of a recurrent drought experiment plus recovery in a beech/spruce forest publication-title: Ecosphere – volume: 229 start-page: 1375 year: 2021 end-page: 1387 article-title: Aridity drives coordinated trait shifts but not decreased trait variance across the geographic range of eight Australian trees publication-title: New Phytologist – volume: 219 start-page: 1145 year: 2018 end-page: 1149 article-title: The importance of phyllosphere on plant functional ecology: a phyllo trait manifesto publication-title: New Phytologist – volume: 61 start-page: 455 year: 2007 end-page: 469 article-title: The causes of variation in tree seedling traits: the roles of environmental selection versus chance publication-title: Evolution – volume: 6 year: 2011 article-title: Uniform selection as a primary force reducing population genetic differentiation of cavitation resistance across a species range publication-title: PLoS ONE – volume: 39 start-page: 618 year: 2016 end-page: 627 article-title: Rooting depth, water relations and non‐structural carbohydrate dynamics in three woody angiosperms differentially affected by an extreme summer drought publication-title: Plant, Cell & Environment – volume: 88 start-page: 683 year: 2007 end-page: 692 article-title: Analysis of two‐state multivariate phenotypic change in ecological studies publication-title: Ecology – volume: 115 start-page: 276 year: 2015 end-page: 284 article-title: Rethinking phenotypic plasticity and its consequences for individuals, populations and species publication-title: Heredity – volume: 28 start-page: 2541 year: 2022 end-page: 2554 article-title: Representing plant diversity in land models: an evolutionary approach to make “functional types” more functional publication-title: Global Change Biology – volume: 235 start-page: 2183 year: 2022 end-page: 2198 article-title: Divergence of hydraulic traits among tropical forest trees across topographic and vertical environment gradients in Borneo publication-title: New Phytologist – volume: 11 start-page: 2999 year: 2020 article-title: Robust leaf trait relationships across species under global environmental changes publication-title: Nature Communications – volume: 40 start-page: 816 year: 2017 end-page: 830 article-title: Predicting stomatal responses to the environment from the optimization of photosynthetic gain and hydraulic cost publication-title: Plant, Cell & Environment – volume: 105 start-page: 293 year: 1996 end-page: 301 article-title: Root and stem xylem embolism, stomatal conductance, and leaf turgor in populations along a soil moisture gradient publication-title: Oecologia – volume: 7 start-page: 1601 year: 2016 article-title: The application of leaf ultrasonic resonance to L. suggests the existence of a diurnal osmotic adjustment subjected to photosynthesis publication-title: Frontiers in Plant Science – volume: 35 start-page: 34 year: 2015 end-page: 46 article-title: Variation in photosynthetic performance and hydraulic architecture across European beech ( L.) populations supports the case for local adaptation to water stress publication-title: Tree Physiology – volume: 8 start-page: 1056 year: 2017 article-title: Enhanced drought stress tolerance by the arbuscular mycorrhizal symbiosis in a drought‐sensitive maize cultivar is related to a broader and differential regulation of host plant aquaporins than in a drought‐tolerant cultivar publication-title: Frontiers in Plant Science – volume: 28 start-page: 5086 year: 2022 end-page: 5103 article-title: Drought legacies and ecosystem responses to subsequent drought publication-title: Global Change Biology – volume: 33 start-page: 1553 year: 2010 end-page: 1568 article-title: Common trade‐offs between xylem resistance to cavitation and other physiological traits do not hold among unrelated × hybrids publication-title: Plant, Cell & Environment – volume: 42 start-page: 537 year: 2022 end-page: 556 article-title: Small understorey trees have greater capacity than canopy trees to adjust hydraulic traits following prolonged experimental drought in a tropical forest publication-title: Tree Physiology – volume: 21 start-page: 394 year: 2007 end-page: 407 article-title: Adaptive versus non‐adaptive phenotypic plasticity and the potential for contemporary adaptation in new environments publication-title: Functional Ecology – volume: 35 start-page: 1234 year: 2008 end-page: 1242 article-title: Rooting depth and leaf hydraulic conductance in the xeric tree growing at sites of contrasting soil texture publication-title: Functional Plant Biology – volume: 24 start-page: 2267 year: 2021 end-page: 2281 article-title: Global trends in phenotypic plasticity of plants publication-title: Ecology Letters – volume: 29 start-page: 535 year: 2006 end-page: 545 article-title: Adjustments in hydraulic architecture of maintain similar stomatal conductance in xeric and mesic habitats publication-title: Plant, Cell & Environment – volume: 16 year: 2020 article-title: RNA‐directed DNA methylation publication-title: PLoS Genetics – volume: 25 start-page: 1033 year: 2011 end-page: 1042 article-title: Phenotypic plasticity in mesic populations of improves resistance to xylem embolism ( ) under severe drought publication-title: Trees – volume: 579 start-page: 80 year: 2020 end-page: 87 article-title: Asynchronous carbon sink saturation in African and Amazonian tropical forests publication-title: Nature – volume: 119 start-page: 345 year: 1991 end-page: 360 article-title: The hydraulic architecture of trees and other woody plants publication-title: New Phytologist – volume: 35 start-page: 43 year: 2020 end-page: 53 article-title: The response of carbon assimilation and storage to long‐term drought in tropical trees is dependent on light availability publication-title: Functional Ecology – volume: 127 year: 2022 article-title: Root foraging alters global patterns of ecosystem legacy from climate perturbations publication-title: Journal of Geophysical Research: Biogeosciences – volume: 23 start-page: 922 year: 2009 end-page: 930 article-title: Xylem hydraulic safety margins in woody plants: coordination of stomatal control of xylem tension with hydraulic capacitance publication-title: Functional Ecology – volume: 164 start-page: S55 year: 2003 end-page: S77 article-title: Evolution of CAM and C carbon‐concentrating mechanisms publication-title: International Journal of Plant Sciences – volume: 24 start-page: 1321 year: 2010 end-page: 1337 article-title: The plasticity of phenotypic integration in response to light and water availability in the pepper grass, publication-title: Evolutionary Ecology – volume: 229 start-page: 1363 year: 2021 end-page: 1374 article-title: Plant traits controlling growth change in response to a drier climate publication-title: New Phytologist – volume: 227 start-page: 794 year: 2020 end-page: 809 article-title: Correlated evolution of morphology, gas exchange, growth rates and hydraulics as a response to precipitation and temperature regimes in oaks ( ) publication-title: New Phytologist – volume: 13 start-page: 304 year: 2020 end-page: 312 article-title: Decoupled drought responses of fine‐root versus leaf acquisitive traits among six hybrids publication-title: Journal of Plant Ecology – volume: 59 start-page: 3317 year: 2008 end-page: 3325 article-title: Responses of leaf stomatal density to water status and its relationship with photosynthesis in a grass publication-title: Journal of Experimental Botany – volume: 21 start-page: 71 year: 2011 end-page: 90 article-title: Ectomycorrhizas and water relations of trees: a review publication-title: Mycorrhiza – volume: 102 year: 2021 article-title: Reconciling trait based perspectives along a trait‐integration continuum publication-title: Ecology – volume: 100 start-page: 1445 year: 2013 end-page: 1457 article-title: Fungal symbionts alter plant responses to global change publication-title: American Journal of Botany – volume: 8 start-page: 12696 year: 2018 article-title: Root exudate metabolomes change under drought and show limited capacity for recovery publication-title: Scientific Reports – volume: 229 start-page: 3009 year: 2021 end-page: 3025 article-title: Selection patterns on early‐life phenotypic traits in are associated with precipitation and temperature along a climatic gradient in Europe publication-title: New Phytologist – volume: 235 start-page: 965 year: 2022 end-page: 977 article-title: Carbon allocation to root exudates is maintained in mature temperate tree species under drought publication-title: New Phytologist – volume: 129 start-page: 389 year: 2022 end-page: 402 article-title: Root pressure–volume curve traits capture rootstock drought tolerance publication-title: Annals of Botany – volume: 94 start-page: 1103 year: 2006 end-page: 1116 article-title: Quantitative estimation of phenotypic plasticity: bridging the gap between the evolutionary concept and its ecological applications publication-title: Journal of Ecology – volume: 105 start-page: 1775 year: 2017 end-page: 1790 article-title: Interspecific integration of trait dimensions at local scales: the plant phenotype as an integrated network publication-title: Journal of Ecology – volume: 4 year: 2021 article-title: Tree mortality: testing the link between drought, embolism vulnerability, and xylem conduit diameter remains a priority publication-title: Frontiers in Forests and Global Change – volume: 33 start-page: 251 year: 2018 end-page: 259 article-title: Towards a comparable quantification of resilience publication-title: Trends in Ecology & Evolution – volume: 114 start-page: 11536 year: 2017 end-page: 11541 article-title: Natural variation identifies genes affecting drought‐induced abscisic acid accumulation in publication-title: Proceedings of the National Academy of Sciences, USA – volume: 29 start-page: 765 year: 2009 end-page: 775 article-title: Intraspecific differences in drought tolerance and acclimation in hydraulics of and publication-title: Tree Physiology – volume: 17 start-page: 2905 year: 2011 end-page: 2935 article-title: TRY – a global database of plant traits publication-title: Global Change Biology – volume: 19 start-page: 1343 year: 2016 end-page: 1352 article-title: Mapping ‘hydroscapes’ along the iso‐ to anisohydric continuum of stomatal regulation of plant water status publication-title: Ecology Letters – volume: 65 start-page: 3425 year: 2014 end-page: 3441 article-title: Facultative crassulacean acid metabolism (CAM) plants: powerful tools for unravelling the functional elements of CAM photosynthesis publication-title: Journal of Experimental Botany – volume: 230 start-page: 2226 year: 2021 end-page: 2245 article-title: Coupled whole‐tree optimality and xylem hydraulics explain dynamic biomass partitioning publication-title: New Phytologist – volume: 672 start-page: 583 year: 2019 end-page: 592 article-title: An integrated phenotypic trait‐network in thermo‐Mediterranean vegetation describing alternative, coexisting resource‐use strategies publication-title: Science of the Total Environment – volume: 63 start-page: 28 year: 2015 end-page: 35 article-title: Hydraulic properties and fine root mass of along forest edge‐interior gradients publication-title: Acta Oecologica – volume: 234 start-page: 462 year: 2022 end-page: 478 article-title: Multi‐trait genetic variation in resource‐use strategies and phenotypic plasticity correlates with local climate across the range of a Mediterranean oak ( ) publication-title: New Phytologist – volume: 165 start-page: 825 year: 2004 end-page: 832 article-title: Plasticity of traits and correlations in two populations of (Convolvulaceae) differing in environmental heterogeneity publication-title: International Journal of Plant Sciences – volume: 375 start-page: 20190527 year: 2020 article-title: Non‐stomatal processes reduce gross primary productivity in temperate forest ecosystems during severe edaphic drought publication-title: Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences – volume: 31 start-page: 1067 year: 2011 end-page: 1075 article-title: Hydraulic traits are associated with the distribution range of two closely related Mediterranean firs, Mill. and Boiss publication-title: Tree Physiology – volume: 528 start-page: 119 year: 2015 end-page: 122 article-title: Death from drought in tropical forests is triggered by hydraulics not carbon starvation publication-title: Nature – volume: 31 start-page: 237 year: 2016 end-page: 249 article-title: Evolution of plasticity: mechanistic link between development and reversible acclimation publication-title: Trends in Ecology & Evolution – volume: 205 start-page: 581 year: 1979 end-page: 598 article-title: The spandrels of San Marco and the Panglossian paradigm: a critique of the adaptationist programme publication-title: Proceedings of the Royal Society of London. Series B: Biological Sciences – volume: 71 start-page: 4232 year: 2020 end-page: 4242 article-title: Hydraulic traits vary as the result of tip‐to‐base conduit widening in vascular plants publication-title: Journal of Experimental Botany – year: 2020 – volume: 231 start-page: 2359 year: 2021 end-page: 2370 article-title: Phenotypic integration does not constrain phenotypic plasticity: differential plasticity of traits is associated to their integration across environments publication-title: New Phytologist – volume: 1 start-page: 15139 year: 2015 article-title: Larger trees suffer most during drought in forests worldwide publication-title: Nature Plants – volume: 223 start-page: 632 year: 2019 end-page: 646 article-title: Adjustments and coordination of hydraulic, leaf and stem traits along a water availability gradient publication-title: New Phytologist – volume: 19 start-page: 1188 year: 2013 end-page: 1196 article-title: Drought's legacy: multiyear hydraulic deterioration underlies widespread aspen forest die‐off and portends increased future risk publication-title: Global Change Biology – volume: 124 start-page: 495 year: 2000 end-page: 505 article-title: Influence of soil porosity on water use in publication-title: Oecologia – volume: 21 start-page: 171 year: 2021 article-title: Effects of ectomycorrhizal fungi ( ) on the growth, hydraulic function, and non‐structural carbohydrates of under drought stress publication-title: BMC Plant Biology – volume: 165 start-page: 15 year: 2014 end-page: 24 article-title: Root hydraulics: the forgotten side of roots in drought adaptation publication-title: Field Crops Research – volume: 4 year: 2021 article-title: Mycorrhizal symbiosis for better adaptation of trees to abiotic stress caused by climate change in temperate and boreal forests publication-title: Frontiers in Forests and Global Change – volume: 139 start-page: 280 year: 2010 end-page: 288 article-title: Poplar vulnerability to xylem cavitation acclimates to drier soil conditions publication-title: Physiologia Plantarum – volume: 45 start-page: 2744 year: 2022 end-page: 2761 article-title: Predicting resilience through the lens of competing adjustments to vegetation function publication-title: Plant, Cell & Environment – volume: 60 start-page: 980 year: 2006 end-page: 990 article-title: Plasticity of physiology in : testing for adaptation and constraint publication-title: Evolution – volume: 230 start-page: 497 year: 2021 end-page: 509 article-title: Coordination of stem and leaf traits define different strategies to regulate water loss and tolerance ranges to aridity publication-title: New Phytologist – volume: 34 start-page: 193 year: 2019 end-page: 199 article-title: When short stature is an asset in trees publication-title: Trends in Ecology & Evolution – ident: e_1_2_8_17_1 doi: 10.1093/aob/mcab132 – ident: e_1_2_8_67_1 doi: 10.1007/978-3-030-21001-4_9 – ident: e_1_2_8_41_1 doi: 10.1016/j.tree.2018.10.011 – ident: e_1_2_8_35_1 doi: 10.1007/s00468-011-0578-2 – ident: e_1_2_8_99_1 doi: 10.1007/s40626-022-00243-3 – ident: e_1_2_8_86_1 doi: 10.1111/ele.12670 – ident: e_1_2_8_105_1 doi: 10.1038/nature16512 – ident: e_1_2_8_95_1 doi: 10.1071/FP09139 – ident: e_1_2_8_122_1 doi: 10.1111/nph.17968 – ident: e_1_2_8_23_1 doi: 10.1111/nph.18280 – ident: e_1_2_8_28_1 doi: 10.1093/treephys/tps054 – ident: e_1_2_8_27_1 doi: 10.1111/nph.18157 – ident: e_1_2_8_7_1 doi: 10.1111/gcb.16040 – ident: e_1_2_8_19_1 doi: 10.1016/j.tree.2016.01.004 – ident: e_1_2_8_45_1 doi: 10.1038/hdy.2014.92 – ident: e_1_2_8_93_1 doi: 10.1111/pce.12646 – ident: e_1_2_8_135_1 doi: 10.1093/jxb/eru063 – ident: e_1_2_8_76_1 doi: 10.1890/02-0538 – ident: e_1_2_8_96_1 doi: 10.1111/evo.14464 – ident: e_1_2_8_18_1 doi: 10.1111/ele.12374 – ident: e_1_2_8_52_1 doi: 10.1098/rstb.2019.0527 – ident: e_1_2_8_97_1 – ident: e_1_2_8_107_1 doi: 10.3389/fpls.2017.01056 – ident: e_1_2_8_72_1 doi: 10.1007/s11104-019-04057-2 – ident: e_1_2_8_92_1 doi: 10.3389/fpls.2021.715127 – ident: e_1_2_8_110_1 doi: 10.1111/nph.15235 – ident: e_1_2_8_53_1 doi: 10.1002/ecs2.3399 – ident: e_1_2_8_36_1 doi: 10.1111/j.1365-2435.2007.01323.x – ident: e_1_2_8_94_1 doi: 10.1016/j.apsoil.2016.04.009 – ident: e_1_2_8_55_1 doi: 10.1111/nph.17558 – ident: e_1_2_8_59_1 doi: 10.1111/jbi.12326 – ident: e_1_2_8_116_1 doi: 10.1038/s41559-020-01340-9 – ident: e_1_2_8_138_1 doi: 10.1093/jxb/ern185 – ident: e_1_2_8_4_1 doi: 10.1007/BF00328731 – ident: e_1_2_8_31_1 doi: 10.1007/PL00008865 – ident: e_1_2_8_85_1 doi: 10.1111/j.1365-2435.2009.01577.x – ident: e_1_2_8_126_1 doi: 10.1111/j.1469-8137.1991.tb00035.x – ident: e_1_2_8_64_1 doi: 10.1111/j.1365-2486.2011.02451.x – ident: e_1_2_8_127_1 doi: 10.3389/ffgc.2021.742392 – ident: e_1_2_8_103_1 doi: 10.1111/gcb.15869 – ident: e_1_2_8_58_1 doi: 10.1111/gcb.16388 – ident: e_1_2_8_65_1 doi: 10.1086/374192 – ident: e_1_2_8_129_1 doi: 10.1111/j.1365-2745.2006.01176.x – ident: e_1_2_8_49_1 doi: 10.1111/j.1600-0706.2009.17884.x – ident: e_1_2_8_69_1 doi: 10.1038/s41559-022-01685-3 – ident: e_1_2_8_141_1 doi: 10.1093/jpe/rtaa015 – ident: e_1_2_8_39_1 doi: 10.1093/treephys/tpq054 – ident: e_1_2_8_61_1 doi: 10.1038/s41586-020-2035-0 – ident: e_1_2_8_44_1 doi: 10.1002/ecy.3472 – ident: e_1_2_8_8_1 doi: 10.1111/gcb.13148 – ident: e_1_2_8_33_1 doi: 10.1016/j.actao.2014.11.008 – ident: e_1_2_8_26_1 doi: 10.1016/j.tplants.2022.02.004 – ident: e_1_2_8_57_1 doi: 10.3389/fmicb.2019.02277 – ident: e_1_2_8_77_1 doi: 10.1007/s10682-010-9373-6 – ident: e_1_2_8_13_1 doi: 10.1111/j.1399-3054.2010.01367.x – ident: e_1_2_8_137_1 doi: 10.1071/FP08175 – ident: e_1_2_8_142_1 doi: 10.1111/nph.16582 – ident: e_1_2_8_90_1 doi: 10.1016/j.scitotenv.2019.04.030 – ident: e_1_2_8_114_1 doi: 10.1111/1365-2435.13689 – ident: e_1_2_8_66_1 doi: 10.3732/ajb.1200558 – ident: e_1_2_8_14_1 doi: 10.1111/j.1365-3040.2010.02269.x – ident: e_1_2_8_71_1 doi: 10.1007/s00572-010-0348-9 – ident: e_1_2_8_84_1 doi: 10.1111/j.1749-6632.2010.05704.x – ident: e_1_2_8_60_1 doi: 10.1098/rstb.1976.0026 – ident: e_1_2_8_21_1 doi: 10.1038/nplants.2015.139 – ident: e_1_2_8_91_1 doi: 10.1111/gcb.16270 – ident: e_1_2_8_15_1 doi: 10.1111/pce.13838 – ident: e_1_2_8_43_1 doi: 10.1055/s-2004-820867 – ident: e_1_2_8_104_1 doi: 10.1111/j.1469-8137.2009.02830.x – ident: e_1_2_8_132_1 doi: 10.1111/nph.16223 – ident: e_1_2_8_112_1 doi: 10.1038/nature15539 – ident: e_1_2_8_101_1 doi: 10.1093/jxb/eraa381 – ident: e_1_2_8_63_1 doi: 10.1073/pnas.1705884114 – ident: e_1_2_8_56_1 doi: 10.1111/1365-2435.13534 – ident: e_1_2_8_87_1 doi: 10.1098/rstb.2017.0311 – ident: e_1_2_8_48_1 doi: 10.1086/422050 – ident: e_1_2_8_119_1 doi: 10.3389/fpls.2016.01601 – ident: e_1_2_8_38_1 doi: 10.1111/nph.16116 – ident: e_1_2_8_70_1 doi: 10.1371/journal.pone.0023476 – ident: e_1_2_8_121_1 doi: 10.1007/BF00378740 – ident: e_1_2_8_106_1 doi: 10.1111/nph.17242 – ident: e_1_2_8_88_1 doi: 10.1111/nph.15998 – ident: e_1_2_8_2_1 doi: 10.1111/j.1365-3040.2005.01430.x – ident: e_1_2_8_37_1 doi: 10.1038/s41467-020-16839-9 – ident: e_1_2_8_73_1 doi: 10.1016/j.agrformet.2021.108717 – ident: e_1_2_8_131_1 doi: 10.1186/s12870-021-02945-3 – ident: e_1_2_8_11_1 doi: 10.3389/ffgc.2021.704670 – ident: e_1_2_8_139_1 doi: 10.1139/cjss-2018-0114 – ident: e_1_2_8_29_1 doi: 10.1111/j.0014-3820.2006.tb01176.x – ident: e_1_2_8_120_1 doi: 10.1111/nph.17085 – ident: e_1_2_8_42_1 doi: 10.1111/j.1365-3040.2010.02164.x – ident: e_1_2_8_83_1 doi: 10.1111/nph.17536 – ident: e_1_2_8_111_1 doi: 10.1111/nph.15684 – ident: e_1_2_8_128_1 doi: 10.1016/j.fcr.2014.03.017 – ident: e_1_2_8_130_1 doi: 10.1093/jxb/eru364 – ident: e_1_2_8_79_1 doi: 10.1111/j.1742-4658.2007.00021.x – ident: e_1_2_8_89_1 doi: 10.1111/1365-2745.12755 – ident: e_1_2_8_98_1 doi: 10.1093/aob/mcaa060 – ident: e_1_2_8_5_1 doi: 10.1007/s13595-020-00949-x – ident: e_1_2_8_74_1 doi: 10.1111/pce.14326 – ident: e_1_2_8_9_1 doi: 10.1111/nph.16795 – ident: e_1_2_8_24_1 doi: 10.1111/gcb.15040 – ident: e_1_2_8_82_1 doi: 10.1111/pce.12182 – ident: e_1_2_8_123_1 doi: 10.1093/jxb/eraa157 – ident: e_1_2_8_140_1 doi: 10.1093/aob/mcv161 – ident: e_1_2_8_12_1 doi: 10.1093/treephys/tpu101 – ident: e_1_2_8_81_1 doi: 10.1111/j.1469-8137.2009.02954.x – ident: e_1_2_8_118_1 doi: 10.1111/ele.13584 – ident: e_1_2_8_20_1 doi: 10.1093/treephys/tpp018 – ident: e_1_2_8_115_1 doi: 10.1111/nph.16972 – ident: e_1_2_8_40_1 doi: 10.1371/journal.pgen.1009034 – ident: e_1_2_8_113_1 doi: 10.1111/1365-2745.12931 – ident: e_1_2_8_109_1 doi: 10.1111/nph.17029 – ident: e_1_2_8_125_1 doi: 10.1111/ele.13827 – ident: e_1_2_8_51_1 doi: 10.1098/rspb.1979.0086 – ident: e_1_2_8_34_1 doi: 10.1890/06-0727 – ident: e_1_2_8_46_1 doi: 10.1038/s41598-018-30150-0 – ident: e_1_2_8_78_1 doi: 10.1093/aob/mcaa181 – ident: e_1_2_8_134_1 doi: 10.1016/S0169-5347(01)02384-9 – ident: e_1_2_8_54_1 doi: 10.1007/PL00008875 – ident: e_1_2_8_50_1 doi: 10.1093/treephys/tpab121 – ident: e_1_2_8_47_1 doi: 10.1111/j.1365-2435.2007.01283.x – ident: e_1_2_8_80_1 doi: 10.1111/gcb.12215 – ident: e_1_2_8_3_1 doi: 10.1016/j.advwatres.2021.103896 – ident: e_1_2_8_75_1 doi: 10.1111/nph.17185 – ident: e_1_2_8_25_1 doi: 10.3389/fpls.2018.00301 – ident: e_1_2_8_68_1 doi: 10.1111/j.1469-8137.2004.01296.x – ident: e_1_2_8_16_1 doi: 10.1073/pnas.1604088113 – ident: e_1_2_8_30_1 doi: 10.1111/nph.15450 – ident: e_1_2_8_100_1 doi: 10.1093/treephys/tpr092 – ident: e_1_2_8_6_1 doi: 10.1016/j.foreco.2009.09.001 – ident: e_1_2_8_102_1 doi: 10.1093/aob/mcf164 – ident: e_1_2_8_136_1 doi: 10.1093/treephys/tpr101 – ident: e_1_2_8_108_1 doi: 10.1111/nph.16320 – ident: e_1_2_8_117_1 doi: 10.1111/pce.14376 – ident: e_1_2_8_124_1 doi: 10.1111/pce.12852 – ident: e_1_2_8_10_1 doi: 10.1111/gcb.12100 – ident: e_1_2_8_22_1 doi: 10.1029/2021JG006612 – ident: e_1_2_8_32_1 doi: 10.1126/sciadv.aao6969 – ident: e_1_2_8_62_1 doi: 10.1016/j.tree.2018.01.013 – ident: e_1_2_8_133_1 doi: 10.1890/0012-9615(2000)070[0517:IAIVFS]2.0.CO;2 |
SSID | ssj0009562 |
Score | 2.6039605 |
SecondaryResourceType | review_article |
Snippet | Summary
Future increases in drought severity and frequency are predicted to have substantial impacts on plant function and survival. However, there is... Future increases in drought severity and frequency are predicted to have substantial impacts on plant function and survival. However, there is considerable... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1173 |
SubjectTerms | above‐ground traits below‐ground traits Drought Droughts Impact prediction Phenotype Photosynthesis plant adjustment plant hydraulics Plant Leaves - physiology Plant Physiological Phenomena Plants plasticity Survival Uncertainty Woody plants |
Title | How woody plants adjust above‐ and below‐ground traits in response to sustained drought |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.19000 https://www.ncbi.nlm.nih.gov/pubmed/37306017 https://www.proquest.com/docview/2836123717 https://www.proquest.com/docview/2825154539 https://www.proquest.com/docview/2849895691 |
Volume | 239 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB60evAivq0vVvHgJdImm22CJ58UQRFRKHgI-woqJSk2VXrzJ_gb_SXO5IXiAy8hIROymdnZ_SY7-w3ArgyE4sK0HOUZ1-Fa-o50ecfB8dLXoh3zTr56fnEpurf8vOf3JuCg2gtT8EPUP9zIM_LxmhxcquEnJ08G9_ttKnk5CVO0tZbqNrj86hPjrnArCmbBRa-kFaI0nvrRr5PRN4T5FbDmM87ZHMyWUJEdFradhwmbLMD0UYpwbrwId930hVHCzJgN-pTMwqR5HA0zhlZ9tu-vb0wmhinbT1_wgjZv4CUVhEDJh4Q9FbmxlmUpGxabqKxhJi_aky3B7dnpzXHXKSslOJpjzIbf1xIBAovQYrgQcyuE9aUftz3UdCy0iYl33dWIrnDKVh2FJpA69IjMTIeB9bxlaCRpYleBGaWVlp0WCkg0nVE8QESBQEvE6N82bsJepbJIlzTi1Ph-VIUTqN0o124TdmrRQcGd8ZPQRqX3qHSfYYSYh2hhMNRswnZ9Gzs-rWbIxKYjkkFohvjPC_-S4WGAHSFsN2GlsGndEg_HNoxG8Q17uZF_b2J0edXNT9b-L7oOM1SYvkgV3IBG9jSymwhfMrWVd1M8nly7HwEP6-k |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB6lKVK58CoF01AW1EMvjhJ7vbGlXgo0MtBGqGqlSBWy9mVBG9lRYhOlp_4EfmN_CbN-qaUtQty88lhe78ysv9md_QZgm_tMUKZ6tnCVY1PJPZs7dGDjfOlJ1o_poNg9Pxyx8IR-HnvjFuzWZ2FKfohmwc14RjFfGwc3C9LXvDyZfu_2Tc3LFVilCDRM6PXxyLlGucucmoOZUTaueIVMHk_z6M2_0S2IeROxFr-c4WP4Vne2zDQ57-aZ6MqLP3gc__drnsCjCouSvdJ4nkJLJ8_gwfsU8eJyHU7DdEFMRs6STCcmW4ZwdZbPM4Jm81NfXf4iPFFE6Em6wIY5HYJNU3ECJX8kZFYm32qSpWRentLSiqiiKlD2HE6G-8cfQrsqxWBLikEhjl-P-YhcAo3xSEw1Y9rjXtx3UZUxkyo2xO6ORPiGmEAMBOqYy8A1bGky8LXrbkA7SRP9EogSUkg-6KEAR9tQgvoIWRDJsRgnEB1bsFOrJJIVT7np_CSq4xUcqqgYKgveNaLTkpzjLqFOrdeo8s95hKDK8M5gLGvB2-Y2epbZLuGJTnMjg9gPAaYb_E2GBj4aWtC34EVpM01PXJw8MdzFN-wUmr-_i9Hoa1hcvPp30TewFh4fHkQHn0ZfNuGhg9irzEvsQDub5fo1YqVMbBUu8RtyRQ83 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9tAEB4BRYgLanmGhrIgDlyMEnu9sdVTX1F4RTmAFImDtS8LUGRHiQPKrT-hv5Ff0hm_BCpF3LzyWF7P7Ox-4539BuBIBkJxYVqO8ozrcC19R7q84-B86WvRjnkn3z2_7IveNT8b-sMF-FqdhSn4IeofbuQZ-XxNDj428TMnT8a3J20qebkIH2izj7zS5YNnjLvCrSiYBRfDklaI0njqR18uRv8gzJeANV9xuh9hrYSK7Fth20-wYJN1WP6eIpybb8BNL31klDAzZ-MRJbMwae5n04yhVR_s0-8_TCaGKTtKH7FBhzewSQUhUPIuYZMiN9ayLGXT4hCVNczkRXuyTbju_rr60XPKSgmO5hiz4fe1RIDAIrQYLsTcCmF96cdtDzUdC21i4l13NaIrXLJVR6EJpA49IjPTYWA9bwuWkjSxO8CM0krLTgsFJJrOKB4gokCgJWL0bxs34LhSWaRLGnHq_CiqwgnUbpRrtwGHtei44M54TahZ6T0q3WcaIeYhWhgMNRtwUN_GgU-7GTKx6YxkEJoh_vPCt2R4GOBACNsN2C5sWvfEw7kNo1F8w3Fu5P93MeoPevnF7vtF92Fl8LMbXZz2zz_DKtWoL7IGm7CUTWZ2D5FMpr7kI_Yv1sTtnA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=How+woody+plants+adjust+above%E2%80%90+and+below%E2%80%90ground+traits+in+response+to+sustained+drought&rft.jtitle=The+New+phytologist&rft.au=Rowland%2C+Lucy&rft.au=Ram%C3%ADrez%E2%80%90Valiente%2C+Jose%E2%80%90Alberto&rft.au=Hartley%2C+Iain+P.&rft.au=Mencuccini%2C+M.%2C+%28Maurizio%29&rft.date=2023-08-01&rft.issn=0028-646X&rft.volume=239&rft.issue=4+p.1173-1189&rft.spage=1173&rft.epage=1189&rft_id=info:doi/10.1111%2Fnph.19000&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-646X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-646X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-646X&client=summon |