Numerical analysis of the unsteady behavior of cloud cavitation around a hydrofoil based on an improved filter-based model
The unsteady cavitation evolution around the Clark-Y hydrofoil is investigated in this paper, by using an improved filter-base model(FBM) with the density correction method(DCM). To improve the prediction accuracy, the filter scale is adjusted based on the grid size. The numerical results show that...
Saved in:
Published in | Journal of hydrodynamics. Series B Vol. 27; no. 5; pp. 795 - 808 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Singapore
Elsevier Ltd
01.10.2015
Springer Singapore Research Center of Fluid Machinery Engineering and Technology, Jiangsu University, Zhenjiang 212013, China%Department of Mechanical Engineering, Eindhoven University of Technology, Eindhoven 5600MB, The Netherlands |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The unsteady cavitation evolution around the Clark-Y hydrofoil is investigated in this paper, by using an improved filter-base model(FBM) with the density correction method(DCM). To improve the prediction accuracy, the filter scale is adjusted based on the grid size. The numerical results show that a small filter scale is crucial for the unsteady simulations of the cavity shedding flow. The hybrid method that combines the FBM and the DCM could help to limit the overprediction of the turbulent viscosity in the cavitation region on the wall of the hydrofoil and in the wake. The large value of the maximum density ratio ρ1 /ρv, clip promotes the mass transfer rate between the liquid phase and the vapor phase, which results in a large sheet cavity length and the vapor fraction rise inside the cavity. The cavity patterns predicted by the improved method are verified by the experimental visualizations. The time-average lift, the drag coefficient and the primary oscillating frequency St for the cavitation number σ= 0.8, the angle of attack, α= 8°, at a Reynolds number Re= 7×10^5 are 0.735, 0.115 and 0.183, respectively, and the predicted errors are 3.29%, 3.36% and 8.93%. The typical three stages in one revolution are well-captured, including the initiation of the sheet/attached cavity, the growth toward the trailing edge(TE) with the development of the re-entrant jet flow, and the large scale cloud cavity shedding. It is observed that the cloud cavity shedding flow induces the vortex pairs of the TE vortices in the wake and the shedding vortices. The positive vorticity vortex of the re-entrant jet and the TE vortices interacts and merges with the negative vorticity vortex of the leading edge(LE) cavity to produce the shedding flow. |
---|---|
AbstractList | The unsteady cavitation evolution around the Clark-Y hydrofoil is investigated in this paper, by using an improved filter-base model (FBM) with the density correction method (DCM). To improve the prediction accuracy, the filter scale is adjusted based on the grid size. The numerical results show that a small filter scale is crucial for the unsteady simulations of the cavity shedding flow. The hybrid method that combines the FBM and the DCM could help to limit the overprediction of the turbulent viscosity in the cavitation region on the wall of the hydrofoil and in the wake. The large value of the maximum density ratio, ρ
l
/ρ
v
, clip
promotes the mass transfer rate between the liquid phase and the vapor phase, which results in a large sheet cavity length and the vapor fraction rise inside the cavity. The cavity patterns predicted by the improved method are verified by the experimental visualizations. The time-average lift, the drag coefficient and the primary oscillating frequency
St
for the cavitation number σ = 0.8, the angle of attack, α=8α, at a Reynolds number
Re
= 7×10 are 0.735, 0.115 and 0.183, respectively, and the predicted errors are 3.29%, 3.36% and 8.93%. The typical three stages in one revolution are well-captured, including the initiation of the sheet/attached cavity, the growth toward the trailing edge (TE) with the development of the re-entrant jet flow, and the large scale cloud cavity shedding. It is observed that the cloud cavity shedding flow induces the vortex pairs of the TE vortices in the wake and the shedding vortices. The positive vorticity vortex of the re-entrant jet and the TE vortices interacts and merges with the negative vorticity vortex of the leading edge (LE) cavity to produce the shedding flow. The unsteady cavitation evolution around the Clark-Y hydrofoil is investigated in this paper, by using an improved filter-base model (FBM) with the density correction method (DCM). To improve the prediction accuracy, the filter scale is adjusted based on the grid size. The numerical results show that a small filter scale is crucial for the unsteady simulations of the cavity shedding flow. The hybrid method that combines the FBM and the DCM could help to limit the overprediction of the turbulent viscosity in the cavitation region on the wall of the hydrofoil and in the wake. The large value of the maximum density ratio ρl/ρv,clip promotes the mass transfer rate between the liquid phase and the vapor phase, which results in a large sheet cavity length and the vapor fraction rise inside the cavity. The cavity patterns predicted by the improved method are verified by the experimental visualizations. The time-average lift, the drag coefficient and the primary oscillating frequency St for the cavitation number σ = 0.8, the angle of attack, α = 8°, at a Reynolds number Re = 7 × 105 are 0.735, 0.115 and 0.183, respectively, and the predicted errors are 3.29%, 3.36% and 8.93%. The typical three stages in one revolution are well-captured, including the initiation of the sheet/attached cavity, the growth toward the trailing edge (TE) with the development of the re-entrant jet flow, and the large scale cloud cavity shedding. It is observed that the cloud cavity shedding flow induces the vortex pairs of the TE vortices in the wake and the shedding vortices. The positive vorticity vortex of the re-entrant jet and the TE vortices interacts and merges with the negative vorticity vortex of the leading edge (LE) cavity to produce the shedding flow. The unsteady cavitation evolution around the Clark-Y hydrofoil is investigated in this paper, by using an improved filter-base model(FBM) with the density correction method(DCM). To improve the prediction accuracy, the filter scale is adjusted based on the grid size. The numerical results show that a small filter scale is crucial for the unsteady simulations of the cavity shedding flow. The hybrid method that combines the FBM and the DCM could help to limit the overprediction of the turbulent viscosity in the cavitation region on the wall of the hydrofoil and in the wake. The large value of the maximum density ratio ρ1 /ρv, clip promotes the mass transfer rate between the liquid phase and the vapor phase, which results in a large sheet cavity length and the vapor fraction rise inside the cavity. The cavity patterns predicted by the improved method are verified by the experimental visualizations. The time-average lift, the drag coefficient and the primary oscillating frequency St for the cavitation number σ= 0.8, the angle of attack, α= 8°, at a Reynolds number Re= 7×10^5 are 0.735, 0.115 and 0.183, respectively, and the predicted errors are 3.29%, 3.36% and 8.93%. The typical three stages in one revolution are well-captured, including the initiation of the sheet/attached cavity, the growth toward the trailing edge(TE) with the development of the re-entrant jet flow, and the large scale cloud cavity shedding. It is observed that the cloud cavity shedding flow induces the vortex pairs of the TE vortices in the wake and the shedding vortices. The positive vorticity vortex of the re-entrant jet and the TE vortices interacts and merges with the negative vorticity vortex of the leading edge(LE) cavity to produce the shedding flow. |
Author | 张德胜 王海宇 施卫东 张光建 Van ESCH B.P.M.(Bart) |
AuthorAffiliation | Research Center of Fluid Machinery Engineering and Technology, Jiangsu University, Zhenjiang 212013,China Department of Mechanical Engineering, Eindhoven University of Technology, Eindhoven 5600MB, TheNetherlands |
AuthorAffiliation_xml | – name: Research Center of Fluid Machinery Engineering and Technology, Jiangsu University, Zhenjiang 212013, China%Department of Mechanical Engineering, Eindhoven University of Technology, Eindhoven 5600MB, The Netherlands |
Author_xml | – sequence: 1 fullname: 张德胜 王海宇 施卫东 张光建 Van ESCH B.P.M.(Bart) |
BookMark | eNqFkE-PFCEQxYlZE3dXP4IJ8aSJrdANNB0PZrPxX7LRg3omDBQzTBhYoXu099PLbI-aeJlTQer9ql69C3QWUwSEnlLyihIqXn-lhNBGEC6fU_6iVkYb-QCdU9nLhnSsPavvP5JH6KKULSGdGAg7R3efpx1kb3TAOuowF19wcnjcAJ5iGUHbGa9go_c-5UPDhDRZbOp_1KNPEeucpmixxpvZ5uSSD3ilC1h86EXsd7c57evX-TBCbpbeLlkIj9FDp0OBJ8d6ib6_f_ft-mNz8-XDp-urm8awloyNs9U2WXEwzvR2sB1YSRxjkg5MckNNZ4x0Pes0F7YVq5YyR_nQUgKOOArdJXq5zP2po9NxrbZpyvXWoooNv-btvL1T0BLK6xoqqvzNIjc5lZLBKXO8dczaB0WJOqSu7lNXh0gV5eo-dSUrzf-jb7Pf6Tyf5MTClaqPa8j_XJ4C3y4g1Aj3voLFeIgGrM9gRmWTPznh2dHyJsX1j7r9r2chhOzFwPruN6dmuj0 |
CitedBy_id | crossref_primary_10_3390_app8020289 crossref_primary_10_1063_5_0223126 crossref_primary_10_1007_s12206_017_0118_0 crossref_primary_10_1063_5_0251037 crossref_primary_10_1080_19942060_2022_2111363 crossref_primary_10_1088_1742_6596_2707_1_012133 crossref_primary_10_1016_j_euromechflu_2020_09_016 crossref_primary_10_3390_pr7080541 crossref_primary_10_1016_S1001_6058_16_60746_1 crossref_primary_10_1007_s42241_021_0061_5 crossref_primary_10_1002_aic_16675 crossref_primary_10_1016_j_aej_2024_11_060 crossref_primary_10_1016_j_geoen_2023_212511 crossref_primary_10_1063_5_0248918 |
Cites_doi | 10.1016/S0376-0421(01)00014-8 10.1016/j.euromechflu.2004.10.004 10.1017/S0022112001005420 10.1016/j.ijheatfluidflow.2003.10.005 10.1017/CBO9780511976728 10.1016/0021-9991(75)90093-5 10.1016/j.ijmultiphaseflow.2012.11.008 10.1115/1.1627835 10.1017/CBO9781107338760 10.1115/1.2151207 10.1002/fld.530 |
ContentType | Journal Article |
Copyright | 2015 Publishing House for Journal of Hydrodynamics China Ship Scientific Research Center 2015 Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: 2015 Publishing House for Journal of Hydrodynamics – notice: China Ship Scientific Research Center 2015 – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | 2RA 92L CQIGP W92 ~WA AAYXX CITATION 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.1016/S1001-6058(15)60541-8 |
DatabaseName | 维普_期刊 中文科技期刊数据库-CALIS站点 中文科技期刊数据库-7.0平台 中文科技期刊数据库-工程技术 中文科技期刊数据库- 镜像站点 CrossRef Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
DocumentTitleAlternate | Numerical analysis of the unsteady behavior of cloud cavitation around a hydrofoil based on an improved filter-based model |
EISSN | 1878-0342 |
EndPage | 808 |
ExternalDocumentID | sdlxyjyjz_e201505016 10_1016_S1001_6058_15_60541_8 S1001605815605418 666876947 |
GrantInformation_xml | – fundername: Key Research and Development Project of Jiangsu Province grantid: Grant No. BE2015001-3 – fundername: National Natural Science Foundation of China grantid: Grant Nos. 51479083, 51579118 – fundername: the National Natural Science Foundation of China (Grant Nos.51479083, 51579118) the Key Research and Development Project of Jiangsu Province funderid: (Grant BE2015001-3) |
GroupedDBID | --K --M -01 -0A -EM -SA -S~ .~1 0R~ 1B1 1~. 1~5 2B. 2C0 2RA 4.4 406 457 4G. 5GY 5VR 5VS 5XA 5XB 5XL 7-5 71M 8P~ 92H 92I 92L 92M 9D9 9DA AABNK AACTN AAEDT AAEDW AAFGU AAHNG AAIAL AAIKJ AAKOC AALRI AAOAW AAQFI AATNV AAUYE AAXUO AAYFA ABDZT ABECU ABFGW ABFTV ABJOX ABKAS ABKCH ABMAC ABMQK ABTEG ABTKH ABXDB ABXPI ABYKQ ACAOD ACBMV ACBRV ACBYP ACDAQ ACGFS ACHSB ACIGE ACIPQ ACMLO ACNNM ACOKC ACRLP ACTTH ACVWB ACWMK ACZOJ ADEZE ADHHG ADKNI ADMDM ADMUD ADOXG ADRFC ADTZH ADURQ ADYFF AEBSH AECPX AEFTE AEJRE AEKER AENEX AEPYU AESKC AESTI AEVTX AFKWA AFNRJ AFQWF AFUIB AGDGC AGGBP AGHFR AGJBK AGMZJ AGUBO AGYEJ AHJVU AIAKS AIEXJ AIKHN AILAN AIMYW AITGF AITUG AJBFU AJDOV AJOXV AJZVZ AKQUC ALMA_UNASSIGNED_HOLDINGS AMFUW AMKLP AMRAJ AMXSW AMYLF AXJTR AXYYD BGNMA BJAXD BKOJK BLXMC CAJEA CAJUS CCEZO CCVFK CHBEP CQIGP CS3 CW9 DPUIP DU5 EBLON EBS EFJIC EFLBG EJD EO9 EP2 EP3 FA0 FDB FEDTE FINBP FIRID FNLPD FNPLU FSGXE FYGXN GBLVA GGCAI GJIRD HVGLF HZ~ IHE IKXTQ IWAJR J-C J1W JJJVA JUIAU JZLTJ KOM KOV LLZTM M41 M4Y MO0 N9A NPVJJ NQJWS NU0 O9- OAUVE OZT P-8 P-9 PC. PT4 Q-- Q-0 Q38 R-A REI RIG RLLFE ROL RPZ RSV RT1 S.. SDC SDF SDG SES SNE SNPRN SOHCF SOJ SPC SRMVM SSLCW SST SSZ STPWE T5K T8Q TCJ TGT TSG U1F U1G U5A U5K UOJIU UTJUX VEKWB VFIZW W92 Z5O Z7R ZMTXR ~LB ~WA AGQEE FIGPU AACDK AAJBT AASML AAXDM AAXKI ABAKF ABJNI ABWVN ACDTI ACPIV ACRPL ADMLS ADNMO AEFQL AEIPS AEMSY AFBBN AGRTI AIGIU AKRWK ANKPU SJYHP AATTM AAYWO AAYXX ABBRH ABDBE ABFSG ACSTC ACVFH ADCNI AEUPX AEZWR AFDZB AFHIU AFOHR AFPUW AFXIZ AGCQF AGRNS AHPBZ AHWEU AIGII AIIUN AIXLP AKBMS AKYEP ATHPR AYFIA CITATION SSH 4A8 93N PSX |
ID | FETCH-LOGICAL-c420t-fd6050b5ecfc7d9d3ed80f44819485c1c3cc8f743a56d26b214f159210ef0f1e3 |
IEDL.DBID | .~1 |
ISSN | 1001-6058 |
IngestDate | Thu May 29 04:08:10 EDT 2025 Tue Jul 01 02:16:48 EDT 2025 Thu Apr 24 22:54:26 EDT 2025 Fri Feb 21 02:30:55 EST 2025 Fri Feb 23 02:34:37 EST 2024 Wed Feb 14 10:22:58 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | cloud cavitation hydrofoil density correction method filter-based model (FBM) unsteady behavior |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c420t-fd6050b5ecfc7d9d3ed80f44819485c1c3cc8f743a56d26b214f159210ef0f1e3 |
Notes | 31-1563/T filter-based model(FBM),density correction method,cloud cavitation,hydrofoil,unsteady behavior ZHANG De-sheng , WANG Hai-yu , SHI Wei-dong, ZHANG Guang-jian , Van ESCH B. P. M. (Bart)( 1. Research Center of Fluid Machinery Engineering and Technology, Jiangsu University, Zhenjiang 212013, China, 2. Department of Mechanical Engineering, Eindhoven University of Technology, Eindhoven 5600MB, The Netherlands) The unsteady cavitation evolution around the Clark-Y hydrofoil is investigated in this paper, by using an improved filter-base model(FBM) with the density correction method(DCM). To improve the prediction accuracy, the filter scale is adjusted based on the grid size. The numerical results show that a small filter scale is crucial for the unsteady simulations of the cavity shedding flow. The hybrid method that combines the FBM and the DCM could help to limit the overprediction of the turbulent viscosity in the cavitation region on the wall of the hydrofoil and in the wake. The large value of the maximum density ratio ρ1 /ρv, clip promotes the mass transfer rate between the liquid phase and the vapor phase, which results in a large sheet cavity length and the vapor fraction rise inside the cavity. The cavity patterns predicted by the improved method are verified by the experimental visualizations. The time-average lift, the drag coefficient and the primary oscillating frequency St for the cavitation number σ= 0.8, the angle of attack, α= 8°, at a Reynolds number Re= 7×10^5 are 0.735, 0.115 and 0.183, respectively, and the predicted errors are 3.29%, 3.36% and 8.93%. The typical three stages in one revolution are well-captured, including the initiation of the sheet/attached cavity, the growth toward the trailing edge(TE) with the development of the re-entrant jet flow, and the large scale cloud cavity shedding. It is observed that the cloud cavity shedding flow induces the vortex pairs of the TE vortices in the wake and the shedding vortices. The positive vorticity vortex of the re-entrant jet and the TE vortices interacts and merges with the negative vorticity vortex of the leading edge(LE) cavity to produce the shedding flow. |
PageCount | 14 |
ParticipantIDs | wanfang_journals_sdlxyjyjz_e201505016 crossref_citationtrail_10_1016_S1001_6058_15_60541_8 crossref_primary_10_1016_S1001_6058_15_60541_8 springer_journals_10_1016_S1001_6058_15_60541_8 elsevier_sciencedirect_doi_10_1016_S1001_6058_15_60541_8 chongqing_primary_666876947 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-10-01 |
PublicationDateYYYYMMDD | 2015-10-01 |
PublicationDate_xml | – month: 10 year: 2015 text: 2015-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Singapore |
PublicationPlace_xml | – name: Singapore |
PublicationTitle | Journal of hydrodynamics. Series B |
PublicationTitleAbbrev | J Hydrodyn |
PublicationTitleAlternate | Journal of Hydrodynamics |
PublicationTitle_FL | Journal of Hydrodynamics |
PublicationYear | 2015 |
Publisher | Elsevier Ltd Springer Singapore Research Center of Fluid Machinery Engineering and Technology, Jiangsu University, Zhenjiang 212013, China%Department of Mechanical Engineering, Eindhoven University of Technology, Eindhoven 5600MB, The Netherlands |
Publisher_xml | – name: Elsevier Ltd – name: Springer Singapore – name: Research Center of Fluid Machinery Engineering and Technology, Jiangsu University, Zhenjiang 212013, China%Department of Mechanical Engineering, Eindhoven University of Technology, Eindhoven 5600MB, The Netherlands |
References | CALLENAERE, FRANC, MICHEL (bib7) 2001; 444 GIRIMAJI S. S., ABDOL-HAMID K. S. Partially-averaged Navier-Stokes model for turbulence: Implementation and validation[R]. AIAA paper 502(2005), 2005. SCHUMANN (bib14) 1975; 18 WANG, SENOCAK, SHYY (bib3) 2001; 37 LEROUX, COUTIER-DELGOSHA, ASTOLFI (bib6) 2005; 17 COUTIER-DELGOSHA, STUTZ, VABRE (bib8) 2007; 578 GIRIMAJI (bib10) 2006; 73 MATSUNARI H. Experimental/numerical study on cavitating flow around clark Y 11.7% hydrofoil[C]. Proceedings of the 8th International Sympositm on Cavitation, (CAV 2012). Singapore, 2012. JOHANSEN, WU, SHYY (bib13) 2004; 25 JI, LUO, WU (bib12) 2013; 51 REBOUD J., COUTIER-DELGOSHA O. and POUFFARY B. et al. Numerical simulation of unsteady cavitating flows: Some applications and open problems[C]. Fifth International Symposium on Cavitation. Osaka, Japan, 2003. BRENNEN (bib1) 2013 ZWART P. J., GERBER A. G. and BELAMRI T. A two-phase flow model for predicting cavitation dynamics[C]. Fifth International Conference on Multiphase Flow. Yokohama, Japan, 2004. BRENNEN (bib2) 2011 LEROUX, ASTOLFI, BILLARD (bib5) 2004; 126 COUTIER-DELGOSHA, REBOUD, DELANNOY (bib9) 2003; 42 MORGUT, NOBILE (bib20) 2012; 2012 DULAR, BACHERT, STOFFEL (bib17) 2005; 24 HUANG, WANG (bib18) 2011; 28 LUO, JI, PENG (bib19) 2012; 134 Coutier-DelgoshaOReboudJDelannoyYNumerical simulation of the unsteady behaviour of cavitating flows[J]International Journal for Numerical Methods in Fluids20034255275481143.76497 SchumannUSubgrid scale model for finite difference simulations of turbulent flows in plane channels and annuli[J]Journal of Computational Physics197518437640410.1016/0021-9991(75)90093-5 MorgutMNobileENumerical predictions of cavitating flow around model scale propellers by CFD and advanced model calibration[J]International Journal of Rotating Machinery2012111 ZwartP JGerberA GBelamriTA two-phase flow model for predicting cavitation dynamics[C]Fifth International Conference on Multiphase Flow2004JapanYokohama Journal of Fluids Engineering20121344 LerouxJ-BAstolfiJ ABillardJ YAn experimental study of unsteady partial cavitation[J]Journal of Fluids Engineering200412619410110.1115/1.1627835 WangGSenocakIShyyWDynamics of attached turbulent cavitating flows[J]Progress in Aerospace Sciences200137655158110.1016/S0376-0421(01)00014-8 MatsunariHExperimental/numerical study on cavitating flow around clark Y 11.7% hydrofoil[C]Proceedings of the 8th International Sympositm on Cavitation, (CAV 2012)2012 GirimajiS SAbdol-HamidK SPartially–averaged Navier-Stokes model for turbulence: Implementation and validation[R]2005 JiBLuoXWuYNumerical analysis of unsteady cavitating turbulent flow and shedding horse-shoe vortex structure around a twisted hydrofoil[J]International Journal of Multiphase Flow201351334310.1016/j.ijmultiphaseflow.2012.11.008 BrennenC ECavitation and bubble dynamics[M]2013New York, USACambridge University Press10.1017/CBO9781107338760 BrennenC EHydrodynamics of pumps[M]2011New York, USACambridge University Press10.1017/CBO9780511976728 Physics of Fluids2005175 DularMBachertRStoffelBExperimental evaluation of numerical simulation of cavitating flow around hydrofoil[J]European Journal of Mechanics-B/Fluids200524452253810.1016/j.euromechflu.2004.10.004 GirimajiS SPartially-averaged navier-stokes model for turbulence: A reynolds-averaged navier-stokes to direct numerical simulation bridging method[J]Journal of Applied Mechanics200673341342110.1115/1.2151207 JohansenS TWuJShyyWFilter-based unsteady rans computations[J]International Journal of Heat and fluid flow2004251102110.1016/j.ijheatfluidflow.2003.10.005 Chinese Physics Letters2011282 ReboudJCoutier-DelgoshaOPouffaryBNumerical simulation of unsteady cavitating flows: Some applications and open problems[C]Fifth International Symposium on Cavitation2003JapanOsaka Coutier-DelgoshaOStutzBVabreAAnalysis of cavitating flow structure by experimental and numerical investigations[J]Journal of Fluid Mechanics20071712221111.76301 CallenaereMFrancJ-PMichelJThe cavitation instability induced by the development of a re-entrant jet[J]Journal of Fluid Mechanics200144422325610.1017/S0022112001005420 S S Girimaji (2705795_CR11) 2005 M Dular (2705795_CR17) 2005; 24 (2705795_CR18) 2011; 28 B Ji (2705795_CR12) 2013; 51 J Reboud (2705795_CR16) 2003 O Coutier-Delgosha (2705795_CR9) 2003; 42 (2705795_CR19) 2012; 134 C E Brennen (2705795_CR1) 2013 O Coutier-Delgosha (2705795_CR8) 2007 J-B Leroux (2705795_CR5) 2004; 126 M Callenaere (2705795_CR7) 2001; 444 C E Brennen (2705795_CR2) 2011 P J Zwart (2705795_CR15) 2004 (2705795_CR6) 2005; 17 S T Johansen (2705795_CR13) 2004; 25 U Schumann (2705795_CR14) 1975; 18 S S Girimaji (2705795_CR10) 2006; 73 G Wang (2705795_CR3) 2001; 37 H Matsunari (2705795_CR4) 2012 M Morgut (2705795_CR20) 2012 |
References_xml | – volume: 42 start-page: 527 year: 2003 end-page: 548 ident: bib9 article-title: Numerical simulation of the unsteady behaviour of cavitating flows[J] publication-title: International Journal for Numerical Methods in Fluids – volume: 134 start-page: 041202 year: 2012 ident: bib19 article-title: Numerical simulation of cavity shedding from a three-dimensional twisted hydrofoil and induced pressure fluctuation by large-eddy simulation[J] publication-title: Journal of Fluids Engineering – volume: 51 start-page: 33 year: 2013 end-page: 43 ident: bib12 article-title: Numerical analysis of unsteady cavitating turbulent flow and shedding horseshoe vortex structure around a twisted hydrofoil[J] publication-title: International Journal of Multiphase Flow – reference: ZWART P. J., GERBER A. G. and BELAMRI T. A two-phase flow model for predicting cavitation dynamics[C]. Fifth International Conference on Multiphase Flow. Yokohama, Japan, 2004. – reference: REBOUD J., COUTIER-DELGOSHA O. and POUFFARY B. et al. Numerical simulation of unsteady cavitating flows: Some applications and open problems[C]. Fifth International Symposium on Cavitation. Osaka, Japan, 2003. – volume: 28 start-page: 026401 year: 2011 ident: bib18 article-title: Evaluation of a filterbased model for computations of cavitating flows[J] publication-title: Chinese Physics Letters – volume: 73 start-page: 413 year: 2006 end-page: 421 ident: bib10 article-title: Partially-averaged navier-stokes model for turbulence: A reynolds-averaged navier-stokes to direct numerical simulation bridging method[J] publication-title: Journal of Applied Mechanics – volume: 126 start-page: 94 year: 2004 end-page: 101 ident: bib5 article-title: An experimental study of unsteady partial cavitation[J] publication-title: Journal of Fluids Engineering – volume: 578 start-page: 171 year: 2007 end-page: 222 ident: bib8 article-title: Analysis of cavitating flow structure by experimental and numerical investigations[J] publication-title: Journal of Fluid Mechanics – volume: 444 start-page: 223 year: 2001 end-page: 256 ident: bib7 article-title: The cavitation instability induced by the development of a re-entrant jet[J] publication-title: Journal of Fluid Mechanics – volume: 2012 start-page: 1 year: 2012 end-page: 11 ident: bib20 article-title: Numerical predictions of cavitating flow around model scale propellers by CFD and advanced model calibration[J] publication-title: International Journal of Rotating Machinery – reference: GIRIMAJI S. S., ABDOL-HAMID K. S. Partially-averaged Navier-Stokes model for turbulence: Implementation and validation[R]. AIAA paper 502(2005), 2005. – year: 2013 ident: bib1 publication-title: Cavitation and bubble dynamics[M] – volume: 37 start-page: 551 year: 2001 end-page: 581 ident: bib3 article-title: Dynamics of attached turbulent cavitating flows[J] publication-title: Progress in Aerospace Sciences – volume: 18 start-page: 376 year: 1975 end-page: 404 ident: bib14 article-title: Subgrid scale model for finite difference simulations of turbulent flows in plane channels and annuli[J] publication-title: Journal of Computational Physics – volume: 24 start-page: 522 year: 2005 end-page: 538 ident: bib17 article-title: Experimental evaluation of numerical simulation of cavitating flow around hydrofoil[J] publication-title: European Journal of Mechanics-B/Fluids – reference: MATSUNARI H. Experimental/numerical study on cavitating flow around clark Y 11.7% hydrofoil[C]. Proceedings of the 8th International Sympositm on Cavitation, (CAV 2012). Singapore, 2012. – volume: 17 start-page: 052101 year: 2005 ident: bib6 article-title: A joint experimental and numerical study of mechanisms associated to instability of partial cavitation on two-dimensional hydrofoil[J] publication-title: Physics of Fluids – volume: 25 start-page: 10 year: 2004 end-page: 21 ident: bib13 article-title: Filter-based unsteady rans computations[J] publication-title: International Journal of Heat and fluid flow – year: 2011 ident: bib2 publication-title: Hydrodynamics of pumps[M] – reference: WangGSenocakIShyyWDynamics of attached turbulent cavitating flows[J]Progress in Aerospace Sciences200137655158110.1016/S0376-0421(01)00014-8 – reference: JiBLuoXWuYNumerical analysis of unsteady cavitating turbulent flow and shedding horse-shoe vortex structure around a twisted hydrofoil[J]International Journal of Multiphase Flow201351334310.1016/j.ijmultiphaseflow.2012.11.008 – reference: DularMBachertRStoffelBExperimental evaluation of numerical simulation of cavitating flow around hydrofoil[J]European Journal of Mechanics-B/Fluids200524452253810.1016/j.euromechflu.2004.10.004 – reference: ZwartP JGerberA GBelamriTA two-phase flow model for predicting cavitation dynamics[C]Fifth International Conference on Multiphase Flow2004JapanYokohama – reference: Journal of Fluids Engineering20121344 – reference: Coutier-DelgoshaOStutzBVabreAAnalysis of cavitating flow structure by experimental and numerical investigations[J]Journal of Fluid Mechanics20071712221111.76301 – reference: GirimajiS SPartially-averaged navier-stokes model for turbulence: A reynolds-averaged navier-stokes to direct numerical simulation bridging method[J]Journal of Applied Mechanics200673341342110.1115/1.2151207 – reference: LerouxJ-BAstolfiJ ABillardJ YAn experimental study of unsteady partial cavitation[J]Journal of Fluids Engineering200412619410110.1115/1.1627835 – reference: Physics of Fluids2005175 – reference: JohansenS TWuJShyyWFilter-based unsteady rans computations[J]International Journal of Heat and fluid flow2004251102110.1016/j.ijheatfluidflow.2003.10.005 – reference: MorgutMNobileENumerical predictions of cavitating flow around model scale propellers by CFD and advanced model calibration[J]International Journal of Rotating Machinery2012111 – reference: SchumannUSubgrid scale model for finite difference simulations of turbulent flows in plane channels and annuli[J]Journal of Computational Physics197518437640410.1016/0021-9991(75)90093-5 – reference: BrennenC EHydrodynamics of pumps[M]2011New York, USACambridge University Press10.1017/CBO9780511976728 – reference: MatsunariHExperimental/numerical study on cavitating flow around clark Y 11.7% hydrofoil[C]Proceedings of the 8th International Sympositm on Cavitation, (CAV 2012)2012 – reference: ReboudJCoutier-DelgoshaOPouffaryBNumerical simulation of unsteady cavitating flows: Some applications and open problems[C]Fifth International Symposium on Cavitation2003JapanOsaka – reference: CallenaereMFrancJ-PMichelJThe cavitation instability induced by the development of a re-entrant jet[J]Journal of Fluid Mechanics200144422325610.1017/S0022112001005420 – reference: GirimajiS SAbdol-HamidK SPartially–averaged Navier-Stokes model for turbulence: Implementation and validation[R]2005 – reference: BrennenC ECavitation and bubble dynamics[M]2013New York, USACambridge University Press10.1017/CBO9781107338760 – reference: Chinese Physics Letters2011282 – reference: Coutier-DelgoshaOReboudJDelannoyYNumerical simulation of the unsteady behaviour of cavitating flows[J]International Journal for Numerical Methods in Fluids20034255275481143.76497 – volume-title: Proceedings of the 8th International Sympositm on Cavitation, (CAV 2012) year: 2012 ident: 2705795_CR4 – volume-title: Partially–averaged Navier-Stokes model for turbulence: Implementation and validation[R] year: 2005 ident: 2705795_CR11 – volume: 37 start-page: 551 issue: 6 year: 2001 ident: 2705795_CR3 publication-title: Progress in Aerospace Sciences doi: 10.1016/S0376-0421(01)00014-8 – volume: 28 issue: 2 year: 2011 ident: 2705795_CR18 publication-title: Chinese Physics Letters – volume: 24 start-page: 522 issue: 4 year: 2005 ident: 2705795_CR17 publication-title: European Journal of Mechanics-B/Fluids doi: 10.1016/j.euromechflu.2004.10.004 – volume: 444 start-page: 223 year: 2001 ident: 2705795_CR7 publication-title: Journal of Fluid Mechanics doi: 10.1017/S0022112001005420 – volume: 25 start-page: 10 issue: 1 year: 2004 ident: 2705795_CR13 publication-title: International Journal of Heat and fluid flow doi: 10.1016/j.ijheatfluidflow.2003.10.005 – start-page: 1 volume-title: International Journal of Rotating Machinery year: 2012 ident: 2705795_CR20 – volume-title: Hydrodynamics of pumps[M] year: 2011 ident: 2705795_CR2 doi: 10.1017/CBO9780511976728 – volume: 18 start-page: 376 issue: 4 year: 1975 ident: 2705795_CR14 publication-title: Journal of Computational Physics doi: 10.1016/0021-9991(75)90093-5 – volume-title: Fifth International Symposium on Cavitation year: 2003 ident: 2705795_CR16 – volume: 51 start-page: 33 year: 2013 ident: 2705795_CR12 publication-title: International Journal of Multiphase Flow doi: 10.1016/j.ijmultiphaseflow.2012.11.008 – volume: 126 start-page: 94 issue: 1 year: 2004 ident: 2705795_CR5 publication-title: Journal of Fluids Engineering doi: 10.1115/1.1627835 – start-page: 171 volume-title: Journal of Fluid Mechanics year: 2007 ident: 2705795_CR8 – volume-title: Cavitation and bubble dynamics[M] year: 2013 ident: 2705795_CR1 doi: 10.1017/CBO9781107338760 – volume-title: Fifth International Conference on Multiphase Flow year: 2004 ident: 2705795_CR15 – volume: 73 start-page: 413 issue: 3 year: 2006 ident: 2705795_CR10 publication-title: Journal of Applied Mechanics doi: 10.1115/1.2151207 – volume: 17 issue: 5 year: 2005 ident: 2705795_CR6 publication-title: Physics of Fluids – volume: 42 start-page: 527 issue: 5 year: 2003 ident: 2705795_CR9 publication-title: International Journal for Numerical Methods in Fluids doi: 10.1002/fld.530 – volume: 134 issue: 4 year: 2012 ident: 2705795_CR19 publication-title: Journal of Fluids Engineering |
SSID | ssj0036904 |
Score | 2.091767 |
Snippet | The unsteady cavitation evolution around the Clark-Y hydrofoil is investigated in this paper, by using an improved filter-base model(FBM) with the density... The unsteady cavitation evolution around the Clark-Y hydrofoil is investigated in this paper, by using an improved filter-base model (FBM) with the density... |
SourceID | wanfang crossref springer elsevier chongqing |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 795 |
SubjectTerms | cloud cavitation density correction method Engineering Engineering Fluid Dynamics filter-based model (FBM) hydrofoil Hydrology/Water Resources Numerical and Computational Physics Simulation unsteady behavior 基础 数值分析 校正方法 模型 水翼 滤波器库 空化数 非定常特性 |
Title | Numerical analysis of the unsteady behavior of cloud cavitation around a hydrofoil based on an improved filter-based model |
URI | http://lib.cqvip.com/qk/86648X/201505/666876947.html https://dx.doi.org/10.1016/S1001-6058(15)60541-8 https://link.springer.com/article/10.1016/S1001-6058(15)60541-8 https://d.wanfangdata.com.cn/periodical/sdlxyjyjz-e201505016 |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LTtww0EL0Qg9VW1p1oUU-FKk9mI0Tezd7RKho2xV7oEXlZjl-QFCUUNiVuhz4dmYcJ9BDtRKnKHbGSmbGM-PMi5DPiXaFmDjDuDMZE8YVTBspWS7Q2e6s9g6zkU_mo-mZ-HEuzzfIUZcLg2GVUfa3Mj1I6zgyjNgcXpfl8CcPPZIlljsBu4Njwq8QY-Tyg_s-zCOD01_wLGPoED79mMXTrhAGv3D5NSzCcqyxcNnUF39Ac_xPV_U-05DpU3tdXzxRSsevyatoTdLD9oXfkA1XvyUvn9QY3CZ382XrlKmojgVIaOMp2H10WQcSr2iXq48TpmqWlhq4b530VN9g5yWq6eXKgtBuyoqi6rMU52pahr8ScOtLdLyzdi402HlHzo6__TqasthwgRkgzYJ5C0hICumMN2M7sZmzeeLhAMexhozhJjMm92BzaDmy6ahIufBgDsGp0fnEc5e9J5t1U7sPhCYOsInl3Czwgk4dPOSNzDObTFLPdTEguz2a1XVbWEPBUQqE80SMB0R0iFcmfi62zKhUH5SGtFNIO8WlCrRT-YAc9GDdmmsA8o6q6h-uU6BQ1oEOOy5QcdvfroPYj8zyCHBrq7-rq9XVnXIp_nuSAL3z_JfaJVu4TBts-JFsLm6W7hMYTYtiL-yKPfLi8PtsOsfr7PT37AG-MBG- |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LTtwwcESXQ9tD1adY6MOHVmoP7sZJvGSPCBUtBfZSkLhZjh8QFCUUdiWWr--M4yz0UK3Uo-2M5czY8_B4ZgA-J9qV-cQZLpzJeG5cybWRkhc5Odud1d5RNPLJbDw9y3-ey_MN2O9jYehZZeT9HU8P3Dr2jCI2R9dVNfolQo1kSelOUO8QxRPYpOxUcgCbe4dH01nPkDM0AINzmV4PEcBDIE83Sej8KuS3MA8vKM3CZdtc_Ebh8S9xtXKbhmCfxuvm4pFcOngJL6JCyfa6Nb-CDde8hueP0gy-gfvZovPL1EzHHCSs9QxVP7ZoApWXrA_XpwFTtwvLDLY7Pz3TN1R8iWl2ubTIt9uqZiT9LKOxhlXhYgKbviLfO-_GQo2dt3B28ON0f8pjzQVukDpz7i0iISmlM97s2onNnC0SjzacoDQyRpjMmMKj2qHl2KbjMhW5R40IDUfnEy9c9g4GTdu4LWCJQ2xSRjeL20GnDj_yRhaZTSapF7ocws4Kzeq6y62h0JpC_jzJd4eQ94hXJv4uVc2o1epdGtFOEe2UkCrQThVD-L4C6-dcA1D0VFV_bTyFMmUd6KjfBSqe_Nt1EF_iZnkAuLX13fJqeXWvXErXTxKht_9_UZ_g6fT05FgdH86OduAZTdm9PXwPg_nNwn1AHWpefoxn5A-QERLM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+analysis+of+the+unsteady+behavior+of+cloud+cavitation+around+a+hydrofoil+based+on+an+improved+filter-based+model&rft.jtitle=Journal+of+hydrodynamics.+Series+B&rft.au=ZHANG%2C+De-sheng&rft.au=WANG%2C+Hai-yu&rft.au=SHI%2C+Wei-dong&rft.au=ZHANG%2C+Guang-jian&rft.date=2015-10-01&rft.pub=Elsevier+Ltd&rft.issn=1001-6058&rft.volume=27&rft.issue=5&rft.spage=795&rft.epage=808&rft_id=info:doi/10.1016%2FS1001-6058%2815%2960541-8&rft.externalDocID=S1001605815605418 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F86648X%2F86648X.jpg http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fsdlxyjyjz-e%2Fsdlxyjyjz-e.jpg |