Numerical analysis of the unsteady behavior of cloud cavitation around a hydrofoil based on an improved filter-based model

The unsteady cavitation evolution around the Clark-Y hydrofoil is investigated in this paper, by using an improved filter-base model(FBM) with the density correction method(DCM). To improve the prediction accuracy, the filter scale is adjusted based on the grid size. The numerical results show that...

Full description

Saved in:
Bibliographic Details
Published inJournal of hydrodynamics. Series B Vol. 27; no. 5; pp. 795 - 808
Main Author 张德胜 王海宇 施卫东 张光建 Van ESCH B.P.M.(Bart)
Format Journal Article
LanguageEnglish
Published Singapore Elsevier Ltd 01.10.2015
Springer Singapore
Research Center of Fluid Machinery Engineering and Technology, Jiangsu University, Zhenjiang 212013, China%Department of Mechanical Engineering, Eindhoven University of Technology, Eindhoven 5600MB, The Netherlands
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The unsteady cavitation evolution around the Clark-Y hydrofoil is investigated in this paper, by using an improved filter-base model(FBM) with the density correction method(DCM). To improve the prediction accuracy, the filter scale is adjusted based on the grid size. The numerical results show that a small filter scale is crucial for the unsteady simulations of the cavity shedding flow. The hybrid method that combines the FBM and the DCM could help to limit the overprediction of the turbulent viscosity in the cavitation region on the wall of the hydrofoil and in the wake. The large value of the maximum density ratio ρ1 /ρv, clip promotes the mass transfer rate between the liquid phase and the vapor phase, which results in a large sheet cavity length and the vapor fraction rise inside the cavity. The cavity patterns predicted by the improved method are verified by the experimental visualizations. The time-average lift, the drag coefficient and the primary oscillating frequency St for the cavitation number σ= 0.8, the angle of attack, α= 8°, at a Reynolds number Re= 7×10^5 are 0.735, 0.115 and 0.183, respectively, and the predicted errors are 3.29%, 3.36% and 8.93%. The typical three stages in one revolution are well-captured, including the initiation of the sheet/attached cavity, the growth toward the trailing edge(TE) with the development of the re-entrant jet flow, and the large scale cloud cavity shedding. It is observed that the cloud cavity shedding flow induces the vortex pairs of the TE vortices in the wake and the shedding vortices. The positive vorticity vortex of the re-entrant jet and the TE vortices interacts and merges with the negative vorticity vortex of the leading edge(LE) cavity to produce the shedding flow.
AbstractList The unsteady cavitation evolution around the Clark-Y hydrofoil is investigated in this paper, by using an improved filter-base model (FBM) with the density correction method (DCM). To improve the prediction accuracy, the filter scale is adjusted based on the grid size. The numerical results show that a small filter scale is crucial for the unsteady simulations of the cavity shedding flow. The hybrid method that combines the FBM and the DCM could help to limit the overprediction of the turbulent viscosity in the cavitation region on the wall of the hydrofoil and in the wake. The large value of the maximum density ratio, ρ l /ρ v , clip promotes the mass transfer rate between the liquid phase and the vapor phase, which results in a large sheet cavity length and the vapor fraction rise inside the cavity. The cavity patterns predicted by the improved method are verified by the experimental visualizations. The time-average lift, the drag coefficient and the primary oscillating frequency St for the cavitation number σ = 0.8, the angle of attack, α=8α, at a Reynolds number Re = 7×10 are 0.735, 0.115 and 0.183, respectively, and the predicted errors are 3.29%, 3.36% and 8.93%. The typical three stages in one revolution are well-captured, including the initiation of the sheet/attached cavity, the growth toward the trailing edge (TE) with the development of the re-entrant jet flow, and the large scale cloud cavity shedding. It is observed that the cloud cavity shedding flow induces the vortex pairs of the TE vortices in the wake and the shedding vortices. The positive vorticity vortex of the re-entrant jet and the TE vortices interacts and merges with the negative vorticity vortex of the leading edge (LE) cavity to produce the shedding flow.
The unsteady cavitation evolution around the Clark-Y hydrofoil is investigated in this paper, by using an improved filter-base model (FBM) with the density correction method (DCM). To improve the prediction accuracy, the filter scale is adjusted based on the grid size. The numerical results show that a small filter scale is crucial for the unsteady simulations of the cavity shedding flow. The hybrid method that combines the FBM and the DCM could help to limit the overprediction of the turbulent viscosity in the cavitation region on the wall of the hydrofoil and in the wake. The large value of the maximum density ratio ρl/ρv,clip promotes the mass transfer rate between the liquid phase and the vapor phase, which results in a large sheet cavity length and the vapor fraction rise inside the cavity. The cavity patterns predicted by the improved method are verified by the experimental visualizations. The time-average lift, the drag coefficient and the primary oscillating frequency St for the cavitation number σ = 0.8, the angle of attack, α = 8°, at a Reynolds number Re = 7 × 105 are 0.735, 0.115 and 0.183, respectively, and the predicted errors are 3.29%, 3.36% and 8.93%. The typical three stages in one revolution are well-captured, including the initiation of the sheet/attached cavity, the growth toward the trailing edge (TE) with the development of the re-entrant jet flow, and the large scale cloud cavity shedding. It is observed that the cloud cavity shedding flow induces the vortex pairs of the TE vortices in the wake and the shedding vortices. The positive vorticity vortex of the re-entrant jet and the TE vortices interacts and merges with the negative vorticity vortex of the leading edge (LE) cavity to produce the shedding flow.
The unsteady cavitation evolution around the Clark-Y hydrofoil is investigated in this paper, by using an improved filter-base model(FBM) with the density correction method(DCM). To improve the prediction accuracy, the filter scale is adjusted based on the grid size. The numerical results show that a small filter scale is crucial for the unsteady simulations of the cavity shedding flow. The hybrid method that combines the FBM and the DCM could help to limit the overprediction of the turbulent viscosity in the cavitation region on the wall of the hydrofoil and in the wake. The large value of the maximum density ratio ρ1 /ρv, clip promotes the mass transfer rate between the liquid phase and the vapor phase, which results in a large sheet cavity length and the vapor fraction rise inside the cavity. The cavity patterns predicted by the improved method are verified by the experimental visualizations. The time-average lift, the drag coefficient and the primary oscillating frequency St for the cavitation number σ= 0.8, the angle of attack, α= 8°, at a Reynolds number Re= 7×10^5 are 0.735, 0.115 and 0.183, respectively, and the predicted errors are 3.29%, 3.36% and 8.93%. The typical three stages in one revolution are well-captured, including the initiation of the sheet/attached cavity, the growth toward the trailing edge(TE) with the development of the re-entrant jet flow, and the large scale cloud cavity shedding. It is observed that the cloud cavity shedding flow induces the vortex pairs of the TE vortices in the wake and the shedding vortices. The positive vorticity vortex of the re-entrant jet and the TE vortices interacts and merges with the negative vorticity vortex of the leading edge(LE) cavity to produce the shedding flow.
Author 张德胜 王海宇 施卫东 张光建 Van ESCH B.P.M.(Bart)
AuthorAffiliation Research Center of Fluid Machinery Engineering and Technology, Jiangsu University, Zhenjiang 212013,China Department of Mechanical Engineering, Eindhoven University of Technology, Eindhoven 5600MB, TheNetherlands
AuthorAffiliation_xml – name: Research Center of Fluid Machinery Engineering and Technology, Jiangsu University, Zhenjiang 212013, China%Department of Mechanical Engineering, Eindhoven University of Technology, Eindhoven 5600MB, The Netherlands
Author_xml – sequence: 1
  fullname: 张德胜 王海宇 施卫东 张光建 Van ESCH B.P.M.(Bart)
BookMark eNqFkE-PFCEQxYlZE3dXP4IJ8aSJrdANNB0PZrPxX7LRg3omDBQzTBhYoXu099PLbI-aeJlTQer9ql69C3QWUwSEnlLyihIqXn-lhNBGEC6fU_6iVkYb-QCdU9nLhnSsPavvP5JH6KKULSGdGAg7R3efpx1kb3TAOuowF19wcnjcAJ5iGUHbGa9go_c-5UPDhDRZbOp_1KNPEeucpmixxpvZ5uSSD3ilC1h86EXsd7c57evX-TBCbpbeLlkIj9FDp0OBJ8d6ib6_f_ft-mNz8-XDp-urm8awloyNs9U2WXEwzvR2sB1YSRxjkg5MckNNZ4x0Pes0F7YVq5YyR_nQUgKOOArdJXq5zP2po9NxrbZpyvXWoooNv-btvL1T0BLK6xoqqvzNIjc5lZLBKXO8dczaB0WJOqSu7lNXh0gV5eo-dSUrzf-jb7Pf6Tyf5MTClaqPa8j_XJ4C3y4g1Aj3voLFeIgGrM9gRmWTPznh2dHyJsX1j7r9r2chhOzFwPruN6dmuj0
CitedBy_id crossref_primary_10_3390_app8020289
crossref_primary_10_1063_5_0223126
crossref_primary_10_1007_s12206_017_0118_0
crossref_primary_10_1063_5_0251037
crossref_primary_10_1080_19942060_2022_2111363
crossref_primary_10_1088_1742_6596_2707_1_012133
crossref_primary_10_1016_j_euromechflu_2020_09_016
crossref_primary_10_3390_pr7080541
crossref_primary_10_1016_S1001_6058_16_60746_1
crossref_primary_10_1007_s42241_021_0061_5
crossref_primary_10_1002_aic_16675
crossref_primary_10_1016_j_aej_2024_11_060
crossref_primary_10_1016_j_geoen_2023_212511
crossref_primary_10_1063_5_0248918
Cites_doi 10.1016/S0376-0421(01)00014-8
10.1016/j.euromechflu.2004.10.004
10.1017/S0022112001005420
10.1016/j.ijheatfluidflow.2003.10.005
10.1017/CBO9780511976728
10.1016/0021-9991(75)90093-5
10.1016/j.ijmultiphaseflow.2012.11.008
10.1115/1.1627835
10.1017/CBO9781107338760
10.1115/1.2151207
10.1002/fld.530
ContentType Journal Article
Copyright 2015 Publishing House for Journal of Hydrodynamics
China Ship Scientific Research Center 2015
Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: 2015 Publishing House for Journal of Hydrodynamics
– notice: China Ship Scientific Research Center 2015
– notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W92
~WA
AAYXX
CITATION
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.1016/S1001-6058(15)60541-8
DatabaseName 维普_期刊
中文科技期刊数据库-CALIS站点
中文科技期刊数据库-7.0平台
中文科技期刊数据库-工程技术
中文科技期刊数据库- 镜像站点
CrossRef
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitle CrossRef
DatabaseTitleList


DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitleAlternate Numerical analysis of the unsteady behavior of cloud cavitation around a hydrofoil based on an improved filter-based model
EISSN 1878-0342
EndPage 808
ExternalDocumentID sdlxyjyjz_e201505016
10_1016_S1001_6058_15_60541_8
S1001605815605418
666876947
GrantInformation_xml – fundername: Key Research and Development Project of Jiangsu Province
  grantid: Grant No. BE2015001-3
– fundername: National Natural Science Foundation of China
  grantid: Grant Nos. 51479083, 51579118
– fundername: the National Natural Science Foundation of China (Grant Nos.51479083, 51579118) the Key Research and Development Project of Jiangsu Province
  funderid: (Grant BE2015001-3)
GroupedDBID --K
--M
-01
-0A
-EM
-SA
-S~
.~1
0R~
1B1
1~.
1~5
2B.
2C0
2RA
4.4
406
457
4G.
5GY
5VR
5VS
5XA
5XB
5XL
7-5
71M
8P~
92H
92I
92L
92M
9D9
9DA
AABNK
AACTN
AAEDT
AAEDW
AAFGU
AAHNG
AAIAL
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATNV
AAUYE
AAXUO
AAYFA
ABDZT
ABECU
ABFGW
ABFTV
ABJOX
ABKAS
ABKCH
ABMAC
ABMQK
ABTEG
ABTKH
ABXDB
ABXPI
ABYKQ
ACAOD
ACBMV
ACBRV
ACBYP
ACDAQ
ACGFS
ACHSB
ACIGE
ACIPQ
ACMLO
ACNNM
ACOKC
ACRLP
ACTTH
ACVWB
ACWMK
ACZOJ
ADEZE
ADHHG
ADKNI
ADMDM
ADMUD
ADOXG
ADRFC
ADTZH
ADURQ
ADYFF
AEBSH
AECPX
AEFTE
AEJRE
AEKER
AENEX
AEPYU
AESKC
AESTI
AEVTX
AFKWA
AFNRJ
AFQWF
AFUIB
AGDGC
AGGBP
AGHFR
AGJBK
AGMZJ
AGUBO
AGYEJ
AHJVU
AIAKS
AIEXJ
AIKHN
AILAN
AIMYW
AITGF
AITUG
AJBFU
AJDOV
AJOXV
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMKLP
AMRAJ
AMXSW
AMYLF
AXJTR
AXYYD
BGNMA
BJAXD
BKOJK
BLXMC
CAJEA
CAJUS
CCEZO
CCVFK
CHBEP
CQIGP
CS3
CW9
DPUIP
DU5
EBLON
EBS
EFJIC
EFLBG
EJD
EO9
EP2
EP3
FA0
FDB
FEDTE
FINBP
FIRID
FNLPD
FNPLU
FSGXE
FYGXN
GBLVA
GGCAI
GJIRD
HVGLF
HZ~
IHE
IKXTQ
IWAJR
J-C
J1W
JJJVA
JUIAU
JZLTJ
KOM
KOV
LLZTM
M41
M4Y
MO0
N9A
NPVJJ
NQJWS
NU0
O9-
OAUVE
OZT
P-8
P-9
PC.
PT4
Q--
Q-0
Q38
R-A
REI
RIG
RLLFE
ROL
RPZ
RSV
RT1
S..
SDC
SDF
SDG
SES
SNE
SNPRN
SOHCF
SOJ
SPC
SRMVM
SSLCW
SST
SSZ
STPWE
T5K
T8Q
TCJ
TGT
TSG
U1F
U1G
U5A
U5K
UOJIU
UTJUX
VEKWB
VFIZW
W92
Z5O
Z7R
ZMTXR
~LB
~WA
AGQEE
FIGPU
AACDK
AAJBT
AASML
AAXDM
AAXKI
ABAKF
ABJNI
ABWVN
ACDTI
ACPIV
ACRPL
ADMLS
ADNMO
AEFQL
AEIPS
AEMSY
AFBBN
AGRTI
AIGIU
AKRWK
ANKPU
SJYHP
AATTM
AAYWO
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ACVFH
ADCNI
AEUPX
AEZWR
AFDZB
AFHIU
AFOHR
AFPUW
AFXIZ
AGCQF
AGRNS
AHPBZ
AHWEU
AIGII
AIIUN
AIXLP
AKBMS
AKYEP
ATHPR
AYFIA
CITATION
SSH
4A8
93N
PSX
ID FETCH-LOGICAL-c420t-fd6050b5ecfc7d9d3ed80f44819485c1c3cc8f743a56d26b214f159210ef0f1e3
IEDL.DBID .~1
ISSN 1001-6058
IngestDate Thu May 29 04:08:10 EDT 2025
Tue Jul 01 02:16:48 EDT 2025
Thu Apr 24 22:54:26 EDT 2025
Fri Feb 21 02:30:55 EST 2025
Fri Feb 23 02:34:37 EST 2024
Wed Feb 14 10:22:58 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords cloud cavitation
hydrofoil
density correction method
filter-based model (FBM)
unsteady behavior
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c420t-fd6050b5ecfc7d9d3ed80f44819485c1c3cc8f743a56d26b214f159210ef0f1e3
Notes 31-1563/T
filter-based model(FBM),density correction method,cloud cavitation,hydrofoil,unsteady behavior
ZHANG De-sheng , WANG Hai-yu , SHI Wei-dong, ZHANG Guang-jian , Van ESCH B. P. M. (Bart)( 1. Research Center of Fluid Machinery Engineering and Technology, Jiangsu University, Zhenjiang 212013, China, 2. Department of Mechanical Engineering, Eindhoven University of Technology, Eindhoven 5600MB, The Netherlands)
The unsteady cavitation evolution around the Clark-Y hydrofoil is investigated in this paper, by using an improved filter-base model(FBM) with the density correction method(DCM). To improve the prediction accuracy, the filter scale is adjusted based on the grid size. The numerical results show that a small filter scale is crucial for the unsteady simulations of the cavity shedding flow. The hybrid method that combines the FBM and the DCM could help to limit the overprediction of the turbulent viscosity in the cavitation region on the wall of the hydrofoil and in the wake. The large value of the maximum density ratio ρ1 /ρv, clip promotes the mass transfer rate between the liquid phase and the vapor phase, which results in a large sheet cavity length and the vapor fraction rise inside the cavity. The cavity patterns predicted by the improved method are verified by the experimental visualizations. The time-average lift, the drag coefficient and the primary oscillating frequency St for the cavitation number σ= 0.8, the angle of attack, α= 8°, at a Reynolds number Re= 7×10^5 are 0.735, 0.115 and 0.183, respectively, and the predicted errors are 3.29%, 3.36% and 8.93%. The typical three stages in one revolution are well-captured, including the initiation of the sheet/attached cavity, the growth toward the trailing edge(TE) with the development of the re-entrant jet flow, and the large scale cloud cavity shedding. It is observed that the cloud cavity shedding flow induces the vortex pairs of the TE vortices in the wake and the shedding vortices. The positive vorticity vortex of the re-entrant jet and the TE vortices interacts and merges with the negative vorticity vortex of the leading edge(LE) cavity to produce the shedding flow.
PageCount 14
ParticipantIDs wanfang_journals_sdlxyjyjz_e201505016
crossref_citationtrail_10_1016_S1001_6058_15_60541_8
crossref_primary_10_1016_S1001_6058_15_60541_8
springer_journals_10_1016_S1001_6058_15_60541_8
elsevier_sciencedirect_doi_10_1016_S1001_6058_15_60541_8
chongqing_primary_666876947
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-10-01
PublicationDateYYYYMMDD 2015-10-01
PublicationDate_xml – month: 10
  year: 2015
  text: 2015-10-01
  day: 01
PublicationDecade 2010
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
PublicationTitle Journal of hydrodynamics. Series B
PublicationTitleAbbrev J Hydrodyn
PublicationTitleAlternate Journal of Hydrodynamics
PublicationTitle_FL Journal of Hydrodynamics
PublicationYear 2015
Publisher Elsevier Ltd
Springer Singapore
Research Center of Fluid Machinery Engineering and Technology, Jiangsu University, Zhenjiang 212013, China%Department of Mechanical Engineering, Eindhoven University of Technology, Eindhoven 5600MB, The Netherlands
Publisher_xml – name: Elsevier Ltd
– name: Springer Singapore
– name: Research Center of Fluid Machinery Engineering and Technology, Jiangsu University, Zhenjiang 212013, China%Department of Mechanical Engineering, Eindhoven University of Technology, Eindhoven 5600MB, The Netherlands
References CALLENAERE, FRANC, MICHEL (bib7) 2001; 444
GIRIMAJI S. S., ABDOL-HAMID K. S. Partially-averaged Navier-Stokes model for turbulence: Implementation and validation[R]. AIAA paper 502(2005), 2005.
SCHUMANN (bib14) 1975; 18
WANG, SENOCAK, SHYY (bib3) 2001; 37
LEROUX, COUTIER-DELGOSHA, ASTOLFI (bib6) 2005; 17
COUTIER-DELGOSHA, STUTZ, VABRE (bib8) 2007; 578
GIRIMAJI (bib10) 2006; 73
MATSUNARI H. Experimental/numerical study on cavitating flow around clark Y 11.7% hydrofoil[C]. Proceedings of the 8th International Sympositm on Cavitation, (CAV 2012). Singapore, 2012.
JOHANSEN, WU, SHYY (bib13) 2004; 25
JI, LUO, WU (bib12) 2013; 51
REBOUD J., COUTIER-DELGOSHA O. and POUFFARY B. et al. Numerical simulation of unsteady cavitating flows: Some applications and open problems[C]. Fifth International Symposium on Cavitation. Osaka, Japan, 2003.
BRENNEN (bib1) 2013
ZWART P. J., GERBER A. G. and BELAMRI T. A two-phase flow model for predicting cavitation dynamics[C]. Fifth International Conference on Multiphase Flow. Yokohama, Japan, 2004.
BRENNEN (bib2) 2011
LEROUX, ASTOLFI, BILLARD (bib5) 2004; 126
COUTIER-DELGOSHA, REBOUD, DELANNOY (bib9) 2003; 42
MORGUT, NOBILE (bib20) 2012; 2012
DULAR, BACHERT, STOFFEL (bib17) 2005; 24
HUANG, WANG (bib18) 2011; 28
LUO, JI, PENG (bib19) 2012; 134
Coutier-DelgoshaOReboudJDelannoyYNumerical simulation of the unsteady behaviour of cavitating flows[J]International Journal for Numerical Methods in Fluids20034255275481143.76497
SchumannUSubgrid scale model for finite difference simulations of turbulent flows in plane channels and annuli[J]Journal of Computational Physics197518437640410.1016/0021-9991(75)90093-5
MorgutMNobileENumerical predictions of cavitating flow around model scale propellers by CFD and advanced model calibration[J]International Journal of Rotating Machinery2012111
ZwartP JGerberA GBelamriTA two-phase flow model for predicting cavitation dynamics[C]Fifth International Conference on Multiphase Flow2004JapanYokohama
Journal of Fluids Engineering20121344
LerouxJ-BAstolfiJ ABillardJ YAn experimental study of unsteady partial cavitation[J]Journal of Fluids Engineering200412619410110.1115/1.1627835
WangGSenocakIShyyWDynamics of attached turbulent cavitating flows[J]Progress in Aerospace Sciences200137655158110.1016/S0376-0421(01)00014-8
MatsunariHExperimental/numerical study on cavitating flow around clark Y 11.7% hydrofoil[C]Proceedings of the 8th International Sympositm on Cavitation, (CAV 2012)2012
GirimajiS SAbdol-HamidK SPartially–averaged Navier-Stokes model for turbulence: Implementation and validation[R]2005
JiBLuoXWuYNumerical analysis of unsteady cavitating turbulent flow and shedding horse-shoe vortex structure around a twisted hydrofoil[J]International Journal of Multiphase Flow201351334310.1016/j.ijmultiphaseflow.2012.11.008
BrennenC ECavitation and bubble dynamics[M]2013New York, USACambridge University Press10.1017/CBO9781107338760
BrennenC EHydrodynamics of pumps[M]2011New York, USACambridge University Press10.1017/CBO9780511976728
Physics of Fluids2005175
DularMBachertRStoffelBExperimental evaluation of numerical simulation of cavitating flow around hydrofoil[J]European Journal of Mechanics-B/Fluids200524452253810.1016/j.euromechflu.2004.10.004
GirimajiS SPartially-averaged navier-stokes model for turbulence: A reynolds-averaged navier-stokes to direct numerical simulation bridging method[J]Journal of Applied Mechanics200673341342110.1115/1.2151207
JohansenS TWuJShyyWFilter-based unsteady rans computations[J]International Journal of Heat and fluid flow2004251102110.1016/j.ijheatfluidflow.2003.10.005
Chinese Physics Letters2011282
ReboudJCoutier-DelgoshaOPouffaryBNumerical simulation of unsteady cavitating flows: Some applications and open problems[C]Fifth International Symposium on Cavitation2003JapanOsaka
Coutier-DelgoshaOStutzBVabreAAnalysis of cavitating flow structure by experimental and numerical investigations[J]Journal of Fluid Mechanics20071712221111.76301
CallenaereMFrancJ-PMichelJThe cavitation instability induced by the development of a re-entrant jet[J]Journal of Fluid Mechanics200144422325610.1017/S0022112001005420
S S Girimaji (2705795_CR11) 2005
M Dular (2705795_CR17) 2005; 24
(2705795_CR18) 2011; 28
B Ji (2705795_CR12) 2013; 51
J Reboud (2705795_CR16) 2003
O Coutier-Delgosha (2705795_CR9) 2003; 42
(2705795_CR19) 2012; 134
C E Brennen (2705795_CR1) 2013
O Coutier-Delgosha (2705795_CR8) 2007
J-B Leroux (2705795_CR5) 2004; 126
M Callenaere (2705795_CR7) 2001; 444
C E Brennen (2705795_CR2) 2011
P J Zwart (2705795_CR15) 2004
(2705795_CR6) 2005; 17
S T Johansen (2705795_CR13) 2004; 25
U Schumann (2705795_CR14) 1975; 18
S S Girimaji (2705795_CR10) 2006; 73
G Wang (2705795_CR3) 2001; 37
H Matsunari (2705795_CR4) 2012
M Morgut (2705795_CR20) 2012
References_xml – volume: 42
  start-page: 527
  year: 2003
  end-page: 548
  ident: bib9
  article-title: Numerical simulation of the unsteady behaviour of cavitating flows[J]
  publication-title: International Journal for Numerical Methods in Fluids
– volume: 134
  start-page: 041202
  year: 2012
  ident: bib19
  article-title: Numerical simulation of cavity shedding from a three-dimensional twisted hydrofoil and induced pressure fluctuation by large-eddy simulation[J]
  publication-title: Journal of Fluids Engineering
– volume: 51
  start-page: 33
  year: 2013
  end-page: 43
  ident: bib12
  article-title: Numerical analysis of unsteady cavitating turbulent flow and shedding horseshoe vortex structure around a twisted hydrofoil[J]
  publication-title: International Journal of Multiphase Flow
– reference: ZWART P. J., GERBER A. G. and BELAMRI T. A two-phase flow model for predicting cavitation dynamics[C]. Fifth International Conference on Multiphase Flow. Yokohama, Japan, 2004.
– reference: REBOUD J., COUTIER-DELGOSHA O. and POUFFARY B. et al. Numerical simulation of unsteady cavitating flows: Some applications and open problems[C]. Fifth International Symposium on Cavitation. Osaka, Japan, 2003.
– volume: 28
  start-page: 026401
  year: 2011
  ident: bib18
  article-title: Evaluation of a filterbased model for computations of cavitating flows[J]
  publication-title: Chinese Physics Letters
– volume: 73
  start-page: 413
  year: 2006
  end-page: 421
  ident: bib10
  article-title: Partially-averaged navier-stokes model for turbulence: A reynolds-averaged navier-stokes to direct numerical simulation bridging method[J]
  publication-title: Journal of Applied Mechanics
– volume: 126
  start-page: 94
  year: 2004
  end-page: 101
  ident: bib5
  article-title: An experimental study of unsteady partial cavitation[J]
  publication-title: Journal of Fluids Engineering
– volume: 578
  start-page: 171
  year: 2007
  end-page: 222
  ident: bib8
  article-title: Analysis of cavitating flow structure by experimental and numerical investigations[J]
  publication-title: Journal of Fluid Mechanics
– volume: 444
  start-page: 223
  year: 2001
  end-page: 256
  ident: bib7
  article-title: The cavitation instability induced by the development of a re-entrant jet[J]
  publication-title: Journal of Fluid Mechanics
– volume: 2012
  start-page: 1
  year: 2012
  end-page: 11
  ident: bib20
  article-title: Numerical predictions of cavitating flow around model scale propellers by CFD and advanced model calibration[J]
  publication-title: International Journal of Rotating Machinery
– reference: GIRIMAJI S. S., ABDOL-HAMID K. S. Partially-averaged Navier-Stokes model for turbulence: Implementation and validation[R]. AIAA paper 502(2005), 2005.
– year: 2013
  ident: bib1
  publication-title: Cavitation and bubble dynamics[M]
– volume: 37
  start-page: 551
  year: 2001
  end-page: 581
  ident: bib3
  article-title: Dynamics of attached turbulent cavitating flows[J]
  publication-title: Progress in Aerospace Sciences
– volume: 18
  start-page: 376
  year: 1975
  end-page: 404
  ident: bib14
  article-title: Subgrid scale model for finite difference simulations of turbulent flows in plane channels and annuli[J]
  publication-title: Journal of Computational Physics
– volume: 24
  start-page: 522
  year: 2005
  end-page: 538
  ident: bib17
  article-title: Experimental evaluation of numerical simulation of cavitating flow around hydrofoil[J]
  publication-title: European Journal of Mechanics-B/Fluids
– reference: MATSUNARI H. Experimental/numerical study on cavitating flow around clark Y 11.7% hydrofoil[C]. Proceedings of the 8th International Sympositm on Cavitation, (CAV 2012). Singapore, 2012.
– volume: 17
  start-page: 052101
  year: 2005
  ident: bib6
  article-title: A joint experimental and numerical study of mechanisms associated to instability of partial cavitation on two-dimensional hydrofoil[J]
  publication-title: Physics of Fluids
– volume: 25
  start-page: 10
  year: 2004
  end-page: 21
  ident: bib13
  article-title: Filter-based unsteady rans computations[J]
  publication-title: International Journal of Heat and fluid flow
– year: 2011
  ident: bib2
  publication-title: Hydrodynamics of pumps[M]
– reference: WangGSenocakIShyyWDynamics of attached turbulent cavitating flows[J]Progress in Aerospace Sciences200137655158110.1016/S0376-0421(01)00014-8
– reference: JiBLuoXWuYNumerical analysis of unsteady cavitating turbulent flow and shedding horse-shoe vortex structure around a twisted hydrofoil[J]International Journal of Multiphase Flow201351334310.1016/j.ijmultiphaseflow.2012.11.008
– reference: DularMBachertRStoffelBExperimental evaluation of numerical simulation of cavitating flow around hydrofoil[J]European Journal of Mechanics-B/Fluids200524452253810.1016/j.euromechflu.2004.10.004
– reference: ZwartP JGerberA GBelamriTA two-phase flow model for predicting cavitation dynamics[C]Fifth International Conference on Multiphase Flow2004JapanYokohama
– reference: Journal of Fluids Engineering20121344
– reference: Coutier-DelgoshaOStutzBVabreAAnalysis of cavitating flow structure by experimental and numerical investigations[J]Journal of Fluid Mechanics20071712221111.76301
– reference: GirimajiS SPartially-averaged navier-stokes model for turbulence: A reynolds-averaged navier-stokes to direct numerical simulation bridging method[J]Journal of Applied Mechanics200673341342110.1115/1.2151207
– reference: LerouxJ-BAstolfiJ ABillardJ YAn experimental study of unsteady partial cavitation[J]Journal of Fluids Engineering200412619410110.1115/1.1627835
– reference: Physics of Fluids2005175
– reference: JohansenS TWuJShyyWFilter-based unsteady rans computations[J]International Journal of Heat and fluid flow2004251102110.1016/j.ijheatfluidflow.2003.10.005
– reference: MorgutMNobileENumerical predictions of cavitating flow around model scale propellers by CFD and advanced model calibration[J]International Journal of Rotating Machinery2012111
– reference: SchumannUSubgrid scale model for finite difference simulations of turbulent flows in plane channels and annuli[J]Journal of Computational Physics197518437640410.1016/0021-9991(75)90093-5
– reference: BrennenC EHydrodynamics of pumps[M]2011New York, USACambridge University Press10.1017/CBO9780511976728
– reference: MatsunariHExperimental/numerical study on cavitating flow around clark Y 11.7% hydrofoil[C]Proceedings of the 8th International Sympositm on Cavitation, (CAV 2012)2012
– reference: ReboudJCoutier-DelgoshaOPouffaryBNumerical simulation of unsteady cavitating flows: Some applications and open problems[C]Fifth International Symposium on Cavitation2003JapanOsaka
– reference: CallenaereMFrancJ-PMichelJThe cavitation instability induced by the development of a re-entrant jet[J]Journal of Fluid Mechanics200144422325610.1017/S0022112001005420
– reference: GirimajiS SAbdol-HamidK SPartially–averaged Navier-Stokes model for turbulence: Implementation and validation[R]2005
– reference: BrennenC ECavitation and bubble dynamics[M]2013New York, USACambridge University Press10.1017/CBO9781107338760
– reference: Chinese Physics Letters2011282
– reference: Coutier-DelgoshaOReboudJDelannoyYNumerical simulation of the unsteady behaviour of cavitating flows[J]International Journal for Numerical Methods in Fluids20034255275481143.76497
– volume-title: Proceedings of the 8th International Sympositm on Cavitation, (CAV 2012)
  year: 2012
  ident: 2705795_CR4
– volume-title: Partially–averaged Navier-Stokes model for turbulence: Implementation and validation[R]
  year: 2005
  ident: 2705795_CR11
– volume: 37
  start-page: 551
  issue: 6
  year: 2001
  ident: 2705795_CR3
  publication-title: Progress in Aerospace Sciences
  doi: 10.1016/S0376-0421(01)00014-8
– volume: 28
  issue: 2
  year: 2011
  ident: 2705795_CR18
  publication-title: Chinese Physics Letters
– volume: 24
  start-page: 522
  issue: 4
  year: 2005
  ident: 2705795_CR17
  publication-title: European Journal of Mechanics-B/Fluids
  doi: 10.1016/j.euromechflu.2004.10.004
– volume: 444
  start-page: 223
  year: 2001
  ident: 2705795_CR7
  publication-title: Journal of Fluid Mechanics
  doi: 10.1017/S0022112001005420
– volume: 25
  start-page: 10
  issue: 1
  year: 2004
  ident: 2705795_CR13
  publication-title: International Journal of Heat and fluid flow
  doi: 10.1016/j.ijheatfluidflow.2003.10.005
– start-page: 1
  volume-title: International Journal of Rotating Machinery
  year: 2012
  ident: 2705795_CR20
– volume-title: Hydrodynamics of pumps[M]
  year: 2011
  ident: 2705795_CR2
  doi: 10.1017/CBO9780511976728
– volume: 18
  start-page: 376
  issue: 4
  year: 1975
  ident: 2705795_CR14
  publication-title: Journal of Computational Physics
  doi: 10.1016/0021-9991(75)90093-5
– volume-title: Fifth International Symposium on Cavitation
  year: 2003
  ident: 2705795_CR16
– volume: 51
  start-page: 33
  year: 2013
  ident: 2705795_CR12
  publication-title: International Journal of Multiphase Flow
  doi: 10.1016/j.ijmultiphaseflow.2012.11.008
– volume: 126
  start-page: 94
  issue: 1
  year: 2004
  ident: 2705795_CR5
  publication-title: Journal of Fluids Engineering
  doi: 10.1115/1.1627835
– start-page: 171
  volume-title: Journal of Fluid Mechanics
  year: 2007
  ident: 2705795_CR8
– volume-title: Cavitation and bubble dynamics[M]
  year: 2013
  ident: 2705795_CR1
  doi: 10.1017/CBO9781107338760
– volume-title: Fifth International Conference on Multiphase Flow
  year: 2004
  ident: 2705795_CR15
– volume: 73
  start-page: 413
  issue: 3
  year: 2006
  ident: 2705795_CR10
  publication-title: Journal of Applied Mechanics
  doi: 10.1115/1.2151207
– volume: 17
  issue: 5
  year: 2005
  ident: 2705795_CR6
  publication-title: Physics of Fluids
– volume: 42
  start-page: 527
  issue: 5
  year: 2003
  ident: 2705795_CR9
  publication-title: International Journal for Numerical Methods in Fluids
  doi: 10.1002/fld.530
– volume: 134
  issue: 4
  year: 2012
  ident: 2705795_CR19
  publication-title: Journal of Fluids Engineering
SSID ssj0036904
Score 2.091767
Snippet The unsteady cavitation evolution around the Clark-Y hydrofoil is investigated in this paper, by using an improved filter-base model(FBM) with the density...
The unsteady cavitation evolution around the Clark-Y hydrofoil is investigated in this paper, by using an improved filter-base model (FBM) with the density...
SourceID wanfang
crossref
springer
elsevier
chongqing
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 795
SubjectTerms cloud cavitation
density correction method
Engineering
Engineering Fluid Dynamics
filter-based model (FBM)
hydrofoil
Hydrology/Water Resources
Numerical and Computational Physics
Simulation
unsteady behavior
基础
数值分析
校正方法
模型
水翼
滤波器库
空化数
非定常特性
Title Numerical analysis of the unsteady behavior of cloud cavitation around a hydrofoil based on an improved filter-based model
URI http://lib.cqvip.com/qk/86648X/201505/666876947.html
https://dx.doi.org/10.1016/S1001-6058(15)60541-8
https://link.springer.com/article/10.1016/S1001-6058(15)60541-8
https://d.wanfangdata.com.cn/periodical/sdlxyjyjz-e201505016
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LTtww0EL0Qg9VW1p1oUU-FKk9mI0Tezd7RKho2xV7oEXlZjl-QFCUUNiVuhz4dmYcJ9BDtRKnKHbGSmbGM-PMi5DPiXaFmDjDuDMZE8YVTBspWS7Q2e6s9g6zkU_mo-mZ-HEuzzfIUZcLg2GVUfa3Mj1I6zgyjNgcXpfl8CcPPZIlljsBu4Njwq8QY-Tyg_s-zCOD01_wLGPoED79mMXTrhAGv3D5NSzCcqyxcNnUF39Ac_xPV_U-05DpU3tdXzxRSsevyatoTdLD9oXfkA1XvyUvn9QY3CZ382XrlKmojgVIaOMp2H10WQcSr2iXq48TpmqWlhq4b530VN9g5yWq6eXKgtBuyoqi6rMU52pahr8ScOtLdLyzdi402HlHzo6__TqasthwgRkgzYJ5C0hICumMN2M7sZmzeeLhAMexhozhJjMm92BzaDmy6ahIufBgDsGp0fnEc5e9J5t1U7sPhCYOsInl3Czwgk4dPOSNzDObTFLPdTEguz2a1XVbWEPBUQqE80SMB0R0iFcmfi62zKhUH5SGtFNIO8WlCrRT-YAc9GDdmmsA8o6q6h-uU6BQ1oEOOy5QcdvfroPYj8zyCHBrq7-rq9XVnXIp_nuSAL3z_JfaJVu4TBts-JFsLm6W7hMYTYtiL-yKPfLi8PtsOsfr7PT37AG-MBG-
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LTtwwcESXQ9tD1adY6MOHVmoP7sZJvGSPCBUtBfZSkLhZjh8QFCUUdiWWr--M4yz0UK3Uo-2M5czY8_B4ZgA-J9qV-cQZLpzJeG5cybWRkhc5Odud1d5RNPLJbDw9y3-ey_MN2O9jYehZZeT9HU8P3Dr2jCI2R9dVNfolQo1kSelOUO8QxRPYpOxUcgCbe4dH01nPkDM0AINzmV4PEcBDIE83Sej8KuS3MA8vKM3CZdtc_Ebh8S9xtXKbhmCfxuvm4pFcOngJL6JCyfa6Nb-CDde8hueP0gy-gfvZovPL1EzHHCSs9QxVP7ZoApWXrA_XpwFTtwvLDLY7Pz3TN1R8iWl2ubTIt9uqZiT9LKOxhlXhYgKbviLfO-_GQo2dt3B28ON0f8pjzQVukDpz7i0iISmlM97s2onNnC0SjzacoDQyRpjMmMKj2qHl2KbjMhW5R40IDUfnEy9c9g4GTdu4LWCJQ2xSRjeL20GnDj_yRhaZTSapF7ocws4Kzeq6y62h0JpC_jzJd4eQ94hXJv4uVc2o1epdGtFOEe2UkCrQThVD-L4C6-dcA1D0VFV_bTyFMmUd6KjfBSqe_Nt1EF_iZnkAuLX13fJqeXWvXErXTxKht_9_UZ_g6fT05FgdH86OduAZTdm9PXwPg_nNwn1AHWpefoxn5A-QERLM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+analysis+of+the+unsteady+behavior+of+cloud+cavitation+around+a+hydrofoil+based+on+an+improved+filter-based+model&rft.jtitle=Journal+of+hydrodynamics.+Series+B&rft.au=ZHANG%2C+De-sheng&rft.au=WANG%2C+Hai-yu&rft.au=SHI%2C+Wei-dong&rft.au=ZHANG%2C+Guang-jian&rft.date=2015-10-01&rft.pub=Elsevier+Ltd&rft.issn=1001-6058&rft.volume=27&rft.issue=5&rft.spage=795&rft.epage=808&rft_id=info:doi/10.1016%2FS1001-6058%2815%2960541-8&rft.externalDocID=S1001605815605418
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F86648X%2F86648X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fsdlxyjyjz-e%2Fsdlxyjyjz-e.jpg