Magnetic properties of crystalline mesoporous Zn-substituted copper ferrite synthesized under nanoconfinement in silica matrix
[Display omitted] •We fabricated a multicomponent mesoporous product by a novel nanocasting route.•The proposed method provides a high phase purity and large specific surface area.•We studied the effect of nanoconfinement on the magnetic properties of the final product.•Enhancement of saturation mag...
Saved in:
Published in | Microporous and mesoporous materials Vol. 190; pp. 346 - 355 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
San Diego, CA
Elsevier Inc
15.05.2014
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•We fabricated a multicomponent mesoporous product by a novel nanocasting route.•The proposed method provides a high phase purity and large specific surface area.•We studied the effect of nanoconfinement on the magnetic properties of the final product.•Enhancement of saturation magnetization of the material under nanoconfinement.•We propose a model for spin configuration in the sublattices of the material.
A series of ordered mesoporous single phase Cu1−xZnxFe2O4 spinel ferrites, with x ranging from 0.00 to 0.75 with a step increment of 0.25, are prepared by a novel nanocasting route with the aid of vinyl-functionalized mesoporous silica as a hard template. All samples display a relatively high surface area and narrow pore size distribution from nitrogen sorption analysis. The magnetic hysteresis loops of these samples measured at 300K, the temperature dependence of the zero field cooled (ZFC) and field cooled (FC) magnetization curves and the Mössbauer Spectra show the presence of superparamagnetic nanoparticles in all samples. The hysteresis data indicate that the maximum saturation magnetization of 52 emug−1 is obtained for the composition with x=0.25. For x⩾0.5, the saturation magnetization decreases as a result of the cation redistribution within tetrahedral (A) and octahedral (B) sites which weakens the A–B interactions due to triangular Yafet–Kittel spin arrangement on the B-sublattice. The observed magnetic features are attributed to the confined spaces of the host material which acts as a nanoreactor, limiting the growth of the embedded oxide phase and significantly influencing the cation distribution of copper–zinc ferrite on the A and B sites. |
---|---|
AbstractList | [Display omitted]
•We fabricated a multicomponent mesoporous product by a novel nanocasting route.•The proposed method provides a high phase purity and large specific surface area.•We studied the effect of nanoconfinement on the magnetic properties of the final product.•Enhancement of saturation magnetization of the material under nanoconfinement.•We propose a model for spin configuration in the sublattices of the material.
A series of ordered mesoporous single phase Cu1−xZnxFe2O4 spinel ferrites, with x ranging from 0.00 to 0.75 with a step increment of 0.25, are prepared by a novel nanocasting route with the aid of vinyl-functionalized mesoporous silica as a hard template. All samples display a relatively high surface area and narrow pore size distribution from nitrogen sorption analysis. The magnetic hysteresis loops of these samples measured at 300K, the temperature dependence of the zero field cooled (ZFC) and field cooled (FC) magnetization curves and the Mössbauer Spectra show the presence of superparamagnetic nanoparticles in all samples. The hysteresis data indicate that the maximum saturation magnetization of 52 emug−1 is obtained for the composition with x=0.25. For x⩾0.5, the saturation magnetization decreases as a result of the cation redistribution within tetrahedral (A) and octahedral (B) sites which weakens the A–B interactions due to triangular Yafet–Kittel spin arrangement on the B-sublattice. The observed magnetic features are attributed to the confined spaces of the host material which acts as a nanoreactor, limiting the growth of the embedded oxide phase and significantly influencing the cation distribution of copper–zinc ferrite on the A and B sites. A series of ordered mesoporous single phase Cu1-xZnxFe2O4 spinel ferrites, with x ranging from 0.00 to 0.75 with a step increment of 0.25, are prepared by a novel nanocasting route with the aid of vinyl-functionalized mesoporous silica as a hard template. All samples display a relatively high surface area and narrow pore size distribution from nitrogen sorption analysis. The magnetic hysteresis loops of these samples measured at 300 K, the temperature dependence of the zero field cooled (ZFC) and field cooled (FC) magnetization curves and the Mossbauer Spectra show the presence of superparamagnetic nanopartides in all samples. The hysteresis data indicate that the maximum saturation magnetization of 52 emu g(-1), is obtained for the composition with x = 0.25. For x >= 0.5, the saturation magnetization decreases as a result of the cation redistribution within tetrahedral (A) and octahedral (B) sites which weakens the A-B interactions due to triangular Yafet-Kittel spin arrangement on the B-sublattice. The observed magnetic features are attributed to the confined spaces of the host material which acts as a nanoreactor, limiting the growth of the embedded oxide phase and significantly influencing the cation distribution of copper-zinc ferrite on the A and B sites. |
Author | Åkerman, Johan Rezaie, Hamidreza Toprak, Muhammet S. Najmoddin, Najmeh Niarchos, Dimitris Kavas, Hüseyin Mohseni, Seyed Majid Muhammed, Mamoun Beitollahi, Ali Devlin, Eamonn |
Author_xml | – sequence: 1 givenname: Najmeh surname: Najmoddin fullname: Najmoddin, Najmeh email: najmeh@kth.se, najmoddin@iust.ac.ir organization: Department of Materials and Nano Physics, KTH – Royal Institute of Technology, Kista-Stockholm 16440, Sweden – sequence: 2 givenname: Ali surname: Beitollahi fullname: Beitollahi, Ali organization: Center of Excellence for Ceramic Materials in Energy and Environment Applications, School of Metallurgy & Materials Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran 16846, Iran – sequence: 3 givenname: Eamonn surname: Devlin fullname: Devlin, Eamonn organization: Institute of Advanced Materials, Physicochemical Processes, Nanotechnology and Microsystems, NCSR Demokritos, Aghia Paraskevi, Athens 15310, Greece – sequence: 4 givenname: Hüseyin surname: Kavas fullname: Kavas, Hüseyin organization: Department of Physics, Fatih University, Buyukcekmece, Istanbul 16640, Turkey – sequence: 5 givenname: Seyed Majid surname: Mohseni fullname: Mohseni, Seyed Majid organization: Department of Materials and Nano Physics, KTH – Royal Institute of Technology, Kista-Stockholm 16440, Sweden – sequence: 6 givenname: Johan surname: Åkerman fullname: Åkerman, Johan organization: Department of Materials and Nano Physics, KTH – Royal Institute of Technology, Kista-Stockholm 16440, Sweden – sequence: 7 givenname: Dimitris surname: Niarchos fullname: Niarchos, Dimitris organization: Institute of Advanced Materials, Physicochemical Processes, Nanotechnology and Microsystems, NCSR Demokritos, Aghia Paraskevi, Athens 15310, Greece – sequence: 8 givenname: Hamidreza surname: Rezaie fullname: Rezaie, Hamidreza organization: Center of Excellence for Ceramic Materials in Energy and Environment Applications, School of Metallurgy & Materials Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran 16846, Iran – sequence: 9 givenname: Mamoun surname: Muhammed fullname: Muhammed, Mamoun organization: Department of Materials and Nano Physics, KTH – Royal Institute of Technology, Kista-Stockholm 16440, Sweden – sequence: 10 givenname: Muhammet S. surname: Toprak fullname: Toprak, Muhammet S. email: toprak@kth.se organization: Department of Materials and Nano Physics, KTH – Royal Institute of Technology, Kista-Stockholm 16440, Sweden |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28361281$$DView record in Pascal Francis https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-145802$$DView record from Swedish Publication Index |
BookMark | eNqFkU1v1DAQhiNUJNrCb8AXjkn9kSbOgcOqfEpFXIADF8vrjNtZEjvyOIXtgd-OVws9cOlpLM37vJbmOatOQgxQVS8FbwQX3cWumdGlOAPFRnLRNlw2XKkn1anQvaoVH9RJeSvd10IL8aw6I9pxLnohxWn1-5O9CZDRsSXFBVJGIBY9c2lP2U4TBmCH6iWmuBL7Hmpat5QxrxlG5uJSGOYhJczAaB_yLRDel9UaxrIJNkQXgy81M4TMMDDCCZ1ls80Jfz2vnno7Ebz4O8-rr-_efrn6UF9_fv_xanNdu1byXMPAuRq3HqTSvu2s6rtRenep9cA1jK3uQQIopcU4dGU4pbadHaTWkoOUgzqv6mMv_YRl3Zol4WzT3kSL5g1-25iYbsyPfGtEe6m5LPlXx_xiydnJJxsc0gMmteqE1KLkXh9zxQBRAm8cZpsxhpwsTkZwc5BkduZBkjlIMlyaIqnw_X_8vy8eJzdHEsrZ7hCSIYcQHIyYwGUzRny04w_GorgL |
CitedBy_id | crossref_primary_10_1007_s10853_024_09485_9 crossref_primary_10_1007_s10948_018_4733_5 crossref_primary_10_1007_s10854_021_06981_5 crossref_primary_10_1016_j_ceramint_2014_08_063 crossref_primary_10_1016_j_optlastec_2018_10_045 crossref_primary_10_1016_j_molstruc_2017_07_003 crossref_primary_10_3762_bjnano_10_214 crossref_primary_10_1007_s10854_018_00640_y crossref_primary_10_1186_s12645_021_00106_7 crossref_primary_10_1007_s11356_023_27170_3 crossref_primary_10_1016_j_matchemphys_2022_125723 crossref_primary_10_1016_j_mtcomm_2020_101516 crossref_primary_10_1016_j_solidstatesciences_2016_05_003 crossref_primary_10_1021_acs_jpcc_7b02084 crossref_primary_10_1007_s10904_014_0069_1 crossref_primary_10_1007_s10948_020_05613_z crossref_primary_10_1016_j_jallcom_2019_04_071 crossref_primary_10_1016_j_jmmm_2018_05_104 crossref_primary_10_1016_j_ceramint_2018_05_028 crossref_primary_10_1007_s00339_019_2454_7 crossref_primary_10_1016_j_jddst_2020_101711 crossref_primary_10_1016_j_mseb_2022_115608 crossref_primary_10_1063_1_4897964 |
Cites_doi | 10.1021/nl035010n 10.1021/nl060528n 10.1021/jp910159b 10.1016/j.micromeso.2010.07.001 10.1103/PhysRevLett.80.181 10.1021/jp991626i 10.1016/j.jallcom.2009.06.128 10.1166/jnn.2008.15348 10.1063/1.126727 10.1021/am200228k 10.1021/ja075528j 10.1039/c2cc31006f 10.1016/j.materresbull.2008.11.018 10.1002/adma.200400777 10.1021/jp8048394 10.1021/jp911586d 10.1007/s10948-012-1672-4 10.1021/cm034769x 10.1016/j.jmmm.2009.01.008 10.1016/j.jmmm.2008.08.083 10.1021/nl902423a 10.1021/ja0584774 10.1021/jp810230d 10.1016/j.jallcom.2010.03.178 10.1039/c1cs15246g 10.1021/jp304236x 10.1021/cm0610635 10.1088/0022-3727/42/22/224001 10.1016/j.jallcom.2007.06.019 10.1016/j.jmmm.2009.11.018 10.1007/s11051-012-1359-6 10.1007/s11051-010-9982-6 10.1007/s11051-012-1156-2 10.1021/cg900648q 10.1016/j.jpcs.2005.11.015 10.1021/ja063662i 10.1021/jp307371q 10.1063/1.3499346 10.1039/B919090B 10.1063/1.1699501 10.1021/jp409058t 10.1039/b104562h 10.1021/jp0650230 10.1016/j.matchemphys.2010.04.005 10.1016/j.jmmm.2012.12.049 |
ContentType | Journal Article |
Copyright | 2014 Elsevier Inc. 2015 INIST-CNRS |
Copyright_xml | – notice: 2014 Elsevier Inc. – notice: 2015 INIST-CNRS |
DBID | AAYXX CITATION IQODW ADTPV AOWAS D8V |
DOI | 10.1016/j.micromeso.2014.02.033 |
DatabaseName | CrossRef Pascal-Francis SwePub SwePub Articles SWEPUB Kungliga Tekniska Högskolan |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1873-3093 |
EndPage | 355 |
ExternalDocumentID | oai_DiVA_org_kth_145802 28361281 10_1016_j_micromeso_2014_02_033 S1387181114000948 |
GroupedDBID | --K --M .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABMAC ABNUV ABXDB ABXRA ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEWK ADEZE AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA HVGLF IHE J1W KOM M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SES SPC SPCBC SSG SSM SSZ T5K XPP ZMT ~02 ~G- 29M AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FGOYB HZ~ R2- SEW SSH IQODW ADTPV AOWAS D8V EFKBS |
ID | FETCH-LOGICAL-c420t-e9003dbfe238f46a376d2fc588908ed487e2ee3381d96338c33b6a928820e2293 |
IEDL.DBID | .~1 |
ISSN | 1387-1811 1873-3093 |
IngestDate | Thu Aug 21 07:02:21 EDT 2025 Wed Apr 02 07:35:51 EDT 2025 Thu Apr 24 23:02:15 EDT 2025 Tue Jul 01 02:02:21 EDT 2025 Fri Feb 23 02:23:48 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Nanocasting Mesoporous materials Copper zinc ferrite Mössbauer spectroscopy Magnetic properties Ternary compound Binary compound Confinement Nanoconfinement Transition metal Moessbauer spectrometry Zinc Oxides Porous material Silica Mesoporosity Zinc Copper Oxides Ferrites Iron Oxides Quaternary compound |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c420t-e9003dbfe238f46a376d2fc588908ed487e2ee3381d96338c33b6a928820e2293 |
PageCount | 10 |
ParticipantIDs | swepub_primary_oai_DiVA_org_kth_145802 pascalfrancis_primary_28361281 crossref_citationtrail_10_1016_j_micromeso_2014_02_033 crossref_primary_10_1016_j_micromeso_2014_02_033 elsevier_sciencedirect_doi_10_1016_j_micromeso_2014_02_033 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-05-15 |
PublicationDateYYYYMMDD | 2014-05-15 |
PublicationDate_xml | – month: 05 year: 2014 text: 2014-05-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | San Diego, CA |
PublicationPlace_xml | – name: San Diego, CA |
PublicationTitle | Microporous and mesoporous materials |
PublicationYear | 2014 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | Jadhav, Shirsath, Patange, Jadhav (b0140) 2010; 108 Hankare, Kadam, Patil, Garadkar, Sasikala, Tripathi (b0070) 2010; 501 Köseoğlu, Bay, Tan, Baykal, Sözari, Topyaka, Akdoğan (b0215) 2011; 13 Li, Barnes, Bosoy, Stoddart, Zink (b0010) 2012; 41 Shi, Guo, Corr, Shi, Hu, Heier, Chen, Seshadri, Stucky (b0085) 2009; 9 Wang, Yang, Schmidth, Spliethoff, Bill, Schüth (b0150) 2005; 17 Yan, Chen, Xue, Miele (b0030) 2010; 135 El-Sheikh, Harraz, Hessien (b0035) 2010; 123 Goldman (b0200) 1999 Wang, Yang, Zibrowius, Spliethoff, Lindén, Schüth (b0135) 2003; 15 Hochepied, Bonville, Pileni (b0240) 2000; 104 Cannas, Casula, Concas, Corrias, Gatteschi, Falqui, Musinu, Sangregorio, Spano (b0225) 2001; 11 Ibrahim, Hample, Wollter, Kath, El-Gendy, Klingeler, Täschner, Khavrus, Gemming, Leonhardt, Büchner (b0220) 2012; 116 Pankhurst, Thanh, Jones, Dobson (b0015) 2009; 42 Li, Zeng, Wang, Tang, Liu, Chen, Wei (b0020) 2011; 3 Ajmal, Maqsood (b0075) 2008; 460 Sertkol, Köseoğlu, Baykal, Kavas, Başaran (b0065) 2009; 321 Casu, Casula, Corrias, Falqui, Loche, Marras (b0130) 2007; 111 Jiao, Harrison, Jumas, Chadwick, Kockelmann, Bruce (b0115) 2006; 128 Sertkol, Köseoğlu, Baykal, Kavas, Bozkurt, Toprak (b0145) 2009; 486 Wang, He, Rosenzweig, Rosenzweig (b0005) 2004; 4 Salabaş, Rumplecker, Kleitz, Radu, Schüth (b0090) 2006; 6 Martínez, Obradors (b0050) 1998; 80 Topkaya, Baykal, Demir (b0175) 2013; 15 Sun, Ji, Zheng, Chang, Lib, Zhang (b0125) 2010; 20 Reitz, Suchomski, Haetge, Leichtweiss, Jagličić, Djerdj, Brezesinski (b0080) 2012; 48 Kumar, Singh, Aggarwal, Mandal, Kotnala (b0255) 2010; 114 Joseyphus, Narayanasamy, Shinoda, Jeyadevan, Tohji (b0230) 2006; 67 A. Lu, D. Zhao, Y. Wan, RSC publishing, Cambridge, U.K. (2010). Cabo, Pellicer, Rossinyol, Castell, Suiñach, Baró (b0025) 2009; 9 Haffer, Walther, Köferstein, Ebbinghaus, Tiemann (b0185) 2013; 117 Wang, Ren, Wang, Zhang, Liu, Guo, Lu (b0095) 2008; 112 Rumplecker, Kleitz, Salabaş, Schüth (b0155) 2007; 19 Knobel, Nunes, Socolovsky, De Biasi, Vargas, Denardin (b0270) 2008; 8 Zheng, Cao, Liao, Liu, Chen, Zhao, Dai, Ji, Cao, Tao (b0100) 2009; 113 Rondinone, Samia, Zhang (b0260) 2000; 76 Jiao, Jumas, Womes, Chadwick, Harrison, Bruce (b0110) 2006; 128 Gu, Yue, Bao, He (b0040) 2009; 44 Blanco-Gutiérrez, Gallastegui, Bonville, Torralvo-Fernández, Sáez-Puche (b0045) 2012; 116 Upadhyay, Verma, Anand (b0245) 2004; 95 El Moussaoui, Masrour, Mounkachi, Hamedoun, Benyoussef (b0180) 2012; 25 Sertkol, Köseoğlu, Baykal, Kavas, Toprak (b0210) 2010; 322 Gözük, Köseoðlu, Baykal, Kavas (b0265) 2009; 321 Topkaya, Akman, Kazan, Aktaş, Durmus, Baykal (b0250) 2012; 14 Deng, Zhang, Dai, Xia, Jiang, Zhang, He (b0160) 2010; 114 Shinde, Gadkari, Vasambekar (b0190) 2013; 333 Tüysüz, Salabaş, Weidenthaler, Schüth (b0120) 2008; 130 Valenzuela (b0195) 1994 Anjaneyulu, Narayana, Vijaya (b0205) 2013; 3 Pankhurst (10.1016/j.micromeso.2014.02.033_b0015) 2009; 42 Martínez (10.1016/j.micromeso.2014.02.033_b0050) 1998; 80 Reitz (10.1016/j.micromeso.2014.02.033_b0080) 2012; 48 Tüysüz (10.1016/j.micromeso.2014.02.033_b0120) 2008; 130 Cannas (10.1016/j.micromeso.2014.02.033_b0225) 2001; 11 Joseyphus (10.1016/j.micromeso.2014.02.033_b0230) 2006; 67 Knobel (10.1016/j.micromeso.2014.02.033_b0270) 2008; 8 Zheng (10.1016/j.micromeso.2014.02.033_b0100) 2009; 113 Li (10.1016/j.micromeso.2014.02.033_b0010) 2012; 41 Shinde (10.1016/j.micromeso.2014.02.033_b0190) 2013; 333 Sertkol (10.1016/j.micromeso.2014.02.033_b0210) 2010; 322 Haffer (10.1016/j.micromeso.2014.02.033_b0185) 2013; 117 Valenzuela (10.1016/j.micromeso.2014.02.033_b0195) 1994 Jiao (10.1016/j.micromeso.2014.02.033_b0110) 2006; 128 Köseoğlu (10.1016/j.micromeso.2014.02.033_b0215) 2011; 13 Topkaya (10.1016/j.micromeso.2014.02.033_b0175) 2013; 15 Gözük (10.1016/j.micromeso.2014.02.033_b0265) 2009; 321 Cabo (10.1016/j.micromeso.2014.02.033_b0025) 2009; 9 Hankare (10.1016/j.micromeso.2014.02.033_b0070) 2010; 501 Wang (10.1016/j.micromeso.2014.02.033_b0095) 2008; 112 Topkaya (10.1016/j.micromeso.2014.02.033_b0250) 2012; 14 Ajmal (10.1016/j.micromeso.2014.02.033_b0075) 2008; 460 Rumplecker (10.1016/j.micromeso.2014.02.033_b0155) 2007; 19 Ibrahim (10.1016/j.micromeso.2014.02.033_b0220) 2012; 116 Yan (10.1016/j.micromeso.2014.02.033_b0030) 2010; 135 Jadhav (10.1016/j.micromeso.2014.02.033_b0140) 2010; 108 El Moussaoui (10.1016/j.micromeso.2014.02.033_b0180) 2012; 25 Hochepied (10.1016/j.micromeso.2014.02.033_b0240) 2000; 104 10.1016/j.micromeso.2014.02.033_b0105 Gu (10.1016/j.micromeso.2014.02.033_b0040) 2009; 44 Upadhyay (10.1016/j.micromeso.2014.02.033_b0245) 2004; 95 Salabaş (10.1016/j.micromeso.2014.02.033_b0090) 2006; 6 Anjaneyulu (10.1016/j.micromeso.2014.02.033_b0205) 2013; 3 El-Sheikh (10.1016/j.micromeso.2014.02.033_b0035) 2010; 123 Casu (10.1016/j.micromeso.2014.02.033_b0130) 2007; 111 Shi (10.1016/j.micromeso.2014.02.033_b0085) 2009; 9 Rondinone (10.1016/j.micromeso.2014.02.033_b0260) 2000; 76 Li (10.1016/j.micromeso.2014.02.033_b0020) 2011; 3 Wang (10.1016/j.micromeso.2014.02.033_b0150) 2005; 17 Sertkol (10.1016/j.micromeso.2014.02.033_b0145) 2009; 486 Blanco-Gutiérrez (10.1016/j.micromeso.2014.02.033_b0045) 2012; 116 Sun (10.1016/j.micromeso.2014.02.033_b0125) 2010; 20 Goldman (10.1016/j.micromeso.2014.02.033_b0200) 1999 Jiao (10.1016/j.micromeso.2014.02.033_b0115) 2006; 128 Deng (10.1016/j.micromeso.2014.02.033_b0160) 2010; 114 Wang (10.1016/j.micromeso.2014.02.033_b0135) 2003; 15 Kumar (10.1016/j.micromeso.2014.02.033_b0255) 2010; 114 Sertkol (10.1016/j.micromeso.2014.02.033_b0065) 2009; 321 Wang (10.1016/j.micromeso.2014.02.033_b0005) 2004; 4 |
References_xml | – volume: 15 start-page: 1359 year: 2013 ident: b0175 publication-title: J. Nanopart. Res. – volume: 322 start-page: 866 year: 2010 end-page: 871 ident: b0210 publication-title: J. Magn. Magn. Mater. – volume: 113 start-page: 3887 year: 2009 end-page: 3894 ident: b0100 publication-title: J. Phys. Chem. C. – volume: 11 start-page: 3180 year: 2001 end-page: 3187 ident: b0225 publication-title: J. Mater. Chem. – volume: 108 start-page: 093920 year: 2010 ident: b0140 publication-title: J. Appl. Phys. – volume: 76 start-page: 3624 year: 2000 end-page: 3626 ident: b0260 publication-title: Appl. Phys. Lett. – volume: 80 start-page: 181 year: 1998 end-page: 183 ident: b0050 publication-title: Phys. Rev. Lett. – volume: 9 start-page: 4215 year: 2009 end-page: 4220 ident: b0085 publication-title: Nano Lett. – volume: 95 start-page: 5746 year: 2004 end-page: 5751 ident: b0245 publication-title: J. Appl. Phys. – volume: 460 start-page: 54 year: 2008 end-page: 59 ident: b0075 publication-title: J. Alloys Compd. – volume: 48 start-page: 4471 year: 2012 end-page: 4473 ident: b0080 publication-title: Chem. Commun. – volume: 25 start-page: 2473 year: 2012 end-page: 2480 ident: b0180 publication-title: J. Supercond. Nov. Magn. – volume: 111 start-page: 916 year: 2007 end-page: 922 ident: b0130 publication-title: J. Phys. Chem. C. – volume: 17 start-page: 53 year: 2005 end-page: 56 ident: b0150 publication-title: Adv. Mater. – volume: 42 start-page: 224001 year: 2009 ident: b0015 publication-title: J. Phys. D: Appl. Phys. – volume: 501 start-page: 37 year: 2010 end-page: 41 ident: b0070 publication-title: J. Alloys Compd. – volume: 15 start-page: 5029 year: 2003 end-page: 5035 ident: b0135 publication-title: Chem. Mater. – volume: 112 start-page: 15293 year: 2008 end-page: 15298 ident: b0095 publication-title: J. Phys. Chem. C – volume: 128 start-page: 12905 year: 2006 end-page: 12909 ident: b0110 publication-title: J. Am. Chem. Soc. – volume: 44 start-page: 1422 year: 2009 end-page: 1427 ident: b0040 publication-title: Mater. Res. Bull. – reference: A. Lu, D. Zhao, Y. Wan, RSC publishing, Cambridge, U.K. (2010). – volume: 116 start-page: 22509 year: 2012 end-page: 22517 ident: b0220 publication-title: J. Phys. Chem. C – volume: 130 start-page: 280 year: 2008 end-page: 287 ident: b0120 publication-title: J. Am. Chem. Soc. – volume: 13 start-page: 2235 year: 2011 end-page: 2244 ident: b0215 publication-title: J. Nanopart. Res. – volume: 486 start-page: 325 year: 2009 end-page: 329 ident: b0145 publication-title: J. Alloys Compd. – volume: 104 start-page: 905 year: 2000 end-page: 912 ident: b0240 publication-title: J. Phys. Chem. B – volume: 114 start-page: 6272 year: 2010 end-page: 6280 ident: b0255 publication-title: J. Phys. Chem. C – volume: 3 start-page: 1366 year: 2011 end-page: 1373 ident: b0020 publication-title: ACS Appl. Mater. Interfaces – volume: 321 start-page: 157 year: 2009 end-page: 162 ident: b0065 publication-title: J. Magn. Magn. Mater. – volume: 19 start-page: 485 year: 2007 end-page: 496 ident: b0155 publication-title: Chem. Mater. – volume: 14 start-page: 1156 year: 2012 ident: b0250 publication-title: J. Nanopart. Res. – volume: 9 start-page: 4814 year: 2009 end-page: 4821 ident: b0025 publication-title: Cryst. Growth Des. – year: 1994 ident: b0195 article-title: Magnetic Ceramics – volume: 41 start-page: 2590 year: 2012 end-page: 2605 ident: b0010 publication-title: Chem. Sov. Rev. – volume: 321 start-page: 2170 year: 2009 end-page: 2177 ident: b0265 publication-title: J. Magn. Magn. Mater. – volume: 20 start-page: 945 year: 2010 end-page: 952 ident: b0125 publication-title: J. Mater. Chem. – year: 1999 ident: b0200 article-title: Handbook of Modern Ferromagnetic Materials – volume: 3 start-page: 50 year: 2013 end-page: 59 ident: b0205 publication-title: Int. J. Basic Appl. Chem. Sci. – volume: 135 start-page: 137 year: 2010 end-page: 142 ident: b0030 publication-title: Microporous Mesoporous Mater. – volume: 333 start-page: 152 year: 2013 end-page: 155 ident: b0190 publication-title: J. Magn. Magn. Mater. – volume: 123 start-page: 254 year: 2010 end-page: 259 ident: b0035 publication-title: Mater. Chem. Phys. – volume: 114 start-page: 2694 year: 2010 end-page: 2700 ident: b0160 publication-title: J. Phys. Chem. C – volume: 128 start-page: 5468 year: 2006 end-page: 5474 ident: b0115 publication-title: J. Am. Chem. Soc. – volume: 6 start-page: 2977 year: 2006 end-page: 2981 ident: b0090 publication-title: Nano Lett. – volume: 117 start-page: 24471 year: 2013 end-page: 24478 ident: b0185 publication-title: J. Phys. Chem. C – volume: 116 start-page: 24331 year: 2012 end-page: 24339 ident: b0045 publication-title: J. Phys. Chem. C – volume: 8 start-page: 2836 year: 2008 end-page: 2857 ident: b0270 publication-title: J. Nanosci. Nanotechnol. – volume: 4 start-page: 409 year: 2004 end-page: 413 ident: b0005 publication-title: Nano Lett. – volume: 67 start-page: 1510 year: 2006 end-page: 1517 ident: b0230 publication-title: J. Phys. Chem. Solids – volume: 4 start-page: 409 year: 2004 ident: 10.1016/j.micromeso.2014.02.033_b0005 publication-title: Nano Lett. doi: 10.1021/nl035010n – volume: 6 start-page: 2977 issue: 12 year: 2006 ident: 10.1016/j.micromeso.2014.02.033_b0090 publication-title: Nano Lett. doi: 10.1021/nl060528n – volume: 114 start-page: 2694 year: 2010 ident: 10.1016/j.micromeso.2014.02.033_b0160 publication-title: J. Phys. Chem. C doi: 10.1021/jp910159b – volume: 135 start-page: 137 year: 2010 ident: 10.1016/j.micromeso.2014.02.033_b0030 publication-title: Microporous Mesoporous Mater. doi: 10.1016/j.micromeso.2010.07.001 – volume: 80 start-page: 181 issue: 1 year: 1998 ident: 10.1016/j.micromeso.2014.02.033_b0050 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.80.181 – volume: 104 start-page: 905 year: 2000 ident: 10.1016/j.micromeso.2014.02.033_b0240 publication-title: J. Phys. Chem. B doi: 10.1021/jp991626i – volume: 486 start-page: 325 year: 2009 ident: 10.1016/j.micromeso.2014.02.033_b0145 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2009.06.128 – volume: 8 start-page: 2836 year: 2008 ident: 10.1016/j.micromeso.2014.02.033_b0270 publication-title: J. Nanosci. Nanotechnol. doi: 10.1166/jnn.2008.15348 – volume: 76 start-page: 3624 issue: 24 year: 2000 ident: 10.1016/j.micromeso.2014.02.033_b0260 publication-title: Appl. Phys. Lett. doi: 10.1063/1.126727 – volume: 3 start-page: 1366 year: 2011 ident: 10.1016/j.micromeso.2014.02.033_b0020 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am200228k – volume: 130 start-page: 280 year: 2008 ident: 10.1016/j.micromeso.2014.02.033_b0120 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja075528j – volume: 3 start-page: 50 issue: 1 year: 2013 ident: 10.1016/j.micromeso.2014.02.033_b0205 publication-title: Int. J. Basic Appl. Chem. Sci. – volume: 48 start-page: 4471 year: 2012 ident: 10.1016/j.micromeso.2014.02.033_b0080 publication-title: Chem. Commun. doi: 10.1039/c2cc31006f – volume: 44 start-page: 1422 year: 2009 ident: 10.1016/j.micromeso.2014.02.033_b0040 publication-title: Mater. Res. Bull. doi: 10.1016/j.materresbull.2008.11.018 – volume: 17 start-page: 53 issue: 1 year: 2005 ident: 10.1016/j.micromeso.2014.02.033_b0150 publication-title: Adv. Mater. doi: 10.1002/adma.200400777 – volume: 112 start-page: 15293 year: 2008 ident: 10.1016/j.micromeso.2014.02.033_b0095 publication-title: J. Phys. Chem. C doi: 10.1021/jp8048394 – volume: 114 start-page: 6272 year: 2010 ident: 10.1016/j.micromeso.2014.02.033_b0255 publication-title: J. Phys. Chem. C doi: 10.1021/jp911586d – volume: 25 start-page: 2473 year: 2012 ident: 10.1016/j.micromeso.2014.02.033_b0180 publication-title: J. Supercond. Nov. Magn. doi: 10.1007/s10948-012-1672-4 – volume: 15 start-page: 5029 year: 2003 ident: 10.1016/j.micromeso.2014.02.033_b0135 publication-title: Chem. Mater. doi: 10.1021/cm034769x – volume: 321 start-page: 2170 year: 2009 ident: 10.1016/j.micromeso.2014.02.033_b0265 publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2009.01.008 – year: 1999 ident: 10.1016/j.micromeso.2014.02.033_b0200 – volume: 321 start-page: 157 year: 2009 ident: 10.1016/j.micromeso.2014.02.033_b0065 publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2008.08.083 – volume: 9 start-page: 4215 issue: 12 year: 2009 ident: 10.1016/j.micromeso.2014.02.033_b0085 publication-title: Nano Lett. doi: 10.1021/nl902423a – volume: 128 start-page: 5468 year: 2006 ident: 10.1016/j.micromeso.2014.02.033_b0115 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0584774 – volume: 113 start-page: 3887 issue: 9 year: 2009 ident: 10.1016/j.micromeso.2014.02.033_b0100 publication-title: J. Phys. Chem. C. doi: 10.1021/jp810230d – volume: 501 start-page: 37 year: 2010 ident: 10.1016/j.micromeso.2014.02.033_b0070 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2010.03.178 – volume: 41 start-page: 2590 issue: 7 year: 2012 ident: 10.1016/j.micromeso.2014.02.033_b0010 publication-title: Chem. Sov. Rev. doi: 10.1039/c1cs15246g – volume: 116 start-page: 22509 year: 2012 ident: 10.1016/j.micromeso.2014.02.033_b0220 publication-title: J. Phys. Chem. C doi: 10.1021/jp304236x – ident: 10.1016/j.micromeso.2014.02.033_b0105 – volume: 19 start-page: 485 year: 2007 ident: 10.1016/j.micromeso.2014.02.033_b0155 publication-title: Chem. Mater. doi: 10.1021/cm0610635 – volume: 42 start-page: 224001 year: 2009 ident: 10.1016/j.micromeso.2014.02.033_b0015 publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/0022-3727/42/22/224001 – volume: 460 start-page: 54 year: 2008 ident: 10.1016/j.micromeso.2014.02.033_b0075 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2007.06.019 – volume: 322 start-page: 866 year: 2010 ident: 10.1016/j.micromeso.2014.02.033_b0210 publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2009.11.018 – volume: 15 start-page: 1359 year: 2013 ident: 10.1016/j.micromeso.2014.02.033_b0175 publication-title: J. Nanopart. Res. doi: 10.1007/s11051-012-1359-6 – volume: 13 start-page: 2235 year: 2011 ident: 10.1016/j.micromeso.2014.02.033_b0215 publication-title: J. Nanopart. Res. doi: 10.1007/s11051-010-9982-6 – volume: 14 start-page: 1156 year: 2012 ident: 10.1016/j.micromeso.2014.02.033_b0250 publication-title: J. Nanopart. Res. doi: 10.1007/s11051-012-1156-2 – volume: 9 start-page: 4814 issue: 11 year: 2009 ident: 10.1016/j.micromeso.2014.02.033_b0025 publication-title: Cryst. Growth Des. doi: 10.1021/cg900648q – volume: 67 start-page: 1510 year: 2006 ident: 10.1016/j.micromeso.2014.02.033_b0230 publication-title: J. Phys. Chem. Solids doi: 10.1016/j.jpcs.2005.11.015 – year: 1994 ident: 10.1016/j.micromeso.2014.02.033_b0195 – volume: 128 start-page: 12905 year: 2006 ident: 10.1016/j.micromeso.2014.02.033_b0110 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja063662i – volume: 116 start-page: 24331 year: 2012 ident: 10.1016/j.micromeso.2014.02.033_b0045 publication-title: J. Phys. Chem. C doi: 10.1021/jp307371q – volume: 108 start-page: 093920 year: 2010 ident: 10.1016/j.micromeso.2014.02.033_b0140 publication-title: J. Appl. Phys. doi: 10.1063/1.3499346 – volume: 20 start-page: 945 year: 2010 ident: 10.1016/j.micromeso.2014.02.033_b0125 publication-title: J. Mater. Chem. doi: 10.1039/B919090B – volume: 95 start-page: 5746 issue: 10 year: 2004 ident: 10.1016/j.micromeso.2014.02.033_b0245 publication-title: J. Appl. Phys. doi: 10.1063/1.1699501 – volume: 117 start-page: 24471 year: 2013 ident: 10.1016/j.micromeso.2014.02.033_b0185 publication-title: J. Phys. Chem. C doi: 10.1021/jp409058t – volume: 11 start-page: 3180 year: 2001 ident: 10.1016/j.micromeso.2014.02.033_b0225 publication-title: J. Mater. Chem. doi: 10.1039/b104562h – volume: 111 start-page: 916 year: 2007 ident: 10.1016/j.micromeso.2014.02.033_b0130 publication-title: J. Phys. Chem. C. doi: 10.1021/jp0650230 – volume: 123 start-page: 254 year: 2010 ident: 10.1016/j.micromeso.2014.02.033_b0035 publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2010.04.005 – volume: 333 start-page: 152 year: 2013 ident: 10.1016/j.micromeso.2014.02.033_b0190 publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2012.12.049 |
SSID | ssj0017121 |
Score | 2.2295241 |
Snippet | [Display omitted]
•We fabricated a multicomponent mesoporous product by a novel nanocasting route.•The proposed method provides a high phase purity and large... A series of ordered mesoporous single phase Cu1-xZnxFe2O4 spinel ferrites, with x ranging from 0.00 to 0.75 with a step increment of 0.25, are prepared by a... |
SourceID | swepub pascalfrancis crossref elsevier |
SourceType | Open Access Repository Index Database Enrichment Source Publisher |
StartPage | 346 |
SubjectTerms | Chemistry Colloidal state and disperse state Copper zinc ferrite Exact sciences and technology General and physical chemistry Magnetic properties Mesoporous materials Mossbauer spectroscopy Mössbauer spectroscopy Nanocasting Porous materials |
Title | Magnetic properties of crystalline mesoporous Zn-substituted copper ferrite synthesized under nanoconfinement in silica matrix |
URI | https://dx.doi.org/10.1016/j.micromeso.2014.02.033 https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-145802 |
Volume | 190 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaq9gJCiKdYHisfELewSezNOtxWW6rlVSGgqOJiOc64DVAnSoLU9tDfzkySjVgk1AOnKI9JLI89D-ebz4w9VwtAR25koERoA5nhnDMmS4MsSyMQzhIlOqEtDpP1kXx7PD_eYatNLQzBKgfb39v0zloPV2ZDb86qoph9jgQG-wrnquzwcVTwK-WCRvnLqxHmES2iofYKJxM9vYXxOutAb9BQFWAkO_JOIf7loW5VpsF-c_2GF39Ri3bu6OAOuz3EkXzZN_Uu2wF_j938g13wPrv6YE481Sjyilbca6JO5aXjtr7AkJC4uIFTqzACx_Sff_NBg1akhw7k3JYVynBHzI0t8ObCY6jYFJd4i-rOau6NLzGZdvgaWmHkhedNQUuA_Ixo_88fsKOD119W62DYbiGwMg7bAGhRM88coBd3MjFoevLY2blSaaggx8wGYgBMaaMcZ61QVogsMWmMMXoIMYYND9muLz08YlyibAoiiw1g_ulsaiNlMbczC2mJcnDCkk0XaztwkdOWGD_1BnT2XY-60aQbHcYadTNh4ShY9XQc14u82uhQb40sjU7jeuHpltbHj2JUltBPyAl70Q-D8Q7xde8XX5e6rE_0j_YUk6u5CuPH_9OMJ-wGnRFqIZo_Zbtt_QueYTDUZtNutE_Z3nL16f1HOr55tz78DRV1EDs |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VcgCEEK-qS6H4gLiFTWJv1uFWFaoF2l5oUcXFchy7hFInSlKp5dDf3pkkG7FIqAeu653E8nhezjefAd7IucVArkUgeWgCkaHNaZ2lQZalkeXOECU6oS0Ok8Wx-HwyO1mD3WUvDMEqB9_f-_TOWw-_TIfVnFZFMf0acUz2Jdqq6PBx8g7cFWi-dI3Bu-sR5xHNo6H5Cq2J_r4C8jrvUG-2oTbASHTsnZz_K0Q9rHSDC-f6Gy_-4hbt4tHeY3g0JJJsp5_rE1iz_ik8-INe8BlcH-hTT02KrKIj95q4U1npmKmvMCckMm7LaFaYgmP9z777oEE30mMHcmbKCmWYI-rG1rLmymOu2BS_cYgaz2rmtS-xmnb4GDpiZIVnTUFngOyceP8vn8Px3sej3UUw3LcQGBGHbWDpVDPPnMUw7kSi0ffksTMzKdNQ2hxLGxtbizVtlKPZcmk4zxKdxpikhzbGvGED1n3p7SYwgbKp5VmsLRagzqQmkgaLOz0XhjgHJ5Asl1iZgYyc7sT4pZaos59q1I0i3agwVqibCYSjYNXzcdwu8n6pQ7WytRRGjduFt1e0Pr4U07KEvkJO4G2_DcYRIuz-UHzbUWV9qs7aH1hdzWQYv_ifabyGe4ujg321_-nwyxbcpxGCMESzl7De1hf2FWZGbbbd7fwbpM4QNA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Magnetic+properties+of+crystalline+mesoporous+Zn-substituted+copper+ferrite+synthesized+under+nanoconfinement+in+silica+matrix&rft.jtitle=Microporous+and+mesoporous+materials&rft.au=Najmoddin%2C+Najmeh&rft.au=Beitollahi%2C+Ali&rft.au=Devlin%2C+Eamonn&rft.au=Kavas%2C+H%C3%BCseyin&rft.date=2014-05-15&rft.issn=1387-1811&rft.volume=190&rft.spage=346&rft.epage=355&rft_id=info:doi/10.1016%2Fj.micromeso.2014.02.033&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_micromeso_2014_02_033 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1387-1811&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1387-1811&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1387-1811&client=summon |