MRI Imaging Omics and Risk Factors Analysis of PWMD in Premature Infants Based on Fuzzy Clustering Algorithm
The magnetic resonance imaging (MRI) characteristics of periventricular white matter damage (PWMD) in premature infants using the fuzzy c-means clustering algorithm (FCM) is explored, and the influencing factors are further clarified. A total of 100 premature infants admitted to the neonatal departm...
Saved in:
Published in | Contrast media and molecular imaging Vol. 2022; no. 1; p. 8624617 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
Hindawi
2022
|
Subjects | |
Online Access | Get full text |
ISSN | 1555-4309 1555-4317 1555-4317 |
DOI | 10.1155/2022/8624617 |
Cover
Loading…
Abstract | The magnetic resonance imaging (MRI) characteristics of periventricular white matter damage (PWMD) in premature infants using the fuzzy c-means clustering algorithm (FCM) is explored, and the influencing factors are further clarified. A total of 100 premature infants admitted to the neonatal department of our hospital from February 2020 to February 2022 are selected for in-depth investigation. According to the occurrence of PWMD, they are divided into the PWMD group and the simple premature delivery group, with 50 cases in each group. All preterm infants are examined by MRI and the changes in image characteristics and apparent diffusion coefficient (ADC) values are analyzed. Clinical information of the subjects is collected and the influencing factors of PWMD in preterm infants are analyzed by multivariate regression analysis. In the first magnetic resonance imaging (MRI) examination, the cases of punctured, clustered, and linear lesions are 28 cases, 12 cases, and 10 cases, respectively. The experimental results showed that PWMD of preterm infants presented punctate, clustered, and high linear T1 signal MRI manifestations, which caused a downward trend of ADC value, and caused respiratory distress, low birth weight, premature rupture of membranes, respiratory tract infection, and other risk symptoms. |
---|---|
AbstractList | The magnetic resonance imaging (MRI) characteristics of periventricular white matter damage (PWMD) in premature infants using the fuzzy c‐means clustering algorithm (FCM) is explored, and the influencing factors are further clarified. A total of 100 premature infants admitted to the neonatal department of our hospital from February 2020 to February 2022 are selected for in‐depth investigation. According to the occurrence of PWMD, they are divided into the PWMD group and the simple premature delivery group, with 50 cases in each group. All preterm infants are examined by MRI and the changes in image characteristics and apparent diffusion coefficient (ADC) values are analyzed. Clinical information of the subjects is collected and the influencing factors of PWMD in preterm infants are analyzed by multivariate regression analysis. In the first magnetic resonance imaging (MRI) examination, the cases of punctured, clustered, and linear lesions are 28 cases, 12 cases, and 10 cases, respectively. The experimental results showed that PWMD of preterm infants presented punctate, clustered, and high linear T1 signal MRI manifestations, which caused a downward trend of ADC value, and caused respiratory distress, low birth weight, premature rupture of membranes, respiratory tract infection, and other risk symptoms. The magnetic resonance imaging (MRI) characteristics of periventricular white matter damage (PWMD) in premature infants using the fuzzy c-means clustering algorithm (FCM) is explored, and the influencing factors are further clarified. A total of 100 premature infants admitted to the neonatal department of our hospital from February 2020 to February 2022 are selected for in-depth investigation. According to the occurrence of PWMD, they are divided into the PWMD group and the simple premature delivery group, with 50 cases in each group. All preterm infants are examined by MRI and the changes in image characteristics and apparent diffusion coefficient (ADC) values are analyzed. Clinical information of the subjects is collected and the influencing factors of PWMD in preterm infants are analyzed by multivariate regression analysis. In the first magnetic resonance imaging (MRI) examination, the cases of punctured, clustered, and linear lesions are 28 cases, 12 cases, and 10 cases, respectively. The experimental results showed that PWMD of preterm infants presented punctate, clustered, and high linear T1 signal MRI manifestations, which caused a downward trend of ADC value, and caused respiratory distress, low birth weight, premature rupture of membranes, respiratory tract infection, and other risk symptoms.The magnetic resonance imaging (MRI) characteristics of periventricular white matter damage (PWMD) in premature infants using the fuzzy c-means clustering algorithm (FCM) is explored, and the influencing factors are further clarified. A total of 100 premature infants admitted to the neonatal department of our hospital from February 2020 to February 2022 are selected for in-depth investigation. According to the occurrence of PWMD, they are divided into the PWMD group and the simple premature delivery group, with 50 cases in each group. All preterm infants are examined by MRI and the changes in image characteristics and apparent diffusion coefficient (ADC) values are analyzed. Clinical information of the subjects is collected and the influencing factors of PWMD in preterm infants are analyzed by multivariate regression analysis. In the first magnetic resonance imaging (MRI) examination, the cases of punctured, clustered, and linear lesions are 28 cases, 12 cases, and 10 cases, respectively. The experimental results showed that PWMD of preterm infants presented punctate, clustered, and high linear T1 signal MRI manifestations, which caused a downward trend of ADC value, and caused respiratory distress, low birth weight, premature rupture of membranes, respiratory tract infection, and other risk symptoms. |
Author | Wang, Xiaofei Sun, Huan Hao, Yuewen Chen, Chao |
AuthorAffiliation | 1 Department of Radiology, Xi'an Children's Hospital, Xi'an 710003, China 2 NICU, Xi'an Children's Hospital, Xi'an 710003, China |
AuthorAffiliation_xml | – name: 1 Department of Radiology, Xi'an Children's Hospital, Xi'an 710003, China – name: 2 NICU, Xi'an Children's Hospital, Xi'an 710003, China |
Author_xml | – sequence: 1 givenname: Xiaofei surname: Wang fullname: Wang, Xiaofei organization: Department of RadiologyXi’an Children’s HospitalXi’an 710003Chinaxachyy.com – sequence: 2 givenname: Yuewen surname: Hao fullname: Hao, Yuewen organization: Department of RadiologyXi’an Children’s HospitalXi’an 710003Chinaxachyy.com – sequence: 3 givenname: Huan surname: Sun fullname: Sun, Huan organization: NICUXi’an Children’s HospitalXi’an 710003Chinaxachyy.com – sequence: 4 givenname: Chao orcidid: 0000-0003-3173-2012 surname: Chen fullname: Chen, Chao organization: Department of RadiologyXi’an Children’s HospitalXi’an 710003Chinaxachyy.com |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36247847$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc1vEzEQxS3Uin7AjTPyEYmmtb273t0LUggEIrVqVYE4WhN_JAav3dpeqvSvZ1dJqxYJTmONf_OeZt4R2vPBa4TeUHJKaVWdMcLYWcNZyWn9Ah0OrWpSFrTee3yT9gAdpfSTkLIs2uIlOigGvG7K-hC5i-sFXnSwsn6FLzsrEwav8LVNv_AcZA4x4akHt0k24WDw1Y-LT9h6fBV1B7mPGi-8AZ8T_ghJKxw8nvf39xs8c33KOo6yU7cK0eZ19wrtG3BJv97VY_R9_vnb7Ovk_PLLYjY9n8iSkTxRXDWK1AooUwWjxrTLhjeyNKqR2hDWAFdQEWVKbpZgJNe1oUs1LMUr3rKqOEYftro3_bLTSmqfIzhxE20HcSMCWPH8x9u1WIXfoq0K3vJ6EHi3E4jhttcpi84mqZ0Dr0OfBKtZNdyyakf07VOvR5OHEw8A2wIyhpSiNkLaDNmG0do6QYkYcxRjjmKX4zB08tfQg-4_8PdbfG29gjv7f_oPU1irnw |
CitedBy_id | crossref_primary_10_1155_2023_9803236 |
Cites_doi | 10.3389/fneur.2021.657461 10.1111/birt.12500 10.1111/nan.12248 10.1016/j.ygeno.2020.03.027 10.1007/s12035-021-02568-7 10.2174/1573405616666210104111218 10.1109/42.996338 10.3390/s21030696 10.1371/journal.pone.0087420 10.1002/14651858.CD003248.pub4 10.1016/j.arcped.2016.11.006 |
ContentType | Journal Article |
Copyright | Copyright © 2022 Xiaofei Wang et al. Copyright © 2022 Xiaofei Wang et al. 2022 |
Copyright_xml | – notice: Copyright © 2022 Xiaofei Wang et al. – notice: Copyright © 2022 Xiaofei Wang et al. 2022 |
DBID | RHU RHW RHX AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1155/2022/8624617 |
DatabaseName | Hindawi Publishing Complete Hindawi Publishing Subscription Journals Hindawi Publishing Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: RHX name: Hindawi Publishing Open Access url: http://www.hindawi.com/journals/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1555-4317 |
Editor | Mishra, Sandip K. |
Editor_xml | – sequence: 1 givenname: Sandip K. surname: Mishra fullname: Mishra, Sandip K. |
ExternalDocumentID | PMC9536967 36247847 10_1155_2022_8624617 |
Genre | Journal Article |
GroupedDBID | --- .3N .GA 05W 0R~ 1L6 1OC 33P 3SF 3V. 3WU 4.4 50Y 50Z 52M 52O 52T 52U 52V 52W 53G 5GY 702 7PT 7X7 7XC 8-0 8-1 8-3 8-4 8-5 8FE 8FH 8FI 8UM 930 A01 A03 AAESR AAFWJ AAJEY AAONW ABIJN ABPVW ADBBV ADIZJ AENEX AEUQT AFBPY AFKRA ALAGY ALMA_UNASSIGNED_HOLDINGS AMBMR AOIJS ATCPS ATUGU AZBYB AZVAB BAFTC BCNDV BENPR BHBCM BHPHI BPHCQ BROTX BRXPI BVXVI BYOGL CS3 D-6 D-7 D-E D-F DPXWK DU5 EBD EBS EMOBN F00 F01 F04 F21 F5P FYUFA G-S G.N GODZA GROUPED_DOAJ H.X HBH HCIFZ HHY HHZ HYE HZ~ IAO IHR ITC LAW LITHE LP6 LP7 M1P MK4 MY~ N04 N05 NF~ O66 O9- OIG OK1 P2P P2W P2X P2Z P4B P4D PATMY PQQKQ PROAC PYCSY Q.N QB0 R.K RHU RHW RHX RPM RWI RX1 RYL SUPJJ SV3 UB1 UKHRP W8V W99 WBKPD WIH WIJ WVDHM XV2 ~IA ~WT .Y3 24P 31~ 88E 8FJ AAEVG AAHHS AANHP AAYXX AAZKR ABUWG ACBWZ ACCFJ ACCMX ACRPL ACXQS ACYXJ ADNMO ADZOD AEEZP AEIMD AEQDE AFTUV AGFTA AGQPQ AIWBW AJBDE ALIPV ASPBG AVWKF AZFZN BDRZF CCPQU CITATION EJD FEDTE H13 HF~ HMCUK HVGLF LH4 LW6 PGMZT PHGZM PHGZT PSQYO WYUIH AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM PJZUB PPXIY 7X8 5PM |
ID | FETCH-LOGICAL-c420t-d6d8d07da12d321ff9b868c4fd8cef028a6da50df46fbafc6e7f1bd3626569253 |
IEDL.DBID | RHX |
ISSN | 1555-4309 1555-4317 |
IngestDate | Thu Aug 21 18:39:26 EDT 2025 Fri Jul 11 16:56:41 EDT 2025 Mon Jul 21 06:04:15 EDT 2025 Tue Jul 01 01:06:23 EDT 2025 Thu Apr 24 23:02:56 EDT 2025 Sun Jun 02 19:22:36 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Copyright © 2022 Xiaofei Wang et al. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c420t-d6d8d07da12d321ff9b868c4fd8cef028a6da50df46fbafc6e7f1bd3626569253 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Correction/Retraction-3 Academic Editor: Sandip K. Mishra |
ORCID | 0000-0003-3173-2012 |
OpenAccessLink | https://dx.doi.org/10.1155/2022/8624617 |
PMID | 36247847 |
PQID | 2725443597 |
PQPubID | 23479 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9536967 proquest_miscellaneous_2725443597 pubmed_primary_36247847 crossref_citationtrail_10_1155_2022_8624617 crossref_primary_10_1155_2022_8624617 hindawi_primary_10_1155_2022_8624617 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-00-00 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – year: 2022 text: 2022-00-00 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Contrast media and molecular imaging |
PublicationTitleAlternate | Contrast Media Mol Imaging |
PublicationYear | 2022 |
Publisher | Hindawi |
Publisher_xml | – name: Hindawi |
References | e_1_2_8_12_2 e_1_2_8_13_2 e_1_2_8_14_2 e_1_2_8_15_2 Zhang L. (e_1_2_8_4_2) 2021; 18 Leng J. (e_1_2_8_9_2) 2019; 17 e_1_2_8_2_2 e_1_2_8_1_2 Tong X. (e_1_2_8_10_2) 2014; 52 e_1_2_8_3_2 e_1_2_8_6_2 e_1_2_8_5_2 e_1_2_8_7_2 Yang F. (e_1_2_8_8_2) 2021; 19 e_1_2_8_11_2 |
References_xml | – ident: e_1_2_8_2_2 doi: 10.3389/fneur.2021.657461 – ident: e_1_2_8_13_2 doi: 10.1111/birt.12500 – volume: 17 start-page: 28 year: 2019 ident: e_1_2_8_9_2 article-title: Application of DWI and SERUM NSE in diagnosis of focal white matter injury in preterm infants publication-title: Chinese journal of CT and MRI – ident: e_1_2_8_3_2 doi: 10.1111/nan.12248 – ident: e_1_2_8_1_2 doi: 10.1016/j.ygeno.2020.03.027 – ident: e_1_2_8_15_2 doi: 10.1007/s12035-021-02568-7 – volume: 18 start-page: 58 year: 2021 ident: e_1_2_8_4_2 article-title: Objective to explore the clinical value of brain MRI-DWI combined with serum NSE in the diagnosis of focal white matter injury in premature infants publication-title: China Medical Equipment – ident: e_1_2_8_7_2 doi: 10.2174/1573405616666210104111218 – volume: 19 start-page: 4 year: 2021 ident: e_1_2_8_8_2 article-title: Study on the signal characteristics of different MRI sequences of focal white matter injury in term infants and preterm infants publication-title: Chinese Journal of CT and MRI – ident: e_1_2_8_6_2 doi: 10.1109/42.996338 – volume: 52 start-page: 277 year: 2014 ident: e_1_2_8_10_2 article-title: Exploring the clinical significance of continuously measuring apparent diffusion coefficient values in the preterm infants with punctate white matter damage by applying diffusion weighted imaging publication-title: Chinese Journal of Pediatrics – ident: e_1_2_8_5_2 doi: 10.3390/s21030696 – ident: e_1_2_8_14_2 doi: 10.1371/journal.pone.0087420 – ident: e_1_2_8_11_2 doi: 10.1002/14651858.CD003248.pub4 – ident: e_1_2_8_12_2 doi: 10.1016/j.arcped.2016.11.006 |
SSID | ssj0044393 |
Score | 2.256169 |
Snippet | The magnetic resonance imaging (MRI) characteristics of periventricular white matter damage (PWMD) in premature infants using the fuzzy c-means clustering... The magnetic resonance imaging (MRI) characteristics of periventricular white matter damage (PWMD) in premature infants using the fuzzy c‐means clustering... |
SourceID | pubmedcentral proquest pubmed crossref hindawi |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 8624617 |
SubjectTerms | Algorithms Cluster Analysis Humans Infant Infant, Low Birth Weight Infant, Newborn Infant, Premature Magnetic Resonance Imaging - methods Risk Factors White Matter |
Title | MRI Imaging Omics and Risk Factors Analysis of PWMD in Premature Infants Based on Fuzzy Clustering Algorithm |
URI | https://dx.doi.org/10.1155/2022/8624617 https://www.ncbi.nlm.nih.gov/pubmed/36247847 https://www.proquest.com/docview/2725443597 https://pubmed.ncbi.nlm.nih.gov/PMC9536967 |
Volume | 2022 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwELbYpCFeEIxfBTYZaXuaIlLXjuPHsVG1SIVp2kTfIjtnrxGtg9pGiP31-PKjohsIHqNcrMSfk7vPd_mOkKMcQlAAuYwMxGkU-JeLUsVs1IewojQYJqCu8v2cjK75p6mYtiJJq_sp_ODtkJ6z9_gfQ3C2O2QnLDAk5aNp98HlwafWdfRCiIgPYtXVt9-5dsvz7M2Q8v4o_hRY3q2P_M3hDJ-Qx22kSE8baJ-SB9bvk4eTNhf-jMwnl2M6XtRdhuiXRZGvqPZAL4vVNzpsuujQTnKElo5efJ2c08LTiyXKtFZLS8feYRUM_RA8GdDS02F1e_uTns0rVE_AYU_nN-WyWM8Wz8n18OPV2ShqeydEOWfxOoIEUogl6D6DAes7p0yapDl3kObWhaBCJ6BFDI4nzmiXJ1a6vgEUpxGJYmLwguz60ttXhKpUYovq2AiluOGxZlaA0YG3mDhV0vTISTevWd4Ki2N_i3lWEwwhMkQha1HokeON9fdGUOMvdkctRP8we9fhl4UXA7Md2tuyWmVMovraIBCmHnnZ4LkZKTwml8Ev94jcQnpjgKLb22d8MavFtzHdrRL5-v9u7w15hIfNns1bsrteVvYgRDFrc1iv4cN6e-kXUbXqqw |
linkProvider | Hindawi Publishing |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MRI+Imaging+Omics+and+Risk+Factors+Analysis+of+PWMD+in+Premature+Infants+Based+on+Fuzzy+Clustering+Algorithm&rft.jtitle=Contrast+media+and+molecular+imaging&rft.au=Wang%2C+Xiaofei&rft.au=Hao%2C+Yuewen&rft.au=Sun%2C+Huan&rft.au=Chen%2C+Chao&rft.date=2022&rft.pub=Hindawi&rft.issn=1555-4309&rft.eissn=1555-4317&rft.volume=2022&rft_id=info:doi/10.1155%2F2022%2F8624617&rft.externalDocID=PMC9536967 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1555-4309&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1555-4309&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1555-4309&client=summon |