Genetic diversity of soil invertebrates corroborates timing estimates for past collapses of the West Antarctic Ice Sheet
During austral summer field seasons between 1999 and 2018, we sampled at 91 locations throughout southern Victoria Land and along the Transantarctic Mountains for six species of endemic microarthropods (Collembola), covering a latitudinal range from 76.0°S to 87.3°S. We assembled individual mitochon...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 117; no. 36; pp. 22293 - 22302 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Washington
National Academy of Sciences
08.09.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | During austral summer field seasons between 1999 and 2018, we sampled at 91 locations throughout southern Victoria Land and along the Transantarctic Mountains for six species of endemic microarthropods (Collembola), covering a latitudinal range from 76.0°S to 87.3°S. We assembled individual mitochondrial cytochrome c oxidase subunit 1 (COI) sequences (n = 866) and found high levels of sequence divergence at both small (<10 km) and large (>600 km) spatial scales for four of the six Collembola species. We applied molecular clock estimates and assessed genetic divergences relative to the timing of past glacial cycles, including collapses of the West Antarctic Ice Sheet (WAIS). We found that genetically distinct lineages within three species have likely been isolated for at least 5.54 My to 3.52 My, while the other three species diverged more recently (<2 My). We suggest that Collembola had greater dispersal opportunities under past warmer climates, via flotation along coastal margins. Similarly increased opportunities for dispersal may occur under contemporary climate warming scenarios, which could influence the genetic structure of extant populations. As Collembola are a living record of past landscape evolution within Antarctica, these findings provide biological evidence to support geological and glaciological estimates of historical WAIS dynamics over the last ca. 5 My. |
---|---|
AbstractList | Changes in the extent of ice sheets through evolutionary timescales have influenced the connectivity of soil invertebrate populations across the Antarctic landscape. We use genetic divergences to estimate isolation times for soil invertebrates along the Transantarctic Mountains. Four species of Collembola (Arthropoda) each showed genetically distinct populations at locations likely isolated for millions of years. Two further species were less genetically diverse although also range restricted. Our genetic data corroborate climate reconstructions and estimates of past warm periods of reduced ice and absent ice shelf in the Ross Sea region, during which time open seaways would have facilitated dispersal of Collembola, and possibly other taxa.
During austral summer field seasons between 1999 and 2018, we sampled at 91 locations throughout southern Victoria Land and along the Transantarctic Mountains for six species of endemic microarthropods (Collembola), covering a latitudinal range from 76.0°S to 87.3°S. We assembled individual mitochondrial cytochrome
c
oxidase subunit 1 (COI) sequences (
n
= 866) and found high levels of sequence divergence at both small (<10 km) and large (>600 km) spatial scales for four of the six Collembola species. We applied molecular clock estimates and assessed genetic divergences relative to the timing of past glacial cycles, including collapses of the West Antarctic Ice Sheet (WAIS). We found that genetically distinct lineages within three species have likely been isolated for at least 5.54 My to 3.52 My, while the other three species diverged more recently (<2 My). We suggest that Collembola had greater dispersal opportunities under past warmer climates, via flotation along coastal margins. Similarly increased opportunities for dispersal may occur under contemporary climate warming scenarios, which could influence the genetic structure of extant populations. As Collembola are a living record of past landscape evolution within Antarctica, these findings provide biological evidence to support geological and glaciological estimates of historical WAIS dynamics over the last
ca
. 5 My. During austral summer field seasons between 1999 and 2018, we sampled at 91 locations throughout southern Victoria Land and along the Transantarctic Mountains for six species of endemic microarthropods (Collembola), covering a latitudinal range from 76.0°S to 87.3°S. We assembled individual mitochondrial cytochrome c oxidase subunit 1 (COI) sequences (n = 866) and found high levels of sequence divergence at both small (<10 km) and large (>600 km) spatial scales for four of the six Collembola species. We applied molecular clock estimates and assessed genetic divergences relative to the timing of past glacial cycles, including collapses of the West Antarctic Ice Sheet (WAIS). We found that genetically distinct lineages within three species have likely been isolated for at least 5.54 My to 3.52 My, while the other three species diverged more recently (<2 My). We suggest that Collembola had greater dispersal opportunities under past warmer climates, via flotation along coastal margins. Similarly increased opportunities for dispersal may occur under contemporary climate warming scenarios, which could influence the genetic structure of extant populations. As Collembola are a living record of past landscape evolution within Antarctica, these findings provide biological evidence to support geological and glaciological estimates of historical WAIS dynamics over the last ca 5 My.During austral summer field seasons between 1999 and 2018, we sampled at 91 locations throughout southern Victoria Land and along the Transantarctic Mountains for six species of endemic microarthropods (Collembola), covering a latitudinal range from 76.0°S to 87.3°S. We assembled individual mitochondrial cytochrome c oxidase subunit 1 (COI) sequences (n = 866) and found high levels of sequence divergence at both small (<10 km) and large (>600 km) spatial scales for four of the six Collembola species. We applied molecular clock estimates and assessed genetic divergences relative to the timing of past glacial cycles, including collapses of the West Antarctic Ice Sheet (WAIS). We found that genetically distinct lineages within three species have likely been isolated for at least 5.54 My to 3.52 My, while the other three species diverged more recently (<2 My). We suggest that Collembola had greater dispersal opportunities under past warmer climates, via flotation along coastal margins. Similarly increased opportunities for dispersal may occur under contemporary climate warming scenarios, which could influence the genetic structure of extant populations. As Collembola are a living record of past landscape evolution within Antarctica, these findings provide biological evidence to support geological and glaciological estimates of historical WAIS dynamics over the last ca 5 My. During austral summer field seasons between 1999 and 2018, we sampled at 91 locations throughout southern Victoria Land and along the Transantarctic Mountains for six species of endemic microarthropods (Collembola), covering a latitudinal range from 76.0°S to 87.3°S. We assembled individual mitochondrial cytochrome c oxidase subunit 1 (COI) sequences (n = 866) and found high levels of sequence divergence at both small (<10 km) and large (>600 km) spatial scales for four of the six Collembola species. We applied molecular clock estimates and assessed genetic divergences relative to the timing of past glacial cycles, including collapses of the West Antarctic Ice Sheet (WAIS). We found that genetically distinct lineages within three species have likely been isolated for at least 5.54 My to 3.52 My, while the other three species diverged more recently (<2 My). We suggest that Collembola had greater dispersal opportunities under past warmer climates, via flotation along coastal margins. Similarly increased opportunities for dispersal may occur under contemporary climate warming scenarios, which could influence the genetic structure of extant populations. As Collembola are a living record of past landscape evolution within Antarctica, these findings provide biological evidence to support geological and glaciological estimates of historical WAIS dynamics over the last ca. 5 My. |
Author | Lyons, W. Berry Convey, Peter Adams, Byron J. Collins, Gemma E. Hogg, Ian D. Sancho, Leopoldo G. Cowan, Don A. Green, T. G. Allan Wall, Diana H. |
Author_xml | – sequence: 1 givenname: Gemma E. surname: Collins fullname: Collins, Gemma E. – sequence: 2 givenname: Ian D. surname: Hogg fullname: Hogg, Ian D. – sequence: 3 givenname: Peter surname: Convey fullname: Convey, Peter – sequence: 4 givenname: Leopoldo G. surname: Sancho fullname: Sancho, Leopoldo G. – sequence: 5 givenname: Don A. surname: Cowan fullname: Cowan, Don A. – sequence: 6 givenname: W. Berry surname: Lyons fullname: Lyons, W. Berry – sequence: 7 givenname: Byron J. surname: Adams fullname: Adams, Byron J. – sequence: 8 givenname: Diana H. surname: Wall fullname: Wall, Diana H. – sequence: 9 givenname: T. G. Allan surname: Green fullname: Green, T. G. Allan |
BookMark | eNp9kc1rVDEUxYNU7LS6diU8cOPmtTdfLy8boRSthYILFZchk9zXyfAmGZNMaf97M06p2IWrJDe_c-493BNyFFNEQt5SOKOg-Pk22nLGAJRmklL1giwoaNoPQsMRWQAw1Y-CiWNyUsoaALQc4RU55mzkmjO6IPdXGLEG1_lwh7mE-tClqSspzF2IrVJxmW3F0rmUc1qmw6OGTYi3HZZ2-VOYUu62ttSGzbPdllZqNnWF3c8GdRex2uz2ba4ddt9WiPU1eTnZueCbx_OU_Pj86fvll_7m69X15cVN7wSD2nupYRw9ZRJQScs81TBpoT1fCk8pG5wExqn0oxsGj1pw4QV4aZFaisj4Kfl48N3ulhv0DmPNdjbb3CbPDybZYP79iWFlbtOdUWIcFMhm8OHRIKdfu5bGbEJx2GJGTLtimOCKMjpoaOj7Z-g67XJs8RolxKCoVmOjzg-Uy6mUjNPTMBTMfqtmv1Xzd6tNIZ8pXKi2hrSfOMz_0b076NalpvzUhg160JRL_huRL7NL |
CitedBy_id | crossref_primary_10_1073_pnas_2017384118 crossref_primary_10_1016_j_pedobi_2025_151022 crossref_primary_10_1093_isd_ixab015 crossref_primary_10_33275_1727_7485_2_2020_656 crossref_primary_10_3390_d14100847 crossref_primary_10_5194_bg_18_1629_2021 crossref_primary_10_1111_zsc_12490 crossref_primary_10_3390_d12120450 crossref_primary_10_1111_jbi_14476 crossref_primary_10_1038_s41598_024_83942_y crossref_primary_10_1126_science_ade0664 crossref_primary_10_1126_science_adk2118 crossref_primary_10_3390_genes11101172 crossref_primary_10_1098_rsbl_2022_0590 crossref_primary_10_1111_gcb_15940 crossref_primary_10_1186_s12862_023_02144_8 crossref_primary_10_1016_j_polar_2023_100945 crossref_primary_10_11646_zootaxa_5501_2_3 crossref_primary_10_1007_s00300_021_02912_6 crossref_primary_10_1017_S0954102024000403 crossref_primary_10_1007_s00300_022_03010_x crossref_primary_10_3390_genes14030606 crossref_primary_10_5194_esurf_9_1363_2021 crossref_primary_10_1111_1758_2229_70040 crossref_primary_10_1016_j_cris_2022_100046 crossref_primary_10_1111_ecog_06312 crossref_primary_10_1007_s13127_021_00503_1 crossref_primary_10_1111_brv_12679 crossref_primary_10_1111_gcb_16356 crossref_primary_10_1038_s41598_021_82379_x crossref_primary_10_3390_biology11101440 |
Cites_doi | 10.1016/j.epsl.2012.09.006 10.1016/j.quascirev.2019.106069 10.1130/B25183.1 10.1073/pnas.0406166101 10.1111/zsc.12392 10.1038/nature07809 10.1093/bioinformatics/btp696 10.1093/molbev/msw054 10.1111/j.1096-3642.1865.tb00178.x 10.1093/molbev/msx281 10.1093/genetics/28.2.114 10.1078/0031-4056-00154 10.1016/S1055-7903(02)00326-3 10.1093/molbev/msu300 10.1139/z83-335 10.1016/j.quascirev.2017.11.014 10.1038/s41586-019-1418-6 10.1016/j.earscirev.2003.10.003 10.1016/j.gloplacha.2010.09.003 10.2307/1552128 10.1111/j.0014-3820.2004.tb01678.x 10.1007/s00300-005-0056-7 10.1017/S0954102017000529 10.1098/rspb.1998.0568 10.1071/IS18019 10.1111/1744-7917.12559 10.1038/nature17145 10.1146/annurev.en.41.010196.001545 10.1111/ddi.12453 10.1007/s00300-006-0119-4 10.3389/fevo.2019.00076 10.1038/s41598-019-46253-1 10.1002/ece3.4507 10.1007/s00300-006-0205-7 10.1093/molbev/msy073 10.1093/nar/gkh340 10.1086/381004 10.3390/insects2020062 10.1093/molbev/msq051 10.1016/j.quascirev.2009.08.015 10.1186/s12862-017-0890-6 10.1007/s00300-011-0982-5 10.1130/G38104.1 10.1111/j.1469-185X.2008.00034.x 10.1017/S0954102007000028 10.1007/BF00233139 10.1371/journal.pone.0066213 10.1093/genetics/135.2.599 10.1016/S0022-1910(02)00264-0 10.3390/insects11030141 10.1111/zsc.12149 10.1130/G32869.1 10.1098/rstb.2006.1949 10.1111/gfs.12235 10.1038/srep26189 10.1186/s12862-016-0719-8 10.1017/S175569101300008X 10.1038/nature07867 10.1073/pnas.91.14.6491 10.1017/S0954102011000307 10.1038/nmeth.4285 10.1007/978-3-0348-8510-2_5 10.1093/biolinnean/blw004 |
ContentType | Journal Article |
Copyright | Copyright National Academy of Sciences Sep 8, 2020 Copyright © 2020 the Author(s). Published by PNAS. Copyright © 2020 the Author(s). Published by PNAS. 2020 |
Copyright_xml | – notice: Copyright National Academy of Sciences Sep 8, 2020 – notice: Copyright © 2020 the Author(s). Published by PNAS. – notice: Copyright © 2020 the Author(s). Published by PNAS. 2020 |
DBID | AAYXX CITATION 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
DOI | 10.1073/pnas.2007925117 |
DatabaseName | CrossRef Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic Virology and AIDS Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
EndPage | 22302 |
ExternalDocumentID | PMC7486705 10_1073_pnas_2007925117 26969135 |
GrantInformation_xml | – fundername: RCUK | NERC | British Antarctic Survey (BAS) grantid: 000 – fundername: National Science Foundation (NSF) grantid: OPP-1341736 – fundername: Antarctica New Zealand grantid: 000 – fundername: Genome Canada (Génome Canada) grantid: 000 – fundername: National Science Foundation (NSF) grantid: 1637708 |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACNCT ACPRK ADQXQ AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM BKOMP CS3 D0L DCCCD DIK DU5 E3Z EBS F5P FRP GX1 H13 HH5 HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 N9A N~3 O9- OK1 PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM AAYXX CITATION 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c420t-d59088d1250e75a2d190f949d3b4d1126c502315d8c66de9434d40d5ae1a1ee23 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 14:34:23 EDT 2025 Fri Jul 11 05:14:47 EDT 2025 Mon Jun 30 10:07:22 EDT 2025 Thu Apr 24 23:03:15 EDT 2025 Tue Jul 01 03:40:29 EDT 2025 Thu May 29 09:12:17 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 36 |
Language | English |
License | This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND). |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c420t-d59088d1250e75a2d190f949d3b4d1126c502315d8c66de9434d40d5ae1a1ee23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Contributed by Diana H. Wall, July 3, 2020 (sent for review April 29, 2020; reviewed by Brenda Hall and Bettine Jansen van Vuuren) Reviewers: B.H., University of Maine; and B.J.v.V., University of Johannesburg. Author contributions: I.D.H., B.J.A., D.H.W., and T.G.A.G. designed research; G.E.C., I.D.H., L.G.S., D.A.C., W.B.L., B.J.A., D.H.W., and T.G.A.G. performed research; G.E.C., I.D.H., and B.J.A. analyzed data; and G.E.C., I.D.H., P.C., L.G.S., D.A.C., W.B.L., B.J.A., D.H.W., and T.G.A.G. wrote the paper. |
ORCID | 0000-0002-6685-0089 0000-0002-4751-7475 0000-0002-9466-5235 0000-0002-7815-3352 0000-0002-3626-7845 0000-0001-8497-9903 0000-0001-8059-861X |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC7486705 |
PMID | 32839321 |
PQID | 2444671978 |
PQPubID | 42026 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7486705 proquest_miscellaneous_2437121690 proquest_journals_2444671978 crossref_primary_10_1073_pnas_2007925117 crossref_citationtrail_10_1073_pnas_2007925117 jstor_primary_26969135 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-09-08 |
PublicationDateYYYYMMDD | 2020-09-08 |
PublicationDate_xml | – month: 09 year: 2020 text: 2020-09-08 day: 08 |
PublicationDecade | 2020 |
PublicationPlace | Washington |
PublicationPlace_xml | – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationYear | 2020 |
Publisher | National Academy of Sciences |
Publisher_xml | – name: National Academy of Sciences |
References | e_1_3_4_3_2 e_1_3_4_61_2 e_1_3_4_9_2 e_1_3_4_63_2 e_1_3_4_7_2 Masson-Delmotte V. (e_1_3_4_1_2) 2013 e_1_3_4_40_2 e_1_3_4_5_2 e_1_3_4_23_2 e_1_3_4_44_2 e_1_3_4_69_2 e_1_3_4_21_2 e_1_3_4_42_2 e_1_3_4_27_2 Adams B. J. (e_1_3_4_54_2) 1998; 30 e_1_3_4_65_2 e_1_3_4_25_2 e_1_3_4_46_2 e_1_3_4_67_2 e_1_3_4_29_2 e_1_3_4_72_2 e_1_3_4_30_2 e_1_3_4_51_2 e_1_3_4_70_2 e_1_3_4_11_2 e_1_3_4_34_2 e_1_3_4_55_2 e_1_3_4_32_2 e_1_3_4_59_2 Wise K. A. J. (e_1_3_4_10_2) 1967; 10 e_1_3_4_53_2 e_1_3_4_15_2 e_1_3_4_38_2 e_1_3_4_13_2 e_1_3_4_36_2 e_1_3_4_19_2 e_1_3_4_17_2 e_1_3_4_2_2 Marsh O. J. (e_1_3_4_48_2) 2013; 7 Convey P. (e_1_3_4_14_2) 2018 e_1_3_4_60_2 e_1_3_4_62_2 e_1_3_4_8_2 e_1_3_4_41_2 e_1_3_4_6_2 e_1_3_4_4_2 e_1_3_4_22_2 e_1_3_4_45_2 e_1_3_4_68_2 e_1_3_4_20_2 e_1_3_4_43_2 e_1_3_4_26_2 e_1_3_4_64_2 e_1_3_4_24_2 e_1_3_4_47_2 e_1_3_4_66_2 e_1_3_4_28_2 Lisiecki L. E. (e_1_3_4_49_2) 2005; 20 e_1_3_4_71_2 e_1_3_4_52_2 e_1_3_4_50_2 e_1_3_4_12_2 e_1_3_4_33_2 e_1_3_4_58_2 e_1_3_4_31_2 e_1_3_4_16_2 e_1_3_4_37_2 e_1_3_4_35_2 e_1_3_4_56_2 e_1_3_4_18_2 e_1_3_4_39_2 Folmer O. (e_1_3_4_57_2) 1994; 3 |
References_xml | – ident: e_1_3_4_51_2 doi: 10.1016/j.epsl.2012.09.006 – ident: e_1_3_4_50_2 doi: 10.1016/j.quascirev.2019.106069 – ident: e_1_3_4_47_2 doi: 10.1130/B25183.1 – ident: e_1_3_4_58_2 doi: 10.1073/pnas.0406166101 – ident: e_1_3_4_29_2 doi: 10.1111/zsc.12392 – ident: e_1_3_4_4_2 doi: 10.1038/nature07809 – ident: e_1_3_4_37_2 doi: 10.1093/bioinformatics/btp696 – ident: e_1_3_4_70_2 doi: 10.1093/molbev/msw054 – ident: e_1_3_4_20_2 doi: 10.1111/j.1096-3642.1865.tb00178.x – start-page: 383 volume-title: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change year: 2013 ident: e_1_3_4_1_2 – ident: e_1_3_4_64_2 doi: 10.1093/molbev/msx281 – ident: e_1_3_4_41_2 doi: 10.1093/genetics/28.2.114 – ident: e_1_3_4_55_2 doi: 10.1078/0031-4056-00154 – ident: e_1_3_4_68_2 doi: 10.1016/S1055-7903(02)00326-3 – ident: e_1_3_4_62_2 doi: 10.1093/molbev/msu300 – ident: e_1_3_4_31_2 doi: 10.1139/z83-335 – ident: e_1_3_4_22_2 doi: 10.1016/j.quascirev.2017.11.014 – ident: e_1_3_4_9_2 doi: 10.1038/s41586-019-1418-6 – ident: e_1_3_4_6_2 doi: 10.1016/j.earscirev.2003.10.003 – volume: 20 start-page: PA1003 year: 2005 ident: e_1_3_4_49_2 article-title: A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records publication-title: Paleoceanography – ident: e_1_3_4_45_2 doi: 10.1016/j.gloplacha.2010.09.003 – ident: e_1_3_4_13_2 doi: 10.2307/1552128 – ident: e_1_3_4_26_2 doi: 10.1111/j.0014-3820.2004.tb01678.x – ident: e_1_3_4_21_2 doi: 10.1007/s00300-005-0056-7 – ident: e_1_3_4_19_2 doi: 10.1017/S0954102017000529 – volume: 3 start-page: 294 year: 1994 ident: e_1_3_4_57_2 article-title: DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates publication-title: Mol. Mar. Biol. Biotechnol. – ident: e_1_3_4_35_2 doi: 10.1098/rspb.1998.0568 – ident: e_1_3_4_30_2 doi: 10.1071/IS18019 – ident: e_1_3_4_66_2 – ident: e_1_3_4_25_2 doi: 10.1111/1744-7917.12559 – ident: e_1_3_4_5_2 doi: 10.1038/nature17145 – ident: e_1_3_4_39_2 doi: 10.1146/annurev.en.41.010196.001545 – ident: e_1_3_4_17_2 doi: 10.1111/ddi.12453 – ident: e_1_3_4_24_2 doi: 10.1007/s00300-006-0119-4 – ident: e_1_3_4_36_2 doi: 10.3389/fevo.2019.00076 – ident: e_1_3_4_7_2 doi: 10.1038/s41598-019-46253-1 – ident: e_1_3_4_28_2 doi: 10.1002/ece3.4507 – ident: e_1_3_4_42_2 doi: 10.1007/s00300-006-0205-7 – ident: e_1_3_4_69_2 doi: 10.1093/molbev/msy073 – ident: e_1_3_4_59_2 doi: 10.1093/nar/gkh340 – ident: e_1_3_4_11_2 doi: 10.1086/381004 – ident: e_1_3_4_16_2 doi: 10.3390/insects2020062 – ident: e_1_3_4_27_2 doi: 10.1093/molbev/msq051 – volume: 30 start-page: 1 year: 1998 ident: e_1_3_4_54_2 article-title: Species concepts and the evolutionary paradigm in modem nematology publication-title: J. Nematol. – start-page: 355 volume-title: Mountains, Climate, and Biodiversity year: 2018 ident: e_1_3_4_14_2 – ident: e_1_3_4_38_2 doi: 10.1016/j.quascirev.2009.08.015 – ident: e_1_3_4_71_2 doi: 10.1186/s12862-017-0890-6 – ident: e_1_3_4_12_2 doi: 10.1007/s00300-011-0982-5 – ident: e_1_3_4_46_2 doi: 10.1130/G38104.1 – ident: e_1_3_4_15_2 doi: 10.1111/j.1469-185X.2008.00034.x – ident: e_1_3_4_32_2 doi: 10.1017/S0954102007000028 – volume: 10 start-page: 123 year: 1967 ident: e_1_3_4_10_2 article-title: Collembola (springtails) publication-title: Antarct. Res. Ser. – ident: e_1_3_4_56_2 doi: 10.1007/BF00233139 – ident: e_1_3_4_65_2 doi: 10.1371/journal.pone.0066213 – ident: e_1_3_4_72_2 doi: 10.1093/genetics/135.2.599 – ident: e_1_3_4_33_2 doi: 10.1016/S0022-1910(02)00264-0 – ident: e_1_3_4_43_2 doi: 10.3390/insects11030141 – ident: e_1_3_4_61_2 doi: 10.1111/zsc.12149 – ident: e_1_3_4_52_2 doi: 10.1130/G32869.1 – ident: e_1_3_4_67_2 – ident: e_1_3_4_8_2 doi: 10.1098/rstb.2006.1949 – volume: 7 start-page: 1761 year: 2013 ident: e_1_3_4_48_2 article-title: Tidally-induced velocity variations of the Beardmore Glacier, Antarctica, and their representation in satellite measurements of ice velocity publication-title: The Cryosphere Discussions – ident: e_1_3_4_60_2 doi: 10.1111/gfs.12235 – ident: e_1_3_4_44_2 doi: 10.1038/srep26189 – ident: e_1_3_4_18_2 doi: 10.1186/s12862-016-0719-8 – ident: e_1_3_4_2_2 doi: 10.1017/S175569101300008X – ident: e_1_3_4_3_2 doi: 10.1038/nature07867 – ident: e_1_3_4_23_2 doi: 10.1073/pnas.91.14.6491 – ident: e_1_3_4_34_2 doi: 10.1017/S0954102011000307 – ident: e_1_3_4_63_2 doi: 10.1038/nmeth.4285 – ident: e_1_3_4_40_2 doi: 10.1007/978-3-0348-8510-2_5 – ident: e_1_3_4_53_2 doi: 10.1093/biolinnean/blw004 |
SSID | ssj0009580 |
Score | 2.500195 |
Snippet | During austral summer field seasons between 1999 and 2018, we sampled at 91 locations throughout southern Victoria Land and along the Transantarctic Mountains... Changes in the extent of ice sheets through evolutionary timescales have influenced the connectivity of soil invertebrate populations across the Antarctic... |
SourceID | pubmedcentral proquest crossref jstor |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 22293 |
SubjectTerms | Biological Sciences Climate change Collembola Cytochrome-c oxidase Cytochromes Dispersal Dispersion Divergence Endemic species Estimates Evolution Flotation Genetic divergence Genetic diversity Genetic structure Global warming Ice sheets Mitochondria Mountains Physical Sciences Population genetics Soil invertebrates |
Title | Genetic diversity of soil invertebrates corroborates timing estimates for past collapses of the West Antarctic Ice Sheet |
URI | https://www.jstor.org/stable/26969135 https://www.proquest.com/docview/2444671978 https://www.proquest.com/docview/2437121690 https://pubmed.ncbi.nlm.nih.gov/PMC7486705 |
Volume | 117 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELamIaG9IAZMFAYyEg9DUUJiJ3HyOJXBhlhViU3aW5XE7jqJJtXaSoh_mn-BO9txEn4J9hJViR2nuS_n8_nuO0Jez1mYVVyWvoxgbRJXPPJLzkv48MD8ZZmSUqIf8nySnl7GH6-Sq52d772ope2mDKpvv80ruYtU4RzIFbNk_0Oy7qZwAn6DfOEIEobjP8kYOaORcFX2gyvWzQ3yaGCdZdwURr8qrDBvGy1sJHTAOl7XHrJrLPUJDDRcFeuNpzGxWhsaWjRIsewM0gvAx4DDnCFr50KpgTt_6mZA123SOhiPu3QVq0PWnu9NJ13x47HmBLfe-eWy8E4CB7TmWquhM9BA74KuQ21LOA8iiz8DeBfa6_tJYdkH2Xgfgr5HAyCC-zNZF_Dxl4fsq3IG02tsErADZbQ3GD9-Gpv6o069m9xQi2M-0NaMmfKMduoHU0mnf_86r4AixGLIdaEZ3kWOCzPRbwnAWC01zDgYbGAUR90E68Iep-djgQyHyLl7j8G6hrXuJccSnZmcKfvfWi4qwd_-NPYeud8ONLCoTFDtYLk0DPbtWU8XD8kDu-yhxwbD-2RH1Y_Ifvu-6ZFlP3_zmHy1oKYO1LSZUwQ1HYCa9kFNDaipAzUFUFMENXWgxtsAOimCmjpQUwA11aB-Qi7fn1yMT31bHsSvYhZufJlgjB7omCRUIimYBNt2nse55GUsMTOuSpDcMJFZlaZSIRGijEOZFCoqIqUYPyC7dVOrp4SqPGQSrOEcrVWVsqyahyyveDgXuQCpjEjQvuJZZbnzsYTLl5mO4RB8huKZdeIZkSPXYWVoY_7c9EDLzLVjaZ7mEYdBD1shzqzSgX5xDKZNlItsRF65yzAl4D5fUatmi224iBjuf4-IGAjfjYGk8sMr9c1Ck8tbgD67c8_nZK_7qA_J7uZ2q16A4b4pX2qw_wAfafIf |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Genetic+diversity+of+soil+invertebrates+corroborates+timing+estimates+for+past+collapses+of+the+West+Antarctic+Ice+Sheet&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Collins%2C+Gemma+E.&rft.au=Hogg%2C+Ian+D.&rft.au=Convey%2C+Peter&rft.au=Sancho%2C+Leopoldo+G.&rft.date=2020-09-08&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=117&rft.issue=36&rft.spage=22293&rft.epage=22302&rft_id=info:doi/10.1073%2Fpnas.2007925117&rft_id=info%3Apmid%2F32839321&rft.externalDocID=PMC7486705 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon |