CSI 2264: CHARACTERIZING YOUNG STARS IN NGC 2264 WITH STOCHASTICALLY VARYING LIGHT CURVES

We provide CoRoT and Spitzer light curves and other supporting data for 17 classical T Tauri stars in NGC 2264 whose CoRoT light curves exemplify the “stochastic” light curve class as defined in 2014 by Cody et al. The most probable physical mechanism to explain the optical variability within this l...

Full description

Saved in:
Bibliographic Details
Published inThe Astronomical journal Vol. 151; no. 3; p. 60
Main Authors Stauffer, John, Cody, Ann Marie, Rebull, Luisa, Hillenbrand, Lynne A., Turner, Neal J., Carpenter, John, Carey, Sean, Terebey, Susan, Morales-Calderón, María, Alencar, Silvia H. P., McGinnis, Pauline, Sousa, Alana, Bouvier, Jerome, Venuti, Laura, Hartmann, Lee, Calvet, Nuria, Micela, Giusi, Flaccomio, Ettore, Song, Inseok, Gutermuth, Rob, Barrado, David, Vrba, Frederick J., Covey, Kevin, Herbst, William, Gillen, Edward, Guimarães, Marcelo Medeiros, Bouy, Herve, Favata, Fabio
Format Journal Article
LanguageEnglish
Published United States American Astronomical Society 01.03.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We provide CoRoT and Spitzer light curves and other supporting data for 17 classical T Tauri stars in NGC 2264 whose CoRoT light curves exemplify the “stochastic” light curve class as defined in 2014 by Cody et al. The most probable physical mechanism to explain the optical variability within this light curve class is time-dependent mass accretion onto the stellar photosphere, producing transient hot spots. Where we have appropriate spectral data, we show that the veiling variability in these stars is consistent in both amplitude and timescale with the optical light curve morphology. The veiling variability is also well-correlated with the strength of the He i 6678 Å emission line, predicted by models to arise in accretion shocks on or near the stellar photosphere. Stars with accretion burst light curve morphology also have variable mass accretion. The stochastic and accretion burst light curves can both be explained by a simple model of randomly occurring flux bursts, with the stochastic light curve class having a higher frequency of lower amplitude events. Members of the stochastic light curve class have only moderate mass accretion rates. Their H α profiles usually have blueshifted absorption features, probably originating in a disk wind. The lack of periodic signatures in the light curves suggests that little of the variability is due to long-lived hot spots rotating into or out of our line of sight; instead, the primary driver of the observed photometric variability is likely to be instabilities in the inner disk that lead to variable mass accretion.
AbstractList We provide CoRoT and Spitzer light curves and other supporting data for 17 classical T Tauri stars in NGC 2264 whose CoRoT light curves exemplify the "stochastic" light curve class as defined in 2014 by Cody et al. The most probable physical mechanism to explain the optical variability within this light curve class is time-dependent mass accretion onto the stellar photosphere, producing transient hot spots. Where we have appropriate spectral data, we show that the veiling variability in these stars is consistent in both amplitude and timescale with the optical light curve morphology. The veiling variability is also well-correlated with the strength of the He i 6678 A emission line, predicted by models to arise in accretion shocks on or near the stellar photosphere. Stars with accretion burst light curve morphology also have variable mass accretion. The stochastic and accretion burst light curves can both be explained by a simple model of randomly occurring flux bursts, with the stochastic light curve class having a higher frequency of lower amplitude events. Members of the stochastic light curve class have only moderate mass accretion rates. Their H[alpha] profiles usually have blueshifted absorption features, probably originating in a disk wind. The lack of periodic signatures in the light curves suggests that little of the variability is due to long-lived hot spots rotating into or out of our line of sight; instead, the primary driver of the observed photometric variability is likely to be instabilities in the inner disk that lead to variable mass accretion.
We provide CoRoT and Spitzer light curves and other supporting data for 17 classical T Tauri stars in NGC 2264 whose CoRoT light curves exemplify the “stochastic” light curve class as defined in 2014 by Cody et al. The most probable physical mechanism to explain the optical variability within this light curve class is time-dependent mass accretion onto the stellar photosphere, producing transient hot spots. Where we have appropriate spectral data, we show that the veiling variability in these stars is consistent in both amplitude and timescale with the optical light curve morphology. The veiling variability is also well-correlated with the strength of the He i 6678 Å emission line, predicted by models to arise in accretion shocks on or near the stellar photosphere. Stars with accretion burst light curve morphology also have variable mass accretion. The stochastic and accretion burst light curves can both be explained by a simple model of randomly occurring flux bursts, with the stochastic light curve class having a higher frequency of lower amplitude events. Members of the stochastic light curve class have only moderate mass accretion rates. Their H α profiles usually have blueshifted absorption features, probably originating in a disk wind. The lack of periodic signatures in the light curves suggests that little of the variability is due to long-lived hot spots rotating into or out of our line of sight; instead, the primary driver of the observed photometric variability is likely to be instabilities in the inner disk that lead to variable mass accretion.
We provide CoRoT and Spitzer light curves and other supporting data for 17 classical T Tauri stars in NGC 2264 whose CoRoT light curves exemplify the “stochastic” light curve class as defined in 2014 by Cody et al. The most probable physical mechanism to explain the optical variability within this light curve class is time-dependent mass accretion onto the stellar photosphere, producing transient hot spots. Where we have appropriate spectral data, we show that the veiling variability in these stars is consistent in both amplitude and timescale with the optical light curve morphology. The veiling variability is also well-correlated with the strength of the He i 6678 Å emission line, predicted by models to arise in accretion shocks on or near the stellar photosphere. Stars with accretion burst light curve morphology also have variable mass accretion. The stochastic and accretion burst light curves can both be explained by a simple model of randomly occurring flux bursts, with the stochastic light curve class having a higher frequency of lower amplitude events. Members of the stochastic light curve class have only moderate mass accretion rates. Their Hα profiles usually have blueshifted absorption features, probably originating in a disk wind. The lack of periodic signatures in the light curves suggests that little of the variability is due to long-lived hot spots rotating into or out of our line of sight; instead, the primary driver of the observed photometric variability is likely to be instabilities in the inner disk that lead to variable mass accretion.
We provide CoRoT and Spitzer light curves and other supporting data for 17 classical T Tauri stars in NGC 2264 whose CoRoT light curves exemplify the “stochastic” light curve class as defined in 2014 by Cody et al. The most probable physical mechanism to explain the optical variability within this light curve class is time-dependent mass accretion onto the stellar photosphere, producing transient hot spots. Where we have appropriate spectral data, we show that the veiling variability in these stars is consistent in both amplitude and timescale with the optical light curve morphology. The veiling variability is also well-correlated with the strength of the He I 6678 Å emission line, predicted by models to arise in accretion shocks on or near the stellar photosphere. Stars with accretion burst light curve morphology also have variable mass accretion. The stochastic and accretion burst light curves can both be explained by a simple model of randomly occurring flux bursts, with the stochastic light curve class having a higher frequency of lower amplitude events. Members of the stochastic light curve class have only moderate mass accretion rates. Their Hα profiles usually have blueshifted absorption features, probably originating in a disk wind. The lack of periodic signatures in the light curves suggests that little of the variability is due to long-lived hot spots rotating into or out of our line of sight; instead, the primary driver of the observed photometric variability is likely to be instabilities in the inner disk that lead to variable mass accretion. Based on data from the Spitzer and CoRoT missions, as well as the Canada-France-Hawaii Telescope (CFHT) MegaCam CCD, and the European Southern Observatory Very Large Telescope, Paranal Chile, under program 088.C-0239. The CoRoT space mission was developed and is operated by the French space agency CNES, with particpiation of ESA’s RSSD and Science Programmes, Austria, Belgium, Brazil, Germany, and Spain. MegaCam is a joint project of CFHT and CEA/DAPNIA, which is operated by the National Research Council (NRC) of Canada, the Institute National des Sciences de l’Univers of the Centre National de la Recherche Scientifique of France, and the University of Hawaii.
Author Barrado, David
Morales-Calderón, María
Flaccomio, Ettore
Gutermuth, Rob
Venuti, Laura
Cody, Ann Marie
Rebull, Luisa
Micela, Giusi
Herbst, William
Carpenter, John
Terebey, Susan
Sousa, Alana
Gillen, Edward
Calvet, Nuria
Covey, Kevin
McGinnis, Pauline
Hillenbrand, Lynne A.
Bouy, Herve
Bouvier, Jerome
Carey, Sean
Turner, Neal J.
Favata, Fabio
Hartmann, Lee
Vrba, Frederick J.
Song, Inseok
Guimarães, Marcelo Medeiros
Stauffer, John
Alencar, Silvia H. P.
Author_xml – sequence: 1
  givenname: John
  surname: Stauffer
  fullname: Stauffer, John
– sequence: 2
  givenname: Ann Marie
  surname: Cody
  fullname: Cody, Ann Marie
– sequence: 3
  givenname: Luisa
  surname: Rebull
  fullname: Rebull, Luisa
– sequence: 4
  givenname: Lynne A.
  surname: Hillenbrand
  fullname: Hillenbrand, Lynne A.
– sequence: 5
  givenname: Neal J.
  surname: Turner
  fullname: Turner, Neal J.
– sequence: 6
  givenname: John
  surname: Carpenter
  fullname: Carpenter, John
– sequence: 7
  givenname: Sean
  surname: Carey
  fullname: Carey, Sean
– sequence: 8
  givenname: Susan
  surname: Terebey
  fullname: Terebey, Susan
– sequence: 9
  givenname: María
  surname: Morales-Calderón
  fullname: Morales-Calderón, María
– sequence: 10
  givenname: Silvia H. P.
  surname: Alencar
  fullname: Alencar, Silvia H. P.
– sequence: 11
  givenname: Pauline
  surname: McGinnis
  fullname: McGinnis, Pauline
– sequence: 12
  givenname: Alana
  surname: Sousa
  fullname: Sousa, Alana
– sequence: 13
  givenname: Jerome
  surname: Bouvier
  fullname: Bouvier, Jerome
– sequence: 14
  givenname: Laura
  surname: Venuti
  fullname: Venuti, Laura
– sequence: 15
  givenname: Lee
  surname: Hartmann
  fullname: Hartmann, Lee
– sequence: 16
  givenname: Nuria
  surname: Calvet
  fullname: Calvet, Nuria
– sequence: 17
  givenname: Giusi
  surname: Micela
  fullname: Micela, Giusi
– sequence: 18
  givenname: Ettore
  surname: Flaccomio
  fullname: Flaccomio, Ettore
– sequence: 19
  givenname: Inseok
  surname: Song
  fullname: Song, Inseok
– sequence: 20
  givenname: Rob
  surname: Gutermuth
  fullname: Gutermuth, Rob
– sequence: 21
  givenname: David
  surname: Barrado
  fullname: Barrado, David
– sequence: 22
  givenname: Frederick J.
  surname: Vrba
  fullname: Vrba, Frederick J.
– sequence: 23
  givenname: Kevin
  surname: Covey
  fullname: Covey, Kevin
– sequence: 24
  givenname: William
  surname: Herbst
  fullname: Herbst, William
– sequence: 25
  givenname: Edward
  surname: Gillen
  fullname: Gillen, Edward
– sequence: 26
  givenname: Marcelo Medeiros
  surname: Guimarães
  fullname: Guimarães, Marcelo Medeiros
– sequence: 27
  givenname: Herve
  surname: Bouy
  fullname: Bouy, Herve
– sequence: 28
  givenname: Fabio
  surname: Favata
  fullname: Favata, Fabio
BackLink https://insu.hal.science/insu-03691564$$DView record in HAL
https://www.osti.gov/biblio/22520001$$D View this record in Osti.gov
BookMark eNqN0U9r2zAYBnAxOlja9QvsZNhlDLy8-q_sZkwWG0wCttORXYSiyNTDtTvLGezbT162HXoovegF8XuEXp5rdNUPvUPoHYZPVDG5BAAWC8LFEnO8pEsBr9ACc6piqhS-Qov_4A269v47AMYK2AId0iqPCBHsc5RmSZmk9brMv-XbTXTY7cNZ1UlZRfk22m7SPy76mtdZuN4FXtV5mhTFIbpLysOcKfJNVkfpvrxbV2_R68Z03t3-nTdo_2Vdp1lc7DZzLLaMwBSfcCMNt5ZIqaRyDBqgXIBr5MkKY80JG4sZdQ0cQVpxNFKs1FEoBsJwvHL0Br2_vDv4qdXetpOz93boe2cnTQgnYXUc1MeLujedfhzbBzP-0oNpdZYUuu39WQMVK8wF-znjDxf8OA4_zs5P-qH11nWd6d1w9horwrmUQMQLKCjBOZWrQNWF2nHwfnSNDn81Uzv002jaTmPQc5d6rkrPVenQpaZaQIiSJ9F_KzwT-g1AOJgu
CitedBy_id crossref_primary_10_1002_asna_201913620
crossref_primary_10_1051_0004_6361_202244178
crossref_primary_10_3847_1538_4357_ab06c8
crossref_primary_10_3847_1538_3881_aa89eb
crossref_primary_10_1093_mnras_stac3049
crossref_primary_10_3847_0004_637X_831_2_116
crossref_primary_10_1093_mnras_stad3197
crossref_primary_10_3847_1538_4357_836_1_98
crossref_primary_10_3847_1538_4357_aa9e52
crossref_primary_10_3847_1538_4357_ad6e84
crossref_primary_10_3847_1538_3881_aacead
crossref_primary_10_1088_1674_4527_acd58b
crossref_primary_10_3847_1538_3881_ac63b6
crossref_primary_10_1051_0004_6361_201629537
crossref_primary_10_3847_1538_4357_ab1756
crossref_primary_10_1051_0004_6361_201833979
crossref_primary_10_1093_mnras_staa2041
crossref_primary_10_3847_1538_3881_aa88bd
crossref_primary_10_3847_1538_3881_ab893c
crossref_primary_10_3847_1538_4357_836_1_41
crossref_primary_10_1093_mnras_stae1862
crossref_primary_10_1093_mnras_staf148
crossref_primary_10_1093_mnras_stac1477
crossref_primary_10_1051_0004_6361_202141686
crossref_primary_10_3847_1538_3881_aab605
crossref_primary_10_1093_mnras_stae311
crossref_primary_10_3847_1538_4357_abd410
crossref_primary_10_1093_mnras_sty1350
crossref_primary_10_1051_eas_1680005
crossref_primary_10_1093_mnras_stab2082
crossref_primary_10_1051_0004_6361_202347009
crossref_primary_10_3389_fspas_2019_00068
crossref_primary_10_3847_1538_4357_ac365a
crossref_primary_10_1051_0004_6361_201731629
crossref_primary_10_3847_1538_3881_ac503c
crossref_primary_10_1051_0004_6361_201834870
crossref_primary_10_3847_1538_4357_835_2_230
crossref_primary_10_1051_0004_6361_202038594
crossref_primary_10_3847_1538_4357_833_1_104
crossref_primary_10_3847_1538_3881_ac0536
crossref_primary_10_1093_mnras_stad1946
crossref_primary_10_1093_mnras_stx852
crossref_primary_10_1051_0004_6361_201833308
crossref_primary_10_1051_0004_6361_201629983
crossref_primary_10_3847_1538_3881_ac5b73
Cites_doi 10.1051/0004-6361/201014184
10.1111/j.1365-2966.2006.10527.x
10.1086/382237
10.1086/113262
10.1051/0004-6361/201014979
10.1088/0004-6256/147/4/82
10.1051/0004-6361/201425475
10.1086/320233
10.1051/0004-6361/201526164
10.1086/321086
10.1086/169374
10.1086/190026
10.1051/0004-6361:20010409
10.1051/0004-6361:20030938
10.1051/0004-6361/201423776
10.1086/301175
10.1093/mnras/stt365
10.1086/164332
10.1086/117204
10.1111/j.1365-2966.2010.17409.x
10.1051/0004-6361/201014490
10.1088/0004-6256/135/2/441
10.1086/133808
10.1086/151540
10.1051/0004-6361/201321508
10.1051/0004-6361/201321389
10.1088/0004-6256/149/4/130
10.1086/191361
10.1086/144749
10.1088/0004-637X/765/1/11
10.1086/182734
10.1051/0004-6361/201015326
10.1086/506140
10.1086/422715
10.1088/0004-6256/148/5/92
10.1086/426326
10.1088/0004-637X/798/2/89
10.1088/0004-637X/755/2/97
10.1086/114272
10.1051/aas:1996222
10.1088/0004-6256/147/4/83
10.1088/0067-0049/207/2/30
10.1051/0004-6361:20040492
10.1086/114456
10.1088/0004-6256/138/4/1116
10.1086/185972
10.1086/114998
10.1086/319393
10.1086/160858
10.1088/0067-0049/208/1/9
ContentType Journal Article
Copyright Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
7TG
KL.
8FD
H8D
L7M
1XC
OTOTI
DOI 10.3847/0004-6256/151/3/60
DatabaseName CrossRef
Meteorological & Geoastrophysical Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
Hyper Article en Ligne (HAL)
OSTI.GOV
DatabaseTitle CrossRef
Meteorological & Geoastrophysical Abstracts - Academic
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitleList Meteorological & Geoastrophysical Abstracts - Academic
CrossRef
Technology Research Database


DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
EISSN 1538-3881
ExternalDocumentID 22520001
oai_HAL_insu_03691564v1
10_3847_0004_6256_151_3_60
GroupedDBID -DZ
-~X
123
1JI
23N
4.4
6J9
85S
AAFWJ
AAGCD
AAJIO
AALHV
AAYXX
ABDNZ
ABHWH
ABXSS
ACBEA
ACGFS
ACHIP
ACNCT
ACYRX
AEFHF
AENEX
AFPKN
AGNAY
AHPAA
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATQHT
AVWKF
AZFZN
CITATION
CJUJL
CRLBU
CS3
EBS
EJD
F5P
FRP
GROUPED_DOAJ
HF~
IJHAN
IOP
KOT
N5L
O3W
O43
OK1
P2P
PJBAE
RIN
RNS
ROL
SY9
T37
TR2
UPT
WH7
~02
7TG
KL.
8FD
AEINN
H8D
L7M
186
1XC
2WC
41~
6TJ
AACYF
ABDPE
ACYGS
ADXHL
AETEA
AFFNX
AI.
FA8
IS.
MVM
NEJ
OHT
VH1
XJT
ZCG
ZKB
ZY4
OTOTI
RNP
ID FETCH-LOGICAL-c420t-d1f7a5cc277878e40f03560ef7dc6acad1ac143ef0b07c6ba7698b68406a519e3
ISSN 0004-6256
1538-3881
IngestDate Thu May 18 22:22:20 EDT 2023
Fri Aug 29 06:29:30 EDT 2025
Tue Aug 05 10:41:25 EDT 2025
Fri Jul 11 02:25:35 EDT 2025
Tue Jul 01 03:26:21 EDT 2025
Thu Apr 24 22:56:12 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords stars: pre-main sequence
stars: protostars
circumstellar matter
open clusters and associations: individual: NGC 2264
Herbig Ae/Be
Astrophysics - Solar and Stellar Astrophysics
stars: variables: T Tauri
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c420t-d1f7a5cc277878e40f03560ef7dc6acad1ac143ef0b07c6ba7698b68406a519e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-0221-6871
0000-0002-5971-9242
0000-0002-7450-6712
OpenAccessLink https://iopscience.iop.org/article/10.3847/0004-6256/151/3/60/pdf
PQID 1808655379
PQPubID 23462
ParticipantIDs osti_scitechconnect_22520001
hal_primary_oai_HAL_insu_03691564v1
proquest_miscellaneous_1825577026
proquest_miscellaneous_1808655379
crossref_citationtrail_10_3847_0004_6256_151_3_60
crossref_primary_10_3847_0004_6256_151_3_60
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-03-01
PublicationDateYYYYMMDD 2016-03-01
PublicationDate_xml – month: 03
  year: 2016
  text: 2016-03-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The Astronomical journal
PublicationYear 2016
Publisher American Astronomical Society
Publisher_xml – name: American Astronomical Society
References Cody (aj522494bib17) 2014; 147
Venuti (aj522494bib74) 2014; 570
Walker (aj522494bib79) 1972; 175
Donati (aj522494bib19) 2010; 409
Herbst (aj522494bib33) 1982; 87
Hartigan (aj522494bib30) 1989; 70
Lamm (aj522494bib43) 2005; 430
Barrado (aj522494bib7) 2001; 371
Rydgren (aj522494bib58) 1983; 267
Königl (aj522494bib39) 1991; 370
Basri (aj522494bib9) 1991; 252
Rebull (aj522494bib54) 2014; 148
Alencar (aj522494bib1) 2010; 519
Furesz (aj522494bib26) 2006; 648
Allen (aj522494bib2) 2004; 154
Baraffe (aj522494bib6) 2010; 521
Schmidt (aj522494bib61) 1866; 68
Stauffer (aj522494bib63) 2014; 147
Lima (aj522494bib44) 2010; 522
Herbst (aj522494bib31) 1987; 94
Herbst (aj522494bib34) 2000; 119
Rebull (aj522494bib53) 2001; 121
Terquem (aj522494bib70) 2000; 360
Makidon (aj522494bib45) 2004; 127
Whitney (aj522494bib81) 2013; 207
Herbst (aj522494bib32) 1994; 108
Kurosawa (aj522494bib42) 2013; 431
Findeisen (aj522494bib23) 2015; 798
Ambartsumian (aj522494bib3) 1954; 1
Bouvier (aj522494bib13) 1999; 349
Moraux (aj522494bib49) 2013; 560
Carpenter (aj522494bib16) 2001; 121
Wolf (aj522494bib82) 1977; 58
Holtzman (aj522494bib35) 1986; 92
Vrba (aj522494bib76) 1986; 306
Johns-Krull (aj522494bib36) 2013; 765
Stetson (aj522494bib65) 1996; 108
Walker (aj522494bib78) 1956; 2
Randich (aj522494bib52) 2013; 154
Dahm (aj522494bib18) 2005; 129
Kraft (aj522494bib40) 1970
Teixeira (aj522494bib69) 2012; 540
Bouvier (aj522494bib15) 2013; 557
Sousa (aj522494bib62) 2015
Bouvier (aj522494bib14) 2003; 409
Joy (aj522494bib37) 1945; 102
Schmidt (aj522494bib60) 1861; 55
Ghosh (aj522494bib27) 1978; 223
Blinova (aj522494bib12) 2015
Stauffer (aj522494bib64) 2015; 149
Venuti (aj522494bib75) 2015; 581
Basri (aj522494bib8) 1990; 363
McGinnis (aj522494bib46) 2015; 577
Gregory (aj522494bib28) 2012; 755
Salpeter (aj522494bib59) 1954
Bertout (aj522494bib11) 2000; 363
Kochukhov (aj522494bib38) 2007; 109
Valenti (aj522494bib73) 1996; 118
Beristain (aj522494bib10) 2001; 551
Vrba (aj522494bib77) 1989; 97
Haro (aj522494bib29) 1955; 21
Sung (aj522494bib66) 2008; 135
Kurosawa (aj522494bib83) 2006; 370
Pecaut (aj522494bib51) 2013; 208
Sung (aj522494bib68) 2009; 138
References_xml – volume: 519
  start-page: A88
  year: 2010
  ident: aj522494bib1
  publication-title: A&A
  doi: 10.1051/0004-6361/201014184
– volume: 370
  start-page: 580
  year: 2006
  ident: aj522494bib83
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2006.10527.x
– volume: 127
  start-page: 2228
  year: 2004
  ident: aj522494bib45
  publication-title: AJ
  doi: 10.1086/382237
– volume: 87
  start-page: 1710
  year: 1982
  ident: aj522494bib33
  publication-title: AJ
  doi: 10.1086/113262
– volume: 68
  start-page: 69
  year: 1866
  ident: aj522494bib61
  publication-title: AN
– volume: 521
  start-page: 44
  year: 2010
  ident: aj522494bib6
  publication-title: A&A
  doi: 10.1051/0004-6361/201014979
– volume: 147
  start-page: 82
  year: 2014
  ident: aj522494bib17
  publication-title: AJ
  doi: 10.1088/0004-6256/147/4/82
– volume: 577
  start-page: 11
  year: 2015
  ident: aj522494bib46
  publication-title: A&A
  doi: 10.1051/0004-6361/201425475
– volume: 551
  start-page: 1037
  year: 2001
  ident: aj522494bib10
  publication-title: ApJ
  doi: 10.1086/320233
– volume: 581
  start-page: 66
  year: 2015
  ident: aj522494bib75
  doi: 10.1051/0004-6361/201526164
– volume: 121
  start-page: 3160
  year: 2001
  ident: aj522494bib16
  publication-title: AJ
  doi: 10.1086/321086
– volume: 1
  start-page: 293
  year: 1954
  ident: aj522494bib3
  publication-title: MSRSL
– volume: 363
  start-page: 654
  year: 1990
  ident: aj522494bib8
  publication-title: ApJ
  doi: 10.1086/169374
– volume: 2
  start-page: 365
  year: 1956
  ident: aj522494bib78
  publication-title: ApJS
  doi: 10.1086/190026
– volume: 371
  start-page: 652
  year: 2001
  ident: aj522494bib7
  publication-title: A&A
  doi: 10.1051/0004-6361:20010409
– volume: 409
  start-page: 169
  year: 2003
  ident: aj522494bib14
  publication-title: A&A
  doi: 10.1051/0004-6361:20030938
– volume: 570
  start-page: 82
  year: 2014
  ident: aj522494bib74
  publication-title: A&A
  doi: 10.1051/0004-6361/201423776
– volume: 119
  start-page: 261
  year: 2000
  ident: aj522494bib34
  publication-title: AJ
  doi: 10.1086/301175
– volume: 431
  start-page: 2673
  year: 2013
  ident: aj522494bib42
  publication-title: MNRAS
  doi: 10.1093/mnras/stt365
– volume: 306
  start-page: 199
  year: 1986
  ident: aj522494bib76
  publication-title: ApJ
  doi: 10.1086/164332
– volume: 108
  start-page: 1906
  year: 1994
  ident: aj522494bib32
  publication-title: AJ
  doi: 10.1086/117204
– volume: 409
  start-page: 1347
  year: 2010
  ident: aj522494bib19
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2010.17409.x
– volume: 522
  start-page: 104
  year: 2010
  ident: aj522494bib44
  publication-title: A&A
  doi: 10.1051/0004-6361/201014490
– volume: 58
  start-page: 163
  year: 1977
  ident: aj522494bib82
  publication-title: A&A
– volume: 21
  start-page: 33
  year: 1955
  ident: aj522494bib29
  publication-title: BOTT
– volume: 135
  start-page: 441
  year: 2008
  ident: aj522494bib66
  publication-title: AJ
  doi: 10.1088/0004-6256/135/2/441
– volume: 108
  start-page: 851
  year: 1996
  ident: aj522494bib65
  publication-title: PASP
  doi: 10.1086/133808
– volume: 175
  start-page: 89
  year: 1972
  ident: aj522494bib79
  publication-title: ApJ
  doi: 10.1086/151540
– volume: 560
  start-page: 13
  year: 2013
  ident: aj522494bib49
  publication-title: A&A
  doi: 10.1051/0004-6361/201321508
– volume: 360
  start-page: 1031
  year: 2000
  ident: aj522494bib70
  publication-title: A&A
– volume: 557
  start-page: A77
  year: 2013
  ident: aj522494bib15
  publication-title: A&A
  doi: 10.1051/0004-6361/201321389
– volume: 149
  start-page: 130
  year: 2015
  ident: aj522494bib64
  publication-title: AJ
  doi: 10.1088/0004-6256/149/4/130
– year: 2015
  ident: aj522494bib12
– volume: 154
  start-page: 47
  year: 2013
  ident: aj522494bib52
  publication-title: Msngr
– volume: 70
  start-page: 899
  year: 1989
  ident: aj522494bib30
  publication-title: ApJS
  doi: 10.1086/191361
– volume: 102
  start-page: 168
  year: 1945
  ident: aj522494bib37
  publication-title: ApJ
  doi: 10.1086/144749
– volume: 765
  start-page: 11
  year: 2013
  ident: aj522494bib36
  publication-title: ApJ
  doi: 10.1088/0004-637X/765/1/11
– volume: 223
  start-page: L83
  year: 1978
  ident: aj522494bib27
  publication-title: ApJL
  doi: 10.1086/182734
– start-page: 113
  year: 1954
  ident: aj522494bib59
– volume: 540
  start-page: 83
  year: 2012
  ident: aj522494bib69
  publication-title: A&A
  doi: 10.1051/0004-6361/201015326
– volume: 55
  start-page: 91
  year: 1861
  ident: aj522494bib60
  publication-title: AN
– volume: 648
  start-page: 1090
  year: 2006
  ident: aj522494bib26
  publication-title: ApJ
  doi: 10.1086/506140
– volume: 154
  start-page: 363
  year: 2004
  ident: aj522494bib2
  publication-title: ApJS
  doi: 10.1086/422715
– volume: 148
  start-page: 92
  year: 2014
  ident: aj522494bib54
  publication-title: AJ
  doi: 10.1088/0004-6256/148/5/92
– volume: 252
  start-page: 625
  year: 1991
  ident: aj522494bib9
  publication-title: A&A
– volume: 129
  start-page: 829
  year: 2005
  ident: aj522494bib18
  publication-title: AJ
  doi: 10.1086/426326
– volume: 363
  start-page: 984
  year: 2000
  ident: aj522494bib11
  publication-title: A&A
– volume: 798
  start-page: 89
  year: 2015
  ident: aj522494bib23
  publication-title: ApJ
  doi: 10.1088/0004-637X/798/2/89
– volume: 109
  year: 2007
  ident: aj522494bib38
– volume: 755
  start-page: 97
  year: 2012
  ident: aj522494bib28
  publication-title: ApJ
  doi: 10.1088/0004-637X/755/2/97
– volume: 92
  start-page: 138
  year: 1986
  ident: aj522494bib35
  publication-title: AJ
  doi: 10.1086/114272
– volume: 118
  start-page: 595
  year: 1996
  ident: aj522494bib73
  publication-title: A&AS
  doi: 10.1051/aas:1996222
– volume: 147
  start-page: 83
  year: 2014
  ident: aj522494bib63
  publication-title: AJ
  doi: 10.1088/0004-6256/147/4/83
– year: 2015
  ident: aj522494bib62
– volume: 207
  start-page: 30
  year: 2013
  ident: aj522494bib81
  publication-title: ApJS
  doi: 10.1088/0067-0049/207/2/30
– volume: 430
  start-page: 1005
  year: 2005
  ident: aj522494bib43
  publication-title: A&A
  doi: 10.1051/0004-6361:20040492
– volume: 94
  start-page: 137
  year: 1987
  ident: aj522494bib31
  publication-title: AJ
  doi: 10.1086/114456
– volume: 349
  start-page: 619
  year: 1999
  ident: aj522494bib13
  publication-title: A&A
– volume: 138
  start-page: 1116
  year: 2009
  ident: aj522494bib68
  publication-title: AJ
  doi: 10.1088/0004-6256/138/4/1116
– volume: 370
  start-page: L39
  year: 1991
  ident: aj522494bib39
  publication-title: ApJL
  doi: 10.1086/185972
– volume: 97
  start-page: 483
  year: 1989
  ident: aj522494bib77
  publication-title: AJ
  doi: 10.1086/114998
– volume: 121
  start-page: 1676
  year: 2001
  ident: aj522494bib53
  publication-title: AJ
  doi: 10.1086/319393
– volume: 267
  start-page: 191
  year: 1983
  ident: aj522494bib58
  publication-title: ApJ
  doi: 10.1086/160858
– start-page: 385
  year: 1970
  ident: aj522494bib40
– volume: 208
  start-page: 9
  year: 2013
  ident: aj522494bib51
  publication-title: ApJS
  doi: 10.1088/0067-0049/208/1/9
SSID ssj0011804
Score 2.4793859
Snippet We provide CoRoT and Spitzer light curves and other supporting data for 17 classical T Tauri stars in NGC 2264 whose CoRoT light curves exemplify the...
We provide CoRoT and Spitzer light curves and other supporting data for 17 classical T Tauri stars in NGC 2264 whose CoRoT light curves exemplify the...
We provide CoRoT and Spitzer light curves and other supporting data for 17 classical T Tauri stars in NGC 2264 whose CoRoT light curves exemplify the...
SourceID osti
hal
proquest
crossref
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 60
SubjectTerms Accretion
ASTROPHYSICS, COSMOLOGY AND ASTRONOMY
Bursting
DIAGRAMS
HOT SPOTS
Light curve
MASS
Mathematical models
MORPHOLOGY
PERIODICITY
PHOTOSPHERE
PROTOSTARS
RANDOMNESS
Sciences of the Universe
STAR ACCRETION
Stars
STOCHASTIC PROCESSES
Stochasticity
T TAURI STARS
TIME DEPENDENCE
TRANSIENTS
VISIBLE RADIATION
Title CSI 2264: CHARACTERIZING YOUNG STARS IN NGC 2264 WITH STOCHASTICALLY VARYING LIGHT CURVES
URI https://www.proquest.com/docview/1808655379
https://www.proquest.com/docview/1825577026
https://insu.hal.science/insu-03691564
https://www.osti.gov/biblio/22520001
Volume 151
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELagXLig5aUtLMgIxKXKNk875RZFsCkqLWrT1ZaLlTiOWLRK0bZFgl_PjJ0m3aWqgIsVWXYd-fs6mbHnQcgb_CxlbBBYsnAzy89dZg1knlt24aqMl4orfXv-acySuf_xIrhoq6Lq6JJ1fip_7Y0r-R9UoQ9wxSjZf0C2-VHogGfAF1pAGNq_wjieDXsYoopmfZxE0ygG5XT4BQ-gFpM5tLM0mmKMcG98FuuRYLCnCXRPYPgsxVwIo0XvPJoucM5oeJakvXg-Pa9VxG8tlaIVnpkvTXKB3ZczlYg3WGbltmsvQLcxtxqjzeWqdQnKrmsPM9VSM14aaR9VFcYPXard4wiHtf5YOxLUC00dllO1p28rdgNnh1_ePnHuwafT-D_6Fthp-pQhQAGPySZMGYJbybJBOmHsEZjD91ywG3RE5-Rzc63khLqeZPM-JooKl-k3i_Rhib7X1zlLW03l7lf0k-0sQe7-8dXWqkh6RB7UNgSNDCEekjuqekSOtwj9pG-pfjaHVqvHZAE8oYj-O3qTJVSzhGqW0OGYAkv0OIosoTdZQmuWUM0SaljyhMw_vE_jxKpLaljSd-21VTglzwIpYXNCHirfLm0PdF5V8kKyTGaFk0nQoFVp5zaXLM84G4Q5JgRiGej6yntKOtWyUseEOrxkzC25yj3lu9zOVclyxwuDsgClObS7xNlun5B1vnkse3IlwO7ELUe_B1_glgvYcuEJBnN6zZzvJtvKwdGvAZVmICZKT6KRwCAOAYrZAPMg_XC65ARRE6BRYlpkif5jci22TOmSV1s0BUhWvC7LKrXcrASQBaO2PT44NAZMcs5tlz07vMxzcr_9t5yQzvp6o16AOrvOX2qK_gbgS4jI
linkProvider IOP Publishing
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CSI+2264%3A+CHARACTERIZING+YOUNG+STARS+IN+NGC+2264+WITH+STOCHASTICALLY+VARYING+LIGHT+CURVES&rft.jtitle=The+Astronomical+journal&rft.au=Stauffer%2C+John&rft.au=Rebull%2C+Luisa&rft.au=Carey%2C+Sean&rft.au=Cody%2C+Ann+Marie&rft.date=2016-03-01&rft.issn=1538-3881&rft.eissn=1538-3881&rft.volume=151&rft.issue=3&rft_id=info:doi/10.3847%2F0004-6256%2F151%2F3%2F60&rft.externalDocID=22520001
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-6256&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-6256&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-6256&client=summon