EGF containing gelatin-based wound dressings
In case of bulk loss of tissue or non-healing wounds such as burns, trauma, diabetic, decubitus and venous stasis ulcers, a proper wound dressing is needed to cover the wound area, protect the damaged tissue, and if possible to activate the cell proliferation and stimulate the healing process. In th...
Saved in:
Published in | Biomaterials Vol. 22; no. 11; pp. 1345 - 1356 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Elsevier Ltd
01.06.2001
Elsevier Science |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In case of bulk loss of tissue or non-healing wounds such as burns, trauma, diabetic, decubitus and venous stasis ulcers, a proper wound dressing is needed to cover the wound area, protect the damaged tissue, and if possible to activate the cell proliferation and stimulate the healing process. In this study, synthesis of a novel polymeric bilayer wound dressing containing epidermal growth-factor (EGF) -loaded microspheres was aimed. For this purpose, a natural, nontoxic and biocompatible material, gelatin, was chosen as the underlying layer and various porous matrices in sponge form were prepared from gelatin by freeze-drying technique. As the external layer, elastomeric polyurethane membranes were used. Two different doses of EGF was added into the prepared gelatin sponges (1 and 15
μg/cm
2) to activate cell proliferation. EGF addition was carried out either in free form or within microspheres to achieve prolonged release of EGF for higher efficiency. The prepared systems were tested in in vivo experiments on full-thickness skin defects created on rabbits. At certain intervals, wound areas were measured and tissues from wound areas were biopsied and processed for histological examinations. The wound areas decreased upon low-dose EGF application but the difference between the affects of free EGF and microsphere loaded EGF was not so distinct. Upon increasing the dose of EGF by a factor of 15, it was observed that controlled release of EGF from microspheres provided a higher degree of reduction in the wound areas. Histological investigations showed that the prepared dressings were biocompatible and did not cause any mononuclear cell infiltration or foreign body reaction. The structure of the newly formed dermis was almost the same as that of the normal skin. |
---|---|
AbstractList | This study examined the synthesis of a novel polymeric bilayer wound dressing containing epidermal growth factor (EGF)-loaded microspheres. Gelatin was chosen as the underlying layer and various porous matrices in sponge form were prepared from gelatin by a freeze-drying technique. Upon adding a high dose of EGF, the controlled release of EGF from microspheres provided a higher degree of reduction in the wound areas. Histological studies showed that prepared dressings were biocompatible and did not cause any mononuclear cell infiltration or foreign body reaction. The structure of the newly formed dermis was almost the same as that of normal skin. (Original abstract - amended) In case of bulk loss of tissue or non-healing wounds such as burns, trauma, diabetic, decubitus and venous stasis ulcers, a proper wound dressing is needed to cover the wound area, protect the damaged tissue, and if possible to activate the cell proliferation and stimulate the healing process. In this study, synthesis of a novel polymeric bilayer wound dressing containing epidermal growth-factor (EGF) -loaded microspheres was aimed. For this purpose, a natural, nontoxic and biocompatible material, gelatin, was chosen as the underlying layer and various porous matrices in sponge form were prepared from gelatin by freeze-drying technique. As the external layer, elastomeric polyurethane membranes were used. Two different doses of EGF was added into the prepared gelatin sponges (1 and 15 microg/cm2) to activate cell proliferation. EGF addition was carried out either in free form or within microspheres to achieve prolonged release of EGF for higher efficiency. The prepared systems were tested in in vivo experiments on full-thickness skin defects created on rabbits. At certain intervals, wound areas were measured and tissues from wound areas were biopsied and processed for histological examinations. The wound areas decreased upon low-dose EGF application but the difference between the affects of free EGF and microsphere loaded EGF was not so distinct. Upon increasing the dose of EGF by a factor of 15, it was observed that controlled release of EGF from microspheres provided a higher degree of reduction in the wound areas. Histological investigations showed that the prepared dressings were biocompatible and did not cause any mononuclear cell infiltration or foreign body reaction. The structure of the newly formed dermis was almost the same as that of the normal skin. In case of bulk loss of tissue or non-healing wounds such as burns, trauma, diabetic, decubitus and venous stasis ulcers, a proper wound dressing is needed to cover the wound area, protect the damaged tissue, and if possible to activate the cell proliferation and stimulate the healing process. In this study, synthesis of a novel polymeric bilayer wound dressing containing epidermal growth-factor (EGF) -loaded microspheres was aimed. For this purpose, a natural, nontoxic and biocompatible material, gelatin, was chosen as the underlying layer and various porous matrices in sponge form were prepared from gelatin by freeze-drying technique. As the external layer, elastomeric polyurethane membranes were used. Two different doses of EGF was added into the prepared gelatin sponges (1 and 15 μg/cm 2) to activate cell proliferation. EGF addition was carried out either in free form or within microspheres to achieve prolonged release of EGF for higher efficiency. The prepared systems were tested in in vivo experiments on full-thickness skin defects created on rabbits. At certain intervals, wound areas were measured and tissues from wound areas were biopsied and processed for histological examinations. The wound areas decreased upon low-dose EGF application but the difference between the affects of free EGF and microsphere loaded EGF was not so distinct. Upon increasing the dose of EGF by a factor of 15, it was observed that controlled release of EGF from microspheres provided a higher degree of reduction in the wound areas. Histological investigations showed that the prepared dressings were biocompatible and did not cause any mononuclear cell infiltration or foreign body reaction. The structure of the newly formed dermis was almost the same as that of the normal skin. |
Author | Korkusuz, Petek Hasirci, Nesrin Ertan, Cemile Ulubayram, Kezban Cakar, A.Nur |
Author_xml | – sequence: 1 givenname: Kezban surname: Ulubayram fullname: Ulubayram, Kezban organization: Department of Chemistry, Middle East Technical University, 06531 Ankara, Turkey – sequence: 2 givenname: A.Nur surname: Cakar fullname: Cakar, A.Nur organization: Faculty of Medicine, Histology and Embryology, Hacettepe University, 6100 Ankara, Turkey – sequence: 3 givenname: Petek surname: Korkusuz fullname: Korkusuz, Petek organization: Faculty of Medicine, Histology and Embryology, Hacettepe University, 6100 Ankara, Turkey – sequence: 4 givenname: Cemile surname: Ertan fullname: Ertan, Cemile organization: Medical Center, Middle East Technical University, 06531 Ankara, Turkey – sequence: 5 givenname: Nesrin surname: Hasirci fullname: Hasirci, Nesrin email: nhasirci@metu.edu.tr organization: Department of Chemistry, Middle East Technical University, 06531 Ankara, Turkey |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=951379$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/11336307$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkEtLAzEQgIMo2lZ_glIQRMHVSfaVnERKW4WCB_UcsslsiWyzNdkq_nvTB_XoaRjmm9fXJ4eudUjIOYU7CrS4fwWasUQUlF0D3AAwXib8gPQoL3mSC8gPSW-PnJB-CB8Qc8jYMTmhNE2LFMoeuR1PJ0Pduk5ZZ918OMdGddYllQpoht_typmh8RhCLIZTclSrJuDZLg7I-2T8NnpKZi_T59HjLNEZgy4xlKq0FEIYXRmojOGVEpgDFlVdpWXBa0Z5ymrKUlNnOi8FNZwbpqoizwzwdECutnOXvv1cYejkwgaNTaMctqsgS-DRQXziP5AVZU6zQkQw34LatyF4rOXS24XyP5KCXPuUG59yLUsCyI1Pub7kYrdgVS3Q_HXtBEbgcgeooFVTe-W0DXtO5DSaiNTDlsJo7cuil0FbdBqN9ag7aVr7zyG_R6-RXw |
CitedBy_id | crossref_primary_10_1021_bm050622i crossref_primary_10_3390_polym12071612 crossref_primary_10_1016_j_msec_2021_112171 crossref_primary_10_1016_j_reactfunctpolym_2010_02_005 crossref_primary_10_1016_j_ijbiomac_2021_06_086 crossref_primary_10_1016_j_jmbbm_2016_09_008 crossref_primary_10_1002_jps_23725 crossref_primary_10_1016_j_msec_2016_05_075 crossref_primary_10_1016_j_msec_2018_05_076 crossref_primary_10_1002_term_1653 crossref_primary_10_1016_j_ijbiomac_2023_125568 crossref_primary_10_1016_j_bioactmat_2021_04_040 crossref_primary_10_1007_s00253_011_3135_4 crossref_primary_10_1016_j_nano_2015_03_002 crossref_primary_10_5012_bkcs_2014_35_8_2290 crossref_primary_10_1002_app_25213 crossref_primary_10_1016_j_ejpb_2015_08_004 crossref_primary_10_1002_jbm_b_33543 crossref_primary_10_1016_j_reactfunctpolym_2020_104797 crossref_primary_10_1021_am403436y crossref_primary_10_1016_j_carbpol_2015_11_024 crossref_primary_10_1016_j_ejps_2013_07_003 crossref_primary_10_1016_j_eurpolymj_2008_07_013 crossref_primary_10_1081_MA_200063188 crossref_primary_10_1002_app_37770 crossref_primary_10_1080_10611860802088572 crossref_primary_10_1016_j_jddst_2017_03_002 crossref_primary_10_3390_nano10061234 crossref_primary_10_1177_0885328202016003178 crossref_primary_10_4103_0022_3859_48786 crossref_primary_10_1002_term_1527 crossref_primary_10_1002_term_2855 crossref_primary_10_1016_j_ijpharm_2011_05_033 crossref_primary_10_1002_advs_202104835 crossref_primary_10_1016_j_burns_2007_08_020 crossref_primary_10_1080_00914037_2019_1575828 crossref_primary_10_1021_acs_biomac_6b01216 crossref_primary_10_1080_09205063_2022_2088525 crossref_primary_10_1016_j_biotechadv_2011_01_005 crossref_primary_10_1016_j_biomaterials_2012_07_061 crossref_primary_10_1016_j_ijbiomac_2018_10_196 crossref_primary_10_1016_j_msec_2014_07_039 crossref_primary_10_1016_j_actbio_2016_11_017 crossref_primary_10_1016_j_jconrel_2014_10_033 crossref_primary_10_1039_D0TB01452D crossref_primary_10_1016_j_jddst_2021_102789 crossref_primary_10_3390_jfb14050265 crossref_primary_10_1038_s41598_021_98840_w crossref_primary_10_1111_j_1742_481X_2009_00584_x crossref_primary_10_1016_j_ejpb_2004_02_017 crossref_primary_10_1021_acsami_6b04711 crossref_primary_10_1016_j_jconrel_2012_11_004 crossref_primary_10_1586_17434440_3_1_29 crossref_primary_10_1088_0957_4484_19_01_015102 crossref_primary_10_1016_j_ijbiomac_2011_08_028 crossref_primary_10_3109_02652048_2011_646327 crossref_primary_10_1016_j_tibtech_2006_05_001 crossref_primary_10_1002_jbm_b_30128 crossref_primary_10_1177_0967391118820477 crossref_primary_10_1007_s00240_004_0418_6 crossref_primary_10_3390_coatings10050434 crossref_primary_10_1016_j_ijbiomac_2015_01_047 crossref_primary_10_6000_1929_5995_2012_01_02_1 crossref_primary_10_1007_s10856_011_4299_2 crossref_primary_10_1016_j_msec_2017_11_024 crossref_primary_10_1007_s11094_006_0065_z crossref_primary_10_2217_nnm_15_211 crossref_primary_10_1002_mabi_200900131 crossref_primary_10_1016_j_msec_2017_03_015 crossref_primary_10_1016_j_ijbiomac_2017_04_121 crossref_primary_10_1002_adsu_202100085 crossref_primary_10_1016_j_ijbiomac_2014_04_027 crossref_primary_10_1016_j_toxrep_2021_07_018 crossref_primary_10_1016_j_cjche_2020_08_057 crossref_primary_10_1088_0957_4484_26_1_012001 crossref_primary_10_1038_s41598_018_26702_z crossref_primary_10_1021_acsabm_8b00208 crossref_primary_10_1007_s42765_020_00034_y crossref_primary_10_1007_s10856_008_3481_7 crossref_primary_10_1002_jbm_a_31498 crossref_primary_10_3390_ma9050321 crossref_primary_10_4161_biom_1_1_17445 crossref_primary_10_1016_j_ijbiomac_2023_126588 crossref_primary_10_1177_0885328217741758 crossref_primary_10_1016_j_jpedsurg_2007_10_016 crossref_primary_10_1016_j_ijpharm_2012_06_046 crossref_primary_10_1016_j_colsurfb_2013_08_049 crossref_primary_10_1016_j_polymer_2006_02_046 crossref_primary_10_1002_mame_201900848 crossref_primary_10_1039_c2jm33100d crossref_primary_10_1016_j_jpedsurg_2003_12_017 crossref_primary_10_1080_09205063_2012_718613 crossref_primary_10_1177_08839115241241297 crossref_primary_10_1016_j_carbpol_2019_04_004 crossref_primary_10_1177_0883911516635840 crossref_primary_10_1021_acsabm_8b00577 crossref_primary_10_1111_php_12238 crossref_primary_10_1002_term_1566 crossref_primary_10_1080_03639045_2019_1711386 crossref_primary_10_1016_j_ijpharm_2008_04_030 crossref_primary_10_1016_j_colsurfb_2017_04_003 crossref_primary_10_1021_acs_jafc_8b01052 crossref_primary_10_1016_j_copbio_2003_08_004 crossref_primary_10_1016_j_nanoso_2023_101086 crossref_primary_10_1002_jbm_a_31917 crossref_primary_10_1016_S0923_1811_03_00103_8 crossref_primary_10_1039_C3RA46429F crossref_primary_10_1097_01_ASW_0000490362_64517_d7 crossref_primary_10_1016_j_msec_2012_09_025 crossref_primary_10_12790_ahm_21_0132 crossref_primary_10_1016_j_polymer_2016_10_018 crossref_primary_10_1016_j_progpolymsci_2016_12_003 crossref_primary_10_1038_s41428_021_00605_9 crossref_primary_10_1002_pi_5881 crossref_primary_10_1007_s40883_024_00344_2 crossref_primary_10_1016_j_biomaterials_2017_03_021 crossref_primary_10_1016_j_polymer_2022_125033 crossref_primary_10_3390_polym9060222 crossref_primary_10_1016_j_biomaterials_2008_07_017 crossref_primary_10_1016_j_ijbiomac_2017_05_027 crossref_primary_10_1039_c0jm03706k crossref_primary_10_1039_C7BM00331E crossref_primary_10_1039_D1BM01211H crossref_primary_10_1080_17425247_2021_1867096 crossref_primary_10_1002_app_50132 crossref_primary_10_1016_j_ejpb_2013_06_002 crossref_primary_10_1292_jvms_67_909 crossref_primary_10_1016_j_carbpol_2021_117767 crossref_primary_10_1177_0885328214523058 crossref_primary_10_1016_j_jpurol_2022_07_001 crossref_primary_10_1016_j_colsurfb_2015_04_026 crossref_primary_10_1016_j_apsusc_2014_05_125 crossref_primary_10_1016_j_ijbiomac_2018_05_093 crossref_primary_10_1016_j_ijpharm_2013_04_054 crossref_primary_10_1016_j_addr_2007_03_015 crossref_primary_10_1016_j_envres_2023_116580 crossref_primary_10_22467_jwmr_2018_00346 crossref_primary_10_3390_jcm8122083 crossref_primary_10_1021_acsabm_2c00533 crossref_primary_10_1016_j_jpedsurg_2004_01_038 crossref_primary_10_1016_j_pmatsci_2017_06_003 crossref_primary_10_1016_j_jddst_2023_105063 crossref_primary_10_1002_pol_20220008 crossref_primary_10_1007_s12221_019_9271_7 crossref_primary_10_3109_03639045_2015_1075030 crossref_primary_10_1177_1528083719851856 crossref_primary_10_1039_C5TB02358K crossref_primary_10_1016_j_jconrel_2014_04_032 crossref_primary_10_1002_admi_202001218 crossref_primary_10_1155_2024_3280349 crossref_primary_10_1163_156856202320892966 crossref_primary_10_3389_fbioe_2022_969843 crossref_primary_10_1016_j_urology_2009_04_017 crossref_primary_10_1016_j_tibtech_2012_08_004 crossref_primary_10_3923_jas_2011_2592_2598 crossref_primary_10_1002_pen_24779 crossref_primary_10_1016_j_procbio_2004_06_038 crossref_primary_10_1089_ten_tea_2008_0505 crossref_primary_10_1002_masy_201100040 crossref_primary_10_1016_j_colsurfb_2014_06_051 crossref_primary_10_1163_092050610X545049 crossref_primary_10_3390_pharmaceutics13050700 crossref_primary_10_1016_j_ijbiomac_2023_124824 crossref_primary_10_1016_j_msec_2022_112717 crossref_primary_10_1533_jotp_2005_36_4_1 crossref_primary_10_2174_2468187313666230817151543 crossref_primary_10_3390_ma17112666 crossref_primary_10_1002_jbm_a_35479 crossref_primary_10_1002_adma_201200224 crossref_primary_10_3390_ijms17121974 crossref_primary_10_1016_j_msec_2006_05_017 crossref_primary_10_1016_j_eurpolymj_2021_110640 crossref_primary_10_1016_j_engreg_2022_04_002 crossref_primary_10_1016_j_ijbiomac_2010_02_008 crossref_primary_10_1155_2014_819525 crossref_primary_10_1016_j_ijpharm_2013_12_015 crossref_primary_10_1007_s00289_023_04915_1 crossref_primary_10_1002_jcb_28422 crossref_primary_10_1007_s13233_015_3131_0 crossref_primary_10_1007_s00383_007_2059_7 crossref_primary_10_4028_www_scientific_net_AMM_184_185_1102 crossref_primary_10_1016_j_colsurfb_2012_03_014 crossref_primary_10_1016_j_ijpharm_2015_05_075 crossref_primary_10_1177_2280800019826513 crossref_primary_10_1039_C7TB00479F crossref_primary_10_1002_jps_24610 crossref_primary_10_1042_BA20050084 crossref_primary_10_1177_096369351001900401 crossref_primary_10_1016_j_semcdb_2014_01_011 crossref_primary_10_1126_sciadv_aaw3963 crossref_primary_10_1016_j_matpr_2020_05_686 crossref_primary_10_1016_j_biomaterials_2008_03_034 crossref_primary_10_1016_j_juro_2015_07_087 crossref_primary_10_1080_09205063_2021_1892470 crossref_primary_10_1038_s41598_017_10735_x crossref_primary_10_1155_2015_206871 crossref_primary_10_1080_00914037_2020_1817017 crossref_primary_10_1021_acs_chemmater_0c02823 crossref_primary_10_1111_jam_12254 crossref_primary_10_1155_2013_450132 crossref_primary_10_1002_app_51715 crossref_primary_10_1016_j_jphotochem_2005_05_030 crossref_primary_10_1002_jbm_a_36303 crossref_primary_10_1016_j_cap_2010_08_031 crossref_primary_10_1016_j_ejps_2009_02_005 crossref_primary_10_1016_j_carbpol_2016_07_053 crossref_primary_10_1515_polyeng_2018_0406 crossref_primary_10_1007_s42247_019_00022_y crossref_primary_10_1016_j_carbpol_2014_03_031 crossref_primary_10_1111_aor_13369 crossref_primary_10_1002_app_36922 crossref_primary_10_1016_j_jddst_2019_04_021 crossref_primary_10_1080_02652040701500137 crossref_primary_10_1111_j_1438_8677_2010_00440_x crossref_primary_10_1038_s41598_018_32208_5 crossref_primary_10_1515_polyeng_2023_0166 crossref_primary_10_3390_polym13193279 crossref_primary_10_1039_C4RA02189D crossref_primary_10_1002_mame_200900110 crossref_primary_10_1007_s00396_015_3660_2 crossref_primary_10_3390_nano11061546 crossref_primary_10_1007_s10924_020_01748_1 crossref_primary_10_1111_j_1742_481X_2011_00923_x crossref_primary_10_1007_s10570_014_0272_9 |
ContentType | Journal Article |
Copyright | 2001 Elsevier Science Ltd 2001 INIST-CNRS |
Copyright_xml | – notice: 2001 Elsevier Science Ltd – notice: 2001 INIST-CNRS |
DBID | IQODW CGR CUY CVF ECM EIF NPM AAYXX CITATION 8FD F28 FR3 7X8 |
DOI | 10.1016/S0142-9612(00)00287-8 |
DatabaseName | Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database MEDLINE - Academic |
DatabaseTitleList | Technology Research Database MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering |
EISSN | 1878-5905 |
EndPage | 1356 |
ExternalDocumentID | 10_1016_S0142_9612_00_00287_8 11336307 951379 S0142961200002878 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M .1- .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 23N 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYOK ABFNM ABGSF ABJNI ABMAC ABNUV ABUDA ABXDB ABXRA ABYKQ ACDAQ ACGFS ACIUM ACNNM ACRLP ADBBV ADEWK ADEZE ADMUD ADTZH ADUVX AEBSH AECPX AEHWI AEKER AENEX AEVXI AEZYN AFCTW AFFNX AFKWA AFRHN AFRZQ AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHHHB AHJVU AHPOS AI. AIEXJ AIKHN AITUG AJBFU AJOXV AJUYK AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DOVZS DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMK HMO HVGLF HZ~ IHE J1W JJJVA KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OB- OM. OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SAE SCC SDF SDG SDP SES SEW SMS SPC SPCBC SSG SSM SST SSU SSZ T5K TN5 VH1 WH7 WUQ XPP XUV Z5R ZMT ~G- AAPBV ABPIF ABPTK IQODW AAHBH AAXKI AFJKZ AKRWK CGR CUY CVF ECM EIF NPM AAYXX CITATION 8FD F28 FR3 7X8 |
ID | FETCH-LOGICAL-c420t-d11a37999dcbd0bdd8ba9e50e6bfb3768f21832f123df4c5791d88d2ab654d083 |
IEDL.DBID | AIKHN |
ISSN | 0142-9612 |
IngestDate | Fri Oct 25 08:54:51 EDT 2024 Sat Oct 05 06:26:37 EDT 2024 Thu Sep 12 20:00:03 EDT 2024 Sat Sep 28 08:39:25 EDT 2024 Sun Oct 22 16:06:00 EDT 2023 Fri Feb 23 02:22:27 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | Bilayer system Wound dressing Microsphere Epidermal growth factor Tissue regeneration Gelatin sponge Cell proliferation Rabbit Histology Lagomorpha Wound In vivo Dressing Vertebrata Mammalia Gelatin Animal Polyurethane Cicatrization Biomedical engineering |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c420t-d11a37999dcbd0bdd8ba9e50e6bfb3768f21832f123df4c5791d88d2ab654d083 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
PMID | 11336307 |
PQID | 26751469 |
PQPubID | 23500 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_70810111 proquest_miscellaneous_26751469 crossref_primary_10_1016_S0142_9612_00_00287_8 pubmed_primary_11336307 pascalfrancis_primary_951379 elsevier_sciencedirect_doi_10_1016_S0142_9612_00_00287_8 |
PublicationCentury | 2000 |
PublicationDate | 2001-06-01 |
PublicationDateYYYYMMDD | 2001-06-01 |
PublicationDate_xml | – month: 06 year: 2001 text: 2001-06-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford – name: Netherlands |
PublicationTitle | Biomaterials |
PublicationTitleAlternate | Biomaterials |
PublicationYear | 2001 |
Publisher | Elsevier Ltd Elsevier Science |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier Science |
References | Burke, Hasirci, Hasirci (BIB38) 1988; 3 Yannas, Burke, Gordon, Huang, Rubenstein (BIB9) 1980; 14 Sporn, Roberts, Shull, Smith, Ward, Sodek (BIB20) 1983; 219 Dessa, Bland, Copeland EM (BIB22) 1987; 42 Franklin, Lynch (BIB24) 1979; 64 Yannas (BIB11) 1984; 24 Niall, Ryan, O’Brien (BIB25) 1982; 33 Klagsbrun M, Powell P, Jones R, Marikovsky M, Dluz S, Eriksson E, Reidy M, Higashiyama S, Abraham J. Expression of HB-EGF as a response to injury. J Cell Biochem 1993;(S17E):104. Yannas, Burke, Warpehoski (BIB4) 1981; 27 Tabata, Hijikata, Ikada (BIB19) 1994; 31 Hasirci (BIB40) 1991 Esposito, Cortesi, Nastruzzi (BIB45) 1996; 17 DeBlois C, Cote MF, Doillon CJ. Heparin–fibroblast growth factor–fibrin complex: in vitro and in vivo applications to collagen-based materials. Biomaterials 1994;15(9):665–72. Bruin, Jonkman, Meijer, Pennings (BIB7) 1990; 24 Yannas, Burke (BIB3) 1980; 14 Draye, Delaey, Van de Voorde, Van Den Bulcke, Bogdanov, Schacht (BIB34) 1998; 19 Shibata, Shioya, Kuroyanagi (BIB2) 1997; 8 Thornton, Hess, Cassingham, Bartlett (BIB28) 1981; 8 Buckley, Davidson, Kamerath, Woodward (BIB30) 1985; 82 Andreatte-van, Smith, Bulgrin, Schafer, Eckert (BIB16) 1993; 27 Arturson (BIB27) 1984; 18 Hunt (BIB21) 1984; 24 Suzuki, Matsuda, Isshiki, Tamada, Ikada (BIB12) 1990; 11 Brown, Nanney, Griffen, Cramer, Yancey, Curtsinger III, Holtzin, Schultz, Jurkiewicz, Lynch (BIB31) 1989; 321 Kutay, Tinçer, Hasirci (BIB39) 1990; 23 Matsuda, Suzuki, Isshiki, Yoshioka, Wada, Hyon, Ikada (BIB8) 1981; 3 Greaves (BIB26) 1980; 5 Cohen, Carpenter (BIB29) 1975; 72 Sheardown, Clark, Wedge, Apel, Rootman, Cheng (BIB35) 1997; 16 Olsen D, Higley H, Carrillo P, Gerhart C, Ksander G. The role of TGF- in soft tissue wound repair. J Cell Biochem 1993;(S17E):106. Burke, Yannas, Quinby (BIB5) 1981; 194 Baker, Haig (BIB44) 1981; 225 Ulubayram, Hasirci (BIB42) 1993; 1 Matsuda, Suzuki, Isshiki, Yoshioka, Wada, Okada, Ikada (BIB13) 1990; 11 Nastruzzi, Pastesini, Cortesi, Esposito, Gambari, Menegatti (BIB43) 1994; 11 Rhinewald, Green (BIB23) 1977; 265 Nanney (BIB32) 1987; 35 Ulubayram, Hasirci (BIB41) 1992; 33 Draye, Delaey, Van de Voorde, Van Den Bulcke, De Reu, Schacht (BIB1) 1998; 19 Okumura, Kiyohara, Komada, Iwakawa, Hirai, Fuwa (BIB36) 1990; 7 Laato, Niinikoski, Bardin, Lebel (BIB33) 1986; 203 Hasirci, Burke (BIB37) 1987; 2 Yannas, Burke, Origill, Skraubut (BIB10) 1982; 215 Lynch, Colvin, Antoniades (BIB15) 1989; 84 Heimbach, Luterman, Burke (BIB6) 1988; 208 |
References_xml | – volume: 14 start-page: 65 year: 1980 end-page: 81 ident: BIB3 article-title: Design of an artificial skin publication-title: I. Basic design principles. J Biomed Mater Res contributor: fullname: Burke – volume: 11 start-page: 249 year: 1994 end-page: 260 ident: BIB43 article-title: Production and in vitro evaluation of gelatin microspheres containing an antitumor tetra-amidine publication-title: J Microencapsulation contributor: fullname: Menegatti – volume: 265 start-page: 421 year: 1977 ident: BIB23 article-title: Epidermal growth factor and the multiplication of cultered human epidermal keratinocytes publication-title: Nature contributor: fullname: Green – volume: 208 start-page: 313 year: 1988 end-page: 320 ident: BIB6 article-title: Artificial dermis for major burns publication-title: Ann Surg contributor: fullname: Burke – volume: 64 start-page: 766 year: 1979 end-page: 770 ident: BIB24 article-title: Effects of topical applications of epidermal growth factor on wound healing publication-title: Plast Reconstr surg contributor: fullname: Lynch – volume: 17 start-page: 2009 year: 1996 end-page: 2020 ident: BIB45 article-title: Gelatin microspheres publication-title: Biomaterials contributor: fullname: Nastruzzi – volume: 8 start-page: 156 year: 1981 ident: BIB28 article-title: Epidermal growth factor in the healing of second degree burns publication-title: Burns contributor: fullname: Bartlett – volume: 2 start-page: 131 year: 1987 end-page: 141 ident: BIB37 article-title: A novel polyurethane film for biomedical use publication-title: J Bioac Comp Polym contributor: fullname: Burke – volume: 1 start-page: 261 year: 1993 end-page: 269 ident: BIB42 article-title: Properties of plasma modified polyurethane surfaces publication-title: J Colloid Surf B: Biointeractions contributor: fullname: Hasirci – volume: 33 start-page: 2084 year: 1992 end-page: 2088 ident: BIB41 article-title: Polyurethanes publication-title: Polymer contributor: fullname: Hasirci – volume: 42 start-page: 207 year: 1987 end-page: 217 ident: BIB22 article-title: Growth factors and determinants of wound repair publication-title: J Surg Res contributor: fullname: Copeland EM – volume: 5 start-page: 101 year: 1980 end-page: 103 ident: BIB26 article-title: Lack of effect of topically applied epidermal growth factor (EGF) on epidermal growth in man in vivo publication-title: Clin Exp Dermatol contributor: fullname: Greaves – volume: 18 start-page: 33 year: 1984 end-page: 37 ident: BIB27 article-title: Epidermal growth factor in the healing of corneal wounds, epidermal wounds and partial-thickness scalds publication-title: Scand J Plast Reconstr Surg contributor: fullname: Arturson – volume: 19 start-page: 1677 year: 1998 end-page: 1687 ident: BIB1 article-title: In vitro and in vivo biocompatibility of dextran dialdehyde cross-linked gelatin hydrogel films publication-title: Biomaterials contributor: fullname: Schacht – volume: 194 start-page: 413 year: 1981 end-page: 428 ident: BIB5 article-title: Successful use of physiologically acceptable artificial skin in the treatment of extensive burn injury publication-title: Ann Surg contributor: fullname: Quinby – volume: 3 start-page: 232 year: 1988 end-page: 242 ident: BIB38 article-title: Polyurethane membranes publication-title: J Bioac Comp Polym contributor: fullname: Hasirci – volume: 3 start-page: 119 year: 1981 end-page: 122 ident: BIB8 article-title: Evaluation of a bilayer artifical skin capable of sustained release of an antibiotic publication-title: Biomaterials contributor: fullname: Ikada – volume: 11 start-page: 351 year: 1990 end-page: 355 ident: BIB13 article-title: Influence of glycosaminoglycans on the collagen sponges component of a bilayer artificial skin publication-title: Biomaterials contributor: fullname: Ikada – volume: 82 start-page: 7340 year: 1985 end-page: 7344 ident: BIB30 publication-title: Sustained release of epidermal growth factor accelerates wound repair, Proc Natl Acad Sci USA contributor: fullname: Woodward – volume: 35 start-page: 706A year: 1987 ident: BIB32 article-title: Epidermal growth factor-Induced effects on wound healing publication-title: Clin Res contributor: fullname: Nanney – volume: 8 start-page: 601 year: 1997 end-page: 621 ident: BIB2 article-title: Development of new wound dressing composed of spongy collagen sheet containing dibutyryl cyclic AMP publication-title: J Biomater Sci Polym Edn contributor: fullname: Kuroyanagi – volume: 24 start-page: 39 year: 1984 end-page: 49 ident: BIB21 article-title: Can repair process be stimulated by modulators (cell growth factors, angiogenesis factors, etc publication-title: ) without adversely affecting normal processes? J Trauma contributor: fullname: Hunt – volume: 72 start-page: 1317 year: 1975 ident: BIB29 article-title: Human epidermal growth factor publication-title: Proc Natl Acad Sci USA contributor: fullname: Carpenter – volume: 7 start-page: 1289 year: 1990 end-page: 1293 ident: BIB36 article-title: Improvement in wound healing by epidermal growth factor (EGF) Ointment publication-title: I. Effect of nafamostat, gabexate, or gelatin on stabilization anf efficacy of EGF. Pharm Res contributor: fullname: Fuwa – volume: 24 start-page: 29 year: 1984 end-page: 39 ident: BIB11 article-title: What criteria should be used for designning artificial skin replacement and how well do the current grafting materials meet these criteria publication-title: J Trauma contributor: fullname: Yannas – volume: 23 start-page: 267 year: 1990 end-page: 272 ident: BIB39 article-title: Polyurethanes as biomedical materials publication-title: Br Polym J contributor: fullname: Hasirci – volume: 31 start-page: 189 year: 1994 end-page: 199 ident: BIB19 article-title: Enhanced vascularization and tissue granulation by basic fibroblast growth factor impregnated in gelatin hydrogels publication-title: J Contolled Release contributor: fullname: Ikada – volume: 19 start-page: 99 year: 1998 end-page: 107 ident: BIB34 article-title: In vitro release characteristics of bioactive molecules from dextran dialdehyde cross-linked gelatin hydrogel films publication-title: Biomaterials contributor: fullname: Schacht – volume: 27 start-page: 19 year: 1981 end-page: 23 ident: BIB4 article-title: Prompt, long-term functional replacement of skin publication-title: Trans Am Soc Artif Intern Organs contributor: fullname: Warpehoski – volume: 16 start-page: 183 year: 1997 end-page: 190 ident: BIB35 article-title: A semi-solid drug delivery for epidermal growth factor in corneal epithelial wound healing publication-title: Curr Eye Res contributor: fullname: Cheng – volume: 24 start-page: 217 year: 1990 end-page: 226 ident: BIB7 article-title: A new porous polyetherurethane wound covering publication-title: J Biomed Mater Res contributor: fullname: Pennings – volume: 84 start-page: 640 year: 1989 end-page: 646 ident: BIB15 article-title: Growth factors in wound healing- single and synergistic effects on partial thickness porcine skin wounds publication-title: J Clin Invest contributor: fullname: Antoniades – volume: 203 start-page: 379 year: 1986 end-page: 381 ident: BIB33 article-title: Stimulation of wound healing by epidermal growth factor publication-title: Ann Surg contributor: fullname: Lebel – volume: 225 start-page: 569 year: 1981 end-page: 573 ident: BIB44 article-title: Metronidazole in the treatment of chronic pressure sores and ulcers publication-title: Practitioner contributor: fullname: Haig – volume: 14 start-page: 107 year: 1980 end-page: 111 ident: BIB9 article-title: Design of an artificial skin II publication-title: Control of chemical composition. J Biomed Mater Res contributor: fullname: Rubenstein – volume: 11 start-page: 356 year: 1990 end-page: 360 ident: BIB12 article-title: Experimental study of newly developed bilayer artifical skin publication-title: Biomaterials contributor: fullname: Ikada – volume: 219 start-page: 1329 year: 1983 end-page: 1331 ident: BIB20 article-title: Polypeptide transforming growth factors isolated from bovine sources and used for wound healing in vivo publication-title: Sciences contributor: fullname: Sodek – volume: 321 start-page: 76 year: 1989 end-page: 79 ident: BIB31 article-title: Enhancement of wound healing by topical treatment with epidermal growth factor publication-title: N Engl J Med contributor: fullname: Lynch – volume: 33 start-page: 164 year: 1982 end-page: 169 ident: BIB25 article-title: The effect of epidermal growth factor on wound healing in mice publication-title: J Surg Res contributor: fullname: O’Brien – volume: 27 start-page: 1201 year: 1993 end-page: 1208 ident: BIB16 article-title: Delivery of growth factor to wounds using a genetically engineered biological bandage publication-title: J Biomed Mater Res contributor: fullname: Eckert – volume: 215 start-page: 174 year: 1982 end-page: 176 ident: BIB10 article-title: Wound tissue can utilize a polymeric template to synthesize a functional extension of skin publication-title: Science contributor: fullname: Skraubut – start-page: 71 year: 1991 end-page: 91 ident: BIB40 article-title: Polyurethanes publication-title: High performance biomaterials: comprehensive guide to medical and pharmaceutical applications contributor: fullname: Hasirci |
SSID | ssj0014042 |
Score | 2.2220263 |
Snippet | In case of bulk loss of tissue or non-healing wounds such as burns, trauma, diabetic, decubitus and venous stasis ulcers, a proper wound dressing is needed to... This study examined the synthesis of a novel polymeric bilayer wound dressing containing epidermal growth factor (EGF)-loaded microspheres. Gelatin was chosen... |
SourceID | proquest crossref pubmed pascalfrancis elsevier |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 1345 |
SubjectTerms | Animals Bandages Bilayer system Biological and medical sciences Epidermal Growth Factor Gelatin Gelatin sponge Male Medical sciences Microscopy, Electron, Scanning Microsphere Microspheres Particle Size Rabbits Recombinant Proteins Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases Technology. Biomaterials. Equipments Tissue regeneration Wound dressing Wound Healing |
Title | EGF containing gelatin-based wound dressings |
URI | https://dx.doi.org/10.1016/S0142-9612(00)00287-8 https://www.ncbi.nlm.nih.gov/pubmed/11336307 https://search.proquest.com/docview/26751469 https://search.proquest.com/docview/70810111 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTwIxEJ4gJEZjjOILRdyDB01c6NYuW46EgKiBkyTcmu22JVwWIhBv_nanu8vrgCZem7bbft3OfO1MZwDuVRQhqw2ZKxuBdpm2MSCNr3HjMWkz3ZKQ2dfIvX69O2BvQ3-Yg9byLYx1q8xkfyrTE2mdldQyNGvT8bhm3ZJoAxU0Sa6IAr4HBVRHlOeh0Hx97_ZXxgRGkhw6tr5rG6wf8qSdJIUPhDwm_bh8l4o6moYzBM6kGS92U9JENXVO4DjjlE4zHfYp5HRchMONSINF2O9lNvQzeGq_dBzroZ7mhnBGiTtc7Fp9ppwvm2bJUYl3bDyancOg0_5odd0sZ4IbMUrmrvK88DlA1qciqYhUisuwoX2i69JIFCbcWE5EDSosZVjkBw1Pca5oKOs-U8jHLiAfT2J9BY7UodRGcma0ZtQwicyPB5T7HGmajmgJqkuYxDQNjSE2fcaosLgKYuOPIq6Cl4AvwRRbayxQfP_VtLwF_uqDSBBxuiW4W66FwO1hbR5hrCeLmaB4IEJl8EuNgNgYZ55Xgst0EdeTwfN7HWXg9f_HfQMHqdOavbYpQ37-udC3yGLmsgJ71W-vkv2rP07J6k0 |
link.rule.ids | 315,783,787,4509,24128,27936,27937,45597,45691 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED7xkHgIId4UCmRgAIlQxziJOyJEKdAyUambFcc2YgkVLWLjt3MXp0CHgsRqOY59Z999tj_fARybPEdUm4lQN1MbCksxIF1sceEJTZluWSboNXL3IWn3xF0_7s_A1fgtDNEqK9vvbXpprauSRiXNxuD5uUG0JN5EB83KI6JUzsK8IHyMk_r844vnQeFjuOcx8pCqfz_j8U2UhSeMnZathHKag1oZZEMUm_P5LqYD0tIxtdZgtUKUwaXv9DrM2GIDln_EGdyAhW51g74JZ9c3rYD46T4zRPBUkuGKkLyZCd4pyVJgSm5s8TTcgl7r-vGqHVYZE8JccDYKTRRlFyliPpNrw7QxUmdNGzObaKfRlEhHiIg7dFfGiTxOm5GR0vBMJ7EwiMa2Ya54KewuBNpm2jothbNWcCc04j6ZchlLBGk25zU4H4tJDXxgDPWTMcYVyVUxij6KclWyBnIsTDWhYYXG-69P6xPC__ohwkMcbg2OxrpQuDjoxiMr7MvbUHHcDqEr-KVGyijCWRTVYMcr8XswuHtP0ALu_b_fR7DYfux2VOf24X4fljx9jQ5w6jA3en2zB4hnRvqwnK-fYyPrJg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=EGF+containing+gelatin-based+wound+dressings&rft.jtitle=Biomaterials&rft.au=Ulubayram%2C+K&rft.date=2001-06-01&rft.issn=0142-9612&rft.volume=22&rft.issue=11&rft.spage=1345&rft.epage=1356&rft_id=info:doi/10.1016%2FS0142-9612%2800%2900287-8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_S0142_9612_00_00287_8 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0142-9612&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0142-9612&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0142-9612&client=summon |