Electrochemical synthesis of NiCo layered double hydroxide nanosheets decorated on moderately oxidized graphene films for energy storage

The introduction of oxygenous functional groups onto graphene can provide additional pseudocapacitance for supercapacitors. However, how to balance the amount of introduced oxygenous functional groups and the reduced electrical conductivity arising from the disruption of the conjugated system remain...

Full description

Saved in:
Bibliographic Details
Published inNanoscale Vol. 11; no. 6; pp. 2812 - 2822
Main Authors Jia, Dedong, Jiang, Degang, Zheng, Yiwei, Tan, Hua, Cao, Xueying, Liu, Fang, Yue, Lijun, Sun, Yuanyuan, Liu, Jingquan
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 01.01.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The introduction of oxygenous functional groups onto graphene can provide additional pseudocapacitance for supercapacitors. However, how to balance the amount of introduced oxygenous functional groups and the reduced electrical conductivity arising from the disruption of the conjugated system remains a big challenge. Here, a controllable strategy is reported to prepare moderately oxidized reduced graphene oxide (MORGO) via an electrochemical oxidation process. The MORGO not only has oxygenous groups with appropriate quantities, but also preserves the highly crystalline structure of the π–π conjugated carbon framework. As a result, the MORGO films showed superior electrochemical properties to the pristine RGO films and other previously reported RGO films. Furthermore, the oxygenous groups and the conductivity of MORGO films can be easily adjusted by controlling the oxidation time. A hierarchical composite of NiCo-layered double hydroxide nanosheet arrays on MORGO films (MORGO/NiCo-LDH) was also constructed via electrochemical deposition to combine the advantages of electric double-layer electrode materials and faradaic electrode materials. The flexible solid-state supercapacitor fabricated with MORGO/NiCo-LDH film electrodes exhibits a high energy density (0.51 mW h cm −3 ), as well as a long cycle life (88.2% capacitance retention after 10 000 cycles).
AbstractList The introduction of oxygenous functional groups onto graphene can provide additional pseudocapacitance for supercapacitors. However, how to balance the amount of introduced oxygenous functional groups and the reduced electrical conductivity arising from the disruption of the conjugated system remains a big challenge. Here, a controllable strategy is reported to prepare moderately oxidized reduced graphene oxide (MORGO) via an electrochemical oxidation process. The MORGO not only has oxygenous groups with appropriate quantities, but also preserves the highly crystalline structure of the π–π conjugated carbon framework. As a result, the MORGO films showed superior electrochemical properties to the pristine RGO films and other previously reported RGO films. Furthermore, the oxygenous groups and the conductivity of MORGO films can be easily adjusted by controlling the oxidation time. A hierarchical composite of NiCo-layered double hydroxide nanosheet arrays on MORGO films (MORGO/NiCo-LDH) was also constructed via electrochemical deposition to combine the advantages of electric double-layer electrode materials and faradaic electrode materials. The flexible solid-state supercapacitor fabricated with MORGO/NiCo-LDH film electrodes exhibits a high energy density (0.51 mW h cm−3), as well as a long cycle life (88.2% capacitance retention after 10 000 cycles).
The introduction of oxygenous functional groups onto graphene can provide additional pseudocapacitance for supercapacitors. However, how to balance the amount of introduced oxygenous functional groups and the reduced electrical conductivity arising from the disruption of the conjugated system remains a big challenge. Here, a controllable strategy is reported to prepare moderately oxidized reduced graphene oxide (MORGO) via an electrochemical oxidation process. The MORGO not only has oxygenous groups with appropriate quantities, but also preserves the highly crystalline structure of the π-π conjugated carbon framework. As a result, the MORGO films showed superior electrochemical properties to the pristine RGO films and other previously reported RGO films. Furthermore, the oxygenous groups and the conductivity of MORGO films can be easily adjusted by controlling the oxidation time. A hierarchical composite of NiCo-layered double hydroxide nanosheet arrays on MORGO films (MORGO/NiCo-LDH) was also constructed via electrochemical deposition to combine the advantages of electric double-layer electrode materials and faradaic electrode materials. The flexible solid-state supercapacitor fabricated with MORGO/NiCo-LDH film electrodes exhibits a high energy density (0.51 mW h cm-3), as well as a long cycle life (88.2% capacitance retention after 10 000 cycles).The introduction of oxygenous functional groups onto graphene can provide additional pseudocapacitance for supercapacitors. However, how to balance the amount of introduced oxygenous functional groups and the reduced electrical conductivity arising from the disruption of the conjugated system remains a big challenge. Here, a controllable strategy is reported to prepare moderately oxidized reduced graphene oxide (MORGO) via an electrochemical oxidation process. The MORGO not only has oxygenous groups with appropriate quantities, but also preserves the highly crystalline structure of the π-π conjugated carbon framework. As a result, the MORGO films showed superior electrochemical properties to the pristine RGO films and other previously reported RGO films. Furthermore, the oxygenous groups and the conductivity of MORGO films can be easily adjusted by controlling the oxidation time. A hierarchical composite of NiCo-layered double hydroxide nanosheet arrays on MORGO films (MORGO/NiCo-LDH) was also constructed via electrochemical deposition to combine the advantages of electric double-layer electrode materials and faradaic electrode materials. The flexible solid-state supercapacitor fabricated with MORGO/NiCo-LDH film electrodes exhibits a high energy density (0.51 mW h cm-3), as well as a long cycle life (88.2% capacitance retention after 10 000 cycles).
The introduction of oxygenous functional groups onto graphene can provide additional pseudocapacitance for supercapacitors. However, how to balance the amount of introduced oxygenous functional groups and the reduced electrical conductivity arising from the disruption of the conjugated system remains a big challenge. Here, a controllable strategy is reported to prepare moderately oxidized reduced graphene oxide (MORGO) via an electrochemical oxidation process. The MORGO not only has oxygenous groups with appropriate quantities, but also preserves the highly crystalline structure of the π-π conjugated carbon framework. As a result, the MORGO films showed superior electrochemical properties to the pristine RGO films and other previously reported RGO films. Furthermore, the oxygenous groups and the conductivity of MORGO films can be easily adjusted by controlling the oxidation time. A hierarchical composite of NiCo-layered double hydroxide nanosheet arrays on MORGO films (MORGO/NiCo-LDH) was also constructed via electrochemical deposition to combine the advantages of electric double-layer electrode materials and faradaic electrode materials. The flexible solid-state supercapacitor fabricated with MORGO/NiCo-LDH film electrodes exhibits a high energy density (0.51 mW h cm-3), as well as a long cycle life (88.2% capacitance retention after 10 000 cycles).
The introduction of oxygenous functional groups onto graphene can provide additional pseudocapacitance for supercapacitors. However, how to balance the amount of introduced oxygenous functional groups and the reduced electrical conductivity arising from the disruption of the conjugated system remains a big challenge. Here, a controllable strategy is reported to prepare moderately oxidized reduced graphene oxide (MORGO) via an electrochemical oxidation process. The MORGO not only has oxygenous groups with appropriate quantities, but also preserves the highly crystalline structure of the π–π conjugated carbon framework. As a result, the MORGO films showed superior electrochemical properties to the pristine RGO films and other previously reported RGO films. Furthermore, the oxygenous groups and the conductivity of MORGO films can be easily adjusted by controlling the oxidation time. A hierarchical composite of NiCo-layered double hydroxide nanosheet arrays on MORGO films (MORGO/NiCo-LDH) was also constructed via electrochemical deposition to combine the advantages of electric double-layer electrode materials and faradaic electrode materials. The flexible solid-state supercapacitor fabricated with MORGO/NiCo-LDH film electrodes exhibits a high energy density (0.51 mW h cm −3 ), as well as a long cycle life (88.2% capacitance retention after 10 000 cycles).
Author Tan, Hua
Cao, Xueying
Liu, Jingquan
Jia, Dedong
Yue, Lijun
Zheng, Yiwei
Jiang, Degang
Liu, Fang
Sun, Yuanyuan
Author_xml – sequence: 1
  givenname: Dedong
  surname: Jia
  fullname: Jia, Dedong
  organization: College of Material Science and Engineering, Institute for Graphene Applied Technology Innovation, Qingdao University, Qingdao 266071, China
– sequence: 2
  givenname: Degang
  surname: Jiang
  fullname: Jiang, Degang
  organization: College of Material Science and Engineering, Institute for Graphene Applied Technology Innovation, Qingdao University, Qingdao 266071, China
– sequence: 3
  givenname: Yiwei
  surname: Zheng
  fullname: Zheng, Yiwei
  organization: College of Material Science and Engineering, Institute for Graphene Applied Technology Innovation, Qingdao University, Qingdao 266071, China
– sequence: 4
  givenname: Hua
  surname: Tan
  fullname: Tan, Hua
  organization: School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
– sequence: 5
  givenname: Xueying
  surname: Cao
  fullname: Cao, Xueying
  organization: College of Material Science and Engineering, Institute for Graphene Applied Technology Innovation, Qingdao University, Qingdao 266071, China
– sequence: 6
  givenname: Fang
  surname: Liu
  fullname: Liu, Fang
  organization: College of Material Science and Engineering, Institute for Graphene Applied Technology Innovation, Qingdao University, Qingdao 266071, China
– sequence: 7
  givenname: Lijun
  surname: Yue
  fullname: Yue, Lijun
  organization: College of Material Science and Engineering, Institute for Graphene Applied Technology Innovation, Qingdao University, Qingdao 266071, China
– sequence: 8
  givenname: Yuanyuan
  surname: Sun
  fullname: Sun, Yuanyuan
  organization: College of Material Science and Engineering, Institute for Graphene Applied Technology Innovation, Qingdao University, Qingdao 266071, China
– sequence: 9
  givenname: Jingquan
  orcidid: 0000-0001-6178-8661
  surname: Liu
  fullname: Liu, Jingquan
  organization: College of Material Science and Engineering, Institute for Graphene Applied Technology Innovation, Qingdao University, Qingdao 266071, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30675886$$D View this record in MEDLINE/PubMed
BookMark eNpt0d1qFDEUB_AgFfuhNz6ABLwRYTWTzGYml2WpH1AqiF4PZ5KTnZRMsiYZcHwCH9ssrRWK5CI54fc_hJxzchJiQEJeNuxdw4R6v-tvvrK-l-ryCTnjrGUbITp-8nCW7Sk5z_mWMamEFM_IqWCy29bEGfl95VGXFPWEs9PgaV5DmTC7TKOlN24XqYcVExpq4jJ6pNNqUvzpDNIAIeYJsWRqUMcEpaoY6BwNHgu_0iN0v-r1PsFhwoDUOj9namOitUr7leZSk3t8Tp5a8Blf3O8X5PuHq2-7T5vrLx8_7y6vN7rlrGw0KKus3aqt6pFZtQUByHrkhoECqSTXCKPkoJrW1DVyg0Zx6NUobatBXJA3d30PKf5YMJdhdlmj9xAwLnngTafatutkW-nrR_Q2LinU1x2V7FmjOlHVq3u1jDOa4ZDcDGkd_v5xBW_vgE4x54T2gTRsOA5w-DfAitkjrF2B4mIoCZz_X-QPkwCgBQ
CitedBy_id crossref_primary_10_1002_ente_202200809
crossref_primary_10_1016_j_jcis_2019_09_065
crossref_primary_10_1016_j_carbon_2022_11_049
crossref_primary_10_1002_smll_202404249
crossref_primary_10_1021_acsami_0c12759
crossref_primary_10_1002_slct_202303300
crossref_primary_10_1016_j_est_2024_113205
crossref_primary_10_1002_admi_202100642
crossref_primary_10_1039_D2QI01739C
crossref_primary_10_1021_acsaem_0c00790
crossref_primary_10_1016_j_susmat_2023_e00695
crossref_primary_10_1557_jmr_2019_290
crossref_primary_10_1016_j_jcis_2020_05_027
crossref_primary_10_1016_j_molstruc_2024_140763
crossref_primary_10_1016_j_mtcomm_2021_102057
crossref_primary_10_1016_j_ces_2022_118339
crossref_primary_10_1039_C9CE01261C
crossref_primary_10_1002_eem2_12116
crossref_primary_10_1016_j_est_2020_101485
crossref_primary_10_1016_j_est_2022_104638
crossref_primary_10_1021_acsami_0c13059
crossref_primary_10_1016_j_jallcom_2022_164411
crossref_primary_10_1016_j_cej_2023_141992
crossref_primary_10_33224_rrch_2024_69_5_6_07
crossref_primary_10_1016_j_supflu_2020_104774
crossref_primary_10_1016_j_jallcom_2020_153714
crossref_primary_10_1002_smll_202102155
crossref_primary_10_1002_cssc_201903260
crossref_primary_10_1016_j_diamond_2024_111081
crossref_primary_10_1016_j_jpowsour_2022_232563
crossref_primary_10_1021_acsami_9b11627
crossref_primary_10_1002_cssc_201902753
crossref_primary_10_1016_j_jallcom_2021_159649
crossref_primary_10_1016_j_electacta_2019_06_044
crossref_primary_10_1016_j_flatc_2023_100483
crossref_primary_10_1039_D2TA07397H
crossref_primary_10_1002_celc_202201051
crossref_primary_10_1016_j_chemosphere_2020_128509
crossref_primary_10_1016_j_mset_2024_08_001
crossref_primary_10_1016_j_cej_2021_133639
crossref_primary_10_1002_smll_202001340
Cites_doi 10.1016/j.mattod.2015.10.009
10.1002/adma.201501983
10.1002/adfm.201705258
10.1126/science.aam5830
10.1016/j.carbon.2017.04.028
10.1021/nl2009058
10.1002/smll.201700067
10.1016/j.jpowsour.2005.03.210
10.1016/j.nanoen.2017.02.023
10.1039/C7TA04917J
10.1021/la4037875
10.1002/adma.201500707
10.1016/j.nanoen.2014.06.013
10.1021/acs.nanolett.5b04965
10.1021/acsami.8b01938
10.1039/C8NR01229F
10.1002/adma.201302753
10.1021/nn300098m
10.1016/j.carbon.2012.07.023
10.1039/C3TA13953K
10.1039/c3cs60407a
10.1016/j.materresbull.2013.11.044
10.1016/j.cej.2015.01.072
10.1039/C5TA01292A
10.1039/C4TA02118E
10.1002/adfm.201200994
10.1038/natrevmats.2016.33
10.1016/j.jpowsour.2017.03.145
10.1038/nnano.2008.215
10.1002/adfm.201707247
10.1038/ncomms1067
10.1021/cr300115g
10.1002/adma.201706054
10.1039/C4TA04324C
10.1038/ncomms3905
10.1002/aenm.201100312
10.1021/nl400378j
10.1002/admt.201800053
10.1016/j.carbon.2017.09.063
10.1002/adma.201707025
10.1039/c1cc15569e
10.1021/acsami.7b02460
10.1002/adma.201305851
10.1039/C7NR04752E
10.1039/c1cc00119a
10.1002/adma.201100304
10.1039/c2cc17831a
10.1002/adfm.201503528
10.1039/C5TA00252D
10.1038/nmat2011
10.1016/j.nanoen.2011.11.001
10.1002/adma.201304148
10.1002/aenm.201500771
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2019
Copyright_xml – notice: Copyright Royal Society of Chemistry 2019
DBID AAYXX
CITATION
NPM
7SR
7U5
8BQ
8FD
F28
FR3
JG9
L7M
7X8
DOI 10.1039/C8NR08869A
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database
MEDLINE - Academic
PubMed
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2040-3372
EndPage 2822
ExternalDocumentID 30675886
10_1039_C8NR08869A
Genre Journal Article
GroupedDBID ---
0-7
0R~
29M
4.4
53G
705
7~J
AAEMU
AAIWI
AAJAE
AANOJ
AARTK
AAWGC
AAXHV
AAYXX
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFRZK
AFVBQ
AGEGJ
AGRSR
AHGCF
AKBGW
AKMSF
ALMA_UNASSIGNED_HOLDINGS
ALUYA
ANUXI
APEMP
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
CITATION
DU5
EBS
ECGLT
EE0
EF-
EJD
F5P
GGIMP
H13
HZ~
H~N
J3I
O-G
O9-
OK1
P2P
RAOCF
RCNCU
RNS
RPMJG
RSCEA
RVUXY
-JG
AGSTE
NPM
RRC
7SR
7U5
8BQ
8FD
F28
FR3
JG9
L7M
7X8
ID FETCH-LOGICAL-c420t-ca9f9ff59598e0f95a3ae08e2d0a9a6962ceab62a914d4d4b2ded92a89b6f4ca3
ISSN 2040-3364
2040-3372
IngestDate Fri Jul 11 04:33:40 EDT 2025
Sun Jun 29 16:50:58 EDT 2025
Wed Feb 19 02:36:43 EST 2025
Tue Jul 01 01:13:33 EDT 2025
Thu Apr 24 22:50:27 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c420t-ca9f9ff59598e0f95a3ae08e2d0a9a6962ceab62a914d4d4b2ded92a89b6f4ca3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-6178-8661
PMID 30675886
PQID 2176801973
PQPubID 2047485
PageCount 11
ParticipantIDs proquest_miscellaneous_2179447764
proquest_journals_2176801973
pubmed_primary_30675886
crossref_primary_10_1039_C8NR08869A
crossref_citationtrail_10_1039_C8NR08869A
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20190101
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – month: 01
  year: 2019
  text: 20190101
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle Nanoscale
PublicationTitleAlternate Nanoscale
PublicationYear 2019
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Zhou (C8NR08869A-(cit46)/*[position()=1]) 2012; 6
Yang (C8NR08869A-(cit53)/*[position()=1]) 2014; 2
Zhang (C8NR08869A-(cit50)/*[position()=1]) 2017; 34
Fan (C8NR08869A-(cit26)/*[position()=1]) 2014; 2
Qi (C8NR08869A-(cit5)/*[position()=1]) 2018; 3
Yi (C8NR08869A-(cit34)/*[position()=1]) 2015; 3
Liu (C8NR08869A-(cit17)/*[position()=1]) 2018; 28
Deng (C8NR08869A-(cit10)/*[position()=1]) 2012; 48
Azhari (C8NR08869A-(cit16)/*[position()=1]) 2017; 119
Mini (C8NR08869A-(cit52)/*[position()=1]) 2011; 47
Xiong (C8NR08869A-(cit37)/*[position()=1]) 2015; 27
Xiong (C8NR08869A-(cit41)/*[position()=1]) 2015; 27
Wang (C8NR08869A-(cit18)/*[position()=1]) 2015; 27
Thakur (C8NR08869A-(cit36)/*[position()=1]) 2012; 50
Hernandez (C8NR08869A-(cit33)/*[position()=1]) 2008; 3
Wang (C8NR08869A-(cit42)/*[position()=1]) 2018; 28
Moon (C8NR08869A-(cit15)/*[position()=1]) 2010; 1
Xiong (C8NR08869A-(cit29)/*[position()=1]) 2014; 30
Wang (C8NR08869A-(cit9)/*[position()=1]) 2013; 4
Xiong (C8NR08869A-(cit27)/*[position()=1]) 2015; 27
Yu (C8NR08869A-(cit48)/*[position()=1]) 2014; 26
Jia (C8NR08869A-(cit19)/*[position()=1]) 2017; 358
Weng (C8NR08869A-(cit51)/*[position()=1]) 2011; 1
Zhou (C8NR08869A-(cit55)/*[position()=1]) 2013; 13
Lan (C8NR08869A-(cit21)/*[position()=1]) 2018; 10
Yan (C8NR08869A-(cit24)/*[position()=1]) 2014; 51
Li (C8NR08869A-(cit20)/*[position()=1]) 2015; 3
Jeon (C8NR08869A-(cit31)/*[position()=1]) 2013; 25
Jeong (C8NR08869A-(cit14)/*[position()=1]) 2011; 11
Jiang (C8NR08869A-(cit25)/*[position()=1]) 2017; 5
El-Kady (C8NR08869A-(cit11)/*[position()=1]) 2016; 1
Peng (C8NR08869A-(cit4)/*[position()=1]) 2014; 43
Zhao (C8NR08869A-(cit22)/*[position()=1]) 2017; 9
Yao (C8NR08869A-(cit2)/*[position()=1]) 2018; 30
Liu (C8NR08869A-(cit3)/*[position()=1]) 2016; 19
Zhai (C8NR08869A-(cit54)/*[position()=1]) 2014; 8
Khomenko (C8NR08869A-(cit44)/*[position()=1]) 2006; 153
Zhu (C8NR08869A-(cit7)/*[position()=1]) 2016; 16
Lu (C8NR08869A-(cit56)/*[position()=1]) 2014; 26
Shu (C8NR08869A-(cit6)/*[position()=1]) 2015; 3
Mahenderkar (C8NR08869A-(cit1)/*[position()=1]) 2017; 355
Aytug (C8NR08869A-(cit38)/*[position()=1]) 2018; 10
Chen (C8NR08869A-(cit13)/*[position()=1]) 2011; 112
Hernandez (C8NR08869A-(cit30)/*[position()=1]) 2008; 3
Wu (C8NR08869A-(cit43)/*[position()=1]) 2012; 1
Yuan (C8NR08869A-(cit45)/*[position()=1]) 2012; 22
Jiang (C8NR08869A-(cit12)/*[position()=1]) 2015; 5
Yun (C8NR08869A-(cit39)/*[position()=1]) 2017; 125
Song (C8NR08869A-(cit47)/*[position()=1]) 2017; 13
Fasolino (C8NR08869A-(cit35)/*[position()=1]) 2007; 6
Pang (C8NR08869A-(cit8)/*[position()=1]) 2011; 23
Cai (C8NR08869A-(cit23)/*[position()=1]) 2015; 268
Cui (C8NR08869A-(cit32)/*[position()=1]) 2011; 47
Hu (C8NR08869A-(cit28)/*[position()=1]) 2015; 25
Huang (C8NR08869A-(cit40)/*[position()=1]) 2018; 30
Chen (C8NR08869A-(cit49)/*[position()=1]) 2017; 9
References_xml – volume: 19
  start-page: 109
  year: 2016
  ident: C8NR08869A-(cit3)/*[position()=1]
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2015.10.009
– volume: 27
  start-page: 4469
  year: 2015
  ident: C8NR08869A-(cit27)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201501983
– volume: 28
  start-page: 1705258
  year: 2018
  ident: C8NR08869A-(cit17)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201705258
– volume: 355
  start-page: 1203
  year: 2017
  ident: C8NR08869A-(cit1)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.aam5830
– volume: 119
  start-page: 257
  year: 2017
  ident: C8NR08869A-(cit16)/*[position()=1]
  publication-title: Carbon
  doi: 10.1016/j.carbon.2017.04.028
– volume: 11
  start-page: 2472
  year: 2011
  ident: C8NR08869A-(cit14)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl2009058
– volume: 13
  start-page: 1700067
  year: 2017
  ident: C8NR08869A-(cit47)/*[position()=1]
  publication-title: Small
  doi: 10.1002/smll.201700067
– volume: 153
  start-page: 183
  year: 2006
  ident: C8NR08869A-(cit44)/*[position()=1]
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2005.03.210
– volume: 34
  start-page: 224
  year: 2017
  ident: C8NR08869A-(cit50)/*[position()=1]
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.02.023
– volume: 5
  start-page: 18684
  year: 2017
  ident: C8NR08869A-(cit25)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA04917J
– volume: 30
  start-page: 522
  year: 2014
  ident: C8NR08869A-(cit29)/*[position()=1]
  publication-title: Langmuir
  doi: 10.1021/la4037875
– volume: 27
  start-page: 3572
  year: 2015
  ident: C8NR08869A-(cit18)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201500707
– volume: 8
  start-page: 255
  year: 2014
  ident: C8NR08869A-(cit54)/*[position()=1]
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2014.06.013
– volume: 16
  start-page: 3448
  year: 2016
  ident: C8NR08869A-(cit7)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b04965
– volume: 10
  start-page: 11008
  year: 2018
  ident: C8NR08869A-(cit38)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b01938
– volume: 10
  start-page: 11775
  year: 2018
  ident: C8NR08869A-(cit21)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C8NR01229F
– volume: 25
  start-page: 6138
  year: 2013
  ident: C8NR08869A-(cit31)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201302753
– volume: 6
  start-page: 3214
  year: 2012
  ident: C8NR08869A-(cit46)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn300098m
– volume: 50
  start-page: 5331
  year: 2012
  ident: C8NR08869A-(cit36)/*[position()=1]
  publication-title: Carbon
  doi: 10.1016/j.carbon.2012.07.023
– volume: 2
  start-page: 1458
  year: 2014
  ident: C8NR08869A-(cit53)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C3TA13953K
– volume: 43
  start-page: 3303
  year: 2014
  ident: C8NR08869A-(cit4)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c3cs60407a
– volume: 51
  start-page: 97
  year: 2014
  ident: C8NR08869A-(cit24)/*[position()=1]
  publication-title: Mater. Res. Bull.
  doi: 10.1016/j.materresbull.2013.11.044
– volume: 268
  start-page: 251
  year: 2015
  ident: C8NR08869A-(cit23)/*[position()=1]
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2015.01.072
– volume: 3
  start-page: 13244
  year: 2015
  ident: C8NR08869A-(cit20)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA01292A
– volume: 2
  start-page: 12340
  year: 2014
  ident: C8NR08869A-(cit26)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA02118E
– volume: 22
  start-page: 4592
  year: 2012
  ident: C8NR08869A-(cit45)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201200994
– volume: 1
  start-page: 16033
  year: 2016
  ident: C8NR08869A-(cit11)/*[position()=1]
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/natrevmats.2016.33
– volume: 358
  start-page: 13
  year: 2017
  ident: C8NR08869A-(cit19)/*[position()=1]
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2017.03.145
– volume: 3
  start-page: 563
  year: 2008
  ident: C8NR08869A-(cit33)/*[position()=1]
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2008.215
– volume: 28
  start-page: 1707247
  year: 2018
  ident: C8NR08869A-(cit42)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201707247
– volume: 1
  start-page: 73
  year: 2010
  ident: C8NR08869A-(cit15)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms1067
– volume: 27
  start-page: 4469
  year: 2015
  ident: C8NR08869A-(cit41)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201501983
– volume: 112
  start-page: 6027
  year: 2011
  ident: C8NR08869A-(cit13)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/cr300115g
– volume: 30
  start-page: 1706054
  year: 2018
  ident: C8NR08869A-(cit2)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201706054
– volume: 3
  start-page: 4428
  year: 2015
  ident: C8NR08869A-(cit6)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA04324C
– volume: 4
  start-page: 2905
  year: 2013
  ident: C8NR08869A-(cit9)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms3905
– volume: 1
  start-page: 917
  year: 2011
  ident: C8NR08869A-(cit51)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201100312
– volume: 13
  start-page: 2078
  year: 2013
  ident: C8NR08869A-(cit55)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl400378j
– volume: 3
  start-page: 1800053
  year: 2018
  ident: C8NR08869A-(cit5)/*[position()=1]
  publication-title: Adv. Mater. Technol.
  doi: 10.1002/admt.201800053
– volume: 125
  start-page: 308
  year: 2017
  ident: C8NR08869A-(cit39)/*[position()=1]
  publication-title: Carbon
  doi: 10.1016/j.carbon.2017.09.063
– volume: 30
  start-page: 1707025
  year: 2018
  ident: C8NR08869A-(cit40)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201707025
– volume: 47
  start-page: 12370
  year: 2011
  ident: C8NR08869A-(cit32)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/c1cc15569e
– volume: 9
  start-page: 17865
  year: 2017
  ident: C8NR08869A-(cit49)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b02460
– volume: 26
  start-page: 3148
  year: 2014
  ident: C8NR08869A-(cit56)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201305851
– volume: 9
  start-page: 15206
  year: 2017
  ident: C8NR08869A-(cit22)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C7NR04752E
– volume: 47
  start-page: 5753
  year: 2011
  ident: C8NR08869A-(cit52)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/c1cc00119a
– volume: 27
  start-page: 4469
  year: 2015
  ident: C8NR08869A-(cit37)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201501983
– volume: 3
  start-page: 563
  year: 2008
  ident: C8NR08869A-(cit30)/*[position()=1]
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2008.215
– volume: 23
  start-page: 2779
  year: 2011
  ident: C8NR08869A-(cit8)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201100304
– volume: 48
  start-page: 2770
  year: 2012
  ident: C8NR08869A-(cit10)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/c2cc17831a
– volume: 25
  start-page: 7291
  year: 2015
  ident: C8NR08869A-(cit28)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201503528
– volume: 3
  start-page: 11700
  year: 2015
  ident: C8NR08869A-(cit34)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA00252D
– volume: 6
  start-page: 858
  year: 2007
  ident: C8NR08869A-(cit35)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2011
– volume: 1
  start-page: 107
  year: 2012
  ident: C8NR08869A-(cit43)/*[position()=1]
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2011.11.001
– volume: 26
  start-page: 1044
  year: 2014
  ident: C8NR08869A-(cit48)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201304148
– volume: 5
  start-page: 1500771
  year: 2015
  ident: C8NR08869A-(cit12)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201500771
SSID ssj0069363
Score 2.4583614
Snippet The introduction of oxygenous functional groups onto graphene can provide additional pseudocapacitance for supercapacitors. However, how to balance the amount...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 2812
SubjectTerms Disruption
Electrical resistivity
Electrochemical analysis
Electrochemical oxidation
Electrode materials
Electrodes
Energy storage
Flux density
Functional groups
Graphene
Hydroxides
Nanosheets
Oxidation
Stability
Supercapacitors
Title Electrochemical synthesis of NiCo layered double hydroxide nanosheets decorated on moderately oxidized graphene films for energy storage
URI https://www.ncbi.nlm.nih.gov/pubmed/30675886
https://www.proquest.com/docview/2176801973
https://www.proquest.com/docview/2179447764
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELegk9D2gPimMJARvKAokNqOGz-WblAN0Qe0icFL5MQ2q9QlU5sKur-AP5uznY9ubBKgSlF7duIov1_Od67vDqFXoPCUjA0N2YCokOVMh0IoFmZsIGMFJgEZ2EDhT1M-OWIHx_FxV7_TRZdU2Zv8_Mq4kv9BFWSAq42S_Qdk24uCAL4DvnAEhOH4Vxjv-xo2eRP0v1wXYM_VKUams3EZzOXaFuMMVLmyIVIna7Uof86UDgpZlMsTratloKwHKq3lCUywlXHsj_k6sB1n5yB2Sa1BJ9okTj5_Q6B9yKDdWikv7iaa2gvDzbSEOfDbcfe0KutZ0gu9ktnT32Un_gbDOPHX2Q8961YVnGqcrOTmGoUNi2rXKLTTZcRuXKTUV-n5Q2tH1CY9zZNiATqPC7nZCZ742anDzzs3lxNn-6m4brqJtgi4C6SHtkYf33340szJXFBOm-S0VLzthtpGt5qTL1om17gbzuw4vINu1_4CHnnw76IburiHdjaySN5Hvy7RALc0wKXBlga4pgH2NMAtDXBHA9zSAJcF7miAGxrghgbY0QADDbCnAa5p8AAdvd8_HE_CusBGmDMSVWEuhRHGxCIWiY6MiCWVOko0UZEUkgtOci0zTqQYMAWfjCitBJGJyLhhuaQPUa8oC_0YYWN4YgbGSLAwmUwiMVQKfH2whjOSZ8T00evm4aZ5nX3eFkGZp24XBBXpOJl-dpiM-uhl2_fM51y5stdug1Fav5PLFBxsDjaXGNI-etE2g8a0f4PJQpcr10cwNhxy1kePPLbtMA0Xnlzb8hRtdwzfRb1qsdLPwC6tsuc16X4Df8-Vxg
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electrochemical+synthesis+of+NiCo+layered+double+hydroxide+nanosheets+decorated+on+moderately+oxidized+graphene+films+for+energy+storage&rft.jtitle=Nanoscale&rft.au=Jia%2C+Dedong&rft.au=Jiang%2C+Degang&rft.au=Zheng%2C+Yiwei&rft.au=Tan%2C+Hua&rft.date=2019-01-01&rft.eissn=2040-3372&rft_id=info:doi/10.1039%2Fc8nr08869a&rft_id=info%3Apmid%2F30675886&rft.externalDocID=30675886
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2040-3364&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2040-3364&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2040-3364&client=summon