Electrochemical synthesis of NiCo layered double hydroxide nanosheets decorated on moderately oxidized graphene films for energy storage
The introduction of oxygenous functional groups onto graphene can provide additional pseudocapacitance for supercapacitors. However, how to balance the amount of introduced oxygenous functional groups and the reduced electrical conductivity arising from the disruption of the conjugated system remain...
Saved in:
Published in | Nanoscale Vol. 11; no. 6; pp. 2812 - 2822 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
01.01.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The introduction of oxygenous functional groups onto graphene can provide additional pseudocapacitance for supercapacitors. However, how to balance the amount of introduced oxygenous functional groups and the reduced electrical conductivity arising from the disruption of the conjugated system remains a big challenge. Here, a controllable strategy is reported to prepare moderately oxidized reduced graphene oxide (MORGO)
via
an electrochemical oxidation process. The MORGO not only has oxygenous groups with appropriate quantities, but also preserves the highly crystalline structure of the π–π conjugated carbon framework. As a result, the MORGO films showed superior electrochemical properties to the pristine RGO films and other previously reported RGO films. Furthermore, the oxygenous groups and the conductivity of MORGO films can be easily adjusted by controlling the oxidation time. A hierarchical composite of NiCo-layered double hydroxide nanosheet arrays on MORGO films (MORGO/NiCo-LDH) was also constructed
via
electrochemical deposition to combine the advantages of electric double-layer electrode materials and faradaic electrode materials. The flexible solid-state supercapacitor fabricated with MORGO/NiCo-LDH film electrodes exhibits a high energy density (0.51 mW h cm
−3
), as well as a long cycle life (88.2% capacitance retention after 10 000 cycles). |
---|---|
AbstractList | The introduction of oxygenous functional groups onto graphene can provide additional pseudocapacitance for supercapacitors. However, how to balance the amount of introduced oxygenous functional groups and the reduced electrical conductivity arising from the disruption of the conjugated system remains a big challenge. Here, a controllable strategy is reported to prepare moderately oxidized reduced graphene oxide (MORGO) via an electrochemical oxidation process. The MORGO not only has oxygenous groups with appropriate quantities, but also preserves the highly crystalline structure of the π–π conjugated carbon framework. As a result, the MORGO films showed superior electrochemical properties to the pristine RGO films and other previously reported RGO films. Furthermore, the oxygenous groups and the conductivity of MORGO films can be easily adjusted by controlling the oxidation time. A hierarchical composite of NiCo-layered double hydroxide nanosheet arrays on MORGO films (MORGO/NiCo-LDH) was also constructed via electrochemical deposition to combine the advantages of electric double-layer electrode materials and faradaic electrode materials. The flexible solid-state supercapacitor fabricated with MORGO/NiCo-LDH film electrodes exhibits a high energy density (0.51 mW h cm−3), as well as a long cycle life (88.2% capacitance retention after 10 000 cycles). The introduction of oxygenous functional groups onto graphene can provide additional pseudocapacitance for supercapacitors. However, how to balance the amount of introduced oxygenous functional groups and the reduced electrical conductivity arising from the disruption of the conjugated system remains a big challenge. Here, a controllable strategy is reported to prepare moderately oxidized reduced graphene oxide (MORGO) via an electrochemical oxidation process. The MORGO not only has oxygenous groups with appropriate quantities, but also preserves the highly crystalline structure of the π-π conjugated carbon framework. As a result, the MORGO films showed superior electrochemical properties to the pristine RGO films and other previously reported RGO films. Furthermore, the oxygenous groups and the conductivity of MORGO films can be easily adjusted by controlling the oxidation time. A hierarchical composite of NiCo-layered double hydroxide nanosheet arrays on MORGO films (MORGO/NiCo-LDH) was also constructed via electrochemical deposition to combine the advantages of electric double-layer electrode materials and faradaic electrode materials. The flexible solid-state supercapacitor fabricated with MORGO/NiCo-LDH film electrodes exhibits a high energy density (0.51 mW h cm-3), as well as a long cycle life (88.2% capacitance retention after 10 000 cycles).The introduction of oxygenous functional groups onto graphene can provide additional pseudocapacitance for supercapacitors. However, how to balance the amount of introduced oxygenous functional groups and the reduced electrical conductivity arising from the disruption of the conjugated system remains a big challenge. Here, a controllable strategy is reported to prepare moderately oxidized reduced graphene oxide (MORGO) via an electrochemical oxidation process. The MORGO not only has oxygenous groups with appropriate quantities, but also preserves the highly crystalline structure of the π-π conjugated carbon framework. As a result, the MORGO films showed superior electrochemical properties to the pristine RGO films and other previously reported RGO films. Furthermore, the oxygenous groups and the conductivity of MORGO films can be easily adjusted by controlling the oxidation time. A hierarchical composite of NiCo-layered double hydroxide nanosheet arrays on MORGO films (MORGO/NiCo-LDH) was also constructed via electrochemical deposition to combine the advantages of electric double-layer electrode materials and faradaic electrode materials. The flexible solid-state supercapacitor fabricated with MORGO/NiCo-LDH film electrodes exhibits a high energy density (0.51 mW h cm-3), as well as a long cycle life (88.2% capacitance retention after 10 000 cycles). The introduction of oxygenous functional groups onto graphene can provide additional pseudocapacitance for supercapacitors. However, how to balance the amount of introduced oxygenous functional groups and the reduced electrical conductivity arising from the disruption of the conjugated system remains a big challenge. Here, a controllable strategy is reported to prepare moderately oxidized reduced graphene oxide (MORGO) via an electrochemical oxidation process. The MORGO not only has oxygenous groups with appropriate quantities, but also preserves the highly crystalline structure of the π-π conjugated carbon framework. As a result, the MORGO films showed superior electrochemical properties to the pristine RGO films and other previously reported RGO films. Furthermore, the oxygenous groups and the conductivity of MORGO films can be easily adjusted by controlling the oxidation time. A hierarchical composite of NiCo-layered double hydroxide nanosheet arrays on MORGO films (MORGO/NiCo-LDH) was also constructed via electrochemical deposition to combine the advantages of electric double-layer electrode materials and faradaic electrode materials. The flexible solid-state supercapacitor fabricated with MORGO/NiCo-LDH film electrodes exhibits a high energy density (0.51 mW h cm-3), as well as a long cycle life (88.2% capacitance retention after 10 000 cycles). The introduction of oxygenous functional groups onto graphene can provide additional pseudocapacitance for supercapacitors. However, how to balance the amount of introduced oxygenous functional groups and the reduced electrical conductivity arising from the disruption of the conjugated system remains a big challenge. Here, a controllable strategy is reported to prepare moderately oxidized reduced graphene oxide (MORGO) via an electrochemical oxidation process. The MORGO not only has oxygenous groups with appropriate quantities, but also preserves the highly crystalline structure of the π–π conjugated carbon framework. As a result, the MORGO films showed superior electrochemical properties to the pristine RGO films and other previously reported RGO films. Furthermore, the oxygenous groups and the conductivity of MORGO films can be easily adjusted by controlling the oxidation time. A hierarchical composite of NiCo-layered double hydroxide nanosheet arrays on MORGO films (MORGO/NiCo-LDH) was also constructed via electrochemical deposition to combine the advantages of electric double-layer electrode materials and faradaic electrode materials. The flexible solid-state supercapacitor fabricated with MORGO/NiCo-LDH film electrodes exhibits a high energy density (0.51 mW h cm −3 ), as well as a long cycle life (88.2% capacitance retention after 10 000 cycles). |
Author | Tan, Hua Cao, Xueying Liu, Jingquan Jia, Dedong Yue, Lijun Zheng, Yiwei Jiang, Degang Liu, Fang Sun, Yuanyuan |
Author_xml | – sequence: 1 givenname: Dedong surname: Jia fullname: Jia, Dedong organization: College of Material Science and Engineering, Institute for Graphene Applied Technology Innovation, Qingdao University, Qingdao 266071, China – sequence: 2 givenname: Degang surname: Jiang fullname: Jiang, Degang organization: College of Material Science and Engineering, Institute for Graphene Applied Technology Innovation, Qingdao University, Qingdao 266071, China – sequence: 3 givenname: Yiwei surname: Zheng fullname: Zheng, Yiwei organization: College of Material Science and Engineering, Institute for Graphene Applied Technology Innovation, Qingdao University, Qingdao 266071, China – sequence: 4 givenname: Hua surname: Tan fullname: Tan, Hua organization: School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore – sequence: 5 givenname: Xueying surname: Cao fullname: Cao, Xueying organization: College of Material Science and Engineering, Institute for Graphene Applied Technology Innovation, Qingdao University, Qingdao 266071, China – sequence: 6 givenname: Fang surname: Liu fullname: Liu, Fang organization: College of Material Science and Engineering, Institute for Graphene Applied Technology Innovation, Qingdao University, Qingdao 266071, China – sequence: 7 givenname: Lijun surname: Yue fullname: Yue, Lijun organization: College of Material Science and Engineering, Institute for Graphene Applied Technology Innovation, Qingdao University, Qingdao 266071, China – sequence: 8 givenname: Yuanyuan surname: Sun fullname: Sun, Yuanyuan organization: College of Material Science and Engineering, Institute for Graphene Applied Technology Innovation, Qingdao University, Qingdao 266071, China – sequence: 9 givenname: Jingquan orcidid: 0000-0001-6178-8661 surname: Liu fullname: Liu, Jingquan organization: College of Material Science and Engineering, Institute for Graphene Applied Technology Innovation, Qingdao University, Qingdao 266071, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30675886$$D View this record in MEDLINE/PubMed |
BookMark | eNpt0d1qFDEUB_AgFfuhNz6ABLwRYTWTzGYml2WpH1AqiF4PZ5KTnZRMsiYZcHwCH9ssrRWK5CI54fc_hJxzchJiQEJeNuxdw4R6v-tvvrK-l-ryCTnjrGUbITp-8nCW7Sk5z_mWMamEFM_IqWCy29bEGfl95VGXFPWEs9PgaV5DmTC7TKOlN24XqYcVExpq4jJ6pNNqUvzpDNIAIeYJsWRqUMcEpaoY6BwNHgu_0iN0v-r1PsFhwoDUOj9namOitUr7leZSk3t8Tp5a8Blf3O8X5PuHq2-7T5vrLx8_7y6vN7rlrGw0KKus3aqt6pFZtQUByHrkhoECqSTXCKPkoJrW1DVyg0Zx6NUobatBXJA3d30PKf5YMJdhdlmj9xAwLnngTafatutkW-nrR_Q2LinU1x2V7FmjOlHVq3u1jDOa4ZDcDGkd_v5xBW_vgE4x54T2gTRsOA5w-DfAitkjrF2B4mIoCZz_X-QPkwCgBQ |
CitedBy_id | crossref_primary_10_1002_ente_202200809 crossref_primary_10_1016_j_jcis_2019_09_065 crossref_primary_10_1016_j_carbon_2022_11_049 crossref_primary_10_1002_smll_202404249 crossref_primary_10_1021_acsami_0c12759 crossref_primary_10_1002_slct_202303300 crossref_primary_10_1016_j_est_2024_113205 crossref_primary_10_1002_admi_202100642 crossref_primary_10_1039_D2QI01739C crossref_primary_10_1021_acsaem_0c00790 crossref_primary_10_1016_j_susmat_2023_e00695 crossref_primary_10_1557_jmr_2019_290 crossref_primary_10_1016_j_jcis_2020_05_027 crossref_primary_10_1016_j_molstruc_2024_140763 crossref_primary_10_1016_j_mtcomm_2021_102057 crossref_primary_10_1016_j_ces_2022_118339 crossref_primary_10_1039_C9CE01261C crossref_primary_10_1002_eem2_12116 crossref_primary_10_1016_j_est_2020_101485 crossref_primary_10_1016_j_est_2022_104638 crossref_primary_10_1021_acsami_0c13059 crossref_primary_10_1016_j_jallcom_2022_164411 crossref_primary_10_1016_j_cej_2023_141992 crossref_primary_10_33224_rrch_2024_69_5_6_07 crossref_primary_10_1016_j_supflu_2020_104774 crossref_primary_10_1016_j_jallcom_2020_153714 crossref_primary_10_1002_smll_202102155 crossref_primary_10_1002_cssc_201903260 crossref_primary_10_1016_j_diamond_2024_111081 crossref_primary_10_1016_j_jpowsour_2022_232563 crossref_primary_10_1021_acsami_9b11627 crossref_primary_10_1002_cssc_201902753 crossref_primary_10_1016_j_jallcom_2021_159649 crossref_primary_10_1016_j_electacta_2019_06_044 crossref_primary_10_1016_j_flatc_2023_100483 crossref_primary_10_1039_D2TA07397H crossref_primary_10_1002_celc_202201051 crossref_primary_10_1016_j_chemosphere_2020_128509 crossref_primary_10_1016_j_mset_2024_08_001 crossref_primary_10_1016_j_cej_2021_133639 crossref_primary_10_1002_smll_202001340 |
Cites_doi | 10.1016/j.mattod.2015.10.009 10.1002/adma.201501983 10.1002/adfm.201705258 10.1126/science.aam5830 10.1016/j.carbon.2017.04.028 10.1021/nl2009058 10.1002/smll.201700067 10.1016/j.jpowsour.2005.03.210 10.1016/j.nanoen.2017.02.023 10.1039/C7TA04917J 10.1021/la4037875 10.1002/adma.201500707 10.1016/j.nanoen.2014.06.013 10.1021/acs.nanolett.5b04965 10.1021/acsami.8b01938 10.1039/C8NR01229F 10.1002/adma.201302753 10.1021/nn300098m 10.1016/j.carbon.2012.07.023 10.1039/C3TA13953K 10.1039/c3cs60407a 10.1016/j.materresbull.2013.11.044 10.1016/j.cej.2015.01.072 10.1039/C5TA01292A 10.1039/C4TA02118E 10.1002/adfm.201200994 10.1038/natrevmats.2016.33 10.1016/j.jpowsour.2017.03.145 10.1038/nnano.2008.215 10.1002/adfm.201707247 10.1038/ncomms1067 10.1021/cr300115g 10.1002/adma.201706054 10.1039/C4TA04324C 10.1038/ncomms3905 10.1002/aenm.201100312 10.1021/nl400378j 10.1002/admt.201800053 10.1016/j.carbon.2017.09.063 10.1002/adma.201707025 10.1039/c1cc15569e 10.1021/acsami.7b02460 10.1002/adma.201305851 10.1039/C7NR04752E 10.1039/c1cc00119a 10.1002/adma.201100304 10.1039/c2cc17831a 10.1002/adfm.201503528 10.1039/C5TA00252D 10.1038/nmat2011 10.1016/j.nanoen.2011.11.001 10.1002/adma.201304148 10.1002/aenm.201500771 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2019 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2019 |
DBID | AAYXX CITATION NPM 7SR 7U5 8BQ 8FD F28 FR3 JG9 L7M 7X8 |
DOI | 10.1039/C8NR08869A |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database MEDLINE - Academic PubMed CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2040-3372 |
EndPage | 2822 |
ExternalDocumentID | 30675886 10_1039_C8NR08869A |
Genre | Journal Article |
GroupedDBID | --- 0-7 0R~ 29M 4.4 53G 705 7~J AAEMU AAIWI AAJAE AANOJ AARTK AAWGC AAXHV AAYXX ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFS ACIWK ACLDK ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRDS AFRZK AFVBQ AGEGJ AGRSR AHGCF AKBGW AKMSF ALMA_UNASSIGNED_HOLDINGS ALUYA ANUXI APEMP ASKNT AUDPV AZFZN BLAPV BSQNT C6K CITATION DU5 EBS ECGLT EE0 EF- EJD F5P GGIMP H13 HZ~ H~N J3I O-G O9- OK1 P2P RAOCF RCNCU RNS RPMJG RSCEA RVUXY -JG AGSTE NPM RRC 7SR 7U5 8BQ 8FD F28 FR3 JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c420t-ca9f9ff59598e0f95a3ae08e2d0a9a6962ceab62a914d4d4b2ded92a89b6f4ca3 |
ISSN | 2040-3364 2040-3372 |
IngestDate | Fri Jul 11 04:33:40 EDT 2025 Sun Jun 29 16:50:58 EDT 2025 Wed Feb 19 02:36:43 EST 2025 Tue Jul 01 01:13:33 EDT 2025 Thu Apr 24 22:50:27 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c420t-ca9f9ff59598e0f95a3ae08e2d0a9a6962ceab62a914d4d4b2ded92a89b6f4ca3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-6178-8661 |
PMID | 30675886 |
PQID | 2176801973 |
PQPubID | 2047485 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2179447764 proquest_journals_2176801973 pubmed_primary_30675886 crossref_primary_10_1039_C8NR08869A crossref_citationtrail_10_1039_C8NR08869A |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20190101 |
PublicationDateYYYYMMDD | 2019-01-01 |
PublicationDate_xml | – month: 01 year: 2019 text: 20190101 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Cambridge |
PublicationTitle | Nanoscale |
PublicationTitleAlternate | Nanoscale |
PublicationYear | 2019 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Zhou (C8NR08869A-(cit46)/*[position()=1]) 2012; 6 Yang (C8NR08869A-(cit53)/*[position()=1]) 2014; 2 Zhang (C8NR08869A-(cit50)/*[position()=1]) 2017; 34 Fan (C8NR08869A-(cit26)/*[position()=1]) 2014; 2 Qi (C8NR08869A-(cit5)/*[position()=1]) 2018; 3 Yi (C8NR08869A-(cit34)/*[position()=1]) 2015; 3 Liu (C8NR08869A-(cit17)/*[position()=1]) 2018; 28 Deng (C8NR08869A-(cit10)/*[position()=1]) 2012; 48 Azhari (C8NR08869A-(cit16)/*[position()=1]) 2017; 119 Mini (C8NR08869A-(cit52)/*[position()=1]) 2011; 47 Xiong (C8NR08869A-(cit37)/*[position()=1]) 2015; 27 Xiong (C8NR08869A-(cit41)/*[position()=1]) 2015; 27 Wang (C8NR08869A-(cit18)/*[position()=1]) 2015; 27 Thakur (C8NR08869A-(cit36)/*[position()=1]) 2012; 50 Hernandez (C8NR08869A-(cit33)/*[position()=1]) 2008; 3 Wang (C8NR08869A-(cit42)/*[position()=1]) 2018; 28 Moon (C8NR08869A-(cit15)/*[position()=1]) 2010; 1 Xiong (C8NR08869A-(cit29)/*[position()=1]) 2014; 30 Wang (C8NR08869A-(cit9)/*[position()=1]) 2013; 4 Xiong (C8NR08869A-(cit27)/*[position()=1]) 2015; 27 Yu (C8NR08869A-(cit48)/*[position()=1]) 2014; 26 Jia (C8NR08869A-(cit19)/*[position()=1]) 2017; 358 Weng (C8NR08869A-(cit51)/*[position()=1]) 2011; 1 Zhou (C8NR08869A-(cit55)/*[position()=1]) 2013; 13 Lan (C8NR08869A-(cit21)/*[position()=1]) 2018; 10 Yan (C8NR08869A-(cit24)/*[position()=1]) 2014; 51 Li (C8NR08869A-(cit20)/*[position()=1]) 2015; 3 Jeon (C8NR08869A-(cit31)/*[position()=1]) 2013; 25 Jeong (C8NR08869A-(cit14)/*[position()=1]) 2011; 11 Jiang (C8NR08869A-(cit25)/*[position()=1]) 2017; 5 El-Kady (C8NR08869A-(cit11)/*[position()=1]) 2016; 1 Peng (C8NR08869A-(cit4)/*[position()=1]) 2014; 43 Zhao (C8NR08869A-(cit22)/*[position()=1]) 2017; 9 Yao (C8NR08869A-(cit2)/*[position()=1]) 2018; 30 Liu (C8NR08869A-(cit3)/*[position()=1]) 2016; 19 Zhai (C8NR08869A-(cit54)/*[position()=1]) 2014; 8 Khomenko (C8NR08869A-(cit44)/*[position()=1]) 2006; 153 Zhu (C8NR08869A-(cit7)/*[position()=1]) 2016; 16 Lu (C8NR08869A-(cit56)/*[position()=1]) 2014; 26 Shu (C8NR08869A-(cit6)/*[position()=1]) 2015; 3 Mahenderkar (C8NR08869A-(cit1)/*[position()=1]) 2017; 355 Aytug (C8NR08869A-(cit38)/*[position()=1]) 2018; 10 Chen (C8NR08869A-(cit13)/*[position()=1]) 2011; 112 Hernandez (C8NR08869A-(cit30)/*[position()=1]) 2008; 3 Wu (C8NR08869A-(cit43)/*[position()=1]) 2012; 1 Yuan (C8NR08869A-(cit45)/*[position()=1]) 2012; 22 Jiang (C8NR08869A-(cit12)/*[position()=1]) 2015; 5 Yun (C8NR08869A-(cit39)/*[position()=1]) 2017; 125 Song (C8NR08869A-(cit47)/*[position()=1]) 2017; 13 Fasolino (C8NR08869A-(cit35)/*[position()=1]) 2007; 6 Pang (C8NR08869A-(cit8)/*[position()=1]) 2011; 23 Cai (C8NR08869A-(cit23)/*[position()=1]) 2015; 268 Cui (C8NR08869A-(cit32)/*[position()=1]) 2011; 47 Hu (C8NR08869A-(cit28)/*[position()=1]) 2015; 25 Huang (C8NR08869A-(cit40)/*[position()=1]) 2018; 30 Chen (C8NR08869A-(cit49)/*[position()=1]) 2017; 9 |
References_xml | – volume: 19 start-page: 109 year: 2016 ident: C8NR08869A-(cit3)/*[position()=1] publication-title: Mater. Today doi: 10.1016/j.mattod.2015.10.009 – volume: 27 start-page: 4469 year: 2015 ident: C8NR08869A-(cit27)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201501983 – volume: 28 start-page: 1705258 year: 2018 ident: C8NR08869A-(cit17)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201705258 – volume: 355 start-page: 1203 year: 2017 ident: C8NR08869A-(cit1)/*[position()=1] publication-title: Science doi: 10.1126/science.aam5830 – volume: 119 start-page: 257 year: 2017 ident: C8NR08869A-(cit16)/*[position()=1] publication-title: Carbon doi: 10.1016/j.carbon.2017.04.028 – volume: 11 start-page: 2472 year: 2011 ident: C8NR08869A-(cit14)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl2009058 – volume: 13 start-page: 1700067 year: 2017 ident: C8NR08869A-(cit47)/*[position()=1] publication-title: Small doi: 10.1002/smll.201700067 – volume: 153 start-page: 183 year: 2006 ident: C8NR08869A-(cit44)/*[position()=1] publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2005.03.210 – volume: 34 start-page: 224 year: 2017 ident: C8NR08869A-(cit50)/*[position()=1] publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.02.023 – volume: 5 start-page: 18684 year: 2017 ident: C8NR08869A-(cit25)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C7TA04917J – volume: 30 start-page: 522 year: 2014 ident: C8NR08869A-(cit29)/*[position()=1] publication-title: Langmuir doi: 10.1021/la4037875 – volume: 27 start-page: 3572 year: 2015 ident: C8NR08869A-(cit18)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201500707 – volume: 8 start-page: 255 year: 2014 ident: C8NR08869A-(cit54)/*[position()=1] publication-title: Nano Energy doi: 10.1016/j.nanoen.2014.06.013 – volume: 16 start-page: 3448 year: 2016 ident: C8NR08869A-(cit7)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b04965 – volume: 10 start-page: 11008 year: 2018 ident: C8NR08869A-(cit38)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b01938 – volume: 10 start-page: 11775 year: 2018 ident: C8NR08869A-(cit21)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C8NR01229F – volume: 25 start-page: 6138 year: 2013 ident: C8NR08869A-(cit31)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201302753 – volume: 6 start-page: 3214 year: 2012 ident: C8NR08869A-(cit46)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn300098m – volume: 50 start-page: 5331 year: 2012 ident: C8NR08869A-(cit36)/*[position()=1] publication-title: Carbon doi: 10.1016/j.carbon.2012.07.023 – volume: 2 start-page: 1458 year: 2014 ident: C8NR08869A-(cit53)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C3TA13953K – volume: 43 start-page: 3303 year: 2014 ident: C8NR08869A-(cit4)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/c3cs60407a – volume: 51 start-page: 97 year: 2014 ident: C8NR08869A-(cit24)/*[position()=1] publication-title: Mater. Res. Bull. doi: 10.1016/j.materresbull.2013.11.044 – volume: 268 start-page: 251 year: 2015 ident: C8NR08869A-(cit23)/*[position()=1] publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2015.01.072 – volume: 3 start-page: 13244 year: 2015 ident: C8NR08869A-(cit20)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C5TA01292A – volume: 2 start-page: 12340 year: 2014 ident: C8NR08869A-(cit26)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C4TA02118E – volume: 22 start-page: 4592 year: 2012 ident: C8NR08869A-(cit45)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201200994 – volume: 1 start-page: 16033 year: 2016 ident: C8NR08869A-(cit11)/*[position()=1] publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2016.33 – volume: 358 start-page: 13 year: 2017 ident: C8NR08869A-(cit19)/*[position()=1] publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2017.03.145 – volume: 3 start-page: 563 year: 2008 ident: C8NR08869A-(cit33)/*[position()=1] publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2008.215 – volume: 28 start-page: 1707247 year: 2018 ident: C8NR08869A-(cit42)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201707247 – volume: 1 start-page: 73 year: 2010 ident: C8NR08869A-(cit15)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms1067 – volume: 27 start-page: 4469 year: 2015 ident: C8NR08869A-(cit41)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201501983 – volume: 112 start-page: 6027 year: 2011 ident: C8NR08869A-(cit13)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr300115g – volume: 30 start-page: 1706054 year: 2018 ident: C8NR08869A-(cit2)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201706054 – volume: 3 start-page: 4428 year: 2015 ident: C8NR08869A-(cit6)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C4TA04324C – volume: 4 start-page: 2905 year: 2013 ident: C8NR08869A-(cit9)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms3905 – volume: 1 start-page: 917 year: 2011 ident: C8NR08869A-(cit51)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201100312 – volume: 13 start-page: 2078 year: 2013 ident: C8NR08869A-(cit55)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl400378j – volume: 3 start-page: 1800053 year: 2018 ident: C8NR08869A-(cit5)/*[position()=1] publication-title: Adv. Mater. Technol. doi: 10.1002/admt.201800053 – volume: 125 start-page: 308 year: 2017 ident: C8NR08869A-(cit39)/*[position()=1] publication-title: Carbon doi: 10.1016/j.carbon.2017.09.063 – volume: 30 start-page: 1707025 year: 2018 ident: C8NR08869A-(cit40)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201707025 – volume: 47 start-page: 12370 year: 2011 ident: C8NR08869A-(cit32)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/c1cc15569e – volume: 9 start-page: 17865 year: 2017 ident: C8NR08869A-(cit49)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b02460 – volume: 26 start-page: 3148 year: 2014 ident: C8NR08869A-(cit56)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201305851 – volume: 9 start-page: 15206 year: 2017 ident: C8NR08869A-(cit22)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C7NR04752E – volume: 47 start-page: 5753 year: 2011 ident: C8NR08869A-(cit52)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/c1cc00119a – volume: 27 start-page: 4469 year: 2015 ident: C8NR08869A-(cit37)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201501983 – volume: 3 start-page: 563 year: 2008 ident: C8NR08869A-(cit30)/*[position()=1] publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2008.215 – volume: 23 start-page: 2779 year: 2011 ident: C8NR08869A-(cit8)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201100304 – volume: 48 start-page: 2770 year: 2012 ident: C8NR08869A-(cit10)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/c2cc17831a – volume: 25 start-page: 7291 year: 2015 ident: C8NR08869A-(cit28)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201503528 – volume: 3 start-page: 11700 year: 2015 ident: C8NR08869A-(cit34)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C5TA00252D – volume: 6 start-page: 858 year: 2007 ident: C8NR08869A-(cit35)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/nmat2011 – volume: 1 start-page: 107 year: 2012 ident: C8NR08869A-(cit43)/*[position()=1] publication-title: Nano Energy doi: 10.1016/j.nanoen.2011.11.001 – volume: 26 start-page: 1044 year: 2014 ident: C8NR08869A-(cit48)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201304148 – volume: 5 start-page: 1500771 year: 2015 ident: C8NR08869A-(cit12)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201500771 |
SSID | ssj0069363 |
Score | 2.4583614 |
Snippet | The introduction of oxygenous functional groups onto graphene can provide additional pseudocapacitance for supercapacitors. However, how to balance the amount... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 2812 |
SubjectTerms | Disruption Electrical resistivity Electrochemical analysis Electrochemical oxidation Electrode materials Electrodes Energy storage Flux density Functional groups Graphene Hydroxides Nanosheets Oxidation Stability Supercapacitors |
Title | Electrochemical synthesis of NiCo layered double hydroxide nanosheets decorated on moderately oxidized graphene films for energy storage |
URI | https://www.ncbi.nlm.nih.gov/pubmed/30675886 https://www.proquest.com/docview/2176801973 https://www.proquest.com/docview/2179447764 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELegk9D2gPimMJARvKAokNqOGz-WblAN0Qe0icFL5MQ2q9QlU5sKur-AP5uznY9ubBKgSlF7duIov1_Od67vDqFXoPCUjA0N2YCokOVMh0IoFmZsIGMFJgEZ2EDhT1M-OWIHx_FxV7_TRZdU2Zv8_Mq4kv9BFWSAq42S_Qdk24uCAL4DvnAEhOH4Vxjv-xo2eRP0v1wXYM_VKUams3EZzOXaFuMMVLmyIVIna7Uof86UDgpZlMsTratloKwHKq3lCUywlXHsj_k6sB1n5yB2Sa1BJ9okTj5_Q6B9yKDdWikv7iaa2gvDzbSEOfDbcfe0KutZ0gu9ktnT32Un_gbDOPHX2Q8961YVnGqcrOTmGoUNi2rXKLTTZcRuXKTUV-n5Q2tH1CY9zZNiATqPC7nZCZ742anDzzs3lxNn-6m4brqJtgi4C6SHtkYf33340szJXFBOm-S0VLzthtpGt5qTL1om17gbzuw4vINu1_4CHnnw76IburiHdjaySN5Hvy7RALc0wKXBlga4pgH2NMAtDXBHA9zSAJcF7miAGxrghgbY0QADDbCnAa5p8AAdvd8_HE_CusBGmDMSVWEuhRHGxCIWiY6MiCWVOko0UZEUkgtOci0zTqQYMAWfjCitBJGJyLhhuaQPUa8oC_0YYWN4YgbGSLAwmUwiMVQKfH2whjOSZ8T00evm4aZ5nX3eFkGZp24XBBXpOJl-dpiM-uhl2_fM51y5stdug1Fav5PLFBxsDjaXGNI-etE2g8a0f4PJQpcr10cwNhxy1kePPLbtMA0Xnlzb8hRtdwzfRb1qsdLPwC6tsuc16X4Df8-Vxg |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electrochemical+synthesis+of+NiCo+layered+double+hydroxide+nanosheets+decorated+on+moderately+oxidized+graphene+films+for+energy+storage&rft.jtitle=Nanoscale&rft.au=Jia%2C+Dedong&rft.au=Jiang%2C+Degang&rft.au=Zheng%2C+Yiwei&rft.au=Tan%2C+Hua&rft.date=2019-01-01&rft.eissn=2040-3372&rft_id=info:doi/10.1039%2Fc8nr08869a&rft_id=info%3Apmid%2F30675886&rft.externalDocID=30675886 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2040-3364&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2040-3364&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2040-3364&client=summon |