Expected p-values in light of an ROC curve analysis applied to optimal multiple testing procedures

Many statistical studies report p-values for inferential purposes. In several scenarios, the stochastic aspect of p-values is neglected, which may contribute to drawing wrong conclusions in real data experiments. The stochastic nature of p-values makes their use to examine the performance of given t...

Full description

Saved in:
Bibliographic Details
Published inStatistical methods in medical research Vol. 27; no. 12; p. 3560
Main Authors Vexler, Albert, Yu, Jihnhee, Zhao, Yang, Hutson, Alan D, Gurevich, Gregory
Format Journal Article
LanguageEnglish
Published England 01.12.2018
Subjects
Online AccessGet more information

Cover

Loading…
Abstract Many statistical studies report p-values for inferential purposes. In several scenarios, the stochastic aspect of p-values is neglected, which may contribute to drawing wrong conclusions in real data experiments. The stochastic nature of p-values makes their use to examine the performance of given testing procedures or associations between investigated factors to be difficult. We turn our focus on the modern statistical literature to address the expected p-value (EPV) as a measure of the performance of decision-making rules. During the course of our study, we prove that the EPV can be considered in the context of receiver operating characteristic (ROC) curve analysis, a well-established biostatistical methodology. The ROC-based framework provides a new and efficient methodology for investigating and constructing statistical decision-making procedures, including: (1) evaluation and visualization of properties of the testing mechanisms, considering, e.g. partial EPVs; (2) developing optimal tests via the minimization of EPVs; (3) creation of novel methods for optimally combining multiple test statistics. We demonstrate that the proposed EPV-based approach allows us to maximize the integrated power of testing algorithms with respect to various significance levels. In an application, we use the proposed method to construct the optimal test and analyze a myocardial infarction disease dataset. We outline the usefulness of the "EPV/ROC" technique for evaluating different decision-making procedures, their constructions and properties with an eye towards practical applications.
AbstractList Many statistical studies report p-values for inferential purposes. In several scenarios, the stochastic aspect of p-values is neglected, which may contribute to drawing wrong conclusions in real data experiments. The stochastic nature of p-values makes their use to examine the performance of given testing procedures or associations between investigated factors to be difficult. We turn our focus on the modern statistical literature to address the expected p-value (EPV) as a measure of the performance of decision-making rules. During the course of our study, we prove that the EPV can be considered in the context of receiver operating characteristic (ROC) curve analysis, a well-established biostatistical methodology. The ROC-based framework provides a new and efficient methodology for investigating and constructing statistical decision-making procedures, including: (1) evaluation and visualization of properties of the testing mechanisms, considering, e.g. partial EPVs; (2) developing optimal tests via the minimization of EPVs; (3) creation of novel methods for optimally combining multiple test statistics. We demonstrate that the proposed EPV-based approach allows us to maximize the integrated power of testing algorithms with respect to various significance levels. In an application, we use the proposed method to construct the optimal test and analyze a myocardial infarction disease dataset. We outline the usefulness of the "EPV/ROC" technique for evaluating different decision-making procedures, their constructions and properties with an eye towards practical applications.
Author Hutson, Alan D
Yu, Jihnhee
Vexler, Albert
Gurevich, Gregory
Zhao, Yang
Author_xml – sequence: 1
  givenname: Albert
  surname: Vexler
  fullname: Vexler, Albert
  organization: 1 Department of Biostatistics, The State University of New York, Buffalo, USA
– sequence: 2
  givenname: Jihnhee
  surname: Yu
  fullname: Yu, Jihnhee
  organization: 1 Department of Biostatistics, The State University of New York, Buffalo, USA
– sequence: 3
  givenname: Yang
  surname: Zhao
  fullname: Zhao, Yang
  organization: 1 Department of Biostatistics, The State University of New York, Buffalo, USA
– sequence: 4
  givenname: Alan D
  surname: Hutson
  fullname: Hutson, Alan D
  organization: 2 Department of Biostatistics and Bioinformatics, Roswell Park Cancer Institute, Buffalo, NY, USA
– sequence: 5
  givenname: Gregory
  surname: Gurevich
  fullname: Gurevich, Gregory
  organization: 3 Department of Industrial Engineering and Management, SCE-Shamoon College of Engineering, Beer Sheva, Israel
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28504080$$D View this record in MEDLINE/PubMed
BookMark eNo1T0tLAzEYDKLYh949Sf7A6pds9nWUUqtQKIieSx5faiTdDZtssf_egHqaGYYZZhbksh96JOSOwQNjTfMIXc15CzxzEKJiF2TORNMUUJZiRhYxfgFAtrprMuNtBQJamBO1_g6oExoaipP0E0bqeurd4TPRwVLZ07fdiuppPGEW0p-ji1SG4F2OpIEOIbmj9PQ4-eSCR5owJtcfaBgHjWYaMd6QKyt9xNs_XJKP5_X76qXY7javq6dtoQWHVOiqNXlhZThTpmayayoGVlrkpQAwypSmslp2oBB0W9vOKpVl2chalC1jfEnuf3vDpI5o9mHMy8bz_v8s_wF5KFe0
CitedBy_id crossref_primary_10_17485_ijst_2018_v11i7_119062
crossref_primary_10_3390_cells8070705
crossref_primary_10_1080_02664763_2022_2102158
crossref_primary_10_1007_s10463_020_00747_2
crossref_primary_10_1021_acsagscitech_1c00291
crossref_primary_10_1080_15598608_2017_1344940
ContentType Journal Article
DBID NPM
DOI 10.1177/0962280217704451
DatabaseName PubMed
DatabaseTitle PubMed
DatabaseTitleList PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Medicine
Statistics
Mathematics
EISSN 1477-0334
ExternalDocumentID 28504080
Genre Journal Article
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: P30 CA016056
– fundername: NCATS NIH HHS
  grantid: UL1 TR001412
– fundername: NLM NIH HHS
  grantid: G13 LM012241
GroupedDBID ---
-TM
.2G
.2J
.2N
0-V
01A
0R~
123
1~K
29Q
31S
31U
31X
31Y
31Z
36B
4.4
53G
54M
5RE
5VS
6PF
7X7
88E
88I
8C1
8FE
8FG
8FI
8FJ
8R4
8R5
AABMB
AABOD
AACKU
AACMV
AACTG
AADUE
AAEJI
AAEWN
AAGGD
AAGLT
AAJIQ
AAJOX
AAJPV
AANSI
AAPEO
AAPII
AAQDB
AAQXH
AAQXI
AARDL
AARIX
AATAA
AATBZ
AAWTL
AAYTG
ABAWP
ABCCA
ABCJG
ABDLQ
ABDWY
ABEIX
ABFWQ
ABHKI
ABHQH
ABIDT
ABJCF
ABJIS
ABKRH
ABLUO
ABPGX
ABPNF
ABQKF
ABQXT
ABRHV
ABTDE
ABUJY
ABUWG
ABVFX
ABVVC
ABYTW
ACARO
ACDSZ
ACDXX
ACFEJ
ACFMA
ACGBL
ACGFS
ACGOD
ACGZU
ACIWK
ACJER
ACLHI
ACLZU
ACOFE
ACOXC
ACROE
ACRPL
ACSIQ
ACUAV
ACUIR
ACXKE
ACXMB
ADBBV
ADDLC
ADEBD
ADEIA
ADNMO
ADNON
ADRRZ
ADSTG
ADTBJ
ADUKL
ADVBO
ADYCS
AECGH
AECVZ
AEDTQ
AENEX
AEPTA
AEQLS
AERKM
AESZF
AEUHG
AEWDL
AEWHI
AEXNY
AFEET
AFKBI
AFKRA
AFKRG
AFMOU
AFQAA
AFUIA
AFWMB
AGKLV
AGNHF
AGQPQ
AGWFA
AGWNL
AHDMH
AHHFK
AHMBA
AJEFB
AJGYC
AJMMQ
AJUZI
AJVBE
AJXAJ
ALIPV
ALKWR
ALMA_UNASSIGNED_HOLDINGS
ALSLI
AMCVQ
AMVHM
ANDLU
ARALO
ARTOV
ASOEW
ASPBG
AUTPY
AUVAJ
AVWKF
AYAKG
AZFZN
AZQEC
B8O
B8R
B8Z
B93
B94
BBRGL
BDDNI
BENPR
BGLVJ
BKIIM
BPACV
BPHCQ
BSEHC
BVXVI
BYIEH
C45
CAG
CBRKF
CCPQU
CFDXU
COF
CORYS
CQQTX
CS3
DC-
DD-
DD0
DE-
DF0
DO-
DOPDO
DU5
DV7
DWQXO
D~Y
EBS
EJD
EMOBN
F5P
FEDTE
FHBDP
FYUFA
GNUQQ
GROUPED_SAGE_PREMIER_JOURNAL_COLLECTION
H13
HCIFZ
HEHIP
HF~
HMCUK
HVGLF
HZ~
J8X
K.F
K.J
L6V
M1P
M2P
M2S
M7S
N9A
NPM
O9-
OVD
P.B
P2P
PHGZM
PHGZT
PJZUB
POGQB
PPXIY
PQGLB
PQQKQ
PROAC
PRQQA
PSQYO
PTHSS
Q1R
Q2X
Q7K
Q7L
Q7X
Q82
Q83
RIG
ROL
S01
SASJQ
SAUOL
SCNPE
SDB
SFB
SFC
SFK
SFN
SFT
SGA
SGP
SGR
SGV
SGX
SGZ
SHG
SNB
SPJ
SPV
SQCSI
STM
TEORI
TN5
UKHRP
YHZ
ZONMY
ZPPRI
ZRKOI
ID FETCH-LOGICAL-c420t-c58d0005d21bd61a97510fafe23400dbd3d5fca90be0c86f9fbbca937a6438112
IngestDate Mon Jul 21 06:07:42 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords Benjamini–Hochberg procedure
expected p-value
Bootstrap tilting method
confidence region
multiple testing
Bonferroni procedure
partial AUC
ROC curve
P-value
best combination
AUC
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c420t-c58d0005d21bd61a97510fafe23400dbd3d5fca90be0c86f9fbbca937a6438112
PMID 28504080
ParticipantIDs pubmed_primary_28504080
PublicationCentury 2000
PublicationDate 2018-12-01
PublicationDateYYYYMMDD 2018-12-01
PublicationDate_xml – month: 12
  year: 2018
  text: 2018-12-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Statistical methods in medical research
PublicationTitleAlternate Stat Methods Med Res
PublicationYear 2018
SSID ssj0007049
Score 2.2534335
Snippet Many statistical studies report p-values for inferential purposes. In several scenarios, the stochastic aspect of p-values is neglected, which may contribute...
SourceID pubmed
SourceType Index Database
StartPage 3560
Title Expected p-values in light of an ROC curve analysis applied to optimal multiple testing procedures
URI https://www.ncbi.nlm.nih.gov/pubmed/28504080
Volume 27
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEF4FkCp6QCXlVVq0h94iF7_Wj2MErRASICGooBe0691VkIgTgVOh_ov-486sx44VWhW4WI43ycaeL_PYmfmWsc-RtmAFNIDXZMKLRVB4EpvddZ4jO5ZUoi6QPU2OLuPjK3HV6_3uVC3NKvWl-PXXvpLXSBWugVyxS_YFkm2_FC7AOcgXjiBhOD5LxshTXKDLOPWQtNvVVg3uMNx26f1ycH52MChm9z8xR0DkI5LcTvA5J6Auxtg90hQVVki54brTwarp2T3VF5Lvin6po3V2DSe48bSbb0ypHqINapeXv5tH6jIcIo9WW15zPXPIuR2VI9Oi6sdIujXba0mW1CGtonaw4R3cy2F3gSLIOsUeplaqcZp6fkSLlqR1a0aABl1hR4dGot5h4Klyd-lliLmQwgdCqdRHdrXuW0E807ETdpgJUE-Z___RBbrtZmiJLUHggTup4vIPmXaYMZ_nuvcXfwoyS9PHF6IU561cvGNrFGbwYY2ZddYzZZ-9PWk5eh_67M0JlVX02Wor2of3TDWo4g2q-G3JHar4xHJZckAVd6jiDao4oYpXE06o4g2qOKGKz1G1wS6_fb04OPJoJw6viEO_8gqRafTudRgonQQyT0GVW2lNGIEN0EpHWthC5r4yfpElNrdKwcsolQlSyAXhJlsuJ6XZZhwm0mhXDO6aJUQikyw1obHSt34eB3KHbdUP7mZa063cNI_0wz9HdtnqHHgf2YqF_7f5BM5ipfacAP8A-PZqrA
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Expected+p-values+in+light+of+an+ROC+curve+analysis+applied+to+optimal+multiple+testing+procedures&rft.jtitle=Statistical+methods+in+medical+research&rft.au=Vexler%2C+Albert&rft.au=Yu%2C+Jihnhee&rft.au=Zhao%2C+Yang&rft.au=Hutson%2C+Alan+D&rft.date=2018-12-01&rft.eissn=1477-0334&rft.volume=27&rft.issue=12&rft.spage=3560&rft_id=info:doi/10.1177%2F0962280217704451&rft_id=info%3Apmid%2F28504080&rft_id=info%3Apmid%2F28504080&rft.externalDocID=28504080