Expected p-values in light of an ROC curve analysis applied to optimal multiple testing procedures
Many statistical studies report p-values for inferential purposes. In several scenarios, the stochastic aspect of p-values is neglected, which may contribute to drawing wrong conclusions in real data experiments. The stochastic nature of p-values makes their use to examine the performance of given t...
Saved in:
Published in | Statistical methods in medical research Vol. 27; no. 12; p. 3560 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
01.12.2018
|
Subjects | |
Online Access | Get more information |
Cover
Loading…
Abstract | Many statistical studies report p-values for inferential purposes. In several scenarios, the stochastic aspect of p-values is neglected, which may contribute to drawing wrong conclusions in real data experiments. The stochastic nature of p-values makes their use to examine the performance of given testing procedures or associations between investigated factors to be difficult. We turn our focus on the modern statistical literature to address the expected p-value (EPV) as a measure of the performance of decision-making rules. During the course of our study, we prove that the EPV can be considered in the context of receiver operating characteristic (ROC) curve analysis, a well-established biostatistical methodology. The ROC-based framework provides a new and efficient methodology for investigating and constructing statistical decision-making procedures, including: (1) evaluation and visualization of properties of the testing mechanisms, considering, e.g. partial EPVs; (2) developing optimal tests via the minimization of EPVs; (3) creation of novel methods for optimally combining multiple test statistics. We demonstrate that the proposed EPV-based approach allows us to maximize the integrated power of testing algorithms with respect to various significance levels. In an application, we use the proposed method to construct the optimal test and analyze a myocardial infarction disease dataset. We outline the usefulness of the "EPV/ROC" technique for evaluating different decision-making procedures, their constructions and properties with an eye towards practical applications. |
---|---|
AbstractList | Many statistical studies report p-values for inferential purposes. In several scenarios, the stochastic aspect of p-values is neglected, which may contribute to drawing wrong conclusions in real data experiments. The stochastic nature of p-values makes their use to examine the performance of given testing procedures or associations between investigated factors to be difficult. We turn our focus on the modern statistical literature to address the expected p-value (EPV) as a measure of the performance of decision-making rules. During the course of our study, we prove that the EPV can be considered in the context of receiver operating characteristic (ROC) curve analysis, a well-established biostatistical methodology. The ROC-based framework provides a new and efficient methodology for investigating and constructing statistical decision-making procedures, including: (1) evaluation and visualization of properties of the testing mechanisms, considering, e.g. partial EPVs; (2) developing optimal tests via the minimization of EPVs; (3) creation of novel methods for optimally combining multiple test statistics. We demonstrate that the proposed EPV-based approach allows us to maximize the integrated power of testing algorithms with respect to various significance levels. In an application, we use the proposed method to construct the optimal test and analyze a myocardial infarction disease dataset. We outline the usefulness of the "EPV/ROC" technique for evaluating different decision-making procedures, their constructions and properties with an eye towards practical applications. |
Author | Hutson, Alan D Yu, Jihnhee Vexler, Albert Gurevich, Gregory Zhao, Yang |
Author_xml | – sequence: 1 givenname: Albert surname: Vexler fullname: Vexler, Albert organization: 1 Department of Biostatistics, The State University of New York, Buffalo, USA – sequence: 2 givenname: Jihnhee surname: Yu fullname: Yu, Jihnhee organization: 1 Department of Biostatistics, The State University of New York, Buffalo, USA – sequence: 3 givenname: Yang surname: Zhao fullname: Zhao, Yang organization: 1 Department of Biostatistics, The State University of New York, Buffalo, USA – sequence: 4 givenname: Alan D surname: Hutson fullname: Hutson, Alan D organization: 2 Department of Biostatistics and Bioinformatics, Roswell Park Cancer Institute, Buffalo, NY, USA – sequence: 5 givenname: Gregory surname: Gurevich fullname: Gurevich, Gregory organization: 3 Department of Industrial Engineering and Management, SCE-Shamoon College of Engineering, Beer Sheva, Israel |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28504080$$D View this record in MEDLINE/PubMed |
BookMark | eNo1T0tLAzEYDKLYh949Sf7A6pds9nWUUqtQKIieSx5faiTdDZtssf_egHqaGYYZZhbksh96JOSOwQNjTfMIXc15CzxzEKJiF2TORNMUUJZiRhYxfgFAtrprMuNtBQJamBO1_g6oExoaipP0E0bqeurd4TPRwVLZ07fdiuppPGEW0p-ji1SG4F2OpIEOIbmj9PQ4-eSCR5owJtcfaBgHjWYaMd6QKyt9xNs_XJKP5_X76qXY7javq6dtoQWHVOiqNXlhZThTpmayayoGVlrkpQAwypSmslp2oBB0W9vOKpVl2chalC1jfEnuf3vDpI5o9mHMy8bz_v8s_wF5KFe0 |
CitedBy_id | crossref_primary_10_17485_ijst_2018_v11i7_119062 crossref_primary_10_3390_cells8070705 crossref_primary_10_1080_02664763_2022_2102158 crossref_primary_10_1007_s10463_020_00747_2 crossref_primary_10_1021_acsagscitech_1c00291 crossref_primary_10_1080_15598608_2017_1344940 |
ContentType | Journal Article |
DBID | NPM |
DOI | 10.1177/0962280217704451 |
DatabaseName | PubMed |
DatabaseTitle | PubMed |
DatabaseTitleList | PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | no_fulltext_linktorsrc |
Discipline | Medicine Statistics Mathematics |
EISSN | 1477-0334 |
ExternalDocumentID | 28504080 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NCI NIH HHS grantid: P30 CA016056 – fundername: NCATS NIH HHS grantid: UL1 TR001412 – fundername: NLM NIH HHS grantid: G13 LM012241 |
GroupedDBID | --- -TM .2G .2J .2N 0-V 01A 0R~ 123 1~K 29Q 31S 31U 31X 31Y 31Z 36B 4.4 53G 54M 5RE 5VS 6PF 7X7 88E 88I 8C1 8FE 8FG 8FI 8FJ 8R4 8R5 AABMB AABOD AACKU AACMV AACTG AADUE AAEJI AAEWN AAGGD AAGLT AAJIQ AAJOX AAJPV AANSI AAPEO AAPII AAQDB AAQXH AAQXI AARDL AARIX AATAA AATBZ AAWTL AAYTG ABAWP ABCCA ABCJG ABDLQ ABDWY ABEIX ABFWQ ABHKI ABHQH ABIDT ABJCF ABJIS ABKRH ABLUO ABPGX ABPNF ABQKF ABQXT ABRHV ABTDE ABUJY ABUWG ABVFX ABVVC ABYTW ACARO ACDSZ ACDXX ACFEJ ACFMA ACGBL ACGFS ACGOD ACGZU ACIWK ACJER ACLHI ACLZU ACOFE ACOXC ACROE ACRPL ACSIQ ACUAV ACUIR ACXKE ACXMB ADBBV ADDLC ADEBD ADEIA ADNMO ADNON ADRRZ ADSTG ADTBJ ADUKL ADVBO ADYCS AECGH AECVZ AEDTQ AENEX AEPTA AEQLS AERKM AESZF AEUHG AEWDL AEWHI AEXNY AFEET AFKBI AFKRA AFKRG AFMOU AFQAA AFUIA AFWMB AGKLV AGNHF AGQPQ AGWFA AGWNL AHDMH AHHFK AHMBA AJEFB AJGYC AJMMQ AJUZI AJVBE AJXAJ ALIPV ALKWR ALMA_UNASSIGNED_HOLDINGS ALSLI AMCVQ AMVHM ANDLU ARALO ARTOV ASOEW ASPBG AUTPY AUVAJ AVWKF AYAKG AZFZN AZQEC B8O B8R B8Z B93 B94 BBRGL BDDNI BENPR BGLVJ BKIIM BPACV BPHCQ BSEHC BVXVI BYIEH C45 CAG CBRKF CCPQU CFDXU COF CORYS CQQTX CS3 DC- DD- DD0 DE- DF0 DO- DOPDO DU5 DV7 DWQXO D~Y EBS EJD EMOBN F5P FEDTE FHBDP FYUFA GNUQQ GROUPED_SAGE_PREMIER_JOURNAL_COLLECTION H13 HCIFZ HEHIP HF~ HMCUK HVGLF HZ~ J8X K.F K.J L6V M1P M2P M2S M7S N9A NPM O9- OVD P.B P2P PHGZM PHGZT PJZUB POGQB PPXIY PQGLB PQQKQ PROAC PRQQA PSQYO PTHSS Q1R Q2X Q7K Q7L Q7X Q82 Q83 RIG ROL S01 SASJQ SAUOL SCNPE SDB SFB SFC SFK SFN SFT SGA SGP SGR SGV SGX SGZ SHG SNB SPJ SPV SQCSI STM TEORI TN5 UKHRP YHZ ZONMY ZPPRI ZRKOI |
ID | FETCH-LOGICAL-c420t-c58d0005d21bd61a97510fafe23400dbd3d5fca90be0c86f9fbbca937a6438112 |
IngestDate | Mon Jul 21 06:07:42 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | Benjamini–Hochberg procedure expected p-value Bootstrap tilting method confidence region multiple testing Bonferroni procedure partial AUC ROC curve P-value best combination AUC |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c420t-c58d0005d21bd61a97510fafe23400dbd3d5fca90be0c86f9fbbca937a6438112 |
PMID | 28504080 |
ParticipantIDs | pubmed_primary_28504080 |
PublicationCentury | 2000 |
PublicationDate | 2018-12-01 |
PublicationDateYYYYMMDD | 2018-12-01 |
PublicationDate_xml | – month: 12 year: 2018 text: 2018-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Statistical methods in medical research |
PublicationTitleAlternate | Stat Methods Med Res |
PublicationYear | 2018 |
SSID | ssj0007049 |
Score | 2.2534335 |
Snippet | Many statistical studies report p-values for inferential purposes. In several scenarios, the stochastic aspect of p-values is neglected, which may contribute... |
SourceID | pubmed |
SourceType | Index Database |
StartPage | 3560 |
Title | Expected p-values in light of an ROC curve analysis applied to optimal multiple testing procedures |
URI | https://www.ncbi.nlm.nih.gov/pubmed/28504080 |
Volume | 27 |
hasFullText | |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEF4FkCp6QCXlVVq0h94iF7_Wj2MErRASICGooBe0691VkIgTgVOh_ov-486sx44VWhW4WI43ycaeL_PYmfmWsc-RtmAFNIDXZMKLRVB4EpvddZ4jO5ZUoi6QPU2OLuPjK3HV6_3uVC3NKvWl-PXXvpLXSBWugVyxS_YFkm2_FC7AOcgXjiBhOD5LxshTXKDLOPWQtNvVVg3uMNx26f1ycH52MChm9z8xR0DkI5LcTvA5J6Auxtg90hQVVki54brTwarp2T3VF5Lvin6po3V2DSe48bSbb0ypHqINapeXv5tH6jIcIo9WW15zPXPIuR2VI9Oi6sdIujXba0mW1CGtonaw4R3cy2F3gSLIOsUeplaqcZp6fkSLlqR1a0aABl1hR4dGot5h4Klyd-lliLmQwgdCqdRHdrXuW0E807ETdpgJUE-Z___RBbrtZmiJLUHggTup4vIPmXaYMZ_nuvcXfwoyS9PHF6IU561cvGNrFGbwYY2ZddYzZZ-9PWk5eh_67M0JlVX02Wor2of3TDWo4g2q-G3JHar4xHJZckAVd6jiDao4oYpXE06o4g2qOKGKz1G1wS6_fb04OPJoJw6viEO_8gqRafTudRgonQQyT0GVW2lNGIEN0EpHWthC5r4yfpElNrdKwcsolQlSyAXhJlsuJ6XZZhwm0mhXDO6aJUQikyw1obHSt34eB3KHbdUP7mZa063cNI_0wz9HdtnqHHgf2YqF_7f5BM5ipfacAP8A-PZqrA |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Expected+p-values+in+light+of+an+ROC+curve+analysis+applied+to+optimal+multiple+testing+procedures&rft.jtitle=Statistical+methods+in+medical+research&rft.au=Vexler%2C+Albert&rft.au=Yu%2C+Jihnhee&rft.au=Zhao%2C+Yang&rft.au=Hutson%2C+Alan+D&rft.date=2018-12-01&rft.eissn=1477-0334&rft.volume=27&rft.issue=12&rft.spage=3560&rft_id=info:doi/10.1177%2F0962280217704451&rft_id=info%3Apmid%2F28504080&rft_id=info%3Apmid%2F28504080&rft.externalDocID=28504080 |