Quality assessment of real-world data repositories across the data life cycle: A literature review
Abstract Objective Data quality (DQ) must be consistently defined in context. The attributes, metadata, and context of longitudinal real-world data (RWD) have not been formalized for quality improvement across the data production and curation life cycle. We sought to complete a literature review on...
Saved in:
Published in | Journal of the American Medical Informatics Association : JAMIA Vol. 28; no. 7; pp. 1591 - 1599 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
14.07.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 1527-974X 1067-5027 1527-974X |
DOI | 10.1093/jamia/ocaa340 |
Cover
Loading…
Abstract | Abstract
Objective
Data quality (DQ) must be consistently defined in context. The attributes, metadata, and context of longitudinal real-world data (RWD) have not been formalized for quality improvement across the data production and curation life cycle. We sought to complete a literature review on DQ assessment frameworks, indicators and tools for research, public health, service, and quality improvement across the data life cycle.
Materials and Methods
The review followed PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. Databases from health, physical and social sciences were used: Cinahl, Embase, Scopus, ProQuest, Emcare, PsycINFO, Compendex, and Inspec. Embase was used instead of PubMed (an interface to search MEDLINE) because it includes all MeSH (Medical Subject Headings) terms used and journals in MEDLINE as well as additional unique journals and conference abstracts. A combined data life cycle and quality framework guided the search of published and gray literature for DQ frameworks, indicators, and tools. At least 2 authors independently identified articles for inclusion and extracted and categorized DQ concepts and constructs. All authors discussed findings iteratively until consensus was reached.
Results
The 120 included articles yielded concepts related to contextual (data source, custodian, and user) and technical (interoperability) factors across the data life cycle. Contextual DQ subcategories included relevance, usability, accessibility, timeliness, and trust. Well-tested computable DQ indicators and assessment tools were also found.
Conclusions
A DQ assessment framework that covers intrinsic, technical, and contextual categories across the data life cycle enables assessment and management of RWD repositories to ensure fitness for purpose. Balancing security, privacy, and FAIR principles requires trust and reciprocity, transparent governance, and organizational cultures that value good documentation. |
---|---|
AbstractList | Abstract
Objective
Data quality (DQ) must be consistently defined in context. The attributes, metadata, and context of longitudinal real-world data (RWD) have not been formalized for quality improvement across the data production and curation life cycle. We sought to complete a literature review on DQ assessment frameworks, indicators and tools for research, public health, service, and quality improvement across the data life cycle.
Materials and Methods
The review followed PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. Databases from health, physical and social sciences were used: Cinahl, Embase, Scopus, ProQuest, Emcare, PsycINFO, Compendex, and Inspec. Embase was used instead of PubMed (an interface to search MEDLINE) because it includes all MeSH (Medical Subject Headings) terms used and journals in MEDLINE as well as additional unique journals and conference abstracts. A combined data life cycle and quality framework guided the search of published and gray literature for DQ frameworks, indicators, and tools. At least 2 authors independently identified articles for inclusion and extracted and categorized DQ concepts and constructs. All authors discussed findings iteratively until consensus was reached.
Results
The 120 included articles yielded concepts related to contextual (data source, custodian, and user) and technical (interoperability) factors across the data life cycle. Contextual DQ subcategories included relevance, usability, accessibility, timeliness, and trust. Well-tested computable DQ indicators and assessment tools were also found.
Conclusions
A DQ assessment framework that covers intrinsic, technical, and contextual categories across the data life cycle enables assessment and management of RWD repositories to ensure fitness for purpose. Balancing security, privacy, and FAIR principles requires trust and reciprocity, transparent governance, and organizational cultures that value good documentation. Data quality (DQ) must be consistently defined in context. The attributes, metadata, and context of longitudinal real-world data (RWD) have not been formalized for quality improvement across the data production and curation life cycle. We sought to complete a literature review on DQ assessment frameworks, indicators and tools for research, public health, service, and quality improvement across the data life cycle. The review followed PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. Databases from health, physical and social sciences were used: Cinahl, Embase, Scopus, ProQuest, Emcare, PsycINFO, Compendex, and Inspec. Embase was used instead of PubMed (an interface to search MEDLINE) because it includes all MeSH (Medical Subject Headings) terms used and journals in MEDLINE as well as additional unique journals and conference abstracts. A combined data life cycle and quality framework guided the search of published and gray literature for DQ frameworks, indicators, and tools. At least 2 authors independently identified articles for inclusion and extracted and categorized DQ concepts and constructs. All authors discussed findings iteratively until consensus was reached. The 120 included articles yielded concepts related to contextual (data source, custodian, and user) and technical (interoperability) factors across the data life cycle. Contextual DQ subcategories included relevance, usability, accessibility, timeliness, and trust. Well-tested computable DQ indicators and assessment tools were also found. A DQ assessment framework that covers intrinsic, technical, and contextual categories across the data life cycle enables assessment and management of RWD repositories to ensure fitness for purpose. Balancing security, privacy, and FAIR principles requires trust and reciprocity, transparent governance, and organizational cultures that value good documentation. Data quality (DQ) must be consistently defined in context. The attributes, metadata, and context of longitudinal real-world data (RWD) have not been formalized for quality improvement across the data production and curation life cycle. We sought to complete a literature review on DQ assessment frameworks, indicators and tools for research, public health, service, and quality improvement across the data life cycle.OBJECTIVEData quality (DQ) must be consistently defined in context. The attributes, metadata, and context of longitudinal real-world data (RWD) have not been formalized for quality improvement across the data production and curation life cycle. We sought to complete a literature review on DQ assessment frameworks, indicators and tools for research, public health, service, and quality improvement across the data life cycle.The review followed PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. Databases from health, physical and social sciences were used: Cinahl, Embase, Scopus, ProQuest, Emcare, PsycINFO, Compendex, and Inspec. Embase was used instead of PubMed (an interface to search MEDLINE) because it includes all MeSH (Medical Subject Headings) terms used and journals in MEDLINE as well as additional unique journals and conference abstracts. A combined data life cycle and quality framework guided the search of published and gray literature for DQ frameworks, indicators, and tools. At least 2 authors independently identified articles for inclusion and extracted and categorized DQ concepts and constructs. All authors discussed findings iteratively until consensus was reached.MATERIALS AND METHODSThe review followed PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. Databases from health, physical and social sciences were used: Cinahl, Embase, Scopus, ProQuest, Emcare, PsycINFO, Compendex, and Inspec. Embase was used instead of PubMed (an interface to search MEDLINE) because it includes all MeSH (Medical Subject Headings) terms used and journals in MEDLINE as well as additional unique journals and conference abstracts. A combined data life cycle and quality framework guided the search of published and gray literature for DQ frameworks, indicators, and tools. At least 2 authors independently identified articles for inclusion and extracted and categorized DQ concepts and constructs. All authors discussed findings iteratively until consensus was reached.The 120 included articles yielded concepts related to contextual (data source, custodian, and user) and technical (interoperability) factors across the data life cycle. Contextual DQ subcategories included relevance, usability, accessibility, timeliness, and trust. Well-tested computable DQ indicators and assessment tools were also found.RESULTSThe 120 included articles yielded concepts related to contextual (data source, custodian, and user) and technical (interoperability) factors across the data life cycle. Contextual DQ subcategories included relevance, usability, accessibility, timeliness, and trust. Well-tested computable DQ indicators and assessment tools were also found.A DQ assessment framework that covers intrinsic, technical, and contextual categories across the data life cycle enables assessment and management of RWD repositories to ensure fitness for purpose. Balancing security, privacy, and FAIR principles requires trust and reciprocity, transparent governance, and organizational cultures that value good documentation.CONCLUSIONSA DQ assessment framework that covers intrinsic, technical, and contextual categories across the data life cycle enables assessment and management of RWD repositories to ensure fitness for purpose. Balancing security, privacy, and FAIR principles requires trust and reciprocity, transparent governance, and organizational cultures that value good documentation. |
Author | Ansari, Sameera Bennett, Vicki Kahn, Michael G Guo, Jason Guan Nan Liaw, Siaw-Teng Borelli, Alder Jose Liyanage, Harshana Chan, Jaclyn Jonnagaddala, Jitendra de Lusignan, Simon Bhattal, Navreet Godinho, Myron Anthony Capurro, Daniel |
AuthorAffiliation | 2 Nuffield Department of Primary Care Health Sciences, University of Oxford , Oxford, United Kingdom 4 Australian Institute of Health and Welfare, Canberra, Australian Capital Territory , Australia 5 Department of Pediatrics (Section of Informatics and Data Sciences), University of Colorado Anschutz Medical Campus , Denver, Colorado, USA 1 WHO Collaborating Centre on eHealth, School of Population Health, Faculty of Medicine, UNSW Sydney , Sydney, New South Wales, Australia 3 Faculty of Engineering and Information Technology, University of Melbourne , Melbourne, Victoria, Australia |
AuthorAffiliation_xml | – name: 2 Nuffield Department of Primary Care Health Sciences, University of Oxford , Oxford, United Kingdom – name: 4 Australian Institute of Health and Welfare, Canberra, Australian Capital Territory , Australia – name: 5 Department of Pediatrics (Section of Informatics and Data Sciences), University of Colorado Anschutz Medical Campus , Denver, Colorado, USA – name: 1 WHO Collaborating Centre on eHealth, School of Population Health, Faculty of Medicine, UNSW Sydney , Sydney, New South Wales, Australia – name: 3 Faculty of Engineering and Information Technology, University of Melbourne , Melbourne, Victoria, Australia |
Author_xml | – sequence: 1 givenname: Siaw-Teng orcidid: 0000-0001-5989-3614 surname: Liaw fullname: Liaw, Siaw-Teng email: siaw@unsw.edu.au organization: WHO Collaborating Centre on eHealth, School of Population Health, Faculty of Medicine, UNSW Sydney, Sydney, New South Wales, Australia – sequence: 2 givenname: Jason Guan Nan surname: Guo fullname: Guo, Jason Guan Nan organization: WHO Collaborating Centre on eHealth, School of Population Health, Faculty of Medicine, UNSW Sydney, Sydney, New South Wales, Australia – sequence: 3 givenname: Sameera surname: Ansari fullname: Ansari, Sameera organization: WHO Collaborating Centre on eHealth, School of Population Health, Faculty of Medicine, UNSW Sydney, Sydney, New South Wales, Australia – sequence: 4 givenname: Jitendra orcidid: 0000-0002-9912-2344 surname: Jonnagaddala fullname: Jonnagaddala, Jitendra organization: WHO Collaborating Centre on eHealth, School of Population Health, Faculty of Medicine, UNSW Sydney, Sydney, New South Wales, Australia – sequence: 5 givenname: Myron Anthony orcidid: 0000-0002-0081-2506 surname: Godinho fullname: Godinho, Myron Anthony organization: WHO Collaborating Centre on eHealth, School of Population Health, Faculty of Medicine, UNSW Sydney, Sydney, New South Wales, Australia – sequence: 6 givenname: Alder Jose surname: Borelli fullname: Borelli, Alder Jose organization: WHO Collaborating Centre on eHealth, School of Population Health, Faculty of Medicine, UNSW Sydney, Sydney, New South Wales, Australia – sequence: 7 givenname: Simon orcidid: 0000-0002-8553-2641 surname: de Lusignan fullname: de Lusignan, Simon organization: Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, United Kingdom – sequence: 8 givenname: Daniel surname: Capurro fullname: Capurro, Daniel organization: Faculty of Engineering and Information Technology, University of Melbourne, Melbourne, Victoria, Australia – sequence: 9 givenname: Harshana surname: Liyanage fullname: Liyanage, Harshana organization: Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, United Kingdom – sequence: 10 givenname: Navreet surname: Bhattal fullname: Bhattal, Navreet organization: Australian Institute of Health and Welfare, Canberra, Australian Capital Territory, Australia – sequence: 11 givenname: Vicki surname: Bennett fullname: Bennett, Vicki organization: Australian Institute of Health and Welfare, Canberra, Australian Capital Territory, Australia – sequence: 12 givenname: Jaclyn surname: Chan fullname: Chan, Jaclyn organization: Australian Institute of Health and Welfare, Canberra, Australian Capital Territory, Australia – sequence: 13 givenname: Michael G orcidid: 0000-0003-4786-6875 surname: Kahn fullname: Kahn, Michael G organization: Department of Pediatrics (Section of Informatics and Data Sciences), University of Colorado Anschutz Medical Campus, Denver, Colorado, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33496785$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc9rHSEQx6UkND_aY69lj71so6uraw-FENIfEAiBFHqTee7YGNz1Vd2E99_X5L2GtFB6UYf5zPc7zhyRvTnOSMgbRt8zqvnJLUweTqIF4IK-IIes71Srlfi-9-x9QI5yvqWUyY73L8kB50JLNfSHZHW1QPBl00DOmPOEc2miaxJCaO9jCmMzQoEar2P2JSaPuQGbYs5NucFtMniHjd3YgB-a0xoVTFCWhLXqzuP9K7LvIGR8vbuPybdP59dnX9qLy89fz04vWis6WurJmR4YpzhYqVYchZOaSiUHMQrdOVQoJBvcaFeDk5yhGylDrhRyLVBRfkw-bnXXy2rC0davJAhmnfwEaWMiePNnZvY35ke8M4NQfdfpKvBuJ5DizwVzMZPPFkOAGeOSTScGxmhPtazo2-deTya_B1uBdgs8ziqhe0IYNQ-LM4-LM7vFVZ7_xVtfoPj40KoP_6zadRyX9X8MfgFU967k |
CitedBy_id | crossref_primary_10_1007_s10742_023_00319_w crossref_primary_10_1016_j_csbj_2023_10_006 crossref_primary_10_12677_mse_2025_142050 crossref_primary_10_2196_51560 crossref_primary_10_1016_j_conctc_2024_101354 crossref_primary_10_1200_CCI_22_00182 crossref_primary_10_1136_bmjinnov_2021_000903 crossref_primary_10_1016_j_ijmedinf_2025_105814 crossref_primary_10_1016_j_jbi_2022_104110 crossref_primary_10_1080_20479700_2023_2195197 crossref_primary_10_1016_j_ccc_2023_03_002 crossref_primary_10_1186_s12911_022_01961_z crossref_primary_10_1093_jamiaopen_ooae062 crossref_primary_10_1177_20539517211019430 crossref_primary_10_1016_j_jval_2024_01_019 crossref_primary_10_1093_jamiaopen_ooae044 crossref_primary_10_1053_j_semvascsurg_2021_10_005 crossref_primary_10_1016_j_jbi_2021_103715 crossref_primary_10_1186_s12911_024_02818_3 crossref_primary_10_2147_CMAR_S441359 crossref_primary_10_1093_jamia_ocac228 crossref_primary_10_1186_s12911_024_02644_7 crossref_primary_10_3390_app12094238 crossref_primary_10_1007_s10926_024_10196_w crossref_primary_10_1055_s_0042_1760238 crossref_primary_10_1097_NR9_0000000000000077 crossref_primary_10_2196_60244 crossref_primary_10_3389_fphar_2022_988974 crossref_primary_10_2196_45948 crossref_primary_10_1007_s10926_024_10175_1 crossref_primary_10_1016_j_jclinepi_2024_111545 crossref_primary_10_47912_jscdm_320 crossref_primary_10_1186_s12911_021_01524_8 crossref_primary_10_2196_57615 crossref_primary_10_1093_jamiaopen_ooac093 crossref_primary_10_1007_s00296_023_05354_x crossref_primary_10_1016_j_ijmedinf_2021_104470 crossref_primary_10_1016_j_ijmedinf_2023_105262 crossref_primary_10_21105_joss_06581 crossref_primary_10_1186_s12911_021_01643_2 crossref_primary_10_2196_60709 crossref_primary_10_32604_cmc_2023_031491 crossref_primary_10_1093_jamiaopen_ooae058 crossref_primary_10_3343_alm_2024_0258 crossref_primary_10_3390_cells11132112 crossref_primary_10_1007_s11414_023_09875_y |
Cites_doi | 10.14236/jhi.v23i3.826 10.1016/j.cmpb.2019.06.013 10.1080/07421222.1996.11518099 10.1016/j.cmpb.2018.12.029 10.1093/jamia/ocx033 10.1016/j.cmpb.2019.05.017 10.1145/1985347.1985353 10.1055/s-0040-1701980 10.1097/MLR.0b013e31829b1e2c 10.1136/amiajnl-2011-000681 10.15265/IY-2016-035 10.1038/sdata.2016.18 10.1055/s-0039-1677901 10.1016/j.ijmedinf.2012.10.001 10.1016/j.ijmedinf.2015.09.008 |
ContentType | Journal Article |
Copyright | The Author(s) 2021. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For permissions, please email: journals.permissions@oup.com 2021 The Author(s) 2021. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For permissions, please email: journals.permissions@oup.com. |
Copyright_xml | – notice: The Author(s) 2021. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For permissions, please email: journals.permissions@oup.com 2021 – notice: The Author(s) 2021. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For permissions, please email: journals.permissions@oup.com. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1093/jamia/ocaa340 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1527-974X |
EndPage | 1599 |
ExternalDocumentID | PMC8475229 33496785 10_1093_jamia_ocaa340 10.1093/jamia/ocaa340 |
Genre | Journal Article Review Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: ; |
GroupedDBID | --- --K .DC .GJ 0R~ 18M 1B1 1TH 29L 2WC 4.4 48X 53G 5GY 5RE 5WD 6PF 7RV 7X7 7~T 88E 88I 8AF 8AO 8FE 8FG 8FI 8FJ 8FW AABZA AACZT AAEDT AAJQQ AALRI AAMVS AAOGV AAPGJ AAPQZ AAPXW AARHZ AAUAY AAUQX AAVAP AAWDT AAWTL AAXUO ABDFA ABEJV ABEUO ABGNP ABIXL ABJNI ABNHQ ABOCM ABPQP ABPTD ABQLI ABQNK ABSMQ ABUWG ABVGC ABWST ABWVN ABXVV ACFRR ACGFO ACGFS ACGOD ACHQT ACRPL ACUFI ACUTJ ACVCV ACYHN ACZBC ADBBV ADGZP ADHKW ADHZD ADIPN ADJOM ADMTO ADMUD ADNBA ADNMO ADQBN ADRTK ADVEK ADYVW AEGPL AEJOX AEKSI AEMDU AEMQT AENEX AENZO AEPUE AETBJ AEWNT AFFQV AFFZL AFIYH AFKRA AFOFC AFXAL AFYAG AGINJ AGKRT AGMDO AGQXC AGSYK AGUTN AHMBA AHMMS AJDVS AJEEA AJNCP ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQC ALXQX APIBT APJGH AQDSO AQKUS AQUVI ARAPS ATGXG AVNTJ AVWKF AXUDD AYCSE AZQEC BAWUL BAYMD BCRHZ BENPR BEYMZ BGLVJ BHONS BKEYQ BPHCQ BTRTY BVRKM BVXVI BZKNY C1A C45 CCPQU CDBKE CS3 DAKXR DIK DILTD DU5 DWQXO E3Z EBD EBS EIHJH EJD EMOBN ENERS EO8 EX3 F5P FDB FECEO FLUFQ FOEOM FOTVD FQBLK FYUFA G-Q GAUVT GJXCC GNUQQ GX1 H13 HAR HCIFZ HMCUK IH2 IHE J21 JXSIZ K6V K7- KBUDW KOP KSI KSN LSO M0T M1P M2P M2Q M41 MBLQV MHKGH NAPCQ NOMLY NOYVH NQ- NU- NVLIB O9- OAUYM OAWHX OBFPC OCZFY ODMLO OJQWA OJZSN OK1 OPAEJ OVD OWPYF P2P P62 PAFKI PCD PEELM PHGZT PQQKQ PROAC PSQYO Q5Y R53 RIG ROL ROX ROZ RPM RPZ RUSNO RWL RXO S0X SSZ SV3 TAE TEORI TJX TMA UKHRP WOQ WOW YAYTL YHZ YKOAZ YXANX ZGI ~S- AAYXX AGORE AHGBF AJBYB CITATION ADJQC ADRIX AFXEN CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c420t-c43198130e8c67b3e4f69067684d492fe7e4618fdcb8f631efd01e377e394e703 |
ISSN | 1527-974X 1067-5027 |
IngestDate | Thu Aug 21 18:12:56 EDT 2025 Fri Jul 11 16:56:48 EDT 2025 Wed Feb 19 02:27:18 EST 2025 Tue Jul 01 02:01:53 EDT 2025 Thu Apr 24 23:09:18 EDT 2025 Wed Apr 02 07:06:05 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | data quality DQ assessment tools data stewardship DQ indicators DQ measures data custodianship literature review |
Language | English |
License | This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model) https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model The Author(s) 2021. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For permissions, please email: journals.permissions@oup.com. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c420t-c43198130e8c67b3e4f69067684d492fe7e4618fdcb8f631efd01e377e394e703 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-0081-2506 0000-0003-4786-6875 0000-0001-5989-3614 0000-0002-8553-2641 0000-0002-9912-2344 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/8475229 |
PMID | 33496785 |
PQID | 2481105096 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8475229 proquest_miscellaneous_2481105096 pubmed_primary_33496785 crossref_primary_10_1093_jamia_ocaa340 crossref_citationtrail_10_1093_jamia_ocaa340 oup_primary_10_1093_jamia_ocaa340 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-07-14 |
PublicationDateYYYYMMDD | 2021-07-14 |
PublicationDate_xml | – month: 07 year: 2021 text: 2021-07-14 day: 14 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Journal of the American Medical Informatics Association : JAMIA |
PublicationTitleAlternate | J Am Med Inform Assoc |
PublicationYear | 2021 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Liaw (2021092713440974700_ocaa340-B8) 2013; 82 Taggart (2021092713440974700_ocaa340-B14) 2015; 84 Saez (2021092713440974700_ocaa340-B10) 2012; 180 Huser (2021092713440974700_ocaa340-B23) 2016; 4 Liyanage (2021092713440974700_ocaa340-B1) 2019; 28 Álvarez Sánchez (2021092713440974700_ocaa340-B27) 2019; 181 McKnight (2021092713440974700_ocaa340-B24) 2011; 2 Wang (2021092713440974700_ocaa340-B7) 1996; 12 Liyanage (2021092713440974700_ocaa340-B3) 2016; 25 Khare (2021092713440974700_ocaa340-B17) 2017; 24 Lee (2021092713440974700_ocaa340-B22) 2001 Kahn (2021092713440974700_ocaa340-B29) 2015; 3 Huser (2021092713440974700_ocaa340-B16) 2019; 264 Rajan (2021092713440974700_ocaa340-B18) 2019; 177 Weiskopf (2021092713440974700_ocaa340-B9) 2013; 20 Wilkinson (2021092713440974700_ocaa340-B4) 2016; 3 Liaw (2021092713440974700_ocaa340-B28) 2016; 23 (2021092713440974700_ocaa340-B12) 2017 Henley-Smith (2021092713440974700_ocaa340-B19) 2019; 7 (2021092713440974700_ocaa340-B13) 2003 Hripcsak (2021092713440974700_ocaa340-B25) 2015; 216 (2021092713440974700_ocaa340-B6) 2016 Sáez (2021092713440974700_ocaa340-B20) 2019; 181 2021092713440974700_ocaa340-B26 Liaw (2021092713440974700_ocaa340-B2) 2020; 29 Huser (2021092713440974700_ocaa340-B11) 2018; 23 (2021092713440974700_ocaa340-B21) 2015 Qualls (2021092713440974700_ocaa340-B5) 2018; 6 Kahn (2021092713440974700_ocaa340-B15) 2016; 4 Brown (2021092713440974700_ocaa340-B30) 2013; 51 |
References_xml | – volume: 23 start-page: 547 issue: 3 year: 2016 ident: 2021092713440974700_ocaa340-B28 article-title: An ‘integrated health neighbourhood’ framework to optimise the use of EHR data publication-title: J Innov Health Inform doi: 10.14236/jhi.v23i3.826 – volume: 216 start-page: 574 year: 2015 ident: 2021092713440974700_ocaa340-B25 article-title: Observational Health Data Sciences and Informatics (OHDSI): opportunities for observational researchers publication-title: Stud Health Technol Inform – volume: 181 start-page: 104954 year: 2019 ident: 2021092713440974700_ocaa340-B20 article-title: Guest editorial: Special issue in biomedical data quality assessment methods publication-title: Comput Methods Programs Biomed doi: 10.1016/j.cmpb.2019.06.013 – volume: 3 start-page: 7 issue: 1 year: 2015 ident: 2021092713440974700_ocaa340-B29 article-title: Transparent reporting of data quality in distributed data networks publication-title: EGEMS (Wash DC) – volume-title: Improving Data Quality: A Guide for Developing Countries year: 2003 ident: 2021092713440974700_ocaa340-B13 – volume: 4 issue: 1 year: 2016 ident: 2021092713440974700_ocaa340-B23 article-title: Multisite evaluation of a data quality tool for patient-level clinical data sets publication-title: EGEMS (Wash DC) – volume: 12 start-page: 5 issue: 4 year: 1996 ident: 2021092713440974700_ocaa340-B7 article-title: Beyond accuracy: what data quality means to data consumers publication-title: J Manage Inf Syst doi: 10.1080/07421222.1996.11518099 – volume: 181 start-page: 104824 year: 2019 ident: 2021092713440974700_ocaa340-B27 article-title: TAQIH, a tool for tabular data quality assessment and improvement in the context of health data publication-title: Comput Methods Programs Biomed doi: 10.1016/j.cmpb.2018.12.029 – volume: 24 start-page: 1072 issue: 6 year: 2017 ident: 2021092713440974700_ocaa340-B17 article-title: A longitudinal analysis of data quality in a large pediatric data research network publication-title: J Am Med Inform Assoc doi: 10.1093/jamia/ocx033 – volume: 6 start-page: 3 issue: 1 year: 2018 ident: 2021092713440974700_ocaa340-B5 article-title: Evaluating foundational data quality in the national patientcentered clinical research network (PCORnet publication-title: EGEMS (Wash DC) – volume: 23 start-page: 628 year: 2018 ident: 2021092713440974700_ocaa340-B11 article-title: Methods for examining data quality in healthcare integrated data repositories publication-title: Biocomputing – year: 2001 ident: 2021092713440974700_ocaa340-B22 – volume: 177 start-page: 193 year: 2019 ident: 2021092713440974700_ocaa340-B18 article-title: Towards a content agnostic computable knowledge repository for data quality assessment publication-title: Comput Methods Progr Biomed doi: 10.1016/j.cmpb.2019.05.017 – volume: 2 start-page: 1 issue: 2 year: 2011 ident: 2021092713440974700_ocaa340-B24 article-title: Trust in a specific technology: An investigation of its components and measures publication-title: ACM Trans Manage Inf Syst doi: 10.1145/1985347.1985353 – ident: 2021092713440974700_ocaa340-B26 – volume: 264 start-page: 1488 year: 2019 ident: 2021092713440974700_ocaa340-B16 article-title: Extending Achilles heel data quality tool with new rules informed by multi-site data quality comparison publication-title: Stud Health Technol Inform – volume: 29 start-page: 51 issue: 1 year: 2020 ident: 2021092713440974700_ocaa340-B2 article-title: Ethical use of electronic health record data and artificial intelligence: recommendations of the primary care informatics working group of the international medical informatics association publication-title: Yearb Med Inform doi: 10.1055/s-0040-1701980 – year: 2017 ident: 2021092713440974700_ocaa340-B12 – volume: 51 start-page: S22 year: 2013 ident: 2021092713440974700_ocaa340-B30 article-title: Data quality assessment for comparative effectiveness research in distributed data networks publication-title: Med Care doi: 10.1097/MLR.0b013e31829b1e2c – volume: 20 start-page: 144 issue: 1 year: 2013 ident: 2021092713440974700_ocaa340-B9 article-title: Methods and dimensions of electronic health record data quality assessment: enabling reuse for clinical research publication-title: J Am Med Inform Assoc doi: 10.1136/amiajnl-2011-000681 – volume: 25 start-page: 138 issue: 1 year: 2016 ident: 2021092713440974700_ocaa340-B3 article-title: Building a privacy, ethics, and data access framework for real world computerised medical record system data: a Delphi study. Contribution of the Primary Health Care Informatics Working Group publication-title: Yearb Med Inform doi: 10.15265/IY-2016-035 – volume: 3 start-page: 160018 issue: 1 year: 2016 ident: 2021092713440974700_ocaa340-B4 article-title: The FAIR Guiding Principles for scientific data management and stewardship publication-title: Sci Data doi: 10.1038/sdata.2016.18 – volume: 180 start-page: 721 year: 2012 ident: 2021092713440974700_ocaa340-B10 article-title: Organizing data quality assessment of shifting biomedical data publication-title: Stud Health Technol Inform – volume: 7 start-page: 38 issue: 1 year: 2019 ident: 2021092713440974700_ocaa340-B19 article-title: Improving a secondary use health data warehouse: proposing a multi-level data quality framework publication-title: EGEMS (Wash DC) – year: 2015 ident: 2021092713440974700_ocaa340-B21 – volume: 28 start-page: 41 issue: 1 year: 2019 ident: 2021092713440974700_ocaa340-B1 article-title: Artificial intelligence in primary health care: perceptions, issues, and challenges publication-title: Yearb Med Inform doi: 10.1055/s-0039-1677901 – volume: 82 start-page: 10 issue: 1 year: 2013 ident: 2021092713440974700_ocaa340-B8 article-title: Towards an ontology for data quality in integrated chronic disease: a realist review of the literature publication-title: Int J Med Inform doi: 10.1016/j.ijmedinf.2012.10.001 – volume: 4 start-page: 18 issue: 1 year: 2016 ident: 2021092713440974700_ocaa340-B15 article-title: A harmonized data quality assessment terminology and framework for the secondary use of electronic health record data publication-title: EGEMS (Wash DC) – year: 2016 ident: 2021092713440974700_ocaa340-B6 – volume: 84 start-page: 1094 issue: 12 year: 2015 ident: 2021092713440974700_ocaa340-B14 article-title: Structured data quality reports to improve EHR data quality publication-title: Int J Med Inform doi: 10.1016/j.ijmedinf.2015.09.008 |
SSID | ssj0016235 |
Score | 2.5306773 |
SecondaryResourceType | review_article |
Snippet | Abstract
Objective
Data quality (DQ) must be consistently defined in context. The attributes, metadata, and context of longitudinal real-world data (RWD) have... Data quality (DQ) must be consistently defined in context. The attributes, metadata, and context of longitudinal real-world data (RWD) have not been formalized... |
SourceID | pubmedcentral proquest pubmed crossref oup |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1591 |
SubjectTerms | Animals Data Accuracy Life Cycle Stages Quality Improvement Research and Applications |
Title | Quality assessment of real-world data repositories across the data life cycle: A literature review |
URI | https://www.ncbi.nlm.nih.gov/pubmed/33496785 https://www.proquest.com/docview/2481105096 https://pubmed.ncbi.nlm.nih.gov/PMC8475229 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKkKa9IL4pA2QkxEvJlq8mDm_TxDQmipDopL5FTnKGojSd1vZh-4f5N7iz3cSdVgF7SdvYtdXcr3dn393PjL0LQfqBklSN4_teXEDliaTAxcowCyDzRQmCqpFHX5PT8_hsMpz0er-drKXVsjgor2-tK7mLVPEeypWqZP9Dsu2geAPfo3zxihLG6z_J2BBgXA1kS69Jvh-6gbWnmVAHlP-pwwKLKZGBwGIgtVnU7qZurKcKBuUVDmxq1OuWZtlWtWzxXp2KlC7aY2ubNPOzI3e97YDa_XOLli9TaUJK-OqNwVpPSgNamUiQpIMREb4Nqf9uq2IhTWH8dzkDuGwtytm8aeQP1KGyNqm_U9rZt-12SyMMaK806LY0t5RKOloaTaw39A2pwAFYzR2mHi6OJq5qD4UD4dTR0wRFx-bjx-xWe2K4tn7JGWUun6B3ISPDLuWg62Km4RUR9X5qzh-6QeH9bXSMTgB6utk9dj_E9Uyw3lay4S70QYc6LG9_lyWDxdkP9dyHduY9trueZsOP2qjNdJZINzN9Hddp_JA9sKjhRwbAj1gPmsdsd2SzOp6wwuKYdzjmc8U7HHOCKndxzA2OOcLQNBKOucbxR37EOxRzg-Kn7Pzk0_j41LNnf3hlHPpLvKJtEOhggSiTtIggVkSpTWHjKs5CBSnESSBUVRZCJVEAqvIDiNIUoiwGNGPP2E4zb-AF41KhLqpUpvAJxr7I8ElCUEWonISoyizqsw_rJ5mXlhifzmepc5OgEeVaBrmVQZ-9b7tfGEaYbR3folj-2mcttBz1OgXrZAPz1SIPY4GeOZEz9dlzI8R2qDUG-izdEG_bgTjjN1ua6U_NHW9x-PLO39xne91f9hXbWV6u4DX65cvijcb0H8d37IA |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quality+assessment+of+real-world+data+repositories+across+the+data+life+cycle%3A+A+literature+review&rft.jtitle=Journal+of+the+American+Medical+Informatics+Association+%3A+JAMIA&rft.au=Liaw%2C+Siaw-Teng&rft.au=Guo%2C+Jason+Guan+Nan&rft.au=Ansari%2C+Sameera&rft.au=Jonnagaddala%2C+Jitendra&rft.date=2021-07-14&rft.pub=Oxford+University+Press&rft.issn=1067-5027&rft.eissn=1527-974X&rft.volume=28&rft.issue=7&rft.spage=1591&rft.epage=1599&rft_id=info:doi/10.1093%2Fjamia%2Focaa340&rft_id=info%3Apmid%2F33496785&rft.externalDocID=PMC8475229 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1527-974X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1527-974X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1527-974X&client=summon |