Quality assessment of real-world data repositories across the data life cycle: A literature review

Abstract Objective Data quality (DQ) must be consistently defined in context. The attributes, metadata, and context of longitudinal real-world data (RWD) have not been formalized for quality improvement across the data production and curation life cycle. We sought to complete a literature review on...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Medical Informatics Association : JAMIA Vol. 28; no. 7; pp. 1591 - 1599
Main Authors Liaw, Siaw-Teng, Guo, Jason Guan Nan, Ansari, Sameera, Jonnagaddala, Jitendra, Godinho, Myron Anthony, Borelli, Alder Jose, de Lusignan, Simon, Capurro, Daniel, Liyanage, Harshana, Bhattal, Navreet, Bennett, Vicki, Chan, Jaclyn, Kahn, Michael G
Format Journal Article
LanguageEnglish
Published England Oxford University Press 14.07.2021
Subjects
Online AccessGet full text
ISSN1527-974X
1067-5027
1527-974X
DOI10.1093/jamia/ocaa340

Cover

Loading…
Abstract Abstract Objective Data quality (DQ) must be consistently defined in context. The attributes, metadata, and context of longitudinal real-world data (RWD) have not been formalized for quality improvement across the data production and curation life cycle. We sought to complete a literature review on DQ assessment frameworks, indicators and tools for research, public health, service, and quality improvement across the data life cycle. Materials and Methods The review followed PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. Databases from health, physical and social sciences were used: Cinahl, Embase, Scopus, ProQuest, Emcare, PsycINFO, Compendex, and Inspec. Embase was used instead of PubMed (an interface to search MEDLINE) because it includes all MeSH (Medical Subject Headings) terms used and journals in MEDLINE as well as additional unique journals and conference abstracts. A combined data life cycle and quality framework guided the search of published and gray literature for DQ frameworks, indicators, and tools. At least 2 authors independently identified articles for inclusion and extracted and categorized DQ concepts and constructs. All authors discussed findings iteratively until consensus was reached. Results The 120 included articles yielded concepts related to contextual (data source, custodian, and user) and technical (interoperability) factors across the data life cycle. Contextual DQ subcategories included relevance, usability, accessibility, timeliness, and trust. Well-tested computable DQ indicators and assessment tools were also found. Conclusions A DQ assessment framework that covers intrinsic, technical, and contextual categories across the data life cycle enables assessment and management of RWD repositories to ensure fitness for purpose. Balancing security, privacy, and FAIR principles requires trust and reciprocity, transparent governance, and organizational cultures that value good documentation.
AbstractList Abstract Objective Data quality (DQ) must be consistently defined in context. The attributes, metadata, and context of longitudinal real-world data (RWD) have not been formalized for quality improvement across the data production and curation life cycle. We sought to complete a literature review on DQ assessment frameworks, indicators and tools for research, public health, service, and quality improvement across the data life cycle. Materials and Methods The review followed PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. Databases from health, physical and social sciences were used: Cinahl, Embase, Scopus, ProQuest, Emcare, PsycINFO, Compendex, and Inspec. Embase was used instead of PubMed (an interface to search MEDLINE) because it includes all MeSH (Medical Subject Headings) terms used and journals in MEDLINE as well as additional unique journals and conference abstracts. A combined data life cycle and quality framework guided the search of published and gray literature for DQ frameworks, indicators, and tools. At least 2 authors independently identified articles for inclusion and extracted and categorized DQ concepts and constructs. All authors discussed findings iteratively until consensus was reached. Results The 120 included articles yielded concepts related to contextual (data source, custodian, and user) and technical (interoperability) factors across the data life cycle. Contextual DQ subcategories included relevance, usability, accessibility, timeliness, and trust. Well-tested computable DQ indicators and assessment tools were also found. Conclusions A DQ assessment framework that covers intrinsic, technical, and contextual categories across the data life cycle enables assessment and management of RWD repositories to ensure fitness for purpose. Balancing security, privacy, and FAIR principles requires trust and reciprocity, transparent governance, and organizational cultures that value good documentation.
Data quality (DQ) must be consistently defined in context. The attributes, metadata, and context of longitudinal real-world data (RWD) have not been formalized for quality improvement across the data production and curation life cycle. We sought to complete a literature review on DQ assessment frameworks, indicators and tools for research, public health, service, and quality improvement across the data life cycle. The review followed PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. Databases from health, physical and social sciences were used: Cinahl, Embase, Scopus, ProQuest, Emcare, PsycINFO, Compendex, and Inspec. Embase was used instead of PubMed (an interface to search MEDLINE) because it includes all MeSH (Medical Subject Headings) terms used and journals in MEDLINE as well as additional unique journals and conference abstracts. A combined data life cycle and quality framework guided the search of published and gray literature for DQ frameworks, indicators, and tools. At least 2 authors independently identified articles for inclusion and extracted and categorized DQ concepts and constructs. All authors discussed findings iteratively until consensus was reached. The 120 included articles yielded concepts related to contextual (data source, custodian, and user) and technical (interoperability) factors across the data life cycle. Contextual DQ subcategories included relevance, usability, accessibility, timeliness, and trust. Well-tested computable DQ indicators and assessment tools were also found. A DQ assessment framework that covers intrinsic, technical, and contextual categories across the data life cycle enables assessment and management of RWD repositories to ensure fitness for purpose. Balancing security, privacy, and FAIR principles requires trust and reciprocity, transparent governance, and organizational cultures that value good documentation.
Data quality (DQ) must be consistently defined in context. The attributes, metadata, and context of longitudinal real-world data (RWD) have not been formalized for quality improvement across the data production and curation life cycle. We sought to complete a literature review on DQ assessment frameworks, indicators and tools for research, public health, service, and quality improvement across the data life cycle.OBJECTIVEData quality (DQ) must be consistently defined in context. The attributes, metadata, and context of longitudinal real-world data (RWD) have not been formalized for quality improvement across the data production and curation life cycle. We sought to complete a literature review on DQ assessment frameworks, indicators and tools for research, public health, service, and quality improvement across the data life cycle.The review followed PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. Databases from health, physical and social sciences were used: Cinahl, Embase, Scopus, ProQuest, Emcare, PsycINFO, Compendex, and Inspec. Embase was used instead of PubMed (an interface to search MEDLINE) because it includes all MeSH (Medical Subject Headings) terms used and journals in MEDLINE as well as additional unique journals and conference abstracts. A combined data life cycle and quality framework guided the search of published and gray literature for DQ frameworks, indicators, and tools. At least 2 authors independently identified articles for inclusion and extracted and categorized DQ concepts and constructs. All authors discussed findings iteratively until consensus was reached.MATERIALS AND METHODSThe review followed PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. Databases from health, physical and social sciences were used: Cinahl, Embase, Scopus, ProQuest, Emcare, PsycINFO, Compendex, and Inspec. Embase was used instead of PubMed (an interface to search MEDLINE) because it includes all MeSH (Medical Subject Headings) terms used and journals in MEDLINE as well as additional unique journals and conference abstracts. A combined data life cycle and quality framework guided the search of published and gray literature for DQ frameworks, indicators, and tools. At least 2 authors independently identified articles for inclusion and extracted and categorized DQ concepts and constructs. All authors discussed findings iteratively until consensus was reached.The 120 included articles yielded concepts related to contextual (data source, custodian, and user) and technical (interoperability) factors across the data life cycle. Contextual DQ subcategories included relevance, usability, accessibility, timeliness, and trust. Well-tested computable DQ indicators and assessment tools were also found.RESULTSThe 120 included articles yielded concepts related to contextual (data source, custodian, and user) and technical (interoperability) factors across the data life cycle. Contextual DQ subcategories included relevance, usability, accessibility, timeliness, and trust. Well-tested computable DQ indicators and assessment tools were also found.A DQ assessment framework that covers intrinsic, technical, and contextual categories across the data life cycle enables assessment and management of RWD repositories to ensure fitness for purpose. Balancing security, privacy, and FAIR principles requires trust and reciprocity, transparent governance, and organizational cultures that value good documentation.CONCLUSIONSA DQ assessment framework that covers intrinsic, technical, and contextual categories across the data life cycle enables assessment and management of RWD repositories to ensure fitness for purpose. Balancing security, privacy, and FAIR principles requires trust and reciprocity, transparent governance, and organizational cultures that value good documentation.
Author Ansari, Sameera
Bennett, Vicki
Kahn, Michael G
Guo, Jason Guan Nan
Liaw, Siaw-Teng
Borelli, Alder Jose
Liyanage, Harshana
Chan, Jaclyn
Jonnagaddala, Jitendra
de Lusignan, Simon
Bhattal, Navreet
Godinho, Myron Anthony
Capurro, Daniel
AuthorAffiliation 2 Nuffield Department of Primary Care Health Sciences, University of Oxford , Oxford, United Kingdom
4 Australian Institute of Health and Welfare, Canberra, Australian Capital Territory , Australia
5 Department of Pediatrics (Section of Informatics and Data Sciences), University of Colorado Anschutz Medical Campus , Denver, Colorado, USA
1 WHO Collaborating Centre on eHealth, School of Population Health, Faculty of Medicine, UNSW Sydney , Sydney, New South Wales, Australia
3 Faculty of Engineering and Information Technology, University of Melbourne , Melbourne, Victoria, Australia
AuthorAffiliation_xml – name: 2 Nuffield Department of Primary Care Health Sciences, University of Oxford , Oxford, United Kingdom
– name: 4 Australian Institute of Health and Welfare, Canberra, Australian Capital Territory , Australia
– name: 5 Department of Pediatrics (Section of Informatics and Data Sciences), University of Colorado Anschutz Medical Campus , Denver, Colorado, USA
– name: 1 WHO Collaborating Centre on eHealth, School of Population Health, Faculty of Medicine, UNSW Sydney , Sydney, New South Wales, Australia
– name: 3 Faculty of Engineering and Information Technology, University of Melbourne , Melbourne, Victoria, Australia
Author_xml – sequence: 1
  givenname: Siaw-Teng
  orcidid: 0000-0001-5989-3614
  surname: Liaw
  fullname: Liaw, Siaw-Teng
  email: siaw@unsw.edu.au
  organization: WHO Collaborating Centre on eHealth, School of Population Health, Faculty of Medicine, UNSW Sydney, Sydney, New South Wales, Australia
– sequence: 2
  givenname: Jason Guan Nan
  surname: Guo
  fullname: Guo, Jason Guan Nan
  organization: WHO Collaborating Centre on eHealth, School of Population Health, Faculty of Medicine, UNSW Sydney, Sydney, New South Wales, Australia
– sequence: 3
  givenname: Sameera
  surname: Ansari
  fullname: Ansari, Sameera
  organization: WHO Collaborating Centre on eHealth, School of Population Health, Faculty of Medicine, UNSW Sydney, Sydney, New South Wales, Australia
– sequence: 4
  givenname: Jitendra
  orcidid: 0000-0002-9912-2344
  surname: Jonnagaddala
  fullname: Jonnagaddala, Jitendra
  organization: WHO Collaborating Centre on eHealth, School of Population Health, Faculty of Medicine, UNSW Sydney, Sydney, New South Wales, Australia
– sequence: 5
  givenname: Myron Anthony
  orcidid: 0000-0002-0081-2506
  surname: Godinho
  fullname: Godinho, Myron Anthony
  organization: WHO Collaborating Centre on eHealth, School of Population Health, Faculty of Medicine, UNSW Sydney, Sydney, New South Wales, Australia
– sequence: 6
  givenname: Alder Jose
  surname: Borelli
  fullname: Borelli, Alder Jose
  organization: WHO Collaborating Centre on eHealth, School of Population Health, Faculty of Medicine, UNSW Sydney, Sydney, New South Wales, Australia
– sequence: 7
  givenname: Simon
  orcidid: 0000-0002-8553-2641
  surname: de Lusignan
  fullname: de Lusignan, Simon
  organization: Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, United Kingdom
– sequence: 8
  givenname: Daniel
  surname: Capurro
  fullname: Capurro, Daniel
  organization: Faculty of Engineering and Information Technology, University of Melbourne, Melbourne, Victoria, Australia
– sequence: 9
  givenname: Harshana
  surname: Liyanage
  fullname: Liyanage, Harshana
  organization: Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, United Kingdom
– sequence: 10
  givenname: Navreet
  surname: Bhattal
  fullname: Bhattal, Navreet
  organization: Australian Institute of Health and Welfare, Canberra, Australian Capital Territory, Australia
– sequence: 11
  givenname: Vicki
  surname: Bennett
  fullname: Bennett, Vicki
  organization: Australian Institute of Health and Welfare, Canberra, Australian Capital Territory, Australia
– sequence: 12
  givenname: Jaclyn
  surname: Chan
  fullname: Chan, Jaclyn
  organization: Australian Institute of Health and Welfare, Canberra, Australian Capital Territory, Australia
– sequence: 13
  givenname: Michael G
  orcidid: 0000-0003-4786-6875
  surname: Kahn
  fullname: Kahn, Michael G
  organization: Department of Pediatrics (Section of Informatics and Data Sciences), University of Colorado Anschutz Medical Campus, Denver, Colorado, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33496785$$D View this record in MEDLINE/PubMed
BookMark eNqFkc9rHSEQx6UkND_aY69lj71so6uraw-FENIfEAiBFHqTee7YGNz1Vd2E99_X5L2GtFB6UYf5zPc7zhyRvTnOSMgbRt8zqvnJLUweTqIF4IK-IIes71Srlfi-9-x9QI5yvqWUyY73L8kB50JLNfSHZHW1QPBl00DOmPOEc2miaxJCaO9jCmMzQoEar2P2JSaPuQGbYs5NucFtMniHjd3YgB-a0xoVTFCWhLXqzuP9K7LvIGR8vbuPybdP59dnX9qLy89fz04vWis6WurJmR4YpzhYqVYchZOaSiUHMQrdOVQoJBvcaFeDk5yhGylDrhRyLVBRfkw-bnXXy2rC0davJAhmnfwEaWMiePNnZvY35ke8M4NQfdfpKvBuJ5DizwVzMZPPFkOAGeOSTScGxmhPtazo2-deTya_B1uBdgs8ziqhe0IYNQ-LM4-LM7vFVZ7_xVtfoPj40KoP_6zadRyX9X8MfgFU967k
CitedBy_id crossref_primary_10_1007_s10742_023_00319_w
crossref_primary_10_1016_j_csbj_2023_10_006
crossref_primary_10_12677_mse_2025_142050
crossref_primary_10_2196_51560
crossref_primary_10_1016_j_conctc_2024_101354
crossref_primary_10_1200_CCI_22_00182
crossref_primary_10_1136_bmjinnov_2021_000903
crossref_primary_10_1016_j_ijmedinf_2025_105814
crossref_primary_10_1016_j_jbi_2022_104110
crossref_primary_10_1080_20479700_2023_2195197
crossref_primary_10_1016_j_ccc_2023_03_002
crossref_primary_10_1186_s12911_022_01961_z
crossref_primary_10_1093_jamiaopen_ooae062
crossref_primary_10_1177_20539517211019430
crossref_primary_10_1016_j_jval_2024_01_019
crossref_primary_10_1093_jamiaopen_ooae044
crossref_primary_10_1053_j_semvascsurg_2021_10_005
crossref_primary_10_1016_j_jbi_2021_103715
crossref_primary_10_1186_s12911_024_02818_3
crossref_primary_10_2147_CMAR_S441359
crossref_primary_10_1093_jamia_ocac228
crossref_primary_10_1186_s12911_024_02644_7
crossref_primary_10_3390_app12094238
crossref_primary_10_1007_s10926_024_10196_w
crossref_primary_10_1055_s_0042_1760238
crossref_primary_10_1097_NR9_0000000000000077
crossref_primary_10_2196_60244
crossref_primary_10_3389_fphar_2022_988974
crossref_primary_10_2196_45948
crossref_primary_10_1007_s10926_024_10175_1
crossref_primary_10_1016_j_jclinepi_2024_111545
crossref_primary_10_47912_jscdm_320
crossref_primary_10_1186_s12911_021_01524_8
crossref_primary_10_2196_57615
crossref_primary_10_1093_jamiaopen_ooac093
crossref_primary_10_1007_s00296_023_05354_x
crossref_primary_10_1016_j_ijmedinf_2021_104470
crossref_primary_10_1016_j_ijmedinf_2023_105262
crossref_primary_10_21105_joss_06581
crossref_primary_10_1186_s12911_021_01643_2
crossref_primary_10_2196_60709
crossref_primary_10_32604_cmc_2023_031491
crossref_primary_10_1093_jamiaopen_ooae058
crossref_primary_10_3343_alm_2024_0258
crossref_primary_10_3390_cells11132112
crossref_primary_10_1007_s11414_023_09875_y
Cites_doi 10.14236/jhi.v23i3.826
10.1016/j.cmpb.2019.06.013
10.1080/07421222.1996.11518099
10.1016/j.cmpb.2018.12.029
10.1093/jamia/ocx033
10.1016/j.cmpb.2019.05.017
10.1145/1985347.1985353
10.1055/s-0040-1701980
10.1097/MLR.0b013e31829b1e2c
10.1136/amiajnl-2011-000681
10.15265/IY-2016-035
10.1038/sdata.2016.18
10.1055/s-0039-1677901
10.1016/j.ijmedinf.2012.10.001
10.1016/j.ijmedinf.2015.09.008
ContentType Journal Article
Copyright The Author(s) 2021. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For permissions, please email: journals.permissions@oup.com 2021
The Author(s) 2021. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Copyright_xml – notice: The Author(s) 2021. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For permissions, please email: journals.permissions@oup.com 2021
– notice: The Author(s) 2021. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For permissions, please email: journals.permissions@oup.com.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1093/jamia/ocaa340
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1527-974X
EndPage 1599
ExternalDocumentID PMC8475229
33496785
10_1093_jamia_ocaa340
10.1093/jamia/ocaa340
Genre Journal Article
Review
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: ;
GroupedDBID ---
--K
.DC
.GJ
0R~
18M
1B1
1TH
29L
2WC
4.4
48X
53G
5GY
5RE
5WD
6PF
7RV
7X7
7~T
88E
88I
8AF
8AO
8FE
8FG
8FI
8FJ
8FW
AABZA
AACZT
AAEDT
AAJQQ
AALRI
AAMVS
AAOGV
AAPGJ
AAPQZ
AAPXW
AARHZ
AAUAY
AAUQX
AAVAP
AAWDT
AAWTL
AAXUO
ABDFA
ABEJV
ABEUO
ABGNP
ABIXL
ABJNI
ABNHQ
ABOCM
ABPQP
ABPTD
ABQLI
ABQNK
ABSMQ
ABUWG
ABVGC
ABWST
ABWVN
ABXVV
ACFRR
ACGFO
ACGFS
ACGOD
ACHQT
ACRPL
ACUFI
ACUTJ
ACVCV
ACYHN
ACZBC
ADBBV
ADGZP
ADHKW
ADHZD
ADIPN
ADJOM
ADMTO
ADMUD
ADNBA
ADNMO
ADQBN
ADRTK
ADVEK
ADYVW
AEGPL
AEJOX
AEKSI
AEMDU
AEMQT
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFQV
AFFZL
AFIYH
AFKRA
AFOFC
AFXAL
AFYAG
AGINJ
AGKRT
AGMDO
AGQXC
AGSYK
AGUTN
AHMBA
AHMMS
AJDVS
AJEEA
AJNCP
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQC
ALXQX
APIBT
APJGH
AQDSO
AQKUS
AQUVI
ARAPS
ATGXG
AVNTJ
AVWKF
AXUDD
AYCSE
AZQEC
BAWUL
BAYMD
BCRHZ
BENPR
BEYMZ
BGLVJ
BHONS
BKEYQ
BPHCQ
BTRTY
BVRKM
BVXVI
BZKNY
C1A
C45
CCPQU
CDBKE
CS3
DAKXR
DIK
DILTD
DU5
DWQXO
E3Z
EBD
EBS
EIHJH
EJD
EMOBN
ENERS
EO8
EX3
F5P
FDB
FECEO
FLUFQ
FOEOM
FOTVD
FQBLK
FYUFA
G-Q
GAUVT
GJXCC
GNUQQ
GX1
H13
HAR
HCIFZ
HMCUK
IH2
IHE
J21
JXSIZ
K6V
K7-
KBUDW
KOP
KSI
KSN
LSO
M0T
M1P
M2P
M2Q
M41
MBLQV
MHKGH
NAPCQ
NOMLY
NOYVH
NQ-
NU-
NVLIB
O9-
OAUYM
OAWHX
OBFPC
OCZFY
ODMLO
OJQWA
OJZSN
OK1
OPAEJ
OVD
OWPYF
P2P
P62
PAFKI
PCD
PEELM
PHGZT
PQQKQ
PROAC
PSQYO
Q5Y
R53
RIG
ROL
ROX
ROZ
RPM
RPZ
RUSNO
RWL
RXO
S0X
SSZ
SV3
TAE
TEORI
TJX
TMA
UKHRP
WOQ
WOW
YAYTL
YHZ
YKOAZ
YXANX
ZGI
~S-
AAYXX
AGORE
AHGBF
AJBYB
CITATION
ADJQC
ADRIX
AFXEN
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c420t-c43198130e8c67b3e4f69067684d492fe7e4618fdcb8f631efd01e377e394e703
ISSN 1527-974X
1067-5027
IngestDate Thu Aug 21 18:12:56 EDT 2025
Fri Jul 11 16:56:48 EDT 2025
Wed Feb 19 02:27:18 EST 2025
Tue Jul 01 02:01:53 EDT 2025
Thu Apr 24 23:09:18 EDT 2025
Wed Apr 02 07:06:05 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords data quality
DQ assessment tools
data stewardship
DQ indicators
DQ measures
data custodianship
literature review
Language English
License This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)
https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
The Author(s) 2021. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For permissions, please email: journals.permissions@oup.com.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c420t-c43198130e8c67b3e4f69067684d492fe7e4618fdcb8f631efd01e377e394e703
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0002-0081-2506
0000-0003-4786-6875
0000-0001-5989-3614
0000-0002-8553-2641
0000-0002-9912-2344
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/8475229
PMID 33496785
PQID 2481105096
PQPubID 23479
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8475229
proquest_miscellaneous_2481105096
pubmed_primary_33496785
crossref_primary_10_1093_jamia_ocaa340
crossref_citationtrail_10_1093_jamia_ocaa340
oup_primary_10_1093_jamia_ocaa340
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-07-14
PublicationDateYYYYMMDD 2021-07-14
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-14
  day: 14
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Journal of the American Medical Informatics Association : JAMIA
PublicationTitleAlternate J Am Med Inform Assoc
PublicationYear 2021
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Liaw (2021092713440974700_ocaa340-B8) 2013; 82
Taggart (2021092713440974700_ocaa340-B14) 2015; 84
Saez (2021092713440974700_ocaa340-B10) 2012; 180
Huser (2021092713440974700_ocaa340-B23) 2016; 4
Liyanage (2021092713440974700_ocaa340-B1) 2019; 28
Álvarez Sánchez (2021092713440974700_ocaa340-B27) 2019; 181
McKnight (2021092713440974700_ocaa340-B24) 2011; 2
Wang (2021092713440974700_ocaa340-B7) 1996; 12
Liyanage (2021092713440974700_ocaa340-B3) 2016; 25
Khare (2021092713440974700_ocaa340-B17) 2017; 24
Lee (2021092713440974700_ocaa340-B22) 2001
Kahn (2021092713440974700_ocaa340-B29) 2015; 3
Huser (2021092713440974700_ocaa340-B16) 2019; 264
Rajan (2021092713440974700_ocaa340-B18) 2019; 177
Weiskopf (2021092713440974700_ocaa340-B9) 2013; 20
Wilkinson (2021092713440974700_ocaa340-B4) 2016; 3
Liaw (2021092713440974700_ocaa340-B28) 2016; 23
(2021092713440974700_ocaa340-B12) 2017
Henley-Smith (2021092713440974700_ocaa340-B19) 2019; 7
(2021092713440974700_ocaa340-B13) 2003
Hripcsak (2021092713440974700_ocaa340-B25) 2015; 216
(2021092713440974700_ocaa340-B6) 2016
Sáez (2021092713440974700_ocaa340-B20) 2019; 181
2021092713440974700_ocaa340-B26
Liaw (2021092713440974700_ocaa340-B2) 2020; 29
Huser (2021092713440974700_ocaa340-B11) 2018; 23
(2021092713440974700_ocaa340-B21) 2015
Qualls (2021092713440974700_ocaa340-B5) 2018; 6
Kahn (2021092713440974700_ocaa340-B15) 2016; 4
Brown (2021092713440974700_ocaa340-B30) 2013; 51
References_xml – volume: 23
  start-page: 547
  issue: 3
  year: 2016
  ident: 2021092713440974700_ocaa340-B28
  article-title: An ‘integrated health neighbourhood’ framework to optimise the use of EHR data
  publication-title: J Innov Health Inform
  doi: 10.14236/jhi.v23i3.826
– volume: 216
  start-page: 574
  year: 2015
  ident: 2021092713440974700_ocaa340-B25
  article-title: Observational Health Data Sciences and Informatics (OHDSI): opportunities for observational researchers
  publication-title: Stud Health Technol Inform
– volume: 181
  start-page: 104954
  year: 2019
  ident: 2021092713440974700_ocaa340-B20
  article-title: Guest editorial: Special issue in biomedical data quality assessment methods
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2019.06.013
– volume: 3
  start-page: 7
  issue: 1
  year: 2015
  ident: 2021092713440974700_ocaa340-B29
  article-title: Transparent reporting of data quality in distributed data networks
  publication-title: EGEMS (Wash DC)
– volume-title: Improving Data Quality: A Guide for Developing Countries
  year: 2003
  ident: 2021092713440974700_ocaa340-B13
– volume: 4
  issue: 1
  year: 2016
  ident: 2021092713440974700_ocaa340-B23
  article-title: Multisite evaluation of a data quality tool for patient-level clinical data sets
  publication-title: EGEMS (Wash DC)
– volume: 12
  start-page: 5
  issue: 4
  year: 1996
  ident: 2021092713440974700_ocaa340-B7
  article-title: Beyond accuracy: what data quality means to data consumers
  publication-title: J Manage Inf Syst
  doi: 10.1080/07421222.1996.11518099
– volume: 181
  start-page: 104824
  year: 2019
  ident: 2021092713440974700_ocaa340-B27
  article-title: TAQIH, a tool for tabular data quality assessment and improvement in the context of health data
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2018.12.029
– volume: 24
  start-page: 1072
  issue: 6
  year: 2017
  ident: 2021092713440974700_ocaa340-B17
  article-title: A longitudinal analysis of data quality in a large pediatric data research network
  publication-title: J Am Med Inform Assoc
  doi: 10.1093/jamia/ocx033
– volume: 6
  start-page: 3
  issue: 1
  year: 2018
  ident: 2021092713440974700_ocaa340-B5
  article-title: Evaluating foundational data quality in the national patientcentered clinical research network (PCORnet
  publication-title: EGEMS (Wash DC)
– volume: 23
  start-page: 628
  year: 2018
  ident: 2021092713440974700_ocaa340-B11
  article-title: Methods for examining data quality in healthcare integrated data repositories
  publication-title: Biocomputing
– year: 2001
  ident: 2021092713440974700_ocaa340-B22
– volume: 177
  start-page: 193
  year: 2019
  ident: 2021092713440974700_ocaa340-B18
  article-title: Towards a content agnostic computable knowledge repository for data quality assessment
  publication-title: Comput Methods Progr Biomed
  doi: 10.1016/j.cmpb.2019.05.017
– volume: 2
  start-page: 1
  issue: 2
  year: 2011
  ident: 2021092713440974700_ocaa340-B24
  article-title: Trust in a specific technology: An investigation of its components and measures
  publication-title: ACM Trans Manage Inf Syst
  doi: 10.1145/1985347.1985353
– ident: 2021092713440974700_ocaa340-B26
– volume: 264
  start-page: 1488
  year: 2019
  ident: 2021092713440974700_ocaa340-B16
  article-title: Extending Achilles heel data quality tool with new rules informed by multi-site data quality comparison
  publication-title: Stud Health Technol Inform
– volume: 29
  start-page: 51
  issue: 1
  year: 2020
  ident: 2021092713440974700_ocaa340-B2
  article-title: Ethical use of electronic health record data and artificial intelligence: recommendations of the primary care informatics working group of the international medical informatics association
  publication-title: Yearb Med Inform
  doi: 10.1055/s-0040-1701980
– year: 2017
  ident: 2021092713440974700_ocaa340-B12
– volume: 51
  start-page: S22
  year: 2013
  ident: 2021092713440974700_ocaa340-B30
  article-title: Data quality assessment for comparative effectiveness research in distributed data networks
  publication-title: Med Care
  doi: 10.1097/MLR.0b013e31829b1e2c
– volume: 20
  start-page: 144
  issue: 1
  year: 2013
  ident: 2021092713440974700_ocaa340-B9
  article-title: Methods and dimensions of electronic health record data quality assessment: enabling reuse for clinical research
  publication-title: J Am Med Inform Assoc
  doi: 10.1136/amiajnl-2011-000681
– volume: 25
  start-page: 138
  issue: 1
  year: 2016
  ident: 2021092713440974700_ocaa340-B3
  article-title: Building a privacy, ethics, and data access framework for real world computerised medical record system data: a Delphi study. Contribution of the Primary Health Care Informatics Working Group
  publication-title: Yearb Med Inform
  doi: 10.15265/IY-2016-035
– volume: 3
  start-page: 160018
  issue: 1
  year: 2016
  ident: 2021092713440974700_ocaa340-B4
  article-title: The FAIR Guiding Principles for scientific data management and stewardship
  publication-title: Sci Data
  doi: 10.1038/sdata.2016.18
– volume: 180
  start-page: 721
  year: 2012
  ident: 2021092713440974700_ocaa340-B10
  article-title: Organizing data quality assessment of shifting biomedical data
  publication-title: Stud Health Technol Inform
– volume: 7
  start-page: 38
  issue: 1
  year: 2019
  ident: 2021092713440974700_ocaa340-B19
  article-title: Improving a secondary use health data warehouse: proposing a multi-level data quality framework
  publication-title: EGEMS (Wash DC)
– year: 2015
  ident: 2021092713440974700_ocaa340-B21
– volume: 28
  start-page: 41
  issue: 1
  year: 2019
  ident: 2021092713440974700_ocaa340-B1
  article-title: Artificial intelligence in primary health care: perceptions, issues, and challenges
  publication-title: Yearb Med Inform
  doi: 10.1055/s-0039-1677901
– volume: 82
  start-page: 10
  issue: 1
  year: 2013
  ident: 2021092713440974700_ocaa340-B8
  article-title: Towards an ontology for data quality in integrated chronic disease: a realist review of the literature
  publication-title: Int J Med Inform
  doi: 10.1016/j.ijmedinf.2012.10.001
– volume: 4
  start-page: 18
  issue: 1
  year: 2016
  ident: 2021092713440974700_ocaa340-B15
  article-title: A harmonized data quality assessment terminology and framework for the secondary use of electronic health record data
  publication-title: EGEMS (Wash DC)
– year: 2016
  ident: 2021092713440974700_ocaa340-B6
– volume: 84
  start-page: 1094
  issue: 12
  year: 2015
  ident: 2021092713440974700_ocaa340-B14
  article-title: Structured data quality reports to improve EHR data quality
  publication-title: Int J Med Inform
  doi: 10.1016/j.ijmedinf.2015.09.008
SSID ssj0016235
Score 2.5306773
SecondaryResourceType review_article
Snippet Abstract Objective Data quality (DQ) must be consistently defined in context. The attributes, metadata, and context of longitudinal real-world data (RWD) have...
Data quality (DQ) must be consistently defined in context. The attributes, metadata, and context of longitudinal real-world data (RWD) have not been formalized...
SourceID pubmedcentral
proquest
pubmed
crossref
oup
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1591
SubjectTerms Animals
Data Accuracy
Life Cycle Stages
Quality Improvement
Research and Applications
Title Quality assessment of real-world data repositories across the data life cycle: A literature review
URI https://www.ncbi.nlm.nih.gov/pubmed/33496785
https://www.proquest.com/docview/2481105096
https://pubmed.ncbi.nlm.nih.gov/PMC8475229
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKkKa9IL4pA2QkxEvJlq8mDm_TxDQmipDopL5FTnKGojSd1vZh-4f5N7iz3cSdVgF7SdvYtdXcr3dn393PjL0LQfqBklSN4_teXEDliaTAxcowCyDzRQmCqpFHX5PT8_hsMpz0er-drKXVsjgor2-tK7mLVPEeypWqZP9Dsu2geAPfo3zxihLG6z_J2BBgXA1kS69Jvh-6gbWnmVAHlP-pwwKLKZGBwGIgtVnU7qZurKcKBuUVDmxq1OuWZtlWtWzxXp2KlC7aY2ubNPOzI3e97YDa_XOLli9TaUJK-OqNwVpPSgNamUiQpIMREb4Nqf9uq2IhTWH8dzkDuGwtytm8aeQP1KGyNqm_U9rZt-12SyMMaK806LY0t5RKOloaTaw39A2pwAFYzR2mHi6OJq5qD4UD4dTR0wRFx-bjx-xWe2K4tn7JGWUun6B3ISPDLuWg62Km4RUR9X5qzh-6QeH9bXSMTgB6utk9dj_E9Uyw3lay4S70QYc6LG9_lyWDxdkP9dyHduY9trueZsOP2qjNdJZINzN9Hddp_JA9sKjhRwbAj1gPmsdsd2SzOp6wwuKYdzjmc8U7HHOCKndxzA2OOcLQNBKOucbxR37EOxRzg-Kn7Pzk0_j41LNnf3hlHPpLvKJtEOhggSiTtIggVkSpTWHjKs5CBSnESSBUVRZCJVEAqvIDiNIUoiwGNGPP2E4zb-AF41KhLqpUpvAJxr7I8ElCUEWonISoyizqsw_rJ5mXlhifzmepc5OgEeVaBrmVQZ-9b7tfGEaYbR3folj-2mcttBz1OgXrZAPz1SIPY4GeOZEz9dlzI8R2qDUG-izdEG_bgTjjN1ua6U_NHW9x-PLO39xne91f9hXbWV6u4DX65cvijcb0H8d37IA
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quality+assessment+of+real-world+data+repositories+across+the+data+life+cycle%3A+A+literature+review&rft.jtitle=Journal+of+the+American+Medical+Informatics+Association+%3A+JAMIA&rft.au=Liaw%2C+Siaw-Teng&rft.au=Guo%2C+Jason+Guan+Nan&rft.au=Ansari%2C+Sameera&rft.au=Jonnagaddala%2C+Jitendra&rft.date=2021-07-14&rft.pub=Oxford+University+Press&rft.issn=1067-5027&rft.eissn=1527-974X&rft.volume=28&rft.issue=7&rft.spage=1591&rft.epage=1599&rft_id=info:doi/10.1093%2Fjamia%2Focaa340&rft_id=info%3Apmid%2F33496785&rft.externalDocID=PMC8475229
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1527-974X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1527-974X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1527-974X&client=summon