Impact of SO2 on elemental mercury oxidation over CeO2–TiO2 catalyst
[Display omitted] ► SO2 exhibited different, even contrary, effects on Hg0 oxidation in different conditions. ► With O2, few SO2 promoted Hg0 oxidation, while excess SO2 inhibited Hg0 oxidation. ► There is a balance SO2 concentration, where no obvious effect of SO2 can be observed. ► NO catalyzed SO...
Saved in:
Published in | Chemical engineering journal (Lausanne, Switzerland : 1996) Vol. 219; pp. 319 - 326 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.03.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
► SO2 exhibited different, even contrary, effects on Hg0 oxidation in different conditions. ► With O2, few SO2 promoted Hg0 oxidation, while excess SO2 inhibited Hg0 oxidation. ► There is a balance SO2 concentration, where no obvious effect of SO2 can be observed. ► NO catalyzed SO2 conversion to SO3, and thus relieved the inhibitive effect of SO2.
Effect of SO2 on elemental mercury (Hg0) oxidation over a highly active CeO2–TiO2 catalyst was systematically investigated. SO2 was found to have different, even contrary, effects on Hg0 oxidation under different flue gas conditions. In pure N2 atmosphere, SO2 inhibited Hg0 oxidation. In N2 plus O2 atmosphere, low concentration of SO2 promoted Hg0 oxidation, while high concentration of SO2 deteriorated Hg0 oxidation. The promotional effect of SO2 on Hg0 oxidation was probably due to SO3 generated from SO2 oxidation, and the inhibitive effect of SO2 on Hg0 oxidation was attributed to the competitive adsorption between SO2 and Hg0. The results suggest a balance point for SO2 concentration, where the promotional effect on Hg0 oxidation by SO3 originated from SO2 is equal to the inhibitive effect of SO2 on Hg0 adsorption and subsequent oxidation via the Langmuir–Hinshelwood mechanism. In the presence of NO, SO2 with the aid of O2 exhibited promotional effect on Hg0 oxidation through NO-catalyzed oxidation to form SO3 and hence a balance point of higher SO2 concentration. However, without O2, SO2 greatly limited Hg0 oxidation in the presence of NO. When HCl was present, most Hg0 oxidation was due to reactions between active chlorine species and adsorbed Hg0. SO2 inhibited Hg0 adsorption and therefore deteriorated Hg0 oxidation by chlorine species. When both NO and HCl were present, NO accelerated the conversion of SO2 to SO3, and hence relieved the prohibitive effect of SO2 on Hg0 oxidation by HCl. |
---|---|
AbstractList | Effect of SO₂ on elemental mercury (Hg⁰) oxidation over a highly active CeO₂–TiO₂ catalyst was systematically investigated. SO₂ was found to have different, even contrary, effects on Hg⁰ oxidation under different flue gas conditions. In pure N₂ atmosphere, SO₂ inhibited Hg⁰ oxidation. In N₂ plus O₂ atmosphere, low concentration of SO₂ promoted Hg⁰ oxidation, while high concentration of SO₂ deteriorated Hg⁰ oxidation. The promotional effect of SO₂ on Hg⁰ oxidation was probably due to SO₃ generated from SO₂ oxidation, and the inhibitive effect of SO₂ on Hg⁰ oxidation was attributed to the competitive adsorption between SO₂ and Hg⁰. The results suggest a balance point for SO₂ concentration, where the promotional effect on Hg⁰ oxidation by SO₃ originated from SO₂ is equal to the inhibitive effect of SO₂ on Hg⁰ adsorption and subsequent oxidation via the Langmuir–Hinshelwood mechanism. In the presence of NO, SO₂ with the aid of O₂ exhibited promotional effect on Hg⁰ oxidation through NO-catalyzed oxidation to form SO₃ and hence a balance point of higher SO₂ concentration. However, without O₂, SO₂ greatly limited Hg⁰ oxidation in the presence of NO. When HCl was present, most Hg⁰ oxidation was due to reactions between active chlorine species and adsorbed Hg⁰. SO₂ inhibited Hg⁰ adsorption and therefore deteriorated Hg⁰ oxidation by chlorine species. When both NO and HCl were present, NO accelerated the conversion of SO₂ to SO₃, and hence relieved the prohibitive effect of SO₂ on Hg⁰ oxidation by HCl. [Display omitted] ► SO2 exhibited different, even contrary, effects on Hg0 oxidation in different conditions. ► With O2, few SO2 promoted Hg0 oxidation, while excess SO2 inhibited Hg0 oxidation. ► There is a balance SO2 concentration, where no obvious effect of SO2 can be observed. ► NO catalyzed SO2 conversion to SO3, and thus relieved the inhibitive effect of SO2. Effect of SO2 on elemental mercury (Hg0) oxidation over a highly active CeO2–TiO2 catalyst was systematically investigated. SO2 was found to have different, even contrary, effects on Hg0 oxidation under different flue gas conditions. In pure N2 atmosphere, SO2 inhibited Hg0 oxidation. In N2 plus O2 atmosphere, low concentration of SO2 promoted Hg0 oxidation, while high concentration of SO2 deteriorated Hg0 oxidation. The promotional effect of SO2 on Hg0 oxidation was probably due to SO3 generated from SO2 oxidation, and the inhibitive effect of SO2 on Hg0 oxidation was attributed to the competitive adsorption between SO2 and Hg0. The results suggest a balance point for SO2 concentration, where the promotional effect on Hg0 oxidation by SO3 originated from SO2 is equal to the inhibitive effect of SO2 on Hg0 adsorption and subsequent oxidation via the Langmuir–Hinshelwood mechanism. In the presence of NO, SO2 with the aid of O2 exhibited promotional effect on Hg0 oxidation through NO-catalyzed oxidation to form SO3 and hence a balance point of higher SO2 concentration. However, without O2, SO2 greatly limited Hg0 oxidation in the presence of NO. When HCl was present, most Hg0 oxidation was due to reactions between active chlorine species and adsorbed Hg0. SO2 inhibited Hg0 adsorption and therefore deteriorated Hg0 oxidation by chlorine species. When both NO and HCl were present, NO accelerated the conversion of SO2 to SO3, and hence relieved the prohibitive effect of SO2 on Hg0 oxidation by HCl. |
Author | Li, Liqing Zhao, Yongchun Wu, Chang-Yu Li, Ying Zhang, Junying Li, Hailong |
Author_xml | – sequence: 1 givenname: Hailong surname: Li fullname: Li, Hailong organization: School of Energy Science and Engineering, Central South University, Changsha 410083, China – sequence: 2 givenname: Chang-Yu surname: Wu fullname: Wu, Chang-Yu organization: Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL 32611, United States – sequence: 3 givenname: Ying surname: Li fullname: Li, Ying organization: Department of Mechanical Engineering, University of Wisconsin–Milwaukee, Milwaukee, WI 53211, United States – sequence: 4 givenname: Liqing surname: Li fullname: Li, Liqing email: lienergycsu@gmail.com organization: School of Energy Science and Engineering, Central South University, Changsha 410083, China – sequence: 5 givenname: Yongchun surname: Zhao fullname: Zhao, Yongchun organization: State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan 430074, China – sequence: 6 givenname: Junying surname: Zhang fullname: Zhang, Junying organization: State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan 430074, China |
BookMark | eNp9kM9KAzEQh4Mo2FYfwJN79LI1_5rdxZMUq4VCD23PIc3OSsrupiZpsTffwTf0Scy2njwUBmYg32-YfH102doWELojeEgwEY-boYbNkGJCh11hfIF6JM9Yyiihl3Fm-SjNC55do773G4yxKEjRQ5Nps1U6JLZKFnOa2DaBGhpog6qTBpzeuUNiP02pgolvdg8uGcOc_nx9L03ktYrgwYcbdFWp2sPtXx-g1eRlOX5LZ_PX6fh5lmpOcUgVFyQnQrEyKwAzxSvMKwJ8xDPIoCgVoaIcYbrOgXJVZIxVQNeqZITG2zlhA_Rw2rt19mMHPsjGeA11rVqwOy-JEExwwTCOKDmh2lnvHVRy60yj3EESLDtnciOjM9k5k10dM9m_jDbh-PXglKnPJu9PyUpZqd6d8XK1iMAomi4EzXgknk4ERD97A056baDVUBoHOsjSmjP7fwHnJZA6 |
CitedBy_id | crossref_primary_10_1016_j_fuel_2017_04_065 crossref_primary_10_1016_j_cattod_2020_05_029 crossref_primary_10_1016_j_fuel_2017_11_015 crossref_primary_10_1016_S1872_5813_21_60177_9 crossref_primary_10_1016_j_fuel_2018_11_016 crossref_primary_10_1080_15567036_2013_821548 crossref_primary_10_1080_09593330_2017_1287222 crossref_primary_10_1021_acs_energyfuels_0c03238 crossref_primary_10_1016_j_fuel_2021_121593 crossref_primary_10_1016_j_jenvman_2019_02_118 crossref_primary_10_1016_j_jhazmat_2015_10_044 crossref_primary_10_1016_j_cej_2018_12_165 crossref_primary_10_1016_j_jhazmat_2021_128132 crossref_primary_10_2355_tetsutohagane_TETSU_2015_046 crossref_primary_10_1016_j_jhazmat_2019_120986 crossref_primary_10_1016_j_apcatb_2015_04_044 crossref_primary_10_1016_j_fuel_2017_04_071 crossref_primary_10_1016_j_cej_2023_147839 crossref_primary_10_1016_j_surfin_2023_103359 crossref_primary_10_1002_tcr_201800161 crossref_primary_10_1016_j_wasman_2017_11_044 crossref_primary_10_1016_j_seppur_2024_126352 crossref_primary_10_1016_j_fuel_2022_125850 crossref_primary_10_1021_acs_iecr_0c02287 crossref_primary_10_1039_C5CY00219B crossref_primary_10_1016_j_jhazmat_2022_129115 crossref_primary_10_1007_s11814_016_0026_5 crossref_primary_10_1016_j_cej_2014_05_066 crossref_primary_10_1016_j_psep_2024_06_135 crossref_primary_10_1021_acs_energyfuels_3c04779 crossref_primary_10_1252_jcej_14we339 crossref_primary_10_1016_j_ces_2025_121364 crossref_primary_10_1038_s41598_021_97626_4 crossref_primary_10_1016_j_fuel_2019_116289 crossref_primary_10_1016_j_fuel_2022_126636 crossref_primary_10_1016_j_jhazmat_2017_02_013 crossref_primary_10_1021_acs_energyfuels_9b02376 crossref_primary_10_1016_j_fuel_2017_07_061 crossref_primary_10_1016_j_cplett_2016_06_045 crossref_primary_10_1016_j_fuproc_2020_106478 crossref_primary_10_1016_j_cej_2017_05_099 crossref_primary_10_1016_j_joei_2021_05_002 crossref_primary_10_1021_es402495h crossref_primary_10_1016_j_cej_2013_12_047 crossref_primary_10_1016_j_fuel_2018_04_074 crossref_primary_10_1016_j_seppur_2024_127709 crossref_primary_10_1016_j_cej_2018_08_225 crossref_primary_10_1021_acs_iecr_8b04857 crossref_primary_10_3390_app10082706 crossref_primary_10_1007_s11814_021_0912_3 crossref_primary_10_1016_j_jclepro_2020_124220 crossref_primary_10_1039_C5CY01576F crossref_primary_10_1007_s11356_019_06492_1 crossref_primary_10_1016_j_fuel_2023_128440 crossref_primary_10_1007_s11814_015_0185_9 crossref_primary_10_1016_j_cclet_2021_03_023 crossref_primary_10_1016_j_fuel_2022_124229 crossref_primary_10_1016_j_fuproc_2019_106167 crossref_primary_10_1016_j_chemosphere_2021_132127 crossref_primary_10_1016_j_jhazmat_2015_07_083 crossref_primary_10_1016_j_cej_2022_134603 crossref_primary_10_1142_S0218625X1850141X crossref_primary_10_1007_s11356_020_08477_x crossref_primary_10_1016_j_eng_2024_03_005 crossref_primary_10_1016_j_apr_2016_05_003 crossref_primary_10_1021_acsomega_2c00350 crossref_primary_10_1039_C6RA16763B crossref_primary_10_1007_s11356_015_5143_x crossref_primary_10_3390_catal12020243 crossref_primary_10_1007_s11696_017_0152_5 crossref_primary_10_1016_j_jiec_2014_11_015 crossref_primary_10_1007_s11814_014_0074_7 crossref_primary_10_1016_j_jhazmat_2015_02_076 crossref_primary_10_2139_ssrn_4125808 crossref_primary_10_1016_j_fuel_2022_125922 crossref_primary_10_1016_j_scitotenv_2019_134049 crossref_primary_10_1002_apj_2208 crossref_primary_10_1016_j_pecs_2020_100844 crossref_primary_10_1016_j_fuproc_2015_10_036 crossref_primary_10_1016_j_seppur_2020_117181 crossref_primary_10_1016_S1872_5813_20_30093_1 crossref_primary_10_1021_acs_est_5b05564 crossref_primary_10_1016_j_cherd_2016_06_024 crossref_primary_10_1016_j_cej_2020_127745 crossref_primary_10_1016_j_apcatb_2016_11_013 crossref_primary_10_1016_j_apsusc_2020_145604 crossref_primary_10_1016_j_cej_2017_10_115 crossref_primary_10_1016_j_cej_2018_10_218 crossref_primary_10_1021_acs_energyfuels_8b02295 crossref_primary_10_1016_j_apsusc_2017_12_123 crossref_primary_10_1016_j_cej_2021_132660 crossref_primary_10_1021_acs_energyfuels_0c02209 crossref_primary_10_1016_j_jhazmat_2023_131489 crossref_primary_10_1021_acs_iecr_7b02749 crossref_primary_10_1088_2058_6272_acd83a crossref_primary_10_1016_j_fuel_2025_134582 crossref_primary_10_1016_j_jhazmat_2019_121354 crossref_primary_10_1021_acs_energyfuels_9b02567 crossref_primary_10_1016_j_fuproc_2020_106467 crossref_primary_10_1021_acs_energyfuels_5b01082 crossref_primary_10_1021_acs_energyfuels_7b00213 crossref_primary_10_1016_j_fuproc_2017_10_017 crossref_primary_10_1016_j_jes_2020_03_017 crossref_primary_10_1016_j_fuel_2015_09_065 crossref_primary_10_1016_j_cej_2016_04_017 crossref_primary_10_1016_j_jhazmat_2020_123502 crossref_primary_10_1016_j_psep_2024_05_096 crossref_primary_10_1016_j_apsusc_2017_01_088 crossref_primary_10_1016_j_cej_2025_159572 crossref_primary_10_1016_j_eti_2021_101411 crossref_primary_10_1016_j_cej_2016_04_131 crossref_primary_10_1016_j_cej_2017_02_052 crossref_primary_10_1016_j_cej_2019_122263 crossref_primary_10_1016_j_fuel_2018_03_122 crossref_primary_10_1021_acs_est_1c00828 crossref_primary_10_1016_j_cej_2018_05_019 crossref_primary_10_1016_j_catcom_2016_04_019 crossref_primary_10_3390_app14104209 crossref_primary_10_1021_acs_energyfuels_8b02358 crossref_primary_10_1016_j_cej_2020_127888 crossref_primary_10_2139_ssrn_4156301 crossref_primary_10_1021_acsomega_3c04372 crossref_primary_10_1016_j_fuel_2015_03_001 crossref_primary_10_1007_s10311_018_0771_2 crossref_primary_10_1016_j_apsusc_2014_11_090 crossref_primary_10_1021_acs_energyfuels_9b01136 crossref_primary_10_1021_acs_langmuir_8b02656 crossref_primary_10_1002_cjce_24135 crossref_primary_10_1016_j_cej_2019_122155 |
Cites_doi | 10.1089/ees.1998.15.137 10.1021/ef800730f 10.1021/ef060406i 10.1021/jp0344601 10.1016/j.apcatb.2010.06.032 10.1021/es9021206 10.1016/S0926-3373(97)00089-1 10.1021/ef0602426 10.1016/j.apcatb.2008.10.014 10.1021/ie00017a009 10.1021/es8000272 10.1080/10473289.2005.10464779 10.1021/es071281e 10.1016/j.jhazmat.2009.09.112 10.1016/j.fuproc.2007.10.009 10.1021/ef700533q 10.1021/ie800363g 10.1021/jp8088148 10.1016/j.fuproc.2007.03.010 10.1016/j.catcom.2007.12.012 10.1016/S0378-3820(03)00059-6 10.1016/j.fuproc.2003.11.008 10.1016/j.fuel.2009.01.022 10.1016/j.apcatb.2011.10.021 10.1021/es0708316 10.1016/j.combustflame.2011.12.011 10.1021/es2007808 10.1016/j.cej.2011.03.003 10.1021/ef050087f 10.1021/es061140x 10.1016/j.apcatb.2007.10.031 10.1016/j.cej.2010.04.056 10.1021/ie990758v 10.1080/10473289.2004.10470943 10.1021/es060406x 10.3155/1047-3289.58.4.484 10.1021/es049202b 10.1021/ef100377f 10.1016/j.fuel.2009.05.021 10.1016/S0926-3373(03)00100-0 10.1016/S0926-3373(98)00060-5 10.1007/s10562-007-9317-0 10.1016/j.catcom.2009.11.024 10.1016/j.apcatb.2009.12.023 10.1016/j.fuproc.2008.05.007 10.1016/0920-5861(95)00168-9 |
ContentType | Journal Article |
Copyright | 2013 Elsevier B.V. |
Copyright_xml | – notice: 2013 Elsevier B.V. |
DBID | FBQ AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.cej.2012.12.100 |
DatabaseName | AGRIS CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
Database_xml | – sequence: 1 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-3212 |
EndPage | 326 |
ExternalDocumentID | 10_1016_j_cej_2012_12_100 US201500096274 S1385894713000429 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29B 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFYP ABLST ABMAC ABNUV ABUDA ABXDB ABYKQ ACDAQ ACRLP ADBBV ADEWK ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KCYFY KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPC SPCBC SSG SSJ SSZ T5K ~G- ABPIF ABPTK ABTAH AFFNX ASPBG AVWKF AZFZN BKOMP EJD FBQ FEDTE FGOYB HVGLF HZ~ R2- SEW ZY4 AATTM AAXKI AAYWO AAYXX ACVFH ADCNI AEIPS AEUPX AFJKZ AFPUW AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7S9 L.6 |
ID | FETCH-LOGICAL-c420t-a461816a3d79e03a4f04f1e4547e7e9da126d502b8e24a9733fe2bad312894413 |
IEDL.DBID | .~1 |
ISSN | 1385-8947 |
IngestDate | Fri Jul 11 01:28:46 EDT 2025 Tue Jul 01 01:09:51 EDT 2025 Thu Apr 24 23:03:11 EDT 2025 Wed Dec 27 19:27:30 EST 2023 Fri Feb 23 02:17:42 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Coal combustion Mercury Flue gas Sulfur dioxide CeO2–TiO2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c420t-a461816a3d79e03a4f04f1e4547e7e9da126d502b8e24a9733fe2bad312894413 |
Notes | http://dx.doi.org/10.1016/j.cej.2012.12.100 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1663646300 |
PQPubID | 24069 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_1663646300 crossref_primary_10_1016_j_cej_2012_12_100 crossref_citationtrail_10_1016_j_cej_2012_12_100 fao_agris_US201500096274 elsevier_sciencedirect_doi_10_1016_j_cej_2012_12_100 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-03-01 |
PublicationDateYYYYMMDD | 2013-03-01 |
PublicationDate_xml | – month: 03 year: 2013 text: 2013-03-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Chemical engineering journal (Lausanne, Switzerland : 1996) |
PublicationYear | 2013 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Li, Wu, Li, Zhang (b0285) 2012; 111–112 Gao, Jiang, Zhong, Luo, Cen (b0125) 2010; 174 Casapu, Kröcher, Elsener (b0305) 2009; 88 Pitoniak, Wu, Mazyck, Powers, Sigmund (b0260) 2005; 39 Reddy, Khan, Yamada, Kobayashi, Loridant, Volta (b0135) 2003; 107 Li, Murphy, Wu (b0210) 2008; 89 Granite, Pennline, Hargis (b0030) 2000; 39 Laumb, Benson, Olson (b0170) 2004; 85 D.L. Laudal, J.S. Thompson, J.H. Pavlish, L. Brickett, P. Chu, R.K. Srivastava, C.W. Lee, J.D. Kilgroe, Mercury speciation at power plants using SCR and SNCR control technologies, in: 3rd International Air Quality Conference, Arlington, Virginia, September, 2002. Straube, Hahn, Koeser (b0265) 2008; 79 Pavlish, Sondreal, Mann, Olson, Galbreath, Laudal, Benson (b0005) 2003; 82 Dunn, Koppula, Stenger, Wachs (b0290) 1998; 19 Qi, Yang (b0295) 2003; 44 Tian, Li, Li, Zeng, Gao, Li, Fan (b0215) 2009; 88 Ministry of Environmental Protection of the People’s Republic of China, Emission Standard of Air Pollutants for Thermal Power Plants, 2011. Cao, Gao, Zhu, Wang, Huang, Chiu, Parker, Chu, Pan (b0075) 2008; 42 Kamata, Ueno, Naito, Yukimura (b0270) 2008; 47 Yu, Guo, Wang, Zhu, Liu, Su, Gao, Xu (b0310) 2010; 95 Eswaran, Stenger (b0080) 2008; 89 U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards and Office of Research and Development, Mercury Study Report to Congress, vol. I, Executive Summary, Washington, DC, December, 1997. Zhuang, Laumb, Liggett, Holmes, Pavlish (b0085) 2007; 88 Wu, Lee, Tyree, Arar, Biswas (b0015) 1998; 15 Eom, Jeon, Ngo, Kim, Lee (b0225) 2008; 121 Perry’s Chemical Engineers’ Handbook, sixth ed., Mc-Graw-Hill, 1984. Schofield (b0010) 2012; 159 Li, Wu, Li, Zhang (b0280) 2011 Li, Yan, Qu, Qiao, Yang, Guo, Liu, Jia (b0155) 2010; 44 (accessed 20.02.12). Svachula, Alemany, Ferlazzo, Forzatti, Tronconi, Bregani (b0165) 1993; 32 Sumathi, Bhatia, Lee, Mohamed (b0195) 2010; 162 Xu, Yu, Zhang, He (b0130) 2008; 9 Worle-Knirsch, Kern, Schleh, Adelhelm, Feldmann, Krug (b0115) 2007; 41 Sjoerd Kijlstra, Biervliet, Poels, Bliek (b0300) 1998; 16 Xu, He, Yu (b0255) 2009; 113 Niksa, Fujiwara (b0090) 2005; 55 Presto, Granite (b0250) 2007; 41 Fan, Li, Zeng, Gao, Chen, Zhang, Gao (b0205) 2010; 24 U.S. Environmental Protection Agency Pavlish, Hamre, Zhuang (b0045) 2010; 89 Li, Murphy, Wu, Powers, Bonzongo (b0140) 2008; 42 Li, Li, Wu, Zhang (b0145) 2011; 169 Zhou, Luo, Hu, Cen (b0220) 2006; 21 Wu, Wang, Streets, Hao, Chan, Jiang (b0020) 2006; 40 Srivastava, Miller, Erickson, Jambhekar (b0200) 2004; 54 He, Zhou, Zhu, Luo, Ni, Cen (b0055) 2009; 23 Cao, Chen, Wu, Cui, Smith, Chen, Chu, Pan (b0245) 2007; 21 Orsenigo, Beretta, Forzatti, Svachula, Tronconi, Bregani, Baldacci (b0230) 1996; 27 Lee, Serre, Zhao, Lee (b0065) 2008; 58 Ji, Sreekanth, Smirniotis, Thiel, Pinto (b0100) 2008; 22 Eswaran, Stenger (b0150) 2005; 19 Gao, Jiang, Fu, Zhong, Luo, Cen (b0120) 2010; 11 Kim, Ham, Lee (b0275) 2010; 99 Pritchard (b0050) 2009; 113 Zhuang (10.1016/j.cej.2012.12.100_b0085) 2007; 88 Niksa (10.1016/j.cej.2012.12.100_b0090) 2005; 55 Kim (10.1016/j.cej.2012.12.100_b0275) 2010; 99 10.1016/j.cej.2012.12.100_b0025 Xu (10.1016/j.cej.2012.12.100_b0255) 2009; 113 Li (10.1016/j.cej.2012.12.100_b0145) 2011; 169 Srivastava (10.1016/j.cej.2012.12.100_b0200) 2004; 54 Li (10.1016/j.cej.2012.12.100_b0285) 2012; 111–112 Granite (10.1016/j.cej.2012.12.100_b0030) 2000; 39 Li (10.1016/j.cej.2012.12.100_b0140) 2008; 42 Fan (10.1016/j.cej.2012.12.100_b0205) 2010; 24 Xu (10.1016/j.cej.2012.12.100_b0130) 2008; 9 Yu (10.1016/j.cej.2012.12.100_b0310) 2010; 95 Pavlish (10.1016/j.cej.2012.12.100_b0005) 2003; 82 Orsenigo (10.1016/j.cej.2012.12.100_b0230) 1996; 27 Schofield (10.1016/j.cej.2012.12.100_b0010) 2012; 159 Sjoerd Kijlstra (10.1016/j.cej.2012.12.100_b0300) 1998; 16 Straube (10.1016/j.cej.2012.12.100_b0265) 2008; 79 Reddy (10.1016/j.cej.2012.12.100_b0135) 2003; 107 Eswaran (10.1016/j.cej.2012.12.100_b0080) 2008; 89 Li (10.1016/j.cej.2012.12.100_b0155) 2010; 44 Zhou (10.1016/j.cej.2012.12.100_b0220) 2006; 21 Worle-Knirsch (10.1016/j.cej.2012.12.100_b0115) 2007; 41 Gao (10.1016/j.cej.2012.12.100_b0120) 2010; 11 Ji (10.1016/j.cej.2012.12.100_b0100) 2008; 22 Wu (10.1016/j.cej.2012.12.100_b0020) 2006; 40 Qi (10.1016/j.cej.2012.12.100_b0295) 2003; 44 Eswaran (10.1016/j.cej.2012.12.100_b0150) 2005; 19 10.1016/j.cej.2012.12.100_b0160 Wu (10.1016/j.cej.2012.12.100_b0015) 1998; 15 10.1016/j.cej.2012.12.100_b0240 Dunn (10.1016/j.cej.2012.12.100_b0290) 1998; 19 10.1016/j.cej.2012.12.100_b0040 Pavlish (10.1016/j.cej.2012.12.100_b0045) 2010; 89 Kamata (10.1016/j.cej.2012.12.100_b0270) 2008; 47 Casapu (10.1016/j.cej.2012.12.100_b0305) 2009; 88 Tian (10.1016/j.cej.2012.12.100_b0215) 2009; 88 Svachula (10.1016/j.cej.2012.12.100_b0165) 1993; 32 Gao (10.1016/j.cej.2012.12.100_b0125) 2010; 174 Sumathi (10.1016/j.cej.2012.12.100_b0195) 2010; 162 10.1016/j.cej.2012.12.100_b0035 Lee (10.1016/j.cej.2012.12.100_b0065) 2008; 58 Eom (10.1016/j.cej.2012.12.100_b0225) 2008; 121 Laumb (10.1016/j.cej.2012.12.100_b0170) 2004; 85 Li (10.1016/j.cej.2012.12.100_b0210) 2008; 89 Pitoniak (10.1016/j.cej.2012.12.100_b0260) 2005; 39 Cao (10.1016/j.cej.2012.12.100_b0075) 2008; 42 Li (10.1016/j.cej.2012.12.100_b0280) 2011 Pritchard (10.1016/j.cej.2012.12.100_b0050) 2009; 113 Cao (10.1016/j.cej.2012.12.100_b0245) 2007; 21 Presto (10.1016/j.cej.2012.12.100_b0250) 2007; 41 He (10.1016/j.cej.2012.12.100_b0055) 2009; 23 |
References_xml | – volume: 22 start-page: 2299 year: 2008 end-page: 2306 ident: b0100 article-title: Manganese oxide/titania materials for removal of NO publication-title: Energy Fuels – volume: 41 start-page: 6579 year: 2007 end-page: 6584 ident: b0250 article-title: Impact of sulfur oxides on mercury capture by activated carbon publication-title: Environ. Sci. Technol. – volume: 21 start-page: 491 year: 2006 end-page: 495 ident: b0220 article-title: Factors impacting gaseous mercury speciation in postcombustion publication-title: Energy Fuels – volume: 16 start-page: 327 year: 1998 end-page: 337 ident: b0300 article-title: Deactivation by SO publication-title: Appl. Catal., B – volume: 169 start-page: 186 year: 2011 end-page: 193 ident: b0145 article-title: Oxidation and capture of elemental mercury over SiO publication-title: Chem. Eng. J. – volume: 113 start-page: 42 year: 2009 end-page: 44 ident: b0050 article-title: Predictable SCR co-benefits for mercury control publication-title: Power. Eng. – volume: 42 start-page: 5304 year: 2008 end-page: 5309 ident: b0140 article-title: Development of silica/vanadia/titania catalysts for removal of elemental mercury from coal-combustion flue gas publication-title: Environ. Sci. Technol. – volume: 88 start-page: 413 year: 2009 end-page: 419 ident: b0305 article-title: Screening of doped MnO publication-title: Appl. Catal., B – reference: U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards and Office of Research and Development, Mercury Study Report to Congress, vol. I, Executive Summary, Washington, DC, December, 1997. – volume: 44 start-page: 217 year: 2003 end-page: 225 ident: b0295 article-title: Low-temperature selective catalytic reduction of NO with NH publication-title: Appl. Catal., B – volume: 27 start-page: 15 year: 1996 end-page: 21 ident: b0230 article-title: Theoretical and experimental study of the interaction between NO publication-title: Catal. Today – volume: 89 start-page: 567 year: 2008 end-page: 573 ident: b0210 article-title: Removal of elemental mercury from simulated coal-combustion flue gas using a SiO publication-title: Fuel Process. Technol. – volume: 162 start-page: 51 year: 2010 end-page: 57 ident: b0195 article-title: Cerium impregnated palm shell activated carbon (Ce/PSAC) sorbent for simultaneous removal of SO publication-title: Chem. Eng. J. – volume: 95 start-page: 160 year: 2010 end-page: 168 ident: b0310 article-title: Sulfur poisoning resistant mesoporous Mn-base catalyst for low-temperature SCR of NO with NH publication-title: Appl. Catal., B – volume: 88 start-page: 1687 year: 2009 end-page: 1691 ident: b0215 article-title: Removal of elemental mercury by activated carbon impregnated with CeO publication-title: Fuel – volume: 113 start-page: 4426 year: 2009 end-page: 4432 ident: b0255 article-title: Deactivation of a Ce/TiO publication-title: J. Phys. Chem. C – volume: 19 start-page: 2328 year: 2005 end-page: 2334 ident: b0150 article-title: Understanding mercury conversion in selective catalytic reduction (SCR) catalysts publication-title: Energy Fuels – volume: 42 start-page: 256 year: 2008 end-page: 261 ident: b0075 article-title: Impacts of halogen additions on mercury oxidation, in a slipstream selective catalyst reduction (SCR), reactor when burning sub-bituminous coal publication-title: Environ. Sci. Technol. – volume: 88 start-page: 929 year: 2007 end-page: 934 ident: b0085 article-title: Impacts of acid gases on mercury oxidation across SCR catalyst publication-title: Fuel Process. Technol. – volume: 58 start-page: 484 year: 2008 end-page: 493 ident: b0065 article-title: Mercury oxidation promoted by a selective catalytic reduction catalyst under simulated Powder River Basin coal combustion conditions publication-title: J. Air Waste Manage. Assoc. – volume: 89 start-page: 1153 year: 2008 end-page: 1159 ident: b0080 article-title: Effect of halogens on mercury conversion in SCR catalysts publication-title: Fuel Process. Technol. – volume: 21 start-page: 145 year: 2007 end-page: 156 ident: b0245 article-title: Study of mercury oxidation by a selective catalytic reduction catalyst in a pilot-scale slipstream reactor at a utility boiler burning bituminous coal publication-title: Energy Fuels – start-page: 7394 year: 2011 end-page: 7400 ident: b0280 article-title: CeO publication-title: Environ. Sci. Technol. – volume: 79 start-page: 286 year: 2008 end-page: 295 ident: b0265 article-title: Adsorption and oxidation of mercury in tail-end SCR-DeNO publication-title: Appl. Catal., B – volume: 9 start-page: 1453 year: 2008 end-page: 1457 ident: b0130 article-title: Selective catalytic reduction of NO by NH publication-title: Catal. Commun. – volume: 174 start-page: 734 year: 2010 end-page: 739 ident: b0125 article-title: The activity and characterization of CeO publication-title: J. Hazard. Mater. – volume: 121 start-page: 219 year: 2008 end-page: 225 ident: b0225 article-title: Heterogeneous mercury reaction on a selective catalytic reduction (SCR) catalyst publication-title: Catal. Lett. – volume: 55 start-page: 1866 year: 2005 end-page: 1875 ident: b0090 article-title: A predictive mechanism for mercury oxidation on selective catalytic reduction catalysts under coal-derived flue gas publication-title: J. Air Waste Manage. Assoc. – volume: 39 start-page: 1020 year: 2000 end-page: 1029 ident: b0030 article-title: Novel sorbents for mercury removal from flue gas publication-title: Ind. Eng. Chem. Res. – volume: 159 start-page: 1741 year: 2012 end-page: 1747 ident: b0010 article-title: Mercury emission control from coal combustion systems: a modified air preheater solution publication-title: Combust. Flame – volume: 82 start-page: 89 year: 2003 end-page: 165 ident: b0005 article-title: Status review of mercury control options for coal-fired power plants publication-title: Fuel Process. Technol. – volume: 11 start-page: 465 year: 2010 end-page: 469 ident: b0120 article-title: Preparation and characterization of CeO publication-title: Catal. Commun. – volume: 40 start-page: 5312 year: 2006 end-page: 5318 ident: b0020 article-title: Trends in anthropogenic mercury emissions in China from 1995 to 2003 publication-title: Environ. Sci. Technol. – volume: 47 start-page: 8136 year: 2008 end-page: 8141 ident: b0270 article-title: Mercury oxidation over the V publication-title: Ind. Eng. Chem. Res. – reference: Perry’s Chemical Engineers’ Handbook, sixth ed., Mc-Graw-Hill, 1984. – volume: 32 start-page: 826 year: 1993 end-page: 834 ident: b0165 article-title: Oxidation of sulfur dioxide to sulfur trioxide over honeycomb DeNoxing catalysts publication-title: Ind. Eng. Chem. Res. – reference: Ministry of Environmental Protection of the People’s Republic of China, Emission Standard of Air Pollutants for Thermal Power Plants, 2011. – volume: 85 start-page: 577 year: 2004 end-page: 585 ident: b0170 article-title: X-ray photoelectron spectroscopy analysis of mercury sorbent surface chemistry publication-title: Fuel Process. Technol. – reference: U.S. Environmental Protection Agency, < – volume: 44 start-page: 426 year: 2010 end-page: 431 ident: b0155 article-title: Catalytic oxidation of elemental mercury over the modified catalyst Mn/alpha-Al publication-title: Environ. Sci. Technol. – reference: > (accessed 20.02.12). – volume: 111–112 start-page: 381 year: 2012 end-page: 388 ident: b0285 article-title: Superior activity of MnO publication-title: Appl. Catal., B – volume: 19 start-page: 103 year: 1998 end-page: 117 ident: b0290 article-title: Oxidation of sulfur dioxide to sulfur trioxide over supported vanadia catalysts publication-title: Appl. Catal., B – volume: 89 start-page: 838 year: 2010 end-page: 847 ident: b0045 article-title: Mercury control technologies for coal combustion and gasification systems publication-title: Fuel – volume: 23 start-page: 253 year: 2009 end-page: 259 ident: b0055 article-title: Mercury oxidation over a vanadia-based selective catalytic reduction catalyst publication-title: Energy Fuels – reference: D.L. Laudal, J.S. Thompson, J.H. Pavlish, L. Brickett, P. Chu, R.K. Srivastava, C.W. Lee, J.D. Kilgroe, Mercury speciation at power plants using SCR and SNCR control technologies, in: 3rd International Air Quality Conference, Arlington, Virginia, September, 2002. – volume: 99 start-page: 272 year: 2010 end-page: 278 ident: b0275 article-title: Oxidation of gaseous elemental mercury by hydrochloric acid over CuCl publication-title: Appl. Catal., B – volume: 41 start-page: 331 year: 2007 end-page: 336 ident: b0115 article-title: Nanoparticulate vanadium oxide potentiated vanadium toxicity in human lung cells publication-title: Environ. Sci. Technol. – volume: 24 start-page: 4250 year: 2010 end-page: 4254 ident: b0205 article-title: Removal of gas-phase element mercury by activated carbon fiber impregnated with CeO publication-title: Energy Fuels – volume: 39 start-page: 1269 year: 2005 end-page: 1274 ident: b0260 article-title: Adsorption enhancement mechanisms of silica–titania nanocomposites for elemental mercury vapor removal publication-title: Environ. Sci. Technol. – volume: 15 start-page: 137 year: 1998 end-page: 147 ident: b0015 article-title: Capture of mercury in combustion environments by in situ generated titania particles with UV radiation publication-title: Environ. Eng. Sci. – volume: 107 start-page: 5162 year: 2003 end-page: 5167 ident: b0135 article-title: Structural characterization of CeO publication-title: J. Phys. Chem. B – volume: 54 start-page: 750 year: 2004 end-page: 762 ident: b0200 article-title: Emissions of sulfur trioxide from coal-fired power plants publication-title: J. Air Waste Manage. Assoc. – volume: 15 start-page: 137 year: 1998 ident: 10.1016/j.cej.2012.12.100_b0015 article-title: Capture of mercury in combustion environments by in situ generated titania particles with UV radiation publication-title: Environ. Eng. Sci. doi: 10.1089/ees.1998.15.137 – volume: 23 start-page: 253 year: 2009 ident: 10.1016/j.cej.2012.12.100_b0055 article-title: Mercury oxidation over a vanadia-based selective catalytic reduction catalyst publication-title: Energy Fuels doi: 10.1021/ef800730f – volume: 21 start-page: 491 year: 2006 ident: 10.1016/j.cej.2012.12.100_b0220 article-title: Factors impacting gaseous mercury speciation in postcombustion publication-title: Energy Fuels doi: 10.1021/ef060406i – volume: 107 start-page: 5162 year: 2003 ident: 10.1016/j.cej.2012.12.100_b0135 article-title: Structural characterization of CeO2–TiO2 and V2O5/CeO2–TiO2 catalysts by Raman and XPS techniques publication-title: J. Phys. Chem. B doi: 10.1021/jp0344601 – volume: 99 start-page: 272 year: 2010 ident: 10.1016/j.cej.2012.12.100_b0275 article-title: Oxidation of gaseous elemental mercury by hydrochloric acid over CuCl2/TiO2-based catalysts in SCR process publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2010.06.032 – volume: 44 start-page: 426 year: 2010 ident: 10.1016/j.cej.2012.12.100_b0155 article-title: Catalytic oxidation of elemental mercury over the modified catalyst Mn/alpha-Al2O3 at lower temperatures publication-title: Environ. Sci. Technol. doi: 10.1021/es9021206 – volume: 16 start-page: 327 year: 1998 ident: 10.1016/j.cej.2012.12.100_b0300 article-title: Deactivation by SO2 of MnOx/Al2O3 catalysts used for the selective catalytic reduction of NO with NH3 at low temperatures publication-title: Appl. Catal., B doi: 10.1016/S0926-3373(97)00089-1 – volume: 21 start-page: 145 year: 2007 ident: 10.1016/j.cej.2012.12.100_b0245 article-title: Study of mercury oxidation by a selective catalytic reduction catalyst in a pilot-scale slipstream reactor at a utility boiler burning bituminous coal publication-title: Energy Fuels doi: 10.1021/ef0602426 – volume: 88 start-page: 413 year: 2009 ident: 10.1016/j.cej.2012.12.100_b0305 article-title: Screening of doped MnOx–CeO2 catalysts for low-temperature NO-SCR publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2008.10.014 – volume: 32 start-page: 826 year: 1993 ident: 10.1016/j.cej.2012.12.100_b0165 article-title: Oxidation of sulfur dioxide to sulfur trioxide over honeycomb DeNoxing catalysts publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie00017a009 – volume: 42 start-page: 5304 year: 2008 ident: 10.1016/j.cej.2012.12.100_b0140 article-title: Development of silica/vanadia/titania catalysts for removal of elemental mercury from coal-combustion flue gas publication-title: Environ. Sci. Technol. doi: 10.1021/es8000272 – volume: 55 start-page: 1866 year: 2005 ident: 10.1016/j.cej.2012.12.100_b0090 article-title: A predictive mechanism for mercury oxidation on selective catalytic reduction catalysts under coal-derived flue gas publication-title: J. Air Waste Manage. Assoc. doi: 10.1080/10473289.2005.10464779 – volume: 42 start-page: 256 year: 2008 ident: 10.1016/j.cej.2012.12.100_b0075 article-title: Impacts of halogen additions on mercury oxidation, in a slipstream selective catalyst reduction (SCR), reactor when burning sub-bituminous coal publication-title: Environ. Sci. Technol. doi: 10.1021/es071281e – volume: 174 start-page: 734 year: 2010 ident: 10.1016/j.cej.2012.12.100_b0125 article-title: The activity and characterization of CeO2–TiO2 catalysts prepared by the sol–gel method for selective catalytic reduction of NO with NH3 publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2009.09.112 – volume: 89 start-page: 567 year: 2008 ident: 10.1016/j.cej.2012.12.100_b0210 article-title: Removal of elemental mercury from simulated coal-combustion flue gas using a SiO2–TiO2 nanocomposite publication-title: Fuel Process. Technol. doi: 10.1016/j.fuproc.2007.10.009 – volume: 22 start-page: 2299 year: 2008 ident: 10.1016/j.cej.2012.12.100_b0100 article-title: Manganese oxide/titania materials for removal of NOx and elemental mercury from flue gas publication-title: Energy Fuels doi: 10.1021/ef700533q – ident: 10.1016/j.cej.2012.12.100_b0160 – volume: 47 start-page: 8136 year: 2008 ident: 10.1016/j.cej.2012.12.100_b0270 article-title: Mercury oxidation over the V2O5(WO3)/TiO2 commercial SCR catalyst publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie800363g – volume: 113 start-page: 4426 year: 2009 ident: 10.1016/j.cej.2012.12.100_b0255 article-title: Deactivation of a Ce/TiO2 catalyst by SO2 in the selective catalytic reduction of NO by NH3 publication-title: J. Phys. Chem. C doi: 10.1021/jp8088148 – volume: 88 start-page: 929 year: 2007 ident: 10.1016/j.cej.2012.12.100_b0085 article-title: Impacts of acid gases on mercury oxidation across SCR catalyst publication-title: Fuel Process. Technol. doi: 10.1016/j.fuproc.2007.03.010 – volume: 9 start-page: 1453 year: 2008 ident: 10.1016/j.cej.2012.12.100_b0130 article-title: Selective catalytic reduction of NO by NH3 over a Ce/TiO2 catalyst publication-title: Catal. Commun. doi: 10.1016/j.catcom.2007.12.012 – ident: 10.1016/j.cej.2012.12.100_b0040 – volume: 82 start-page: 89 year: 2003 ident: 10.1016/j.cej.2012.12.100_b0005 article-title: Status review of mercury control options for coal-fired power plants publication-title: Fuel Process. Technol. doi: 10.1016/S0378-3820(03)00059-6 – volume: 85 start-page: 577 year: 2004 ident: 10.1016/j.cej.2012.12.100_b0170 article-title: X-ray photoelectron spectroscopy analysis of mercury sorbent surface chemistry publication-title: Fuel Process. Technol. doi: 10.1016/j.fuproc.2003.11.008 – volume: 88 start-page: 1687 year: 2009 ident: 10.1016/j.cej.2012.12.100_b0215 article-title: Removal of elemental mercury by activated carbon impregnated with CeO2 publication-title: Fuel doi: 10.1016/j.fuel.2009.01.022 – volume: 111–112 start-page: 381 year: 2012 ident: 10.1016/j.cej.2012.12.100_b0285 article-title: Superior activity of MnOx–CeO2/TiO2 catalyst for catalytic oxidation of elemental mercury at low flue gas temperatures publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2011.10.021 – volume: 41 start-page: 6579 year: 2007 ident: 10.1016/j.cej.2012.12.100_b0250 article-title: Impact of sulfur oxides on mercury capture by activated carbon publication-title: Environ. Sci. Technol. doi: 10.1021/es0708316 – volume: 159 start-page: 1741 year: 2012 ident: 10.1016/j.cej.2012.12.100_b0010 article-title: Mercury emission control from coal combustion systems: a modified air preheater solution publication-title: Combust. Flame doi: 10.1016/j.combustflame.2011.12.011 – start-page: 7394 year: 2011 ident: 10.1016/j.cej.2012.12.100_b0280 article-title: CeO2–TiO2 catalysts for catalytic oxidation of elemental mercury in low-rank coal combustion flue gas publication-title: Environ. Sci. Technol. doi: 10.1021/es2007808 – ident: 10.1016/j.cej.2012.12.100_b0035 – volume: 169 start-page: 186 year: 2011 ident: 10.1016/j.cej.2012.12.100_b0145 article-title: Oxidation and capture of elemental mercury over SiO2–TiO2–V2O5 catalysts in simulated low-rank coal combustion flue gas publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2011.03.003 – volume: 19 start-page: 2328 year: 2005 ident: 10.1016/j.cej.2012.12.100_b0150 article-title: Understanding mercury conversion in selective catalytic reduction (SCR) catalysts publication-title: Energy Fuels doi: 10.1021/ef050087f – volume: 41 start-page: 331 year: 2007 ident: 10.1016/j.cej.2012.12.100_b0115 article-title: Nanoparticulate vanadium oxide potentiated vanadium toxicity in human lung cells publication-title: Environ. Sci. Technol. doi: 10.1021/es061140x – volume: 79 start-page: 286 year: 2008 ident: 10.1016/j.cej.2012.12.100_b0265 article-title: Adsorption and oxidation of mercury in tail-end SCR-DeNOx plants – bench scale investigations and speciation experiments publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2007.10.031 – volume: 162 start-page: 51 year: 2010 ident: 10.1016/j.cej.2012.12.100_b0195 article-title: Cerium impregnated palm shell activated carbon (Ce/PSAC) sorbent for simultaneous removal of SO2 and NO-process study publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2010.04.056 – ident: 10.1016/j.cej.2012.12.100_b0240 – volume: 39 start-page: 1020 year: 2000 ident: 10.1016/j.cej.2012.12.100_b0030 article-title: Novel sorbents for mercury removal from flue gas publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie990758v – volume: 54 start-page: 750 year: 2004 ident: 10.1016/j.cej.2012.12.100_b0200 article-title: Emissions of sulfur trioxide from coal-fired power plants publication-title: J. Air Waste Manage. Assoc. doi: 10.1080/10473289.2004.10470943 – volume: 40 start-page: 5312 year: 2006 ident: 10.1016/j.cej.2012.12.100_b0020 article-title: Trends in anthropogenic mercury emissions in China from 1995 to 2003 publication-title: Environ. Sci. Technol. doi: 10.1021/es060406x – volume: 58 start-page: 484 year: 2008 ident: 10.1016/j.cej.2012.12.100_b0065 article-title: Mercury oxidation promoted by a selective catalytic reduction catalyst under simulated Powder River Basin coal combustion conditions publication-title: J. Air Waste Manage. Assoc. doi: 10.3155/1047-3289.58.4.484 – volume: 39 start-page: 1269 year: 2005 ident: 10.1016/j.cej.2012.12.100_b0260 article-title: Adsorption enhancement mechanisms of silica–titania nanocomposites for elemental mercury vapor removal publication-title: Environ. Sci. Technol. doi: 10.1021/es049202b – volume: 24 start-page: 4250 year: 2010 ident: 10.1016/j.cej.2012.12.100_b0205 article-title: Removal of gas-phase element mercury by activated carbon fiber impregnated with CeO2 publication-title: Energy Fuels doi: 10.1021/ef100377f – volume: 89 start-page: 838 year: 2010 ident: 10.1016/j.cej.2012.12.100_b0045 article-title: Mercury control technologies for coal combustion and gasification systems publication-title: Fuel doi: 10.1016/j.fuel.2009.05.021 – volume: 44 start-page: 217 year: 2003 ident: 10.1016/j.cej.2012.12.100_b0295 article-title: Low-temperature selective catalytic reduction of NO with NH3 over iron and manganese oxides supported on titania publication-title: Appl. Catal., B doi: 10.1016/S0926-3373(03)00100-0 – volume: 19 start-page: 103 year: 1998 ident: 10.1016/j.cej.2012.12.100_b0290 article-title: Oxidation of sulfur dioxide to sulfur trioxide over supported vanadia catalysts publication-title: Appl. Catal., B doi: 10.1016/S0926-3373(98)00060-5 – volume: 121 start-page: 219 year: 2008 ident: 10.1016/j.cej.2012.12.100_b0225 article-title: Heterogeneous mercury reaction on a selective catalytic reduction (SCR) catalyst publication-title: Catal. Lett. doi: 10.1007/s10562-007-9317-0 – volume: 113 start-page: 42 year: 2009 ident: 10.1016/j.cej.2012.12.100_b0050 article-title: Predictable SCR co-benefits for mercury control publication-title: Power. Eng. – volume: 11 start-page: 465 year: 2010 ident: 10.1016/j.cej.2012.12.100_b0120 article-title: Preparation and characterization of CeO2/TiO2 catalysts for selective catalytic reduction of NO with NH3 publication-title: Catal. Commun. doi: 10.1016/j.catcom.2009.11.024 – volume: 95 start-page: 160 year: 2010 ident: 10.1016/j.cej.2012.12.100_b0310 article-title: Sulfur poisoning resistant mesoporous Mn-base catalyst for low-temperature SCR of NO with NH3 publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2009.12.023 – volume: 89 start-page: 1153 year: 2008 ident: 10.1016/j.cej.2012.12.100_b0080 article-title: Effect of halogens on mercury conversion in SCR catalysts publication-title: Fuel Process. Technol. doi: 10.1016/j.fuproc.2008.05.007 – ident: 10.1016/j.cej.2012.12.100_b0025 – volume: 27 start-page: 15 year: 1996 ident: 10.1016/j.cej.2012.12.100_b0230 article-title: Theoretical and experimental study of the interaction between NOx reduction and SO2 oxidation over DeNOx-SCR catalysts publication-title: Catal. Today doi: 10.1016/0920-5861(95)00168-9 |
SSID | ssj0006919 |
Score | 2.4391418 |
Snippet | [Display omitted]
► SO2 exhibited different, even contrary, effects on Hg0 oxidation in different conditions. ► With O2, few SO2 promoted Hg0 oxidation, while... Effect of SO₂ on elemental mercury (Hg⁰) oxidation over a highly active CeO₂–TiO₂ catalyst was systematically investigated. SO₂ was found to have different,... |
SourceID | proquest crossref fao elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 319 |
SubjectTerms | adsorption CeO2–TiO2 chemical engineering chlorine Coal combustion Flue gas Mercury oxidation Sulfur dioxide |
Title | Impact of SO2 on elemental mercury oxidation over CeO2–TiO2 catalyst |
URI | https://dx.doi.org/10.1016/j.cej.2012.12.100 https://www.proquest.com/docview/1663646300 |
Volume | 219 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fS-NAEF-qvpwPcnon1n-scE9CrpvNJuk-SrlSLSpcLde3ZZNMpKUmRSvoi_gd_Ib3SW5mm_iHEx-EQCDMkjC7-5vJzm9mGPsR-olsZyl4EGfgKRtqD7185SUizEH5GkIXPT89i3pDdTIKRw3WqXNhiFZZYf8C0x1aV09alTZbs_G4NfAppqURXAPhYJUy2FVMq_znwwvNI9KuuQcJeyRdRzYdxyuFCbG7JJ0I-pTk9r5tWspt-R9WOwPU_crWKs-RHy0-bp01oNhgq6_qCX5j3WOX88jLnA_OJS8LDhU7fMqv4DpF_fHybrxoo8SJvMk7cC7_Pj5djFHeHeXc38y_s2H310Wn51WNErxUSTH3rIrQUEc2yGINIrAqFyr3gWp1QQw6s76MslDIpA1SWR0HQQ4ysVmAxkmjPxRssuWiLGCLcdzfOqeCPWkK6FsoC4ENfRsmuWpnKmk3mahVZNKqijg1s5iami42MahVQ1o1dAnRZIfPQ2aLEhofCata7-bNOjAI8R8N28I5MvYSkdEMB5LOcejvDP-5m-ygnjiDW4fiIbaA8vbG-OhtRYpqjm1_7q077It03TGIkrbLlufXt7CHPso82XeLcJ-tHB33e2d07__-0_8Hl4Hi_A |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB4BPQAH1Bdi-zRSe6mUruM42fWBQ0W72i2vw-5K3FwnmaBFkCB2EeVS9T_wU_qP-ks64036UBEHJKScIjuxZuxvxp7PMwBv4jBV3TzDADs5BtrFJiAvXwepjAvUocHYR8_39pP-WH8-jA8X4EdzF4ZplTX2zzHdo3X9pl1Ls302mbSHIce0DIFrJD2s1szKHby6pH3bdGvwkZT8Vqnep9F2P6hLCwSZVnIWOJ2QaUtclHcMysjpQuoiRM5uhR00uQtVksdSpV1U2plOFBWoUpdHBOeGPIiIvrsIDzTBBZdNeP_tD68kMb6aCI8u4OE1oVRPKsvwmOlkio8gQ75Vd7MxXCxc9Z9x8Bav9xDWaldVfJhL4xEsYPkYVv9KYPgEegN_yVJUhRgeKFGVAms6-ok4xfOMFCaqr5N53SbBbFGxjQfq5_fr0YTa-7Ojq-nsKYzvRXzrsFRWJW6AIEAxBWcIyjIkZ0Y7jFwcujgtdDfXabcFshGRzeq05Vw948Q2_LRjS1K1LFXLj5QtePe7y9k8Z8dtjXUjd_vPxLNkU27rtkE6su6IoNiOh4oPjng7SJv8Fmw2irO0VjkA40qsLqY2JPcu0Zzk7Nnd_voalvujvV27O9jfeQ4rypfmYD7cC1ianV_gS3KQZukrPyEFfLnvFfAL7Kcbkg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Impact+of+SO2+on+elemental+mercury+oxidation+over+CeO2%E2%80%93TiO2+catalyst&rft.jtitle=Chemical+engineering+journal+%28Lausanne%2C+Switzerland+%3A+1996%29&rft.au=Li%2C+Hailong&rft.au=Wu%2C+Chang-Yu&rft.au=Li%2C+Ying&rft.au=Li%2C+Liqing&rft.date=2013-03-01&rft.pub=Elsevier+B.V&rft.issn=1385-8947&rft.eissn=1873-3212&rft.volume=219&rft.spage=319&rft.epage=326&rft_id=info:doi/10.1016%2Fj.cej.2012.12.100&rft.externalDocID=S1385894713000429 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1385-8947&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1385-8947&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1385-8947&client=summon |