Impact of SO2 on elemental mercury oxidation over CeO2–TiO2 catalyst

[Display omitted] ► SO2 exhibited different, even contrary, effects on Hg0 oxidation in different conditions. ► With O2, few SO2 promoted Hg0 oxidation, while excess SO2 inhibited Hg0 oxidation. ► There is a balance SO2 concentration, where no obvious effect of SO2 can be observed. ► NO catalyzed SO...

Full description

Saved in:
Bibliographic Details
Published inChemical engineering journal (Lausanne, Switzerland : 1996) Vol. 219; pp. 319 - 326
Main Authors Li, Hailong, Wu, Chang-Yu, Li, Ying, Li, Liqing, Zhao, Yongchun, Zhang, Junying
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.03.2013
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] ► SO2 exhibited different, even contrary, effects on Hg0 oxidation in different conditions. ► With O2, few SO2 promoted Hg0 oxidation, while excess SO2 inhibited Hg0 oxidation. ► There is a balance SO2 concentration, where no obvious effect of SO2 can be observed. ► NO catalyzed SO2 conversion to SO3, and thus relieved the inhibitive effect of SO2. Effect of SO2 on elemental mercury (Hg0) oxidation over a highly active CeO2–TiO2 catalyst was systematically investigated. SO2 was found to have different, even contrary, effects on Hg0 oxidation under different flue gas conditions. In pure N2 atmosphere, SO2 inhibited Hg0 oxidation. In N2 plus O2 atmosphere, low concentration of SO2 promoted Hg0 oxidation, while high concentration of SO2 deteriorated Hg0 oxidation. The promotional effect of SO2 on Hg0 oxidation was probably due to SO3 generated from SO2 oxidation, and the inhibitive effect of SO2 on Hg0 oxidation was attributed to the competitive adsorption between SO2 and Hg0. The results suggest a balance point for SO2 concentration, where the promotional effect on Hg0 oxidation by SO3 originated from SO2 is equal to the inhibitive effect of SO2 on Hg0 adsorption and subsequent oxidation via the Langmuir–Hinshelwood mechanism. In the presence of NO, SO2 with the aid of O2 exhibited promotional effect on Hg0 oxidation through NO-catalyzed oxidation to form SO3 and hence a balance point of higher SO2 concentration. However, without O2, SO2 greatly limited Hg0 oxidation in the presence of NO. When HCl was present, most Hg0 oxidation was due to reactions between active chlorine species and adsorbed Hg0. SO2 inhibited Hg0 adsorption and therefore deteriorated Hg0 oxidation by chlorine species. When both NO and HCl were present, NO accelerated the conversion of SO2 to SO3, and hence relieved the prohibitive effect of SO2 on Hg0 oxidation by HCl.
AbstractList Effect of SO₂ on elemental mercury (Hg⁰) oxidation over a highly active CeO₂–TiO₂ catalyst was systematically investigated. SO₂ was found to have different, even contrary, effects on Hg⁰ oxidation under different flue gas conditions. In pure N₂ atmosphere, SO₂ inhibited Hg⁰ oxidation. In N₂ plus O₂ atmosphere, low concentration of SO₂ promoted Hg⁰ oxidation, while high concentration of SO₂ deteriorated Hg⁰ oxidation. The promotional effect of SO₂ on Hg⁰ oxidation was probably due to SO₃ generated from SO₂ oxidation, and the inhibitive effect of SO₂ on Hg⁰ oxidation was attributed to the competitive adsorption between SO₂ and Hg⁰. The results suggest a balance point for SO₂ concentration, where the promotional effect on Hg⁰ oxidation by SO₃ originated from SO₂ is equal to the inhibitive effect of SO₂ on Hg⁰ adsorption and subsequent oxidation via the Langmuir–Hinshelwood mechanism. In the presence of NO, SO₂ with the aid of O₂ exhibited promotional effect on Hg⁰ oxidation through NO-catalyzed oxidation to form SO₃ and hence a balance point of higher SO₂ concentration. However, without O₂, SO₂ greatly limited Hg⁰ oxidation in the presence of NO. When HCl was present, most Hg⁰ oxidation was due to reactions between active chlorine species and adsorbed Hg⁰. SO₂ inhibited Hg⁰ adsorption and therefore deteriorated Hg⁰ oxidation by chlorine species. When both NO and HCl were present, NO accelerated the conversion of SO₂ to SO₃, and hence relieved the prohibitive effect of SO₂ on Hg⁰ oxidation by HCl.
[Display omitted] ► SO2 exhibited different, even contrary, effects on Hg0 oxidation in different conditions. ► With O2, few SO2 promoted Hg0 oxidation, while excess SO2 inhibited Hg0 oxidation. ► There is a balance SO2 concentration, where no obvious effect of SO2 can be observed. ► NO catalyzed SO2 conversion to SO3, and thus relieved the inhibitive effect of SO2. Effect of SO2 on elemental mercury (Hg0) oxidation over a highly active CeO2–TiO2 catalyst was systematically investigated. SO2 was found to have different, even contrary, effects on Hg0 oxidation under different flue gas conditions. In pure N2 atmosphere, SO2 inhibited Hg0 oxidation. In N2 plus O2 atmosphere, low concentration of SO2 promoted Hg0 oxidation, while high concentration of SO2 deteriorated Hg0 oxidation. The promotional effect of SO2 on Hg0 oxidation was probably due to SO3 generated from SO2 oxidation, and the inhibitive effect of SO2 on Hg0 oxidation was attributed to the competitive adsorption between SO2 and Hg0. The results suggest a balance point for SO2 concentration, where the promotional effect on Hg0 oxidation by SO3 originated from SO2 is equal to the inhibitive effect of SO2 on Hg0 adsorption and subsequent oxidation via the Langmuir–Hinshelwood mechanism. In the presence of NO, SO2 with the aid of O2 exhibited promotional effect on Hg0 oxidation through NO-catalyzed oxidation to form SO3 and hence a balance point of higher SO2 concentration. However, without O2, SO2 greatly limited Hg0 oxidation in the presence of NO. When HCl was present, most Hg0 oxidation was due to reactions between active chlorine species and adsorbed Hg0. SO2 inhibited Hg0 adsorption and therefore deteriorated Hg0 oxidation by chlorine species. When both NO and HCl were present, NO accelerated the conversion of SO2 to SO3, and hence relieved the prohibitive effect of SO2 on Hg0 oxidation by HCl.
Author Li, Liqing
Zhao, Yongchun
Wu, Chang-Yu
Li, Ying
Zhang, Junying
Li, Hailong
Author_xml – sequence: 1
  givenname: Hailong
  surname: Li
  fullname: Li, Hailong
  organization: School of Energy Science and Engineering, Central South University, Changsha 410083, China
– sequence: 2
  givenname: Chang-Yu
  surname: Wu
  fullname: Wu, Chang-Yu
  organization: Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL 32611, United States
– sequence: 3
  givenname: Ying
  surname: Li
  fullname: Li, Ying
  organization: Department of Mechanical Engineering, University of Wisconsin–Milwaukee, Milwaukee, WI 53211, United States
– sequence: 4
  givenname: Liqing
  surname: Li
  fullname: Li, Liqing
  email: lienergycsu@gmail.com
  organization: School of Energy Science and Engineering, Central South University, Changsha 410083, China
– sequence: 5
  givenname: Yongchun
  surname: Zhao
  fullname: Zhao, Yongchun
  organization: State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan 430074, China
– sequence: 6
  givenname: Junying
  surname: Zhang
  fullname: Zhang, Junying
  organization: State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan 430074, China
BookMark eNp9kM9KAzEQh4Mo2FYfwJN79LI1_5rdxZMUq4VCD23PIc3OSsrupiZpsTffwTf0Scy2njwUBmYg32-YfH102doWELojeEgwEY-boYbNkGJCh11hfIF6JM9Yyiihl3Fm-SjNC55do773G4yxKEjRQ5Nps1U6JLZKFnOa2DaBGhpog6qTBpzeuUNiP02pgolvdg8uGcOc_nx9L03ktYrgwYcbdFWp2sPtXx-g1eRlOX5LZ_PX6fh5lmpOcUgVFyQnQrEyKwAzxSvMKwJ8xDPIoCgVoaIcYbrOgXJVZIxVQNeqZITG2zlhA_Rw2rt19mMHPsjGeA11rVqwOy-JEExwwTCOKDmh2lnvHVRy60yj3EESLDtnciOjM9k5k10dM9m_jDbh-PXglKnPJu9PyUpZqd6d8XK1iMAomi4EzXgknk4ERD97A056baDVUBoHOsjSmjP7fwHnJZA6
CitedBy_id crossref_primary_10_1016_j_fuel_2017_04_065
crossref_primary_10_1016_j_cattod_2020_05_029
crossref_primary_10_1016_j_fuel_2017_11_015
crossref_primary_10_1016_S1872_5813_21_60177_9
crossref_primary_10_1016_j_fuel_2018_11_016
crossref_primary_10_1080_15567036_2013_821548
crossref_primary_10_1080_09593330_2017_1287222
crossref_primary_10_1021_acs_energyfuels_0c03238
crossref_primary_10_1016_j_fuel_2021_121593
crossref_primary_10_1016_j_jenvman_2019_02_118
crossref_primary_10_1016_j_jhazmat_2015_10_044
crossref_primary_10_1016_j_cej_2018_12_165
crossref_primary_10_1016_j_jhazmat_2021_128132
crossref_primary_10_2355_tetsutohagane_TETSU_2015_046
crossref_primary_10_1016_j_jhazmat_2019_120986
crossref_primary_10_1016_j_apcatb_2015_04_044
crossref_primary_10_1016_j_fuel_2017_04_071
crossref_primary_10_1016_j_cej_2023_147839
crossref_primary_10_1016_j_surfin_2023_103359
crossref_primary_10_1002_tcr_201800161
crossref_primary_10_1016_j_wasman_2017_11_044
crossref_primary_10_1016_j_seppur_2024_126352
crossref_primary_10_1016_j_fuel_2022_125850
crossref_primary_10_1021_acs_iecr_0c02287
crossref_primary_10_1039_C5CY00219B
crossref_primary_10_1016_j_jhazmat_2022_129115
crossref_primary_10_1007_s11814_016_0026_5
crossref_primary_10_1016_j_cej_2014_05_066
crossref_primary_10_1016_j_psep_2024_06_135
crossref_primary_10_1021_acs_energyfuels_3c04779
crossref_primary_10_1252_jcej_14we339
crossref_primary_10_1016_j_ces_2025_121364
crossref_primary_10_1038_s41598_021_97626_4
crossref_primary_10_1016_j_fuel_2019_116289
crossref_primary_10_1016_j_fuel_2022_126636
crossref_primary_10_1016_j_jhazmat_2017_02_013
crossref_primary_10_1021_acs_energyfuels_9b02376
crossref_primary_10_1016_j_fuel_2017_07_061
crossref_primary_10_1016_j_cplett_2016_06_045
crossref_primary_10_1016_j_fuproc_2020_106478
crossref_primary_10_1016_j_cej_2017_05_099
crossref_primary_10_1016_j_joei_2021_05_002
crossref_primary_10_1021_es402495h
crossref_primary_10_1016_j_cej_2013_12_047
crossref_primary_10_1016_j_fuel_2018_04_074
crossref_primary_10_1016_j_seppur_2024_127709
crossref_primary_10_1016_j_cej_2018_08_225
crossref_primary_10_1021_acs_iecr_8b04857
crossref_primary_10_3390_app10082706
crossref_primary_10_1007_s11814_021_0912_3
crossref_primary_10_1016_j_jclepro_2020_124220
crossref_primary_10_1039_C5CY01576F
crossref_primary_10_1007_s11356_019_06492_1
crossref_primary_10_1016_j_fuel_2023_128440
crossref_primary_10_1007_s11814_015_0185_9
crossref_primary_10_1016_j_cclet_2021_03_023
crossref_primary_10_1016_j_fuel_2022_124229
crossref_primary_10_1016_j_fuproc_2019_106167
crossref_primary_10_1016_j_chemosphere_2021_132127
crossref_primary_10_1016_j_jhazmat_2015_07_083
crossref_primary_10_1016_j_cej_2022_134603
crossref_primary_10_1142_S0218625X1850141X
crossref_primary_10_1007_s11356_020_08477_x
crossref_primary_10_1016_j_eng_2024_03_005
crossref_primary_10_1016_j_apr_2016_05_003
crossref_primary_10_1021_acsomega_2c00350
crossref_primary_10_1039_C6RA16763B
crossref_primary_10_1007_s11356_015_5143_x
crossref_primary_10_3390_catal12020243
crossref_primary_10_1007_s11696_017_0152_5
crossref_primary_10_1016_j_jiec_2014_11_015
crossref_primary_10_1007_s11814_014_0074_7
crossref_primary_10_1016_j_jhazmat_2015_02_076
crossref_primary_10_2139_ssrn_4125808
crossref_primary_10_1016_j_fuel_2022_125922
crossref_primary_10_1016_j_scitotenv_2019_134049
crossref_primary_10_1002_apj_2208
crossref_primary_10_1016_j_pecs_2020_100844
crossref_primary_10_1016_j_fuproc_2015_10_036
crossref_primary_10_1016_j_seppur_2020_117181
crossref_primary_10_1016_S1872_5813_20_30093_1
crossref_primary_10_1021_acs_est_5b05564
crossref_primary_10_1016_j_cherd_2016_06_024
crossref_primary_10_1016_j_cej_2020_127745
crossref_primary_10_1016_j_apcatb_2016_11_013
crossref_primary_10_1016_j_apsusc_2020_145604
crossref_primary_10_1016_j_cej_2017_10_115
crossref_primary_10_1016_j_cej_2018_10_218
crossref_primary_10_1021_acs_energyfuels_8b02295
crossref_primary_10_1016_j_apsusc_2017_12_123
crossref_primary_10_1016_j_cej_2021_132660
crossref_primary_10_1021_acs_energyfuels_0c02209
crossref_primary_10_1016_j_jhazmat_2023_131489
crossref_primary_10_1021_acs_iecr_7b02749
crossref_primary_10_1088_2058_6272_acd83a
crossref_primary_10_1016_j_fuel_2025_134582
crossref_primary_10_1016_j_jhazmat_2019_121354
crossref_primary_10_1021_acs_energyfuels_9b02567
crossref_primary_10_1016_j_fuproc_2020_106467
crossref_primary_10_1021_acs_energyfuels_5b01082
crossref_primary_10_1021_acs_energyfuels_7b00213
crossref_primary_10_1016_j_fuproc_2017_10_017
crossref_primary_10_1016_j_jes_2020_03_017
crossref_primary_10_1016_j_fuel_2015_09_065
crossref_primary_10_1016_j_cej_2016_04_017
crossref_primary_10_1016_j_jhazmat_2020_123502
crossref_primary_10_1016_j_psep_2024_05_096
crossref_primary_10_1016_j_apsusc_2017_01_088
crossref_primary_10_1016_j_cej_2025_159572
crossref_primary_10_1016_j_eti_2021_101411
crossref_primary_10_1016_j_cej_2016_04_131
crossref_primary_10_1016_j_cej_2017_02_052
crossref_primary_10_1016_j_cej_2019_122263
crossref_primary_10_1016_j_fuel_2018_03_122
crossref_primary_10_1021_acs_est_1c00828
crossref_primary_10_1016_j_cej_2018_05_019
crossref_primary_10_1016_j_catcom_2016_04_019
crossref_primary_10_3390_app14104209
crossref_primary_10_1021_acs_energyfuels_8b02358
crossref_primary_10_1016_j_cej_2020_127888
crossref_primary_10_2139_ssrn_4156301
crossref_primary_10_1021_acsomega_3c04372
crossref_primary_10_1016_j_fuel_2015_03_001
crossref_primary_10_1007_s10311_018_0771_2
crossref_primary_10_1016_j_apsusc_2014_11_090
crossref_primary_10_1021_acs_energyfuels_9b01136
crossref_primary_10_1021_acs_langmuir_8b02656
crossref_primary_10_1002_cjce_24135
crossref_primary_10_1016_j_cej_2019_122155
Cites_doi 10.1089/ees.1998.15.137
10.1021/ef800730f
10.1021/ef060406i
10.1021/jp0344601
10.1016/j.apcatb.2010.06.032
10.1021/es9021206
10.1016/S0926-3373(97)00089-1
10.1021/ef0602426
10.1016/j.apcatb.2008.10.014
10.1021/ie00017a009
10.1021/es8000272
10.1080/10473289.2005.10464779
10.1021/es071281e
10.1016/j.jhazmat.2009.09.112
10.1016/j.fuproc.2007.10.009
10.1021/ef700533q
10.1021/ie800363g
10.1021/jp8088148
10.1016/j.fuproc.2007.03.010
10.1016/j.catcom.2007.12.012
10.1016/S0378-3820(03)00059-6
10.1016/j.fuproc.2003.11.008
10.1016/j.fuel.2009.01.022
10.1016/j.apcatb.2011.10.021
10.1021/es0708316
10.1016/j.combustflame.2011.12.011
10.1021/es2007808
10.1016/j.cej.2011.03.003
10.1021/ef050087f
10.1021/es061140x
10.1016/j.apcatb.2007.10.031
10.1016/j.cej.2010.04.056
10.1021/ie990758v
10.1080/10473289.2004.10470943
10.1021/es060406x
10.3155/1047-3289.58.4.484
10.1021/es049202b
10.1021/ef100377f
10.1016/j.fuel.2009.05.021
10.1016/S0926-3373(03)00100-0
10.1016/S0926-3373(98)00060-5
10.1007/s10562-007-9317-0
10.1016/j.catcom.2009.11.024
10.1016/j.apcatb.2009.12.023
10.1016/j.fuproc.2008.05.007
10.1016/0920-5861(95)00168-9
ContentType Journal Article
Copyright 2013 Elsevier B.V.
Copyright_xml – notice: 2013 Elsevier B.V.
DBID FBQ
AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.cej.2012.12.100
DatabaseName AGRIS
CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA

Database_xml – sequence: 1
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-3212
EndPage 326
ExternalDocumentID 10_1016_j_cej_2012_12_100
US201500096274
S1385894713000429
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29B
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFYP
ABLST
ABMAC
ABNUV
ABUDA
ABXDB
ABYKQ
ACDAQ
ACRLP
ADBBV
ADEWK
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KCYFY
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSG
SSJ
SSZ
T5K
~G-
ABPIF
ABPTK
ABTAH
AFFNX
ASPBG
AVWKF
AZFZN
BKOMP
EJD
FBQ
FEDTE
FGOYB
HVGLF
HZ~
R2-
SEW
ZY4
AATTM
AAXKI
AAYWO
AAYXX
ACVFH
ADCNI
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7S9
L.6
ID FETCH-LOGICAL-c420t-a461816a3d79e03a4f04f1e4547e7e9da126d502b8e24a9733fe2bad312894413
IEDL.DBID .~1
ISSN 1385-8947
IngestDate Fri Jul 11 01:28:46 EDT 2025
Tue Jul 01 01:09:51 EDT 2025
Thu Apr 24 23:03:11 EDT 2025
Wed Dec 27 19:27:30 EST 2023
Fri Feb 23 02:17:42 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Coal combustion
Mercury
Flue gas
Sulfur dioxide
CeO2–TiO2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c420t-a461816a3d79e03a4f04f1e4547e7e9da126d502b8e24a9733fe2bad312894413
Notes http://dx.doi.org/10.1016/j.cej.2012.12.100
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1663646300
PQPubID 24069
PageCount 8
ParticipantIDs proquest_miscellaneous_1663646300
crossref_primary_10_1016_j_cej_2012_12_100
crossref_citationtrail_10_1016_j_cej_2012_12_100
fao_agris_US201500096274
elsevier_sciencedirect_doi_10_1016_j_cej_2012_12_100
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-03-01
PublicationDateYYYYMMDD 2013-03-01
PublicationDate_xml – month: 03
  year: 2013
  text: 2013-03-01
  day: 01
PublicationDecade 2010
PublicationTitle Chemical engineering journal (Lausanne, Switzerland : 1996)
PublicationYear 2013
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Li, Wu, Li, Zhang (b0285) 2012; 111–112
Gao, Jiang, Zhong, Luo, Cen (b0125) 2010; 174
Casapu, Kröcher, Elsener (b0305) 2009; 88
Pitoniak, Wu, Mazyck, Powers, Sigmund (b0260) 2005; 39
Reddy, Khan, Yamada, Kobayashi, Loridant, Volta (b0135) 2003; 107
Li, Murphy, Wu (b0210) 2008; 89
Granite, Pennline, Hargis (b0030) 2000; 39
Laumb, Benson, Olson (b0170) 2004; 85
D.L. Laudal, J.S. Thompson, J.H. Pavlish, L. Brickett, P. Chu, R.K. Srivastava, C.W. Lee, J.D. Kilgroe, Mercury speciation at power plants using SCR and SNCR control technologies, in: 3rd International Air Quality Conference, Arlington, Virginia, September, 2002.
Straube, Hahn, Koeser (b0265) 2008; 79
Pavlish, Sondreal, Mann, Olson, Galbreath, Laudal, Benson (b0005) 2003; 82
Dunn, Koppula, Stenger, Wachs (b0290) 1998; 19
Qi, Yang (b0295) 2003; 44
Tian, Li, Li, Zeng, Gao, Li, Fan (b0215) 2009; 88
Ministry of Environmental Protection of the People’s Republic of China, Emission Standard of Air Pollutants for Thermal Power Plants, 2011.
Cao, Gao, Zhu, Wang, Huang, Chiu, Parker, Chu, Pan (b0075) 2008; 42
Kamata, Ueno, Naito, Yukimura (b0270) 2008; 47
Yu, Guo, Wang, Zhu, Liu, Su, Gao, Xu (b0310) 2010; 95
Eswaran, Stenger (b0080) 2008; 89
U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards and Office of Research and Development, Mercury Study Report to Congress, vol. I, Executive Summary, Washington, DC, December, 1997.
Zhuang, Laumb, Liggett, Holmes, Pavlish (b0085) 2007; 88
Wu, Lee, Tyree, Arar, Biswas (b0015) 1998; 15
Eom, Jeon, Ngo, Kim, Lee (b0225) 2008; 121
Perry’s Chemical Engineers’ Handbook, sixth ed., Mc-Graw-Hill, 1984.
Schofield (b0010) 2012; 159
Li, Wu, Li, Zhang (b0280) 2011
Li, Yan, Qu, Qiao, Yang, Guo, Liu, Jia (b0155) 2010; 44
(accessed 20.02.12).
Svachula, Alemany, Ferlazzo, Forzatti, Tronconi, Bregani (b0165) 1993; 32
Sumathi, Bhatia, Lee, Mohamed (b0195) 2010; 162
Xu, Yu, Zhang, He (b0130) 2008; 9
Worle-Knirsch, Kern, Schleh, Adelhelm, Feldmann, Krug (b0115) 2007; 41
Sjoerd Kijlstra, Biervliet, Poels, Bliek (b0300) 1998; 16
Xu, He, Yu (b0255) 2009; 113
Niksa, Fujiwara (b0090) 2005; 55
Presto, Granite (b0250) 2007; 41
Fan, Li, Zeng, Gao, Chen, Zhang, Gao (b0205) 2010; 24
U.S. Environmental Protection Agency
Pavlish, Hamre, Zhuang (b0045) 2010; 89
Li, Murphy, Wu, Powers, Bonzongo (b0140) 2008; 42
Li, Li, Wu, Zhang (b0145) 2011; 169
Zhou, Luo, Hu, Cen (b0220) 2006; 21
Wu, Wang, Streets, Hao, Chan, Jiang (b0020) 2006; 40
Srivastava, Miller, Erickson, Jambhekar (b0200) 2004; 54
He, Zhou, Zhu, Luo, Ni, Cen (b0055) 2009; 23
Cao, Chen, Wu, Cui, Smith, Chen, Chu, Pan (b0245) 2007; 21
Orsenigo, Beretta, Forzatti, Svachula, Tronconi, Bregani, Baldacci (b0230) 1996; 27
Lee, Serre, Zhao, Lee (b0065) 2008; 58
Ji, Sreekanth, Smirniotis, Thiel, Pinto (b0100) 2008; 22
Eswaran, Stenger (b0150) 2005; 19
Gao, Jiang, Fu, Zhong, Luo, Cen (b0120) 2010; 11
Kim, Ham, Lee (b0275) 2010; 99
Pritchard (b0050) 2009; 113
Zhuang (10.1016/j.cej.2012.12.100_b0085) 2007; 88
Niksa (10.1016/j.cej.2012.12.100_b0090) 2005; 55
Kim (10.1016/j.cej.2012.12.100_b0275) 2010; 99
10.1016/j.cej.2012.12.100_b0025
Xu (10.1016/j.cej.2012.12.100_b0255) 2009; 113
Li (10.1016/j.cej.2012.12.100_b0145) 2011; 169
Srivastava (10.1016/j.cej.2012.12.100_b0200) 2004; 54
Li (10.1016/j.cej.2012.12.100_b0285) 2012; 111–112
Granite (10.1016/j.cej.2012.12.100_b0030) 2000; 39
Li (10.1016/j.cej.2012.12.100_b0140) 2008; 42
Fan (10.1016/j.cej.2012.12.100_b0205) 2010; 24
Xu (10.1016/j.cej.2012.12.100_b0130) 2008; 9
Yu (10.1016/j.cej.2012.12.100_b0310) 2010; 95
Pavlish (10.1016/j.cej.2012.12.100_b0005) 2003; 82
Orsenigo (10.1016/j.cej.2012.12.100_b0230) 1996; 27
Schofield (10.1016/j.cej.2012.12.100_b0010) 2012; 159
Sjoerd Kijlstra (10.1016/j.cej.2012.12.100_b0300) 1998; 16
Straube (10.1016/j.cej.2012.12.100_b0265) 2008; 79
Reddy (10.1016/j.cej.2012.12.100_b0135) 2003; 107
Eswaran (10.1016/j.cej.2012.12.100_b0080) 2008; 89
Li (10.1016/j.cej.2012.12.100_b0155) 2010; 44
Zhou (10.1016/j.cej.2012.12.100_b0220) 2006; 21
Worle-Knirsch (10.1016/j.cej.2012.12.100_b0115) 2007; 41
Gao (10.1016/j.cej.2012.12.100_b0120) 2010; 11
Ji (10.1016/j.cej.2012.12.100_b0100) 2008; 22
Wu (10.1016/j.cej.2012.12.100_b0020) 2006; 40
Qi (10.1016/j.cej.2012.12.100_b0295) 2003; 44
Eswaran (10.1016/j.cej.2012.12.100_b0150) 2005; 19
10.1016/j.cej.2012.12.100_b0160
Wu (10.1016/j.cej.2012.12.100_b0015) 1998; 15
10.1016/j.cej.2012.12.100_b0240
Dunn (10.1016/j.cej.2012.12.100_b0290) 1998; 19
10.1016/j.cej.2012.12.100_b0040
Pavlish (10.1016/j.cej.2012.12.100_b0045) 2010; 89
Kamata (10.1016/j.cej.2012.12.100_b0270) 2008; 47
Casapu (10.1016/j.cej.2012.12.100_b0305) 2009; 88
Tian (10.1016/j.cej.2012.12.100_b0215) 2009; 88
Svachula (10.1016/j.cej.2012.12.100_b0165) 1993; 32
Gao (10.1016/j.cej.2012.12.100_b0125) 2010; 174
Sumathi (10.1016/j.cej.2012.12.100_b0195) 2010; 162
10.1016/j.cej.2012.12.100_b0035
Lee (10.1016/j.cej.2012.12.100_b0065) 2008; 58
Eom (10.1016/j.cej.2012.12.100_b0225) 2008; 121
Laumb (10.1016/j.cej.2012.12.100_b0170) 2004; 85
Li (10.1016/j.cej.2012.12.100_b0210) 2008; 89
Pitoniak (10.1016/j.cej.2012.12.100_b0260) 2005; 39
Cao (10.1016/j.cej.2012.12.100_b0075) 2008; 42
Li (10.1016/j.cej.2012.12.100_b0280) 2011
Pritchard (10.1016/j.cej.2012.12.100_b0050) 2009; 113
Cao (10.1016/j.cej.2012.12.100_b0245) 2007; 21
Presto (10.1016/j.cej.2012.12.100_b0250) 2007; 41
He (10.1016/j.cej.2012.12.100_b0055) 2009; 23
References_xml – volume: 22
  start-page: 2299
  year: 2008
  end-page: 2306
  ident: b0100
  article-title: Manganese oxide/titania materials for removal of NO
  publication-title: Energy Fuels
– volume: 41
  start-page: 6579
  year: 2007
  end-page: 6584
  ident: b0250
  article-title: Impact of sulfur oxides on mercury capture by activated carbon
  publication-title: Environ. Sci. Technol.
– volume: 21
  start-page: 491
  year: 2006
  end-page: 495
  ident: b0220
  article-title: Factors impacting gaseous mercury speciation in postcombustion
  publication-title: Energy Fuels
– volume: 16
  start-page: 327
  year: 1998
  end-page: 337
  ident: b0300
  article-title: Deactivation by SO
  publication-title: Appl. Catal., B
– volume: 169
  start-page: 186
  year: 2011
  end-page: 193
  ident: b0145
  article-title: Oxidation and capture of elemental mercury over SiO
  publication-title: Chem. Eng. J.
– volume: 113
  start-page: 42
  year: 2009
  end-page: 44
  ident: b0050
  article-title: Predictable SCR co-benefits for mercury control
  publication-title: Power. Eng.
– volume: 42
  start-page: 5304
  year: 2008
  end-page: 5309
  ident: b0140
  article-title: Development of silica/vanadia/titania catalysts for removal of elemental mercury from coal-combustion flue gas
  publication-title: Environ. Sci. Technol.
– volume: 88
  start-page: 413
  year: 2009
  end-page: 419
  ident: b0305
  article-title: Screening of doped MnO
  publication-title: Appl. Catal., B
– reference: U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards and Office of Research and Development, Mercury Study Report to Congress, vol. I, Executive Summary, Washington, DC, December, 1997.
– volume: 44
  start-page: 217
  year: 2003
  end-page: 225
  ident: b0295
  article-title: Low-temperature selective catalytic reduction of NO with NH
  publication-title: Appl. Catal., B
– volume: 27
  start-page: 15
  year: 1996
  end-page: 21
  ident: b0230
  article-title: Theoretical and experimental study of the interaction between NO
  publication-title: Catal. Today
– volume: 89
  start-page: 567
  year: 2008
  end-page: 573
  ident: b0210
  article-title: Removal of elemental mercury from simulated coal-combustion flue gas using a SiO
  publication-title: Fuel Process. Technol.
– volume: 162
  start-page: 51
  year: 2010
  end-page: 57
  ident: b0195
  article-title: Cerium impregnated palm shell activated carbon (Ce/PSAC) sorbent for simultaneous removal of SO
  publication-title: Chem. Eng. J.
– volume: 95
  start-page: 160
  year: 2010
  end-page: 168
  ident: b0310
  article-title: Sulfur poisoning resistant mesoporous Mn-base catalyst for low-temperature SCR of NO with NH
  publication-title: Appl. Catal., B
– volume: 88
  start-page: 1687
  year: 2009
  end-page: 1691
  ident: b0215
  article-title: Removal of elemental mercury by activated carbon impregnated with CeO
  publication-title: Fuel
– volume: 113
  start-page: 4426
  year: 2009
  end-page: 4432
  ident: b0255
  article-title: Deactivation of a Ce/TiO
  publication-title: J. Phys. Chem. C
– volume: 19
  start-page: 2328
  year: 2005
  end-page: 2334
  ident: b0150
  article-title: Understanding mercury conversion in selective catalytic reduction (SCR) catalysts
  publication-title: Energy Fuels
– volume: 42
  start-page: 256
  year: 2008
  end-page: 261
  ident: b0075
  article-title: Impacts of halogen additions on mercury oxidation, in a slipstream selective catalyst reduction (SCR), reactor when burning sub-bituminous coal
  publication-title: Environ. Sci. Technol.
– volume: 88
  start-page: 929
  year: 2007
  end-page: 934
  ident: b0085
  article-title: Impacts of acid gases on mercury oxidation across SCR catalyst
  publication-title: Fuel Process. Technol.
– volume: 58
  start-page: 484
  year: 2008
  end-page: 493
  ident: b0065
  article-title: Mercury oxidation promoted by a selective catalytic reduction catalyst under simulated Powder River Basin coal combustion conditions
  publication-title: J. Air Waste Manage. Assoc.
– volume: 89
  start-page: 1153
  year: 2008
  end-page: 1159
  ident: b0080
  article-title: Effect of halogens on mercury conversion in SCR catalysts
  publication-title: Fuel Process. Technol.
– volume: 21
  start-page: 145
  year: 2007
  end-page: 156
  ident: b0245
  article-title: Study of mercury oxidation by a selective catalytic reduction catalyst in a pilot-scale slipstream reactor at a utility boiler burning bituminous coal
  publication-title: Energy Fuels
– start-page: 7394
  year: 2011
  end-page: 7400
  ident: b0280
  article-title: CeO
  publication-title: Environ. Sci. Technol.
– volume: 79
  start-page: 286
  year: 2008
  end-page: 295
  ident: b0265
  article-title: Adsorption and oxidation of mercury in tail-end SCR-DeNO
  publication-title: Appl. Catal., B
– volume: 9
  start-page: 1453
  year: 2008
  end-page: 1457
  ident: b0130
  article-title: Selective catalytic reduction of NO by NH
  publication-title: Catal. Commun.
– volume: 174
  start-page: 734
  year: 2010
  end-page: 739
  ident: b0125
  article-title: The activity and characterization of CeO
  publication-title: J. Hazard. Mater.
– volume: 121
  start-page: 219
  year: 2008
  end-page: 225
  ident: b0225
  article-title: Heterogeneous mercury reaction on a selective catalytic reduction (SCR) catalyst
  publication-title: Catal. Lett.
– volume: 55
  start-page: 1866
  year: 2005
  end-page: 1875
  ident: b0090
  article-title: A predictive mechanism for mercury oxidation on selective catalytic reduction catalysts under coal-derived flue gas
  publication-title: J. Air Waste Manage. Assoc.
– volume: 39
  start-page: 1020
  year: 2000
  end-page: 1029
  ident: b0030
  article-title: Novel sorbents for mercury removal from flue gas
  publication-title: Ind. Eng. Chem. Res.
– volume: 159
  start-page: 1741
  year: 2012
  end-page: 1747
  ident: b0010
  article-title: Mercury emission control from coal combustion systems: a modified air preheater solution
  publication-title: Combust. Flame
– volume: 82
  start-page: 89
  year: 2003
  end-page: 165
  ident: b0005
  article-title: Status review of mercury control options for coal-fired power plants
  publication-title: Fuel Process. Technol.
– volume: 11
  start-page: 465
  year: 2010
  end-page: 469
  ident: b0120
  article-title: Preparation and characterization of CeO
  publication-title: Catal. Commun.
– volume: 40
  start-page: 5312
  year: 2006
  end-page: 5318
  ident: b0020
  article-title: Trends in anthropogenic mercury emissions in China from 1995 to 2003
  publication-title: Environ. Sci. Technol.
– volume: 47
  start-page: 8136
  year: 2008
  end-page: 8141
  ident: b0270
  article-title: Mercury oxidation over the V
  publication-title: Ind. Eng. Chem. Res.
– reference: Perry’s Chemical Engineers’ Handbook, sixth ed., Mc-Graw-Hill, 1984.
– volume: 32
  start-page: 826
  year: 1993
  end-page: 834
  ident: b0165
  article-title: Oxidation of sulfur dioxide to sulfur trioxide over honeycomb DeNoxing catalysts
  publication-title: Ind. Eng. Chem. Res.
– reference: Ministry of Environmental Protection of the People’s Republic of China, Emission Standard of Air Pollutants for Thermal Power Plants, 2011.
– volume: 85
  start-page: 577
  year: 2004
  end-page: 585
  ident: b0170
  article-title: X-ray photoelectron spectroscopy analysis of mercury sorbent surface chemistry
  publication-title: Fuel Process. Technol.
– reference: U.S. Environmental Protection Agency, <
– volume: 44
  start-page: 426
  year: 2010
  end-page: 431
  ident: b0155
  article-title: Catalytic oxidation of elemental mercury over the modified catalyst Mn/alpha-Al
  publication-title: Environ. Sci. Technol.
– reference: > (accessed 20.02.12).
– volume: 111–112
  start-page: 381
  year: 2012
  end-page: 388
  ident: b0285
  article-title: Superior activity of MnO
  publication-title: Appl. Catal., B
– volume: 19
  start-page: 103
  year: 1998
  end-page: 117
  ident: b0290
  article-title: Oxidation of sulfur dioxide to sulfur trioxide over supported vanadia catalysts
  publication-title: Appl. Catal., B
– volume: 89
  start-page: 838
  year: 2010
  end-page: 847
  ident: b0045
  article-title: Mercury control technologies for coal combustion and gasification systems
  publication-title: Fuel
– volume: 23
  start-page: 253
  year: 2009
  end-page: 259
  ident: b0055
  article-title: Mercury oxidation over a vanadia-based selective catalytic reduction catalyst
  publication-title: Energy Fuels
– reference: D.L. Laudal, J.S. Thompson, J.H. Pavlish, L. Brickett, P. Chu, R.K. Srivastava, C.W. Lee, J.D. Kilgroe, Mercury speciation at power plants using SCR and SNCR control technologies, in: 3rd International Air Quality Conference, Arlington, Virginia, September, 2002.
– volume: 99
  start-page: 272
  year: 2010
  end-page: 278
  ident: b0275
  article-title: Oxidation of gaseous elemental mercury by hydrochloric acid over CuCl
  publication-title: Appl. Catal., B
– volume: 41
  start-page: 331
  year: 2007
  end-page: 336
  ident: b0115
  article-title: Nanoparticulate vanadium oxide potentiated vanadium toxicity in human lung cells
  publication-title: Environ. Sci. Technol.
– volume: 24
  start-page: 4250
  year: 2010
  end-page: 4254
  ident: b0205
  article-title: Removal of gas-phase element mercury by activated carbon fiber impregnated with CeO
  publication-title: Energy Fuels
– volume: 39
  start-page: 1269
  year: 2005
  end-page: 1274
  ident: b0260
  article-title: Adsorption enhancement mechanisms of silica–titania nanocomposites for elemental mercury vapor removal
  publication-title: Environ. Sci. Technol.
– volume: 15
  start-page: 137
  year: 1998
  end-page: 147
  ident: b0015
  article-title: Capture of mercury in combustion environments by in situ generated titania particles with UV radiation
  publication-title: Environ. Eng. Sci.
– volume: 107
  start-page: 5162
  year: 2003
  end-page: 5167
  ident: b0135
  article-title: Structural characterization of CeO
  publication-title: J. Phys. Chem. B
– volume: 54
  start-page: 750
  year: 2004
  end-page: 762
  ident: b0200
  article-title: Emissions of sulfur trioxide from coal-fired power plants
  publication-title: J. Air Waste Manage. Assoc.
– volume: 15
  start-page: 137
  year: 1998
  ident: 10.1016/j.cej.2012.12.100_b0015
  article-title: Capture of mercury in combustion environments by in situ generated titania particles with UV radiation
  publication-title: Environ. Eng. Sci.
  doi: 10.1089/ees.1998.15.137
– volume: 23
  start-page: 253
  year: 2009
  ident: 10.1016/j.cej.2012.12.100_b0055
  article-title: Mercury oxidation over a vanadia-based selective catalytic reduction catalyst
  publication-title: Energy Fuels
  doi: 10.1021/ef800730f
– volume: 21
  start-page: 491
  year: 2006
  ident: 10.1016/j.cej.2012.12.100_b0220
  article-title: Factors impacting gaseous mercury speciation in postcombustion
  publication-title: Energy Fuels
  doi: 10.1021/ef060406i
– volume: 107
  start-page: 5162
  year: 2003
  ident: 10.1016/j.cej.2012.12.100_b0135
  article-title: Structural characterization of CeO2–TiO2 and V2O5/CeO2–TiO2 catalysts by Raman and XPS techniques
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp0344601
– volume: 99
  start-page: 272
  year: 2010
  ident: 10.1016/j.cej.2012.12.100_b0275
  article-title: Oxidation of gaseous elemental mercury by hydrochloric acid over CuCl2/TiO2-based catalysts in SCR process
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2010.06.032
– volume: 44
  start-page: 426
  year: 2010
  ident: 10.1016/j.cej.2012.12.100_b0155
  article-title: Catalytic oxidation of elemental mercury over the modified catalyst Mn/alpha-Al2O3 at lower temperatures
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es9021206
– volume: 16
  start-page: 327
  year: 1998
  ident: 10.1016/j.cej.2012.12.100_b0300
  article-title: Deactivation by SO2 of MnOx/Al2O3 catalysts used for the selective catalytic reduction of NO with NH3 at low temperatures
  publication-title: Appl. Catal., B
  doi: 10.1016/S0926-3373(97)00089-1
– volume: 21
  start-page: 145
  year: 2007
  ident: 10.1016/j.cej.2012.12.100_b0245
  article-title: Study of mercury oxidation by a selective catalytic reduction catalyst in a pilot-scale slipstream reactor at a utility boiler burning bituminous coal
  publication-title: Energy Fuels
  doi: 10.1021/ef0602426
– volume: 88
  start-page: 413
  year: 2009
  ident: 10.1016/j.cej.2012.12.100_b0305
  article-title: Screening of doped MnOx–CeO2 catalysts for low-temperature NO-SCR
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2008.10.014
– volume: 32
  start-page: 826
  year: 1993
  ident: 10.1016/j.cej.2012.12.100_b0165
  article-title: Oxidation of sulfur dioxide to sulfur trioxide over honeycomb DeNoxing catalysts
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie00017a009
– volume: 42
  start-page: 5304
  year: 2008
  ident: 10.1016/j.cej.2012.12.100_b0140
  article-title: Development of silica/vanadia/titania catalysts for removal of elemental mercury from coal-combustion flue gas
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es8000272
– volume: 55
  start-page: 1866
  year: 2005
  ident: 10.1016/j.cej.2012.12.100_b0090
  article-title: A predictive mechanism for mercury oxidation on selective catalytic reduction catalysts under coal-derived flue gas
  publication-title: J. Air Waste Manage. Assoc.
  doi: 10.1080/10473289.2005.10464779
– volume: 42
  start-page: 256
  year: 2008
  ident: 10.1016/j.cej.2012.12.100_b0075
  article-title: Impacts of halogen additions on mercury oxidation, in a slipstream selective catalyst reduction (SCR), reactor when burning sub-bituminous coal
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es071281e
– volume: 174
  start-page: 734
  year: 2010
  ident: 10.1016/j.cej.2012.12.100_b0125
  article-title: The activity and characterization of CeO2–TiO2 catalysts prepared by the sol–gel method for selective catalytic reduction of NO with NH3
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2009.09.112
– volume: 89
  start-page: 567
  year: 2008
  ident: 10.1016/j.cej.2012.12.100_b0210
  article-title: Removal of elemental mercury from simulated coal-combustion flue gas using a SiO2–TiO2 nanocomposite
  publication-title: Fuel Process. Technol.
  doi: 10.1016/j.fuproc.2007.10.009
– volume: 22
  start-page: 2299
  year: 2008
  ident: 10.1016/j.cej.2012.12.100_b0100
  article-title: Manganese oxide/titania materials for removal of NOx and elemental mercury from flue gas
  publication-title: Energy Fuels
  doi: 10.1021/ef700533q
– ident: 10.1016/j.cej.2012.12.100_b0160
– volume: 47
  start-page: 8136
  year: 2008
  ident: 10.1016/j.cej.2012.12.100_b0270
  article-title: Mercury oxidation over the V2O5(WO3)/TiO2 commercial SCR catalyst
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie800363g
– volume: 113
  start-page: 4426
  year: 2009
  ident: 10.1016/j.cej.2012.12.100_b0255
  article-title: Deactivation of a Ce/TiO2 catalyst by SO2 in the selective catalytic reduction of NO by NH3
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp8088148
– volume: 88
  start-page: 929
  year: 2007
  ident: 10.1016/j.cej.2012.12.100_b0085
  article-title: Impacts of acid gases on mercury oxidation across SCR catalyst
  publication-title: Fuel Process. Technol.
  doi: 10.1016/j.fuproc.2007.03.010
– volume: 9
  start-page: 1453
  year: 2008
  ident: 10.1016/j.cej.2012.12.100_b0130
  article-title: Selective catalytic reduction of NO by NH3 over a Ce/TiO2 catalyst
  publication-title: Catal. Commun.
  doi: 10.1016/j.catcom.2007.12.012
– ident: 10.1016/j.cej.2012.12.100_b0040
– volume: 82
  start-page: 89
  year: 2003
  ident: 10.1016/j.cej.2012.12.100_b0005
  article-title: Status review of mercury control options for coal-fired power plants
  publication-title: Fuel Process. Technol.
  doi: 10.1016/S0378-3820(03)00059-6
– volume: 85
  start-page: 577
  year: 2004
  ident: 10.1016/j.cej.2012.12.100_b0170
  article-title: X-ray photoelectron spectroscopy analysis of mercury sorbent surface chemistry
  publication-title: Fuel Process. Technol.
  doi: 10.1016/j.fuproc.2003.11.008
– volume: 88
  start-page: 1687
  year: 2009
  ident: 10.1016/j.cej.2012.12.100_b0215
  article-title: Removal of elemental mercury by activated carbon impregnated with CeO2
  publication-title: Fuel
  doi: 10.1016/j.fuel.2009.01.022
– volume: 111–112
  start-page: 381
  year: 2012
  ident: 10.1016/j.cej.2012.12.100_b0285
  article-title: Superior activity of MnOx–CeO2/TiO2 catalyst for catalytic oxidation of elemental mercury at low flue gas temperatures
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2011.10.021
– volume: 41
  start-page: 6579
  year: 2007
  ident: 10.1016/j.cej.2012.12.100_b0250
  article-title: Impact of sulfur oxides on mercury capture by activated carbon
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es0708316
– volume: 159
  start-page: 1741
  year: 2012
  ident: 10.1016/j.cej.2012.12.100_b0010
  article-title: Mercury emission control from coal combustion systems: a modified air preheater solution
  publication-title: Combust. Flame
  doi: 10.1016/j.combustflame.2011.12.011
– start-page: 7394
  year: 2011
  ident: 10.1016/j.cej.2012.12.100_b0280
  article-title: CeO2–TiO2 catalysts for catalytic oxidation of elemental mercury in low-rank coal combustion flue gas
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es2007808
– ident: 10.1016/j.cej.2012.12.100_b0035
– volume: 169
  start-page: 186
  year: 2011
  ident: 10.1016/j.cej.2012.12.100_b0145
  article-title: Oxidation and capture of elemental mercury over SiO2–TiO2–V2O5 catalysts in simulated low-rank coal combustion flue gas
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2011.03.003
– volume: 19
  start-page: 2328
  year: 2005
  ident: 10.1016/j.cej.2012.12.100_b0150
  article-title: Understanding mercury conversion in selective catalytic reduction (SCR) catalysts
  publication-title: Energy Fuels
  doi: 10.1021/ef050087f
– volume: 41
  start-page: 331
  year: 2007
  ident: 10.1016/j.cej.2012.12.100_b0115
  article-title: Nanoparticulate vanadium oxide potentiated vanadium toxicity in human lung cells
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es061140x
– volume: 79
  start-page: 286
  year: 2008
  ident: 10.1016/j.cej.2012.12.100_b0265
  article-title: Adsorption and oxidation of mercury in tail-end SCR-DeNOx plants – bench scale investigations and speciation experiments
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2007.10.031
– volume: 162
  start-page: 51
  year: 2010
  ident: 10.1016/j.cej.2012.12.100_b0195
  article-title: Cerium impregnated palm shell activated carbon (Ce/PSAC) sorbent for simultaneous removal of SO2 and NO-process study
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2010.04.056
– ident: 10.1016/j.cej.2012.12.100_b0240
– volume: 39
  start-page: 1020
  year: 2000
  ident: 10.1016/j.cej.2012.12.100_b0030
  article-title: Novel sorbents for mercury removal from flue gas
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie990758v
– volume: 54
  start-page: 750
  year: 2004
  ident: 10.1016/j.cej.2012.12.100_b0200
  article-title: Emissions of sulfur trioxide from coal-fired power plants
  publication-title: J. Air Waste Manage. Assoc.
  doi: 10.1080/10473289.2004.10470943
– volume: 40
  start-page: 5312
  year: 2006
  ident: 10.1016/j.cej.2012.12.100_b0020
  article-title: Trends in anthropogenic mercury emissions in China from 1995 to 2003
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es060406x
– volume: 58
  start-page: 484
  year: 2008
  ident: 10.1016/j.cej.2012.12.100_b0065
  article-title: Mercury oxidation promoted by a selective catalytic reduction catalyst under simulated Powder River Basin coal combustion conditions
  publication-title: J. Air Waste Manage. Assoc.
  doi: 10.3155/1047-3289.58.4.484
– volume: 39
  start-page: 1269
  year: 2005
  ident: 10.1016/j.cej.2012.12.100_b0260
  article-title: Adsorption enhancement mechanisms of silica–titania nanocomposites for elemental mercury vapor removal
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es049202b
– volume: 24
  start-page: 4250
  year: 2010
  ident: 10.1016/j.cej.2012.12.100_b0205
  article-title: Removal of gas-phase element mercury by activated carbon fiber impregnated with CeO2
  publication-title: Energy Fuels
  doi: 10.1021/ef100377f
– volume: 89
  start-page: 838
  year: 2010
  ident: 10.1016/j.cej.2012.12.100_b0045
  article-title: Mercury control technologies for coal combustion and gasification systems
  publication-title: Fuel
  doi: 10.1016/j.fuel.2009.05.021
– volume: 44
  start-page: 217
  year: 2003
  ident: 10.1016/j.cej.2012.12.100_b0295
  article-title: Low-temperature selective catalytic reduction of NO with NH3 over iron and manganese oxides supported on titania
  publication-title: Appl. Catal., B
  doi: 10.1016/S0926-3373(03)00100-0
– volume: 19
  start-page: 103
  year: 1998
  ident: 10.1016/j.cej.2012.12.100_b0290
  article-title: Oxidation of sulfur dioxide to sulfur trioxide over supported vanadia catalysts
  publication-title: Appl. Catal., B
  doi: 10.1016/S0926-3373(98)00060-5
– volume: 121
  start-page: 219
  year: 2008
  ident: 10.1016/j.cej.2012.12.100_b0225
  article-title: Heterogeneous mercury reaction on a selective catalytic reduction (SCR) catalyst
  publication-title: Catal. Lett.
  doi: 10.1007/s10562-007-9317-0
– volume: 113
  start-page: 42
  year: 2009
  ident: 10.1016/j.cej.2012.12.100_b0050
  article-title: Predictable SCR co-benefits for mercury control
  publication-title: Power. Eng.
– volume: 11
  start-page: 465
  year: 2010
  ident: 10.1016/j.cej.2012.12.100_b0120
  article-title: Preparation and characterization of CeO2/TiO2 catalysts for selective catalytic reduction of NO with NH3
  publication-title: Catal. Commun.
  doi: 10.1016/j.catcom.2009.11.024
– volume: 95
  start-page: 160
  year: 2010
  ident: 10.1016/j.cej.2012.12.100_b0310
  article-title: Sulfur poisoning resistant mesoporous Mn-base catalyst for low-temperature SCR of NO with NH3
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2009.12.023
– volume: 89
  start-page: 1153
  year: 2008
  ident: 10.1016/j.cej.2012.12.100_b0080
  article-title: Effect of halogens on mercury conversion in SCR catalysts
  publication-title: Fuel Process. Technol.
  doi: 10.1016/j.fuproc.2008.05.007
– ident: 10.1016/j.cej.2012.12.100_b0025
– volume: 27
  start-page: 15
  year: 1996
  ident: 10.1016/j.cej.2012.12.100_b0230
  article-title: Theoretical and experimental study of the interaction between NOx reduction and SO2 oxidation over DeNOx-SCR catalysts
  publication-title: Catal. Today
  doi: 10.1016/0920-5861(95)00168-9
SSID ssj0006919
Score 2.4391418
Snippet [Display omitted] ► SO2 exhibited different, even contrary, effects on Hg0 oxidation in different conditions. ► With O2, few SO2 promoted Hg0 oxidation, while...
Effect of SO₂ on elemental mercury (Hg⁰) oxidation over a highly active CeO₂–TiO₂ catalyst was systematically investigated. SO₂ was found to have different,...
SourceID proquest
crossref
fao
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 319
SubjectTerms adsorption
CeO2–TiO2
chemical engineering
chlorine
Coal combustion
Flue gas
Mercury
oxidation
Sulfur dioxide
Title Impact of SO2 on elemental mercury oxidation over CeO2–TiO2 catalyst
URI https://dx.doi.org/10.1016/j.cej.2012.12.100
https://www.proquest.com/docview/1663646300
Volume 219
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fS-NAEF-qvpwPcnon1n-scE9CrpvNJuk-SrlSLSpcLde3ZZNMpKUmRSvoi_gd_Ib3SW5mm_iHEx-EQCDMkjC7-5vJzm9mGPsR-olsZyl4EGfgKRtqD7185SUizEH5GkIXPT89i3pDdTIKRw3WqXNhiFZZYf8C0x1aV09alTZbs_G4NfAppqURXAPhYJUy2FVMq_znwwvNI9KuuQcJeyRdRzYdxyuFCbG7JJ0I-pTk9r5tWspt-R9WOwPU_crWKs-RHy0-bp01oNhgq6_qCX5j3WOX88jLnA_OJS8LDhU7fMqv4DpF_fHybrxoo8SJvMk7cC7_Pj5djFHeHeXc38y_s2H310Wn51WNErxUSTH3rIrQUEc2yGINIrAqFyr3gWp1QQw6s76MslDIpA1SWR0HQQ4ysVmAxkmjPxRssuWiLGCLcdzfOqeCPWkK6FsoC4ENfRsmuWpnKmk3mahVZNKqijg1s5iami42MahVQ1o1dAnRZIfPQ2aLEhofCata7-bNOjAI8R8N28I5MvYSkdEMB5LOcejvDP-5m-ygnjiDW4fiIbaA8vbG-OhtRYpqjm1_7q077It03TGIkrbLlufXt7CHPso82XeLcJ-tHB33e2d07__-0_8Hl4Hi_A
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB4BPQAH1Bdi-zRSe6mUruM42fWBQ0W72i2vw-5K3FwnmaBFkCB2EeVS9T_wU_qP-ks64036UBEHJKScIjuxZuxvxp7PMwBv4jBV3TzDADs5BtrFJiAvXwepjAvUocHYR8_39pP-WH8-jA8X4EdzF4ZplTX2zzHdo3X9pl1Ls302mbSHIce0DIFrJD2s1szKHby6pH3bdGvwkZT8Vqnep9F2P6hLCwSZVnIWOJ2QaUtclHcMysjpQuoiRM5uhR00uQtVksdSpV1U2plOFBWoUpdHBOeGPIiIvrsIDzTBBZdNeP_tD68kMb6aCI8u4OE1oVRPKsvwmOlkio8gQ75Vd7MxXCxc9Z9x8Bav9xDWaldVfJhL4xEsYPkYVv9KYPgEegN_yVJUhRgeKFGVAms6-ok4xfOMFCaqr5N53SbBbFGxjQfq5_fr0YTa-7Ojq-nsKYzvRXzrsFRWJW6AIEAxBWcIyjIkZ0Y7jFwcujgtdDfXabcFshGRzeq05Vw948Q2_LRjS1K1LFXLj5QtePe7y9k8Z8dtjXUjd_vPxLNkU27rtkE6su6IoNiOh4oPjng7SJv8Fmw2irO0VjkA40qsLqY2JPcu0Zzk7Nnd_voalvujvV27O9jfeQ4rypfmYD7cC1ianV_gS3KQZukrPyEFfLnvFfAL7Kcbkg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Impact+of+SO2+on+elemental+mercury+oxidation+over+CeO2%E2%80%93TiO2+catalyst&rft.jtitle=Chemical+engineering+journal+%28Lausanne%2C+Switzerland+%3A+1996%29&rft.au=Li%2C+Hailong&rft.au=Wu%2C+Chang-Yu&rft.au=Li%2C+Ying&rft.au=Li%2C+Liqing&rft.date=2013-03-01&rft.pub=Elsevier+B.V&rft.issn=1385-8947&rft.eissn=1873-3212&rft.volume=219&rft.spage=319&rft.epage=326&rft_id=info:doi/10.1016%2Fj.cej.2012.12.100&rft.externalDocID=S1385894713000429
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1385-8947&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1385-8947&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1385-8947&client=summon