Assessing the Electrochemical Stability Window of NASICON-Type Solid Electrolytes
All-Solid-State Lithium Batteries (ASSLBs) are promising since they may enable the use of high potential materials as positive electrode and lithium metal as negative electrode. This is only possible through solid electrolytes (SEs) stated large electrochemical stability window (ESW). Nevertheless,...
Saved in:
Published in | Frontiers in energy research Vol. 9 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Frontiers Media S.A
27.05.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | All-Solid-State Lithium Batteries (ASSLBs) are promising since they may enable the use of high potential materials as positive electrode and lithium metal as negative electrode. This is only possible through solid electrolytes (SEs) stated large electrochemical stability window (ESW). Nevertheless, reported values for these ESWs are very divergent in the literature. Establishing a robust procedure to accurately determine SEs’ ESWs has therefore become crucial. Our work focuses on bringing together theoretical results and an original experimental set up to assess the electrochemical stability window of the two NASICON-type SEs Li
1.3
Al
0.3
Ti
1.7
(PO
4
)
3
(LATP) and Li
1.5
Al
0.5
Ge
1.5
(PO
4
)
3
(LAGP). Using first principles, we computed thermodynamic ESWs for LATP and LAGP and their decomposition products upon redox potentials. The experimental set-up consists of a sintered stack of a thin SE layer and a SE-Au composite electrode to allow a large contact surface between SE and conductive gold particles, which maximizes the redox currents. Using Potentiostatic Intermittent Titration Technique (PITT) measurements, we were able to accurately determine the ESW of LATP and LAGP solid electrolytes. They are found to be [2.65–4.6 V] and [1.85–4.9 V] for LATP and LAGP respectively. Finally, we attempted to characterize the decomposition products of both materials upon oxidation. The use of an O
2
sensor coupled to the electrochemical setup enabled us to observe
operando
the production of O
2
upon LAGP and LATP oxidations, in agreement with first-principles calculations. Transmission Electron Microscopy (TEM) allowed to observe the presence of an amorphous phase at the interface between the gold particles and LAGP after oxidation. Electrochemical Impedance Spectroscopy (EIS) measurements confirmed that the resulting phase increased the total resistance of LAGP. This work aims at providing a method for an accurate determination of ESWs, considered a key parameter to a successful material selection for ASSLBs. |
---|---|
AbstractList | All-Solid-State Lithium Batteries (ASSLBs) are promising since they may enable the use of high potential materials as positive electrode and lithium metal as negative electrode. This is only possible through solid electrolytes (SEs) stated large electrochemical stability window (ESW). Nevertheless, reported values for these ESWs are very divergent in the literature. Establishing a robust procedure to accurately determine SEs’ ESWs has therefore become crucial. Our work focuses on bringing together theoretical results and an original experimental set up to assess the electrochemical stability window of the two NASICON-type SEs Li
1.3
Al
0.3
Ti
1.7
(PO
4
)
3
(LATP) and Li
1.5
Al
0.5
Ge
1.5
(PO
4
)
3
(LAGP). Using first principles, we computed thermodynamic ESWs for LATP and LAGP and their decomposition products upon redox potentials. The experimental set-up consists of a sintered stack of a thin SE layer and a SE-Au composite electrode to allow a large contact surface between SE and conductive gold particles, which maximizes the redox currents. Using Potentiostatic Intermittent Titration Technique (PITT) measurements, we were able to accurately determine the ESW of LATP and LAGP solid electrolytes. They are found to be [2.65–4.6 V] and [1.85–4.9 V] for LATP and LAGP respectively. Finally, we attempted to characterize the decomposition products of both materials upon oxidation. The use of an O
2
sensor coupled to the electrochemical setup enabled us to observe
operando
the production of O
2
upon LAGP and LATP oxidations, in agreement with first-principles calculations. Transmission Electron Microscopy (TEM) allowed to observe the presence of an amorphous phase at the interface between the gold particles and LAGP after oxidation. Electrochemical Impedance Spectroscopy (EIS) measurements confirmed that the resulting phase increased the total resistance of LAGP. This work aims at providing a method for an accurate determination of ESWs, considered a key parameter to a successful material selection for ASSLBs. All-Solid-State Lithium Batteries (ASSLBs) are promising since they may enable the use of high potential materials as positive electrode and lithium metal as negative electrode. This is only possible through solid electrolytes (SEs) stated large electrochemical stability window (ESW). Nevertheless, reported values for these ESWs are very divergent in the literature. Establishing a robust procedure to accurately determine SEs’ ESWs has therefore become crucial. Our work focuses on bringing together theoretical results and an original experimental set up to assess the electrochemical stability window of the two NASICON-type SEs Li1.3Al0.3Ti1.7(PO4)3 (LATP) and Li1.5Al0.5Ge1.5(PO4)3 (LAGP). Using first principles, we computed thermodynamic ESWs for LATP and LAGP and their decomposition products upon redox potentials. The experimental set-up consists of a sintered stack of a thin SE layer and a SE-Au composite electrode to allow a large contact surface between SE and conductive gold particles, which maximizes the redox currents. Using Potentiostatic Intermittent Titration Technique (PITT) measurements, we were able to accurately determine the ESW of LATP and LAGP solid electrolytes. They are found to be [2.65–4.6 V] and [1.85–4.9 V] for LATP and LAGP respectively. Finally, we attempted to characterize the decomposition products of both materials upon oxidation. The use of an O2 sensor coupled to the electrochemical setup enabled us to observe operando the production of O2 upon LAGP and LATP oxidations, in agreement with first-principles calculations. Transmission Electron Microscopy (TEM) allowed to observe the presence of an amorphous phase at the interface between the gold particles and LAGP after oxidation. Electrochemical Impedance Spectroscopy (EIS) measurements confirmed that the resulting phase increased the total resistance of LAGP. This work aims at providing a method for an accurate determination of ESWs, considered a key parameter to a successful material selection for ASSLBs. |
Author | Rousselot, Steeve Benabed, Yasmine Dollé, Mickaël Hautier, Geoffroy Rioux, Maxime |
Author_xml | – sequence: 1 givenname: Yasmine surname: Benabed fullname: Benabed, Yasmine – sequence: 2 givenname: Maxime surname: Rioux fullname: Rioux, Maxime – sequence: 3 givenname: Steeve surname: Rousselot fullname: Rousselot, Steeve – sequence: 4 givenname: Geoffroy surname: Hautier fullname: Hautier, Geoffroy – sequence: 5 givenname: Mickaël surname: Dollé fullname: Dollé, Mickaël |
BookMark | eNpN0NtqAjEQgOFQLNRaH6B3-wJrc9psciliW0GUoqW9CznMamTdyGah-Pb10JZezTAw38V_j3pNbAChR4JHjEn1VEHTbkYUUzISkmIsb1CfUiXyQsnP3r_9Dg1T2mGMCaMFJ7iP3sYpQUqh2WTdFrJpDa5ro9vCPjhTZ6vO2FCH7ph9hMbHryxW2WK8mk2Wi3x9PEC2inXwv2_1sYP0gG4rUycY_swBen-eriev-Xz5MpuM57njFHe5YYITxo21gsqqVEoxa0vmLCmY5wwz7oz3TIEEIUEV1BgpwDNKuJC2KNkAza6uj2anD23Ym_aoown6cojtRpu2C64GTZ2ykgBnpfWckxPsnPCGWMpwWSp_ssjVcm1MqYXqzyNYnxPrS2J9Tqyvidk3QHhxwQ |
CitedBy_id | crossref_primary_10_3390_ma14143840 crossref_primary_10_1002_aenm_202301018 crossref_primary_10_3390_batteries9100506 crossref_primary_10_1002_batt_202200327 crossref_primary_10_3390_nano12203612 crossref_primary_10_1016_j_ensm_2023_103034 crossref_primary_10_1016_j_mtener_2023_101320 crossref_primary_10_1039_D2TA04847G crossref_primary_10_1016_j_est_2024_112696 crossref_primary_10_1021_acs_jpcc_2c06240 crossref_primary_10_3390_batteries9020087 crossref_primary_10_1007_s10008_022_05206_x crossref_primary_10_1016_j_ensm_2023_102918 crossref_primary_10_1021_acsami_2c10666 crossref_primary_10_5796_electrochemistry_23_00112 crossref_primary_10_1021_acs_chemmater_3c02389 crossref_primary_10_1088_2752_5724_accdf3 crossref_primary_10_1002_batt_202300001 crossref_primary_10_1016_j_jechem_2022_07_006 crossref_primary_10_1039_D2CC01220K crossref_primary_10_1039_D2MA00971D crossref_primary_10_1016_j_jeurceramsoc_2021_08_001 crossref_primary_10_1016_j_ssi_2022_115888 crossref_primary_10_1016_j_ceramint_2024_05_149 crossref_primary_10_1021_acsami_4c03003 crossref_primary_10_1111_ijac_14355 crossref_primary_10_1149_1945_7111_ad3ec0 crossref_primary_10_1016_j_coelec_2023_101251 crossref_primary_10_1021_acsanm_1c03187 crossref_primary_10_5796_electrochemistry_23_00088 crossref_primary_10_1007_s41918_023_00196_4 crossref_primary_10_1002_smll_202309306 |
Cites_doi | 10.1002/aenm.201501590 10.1111/j.1551-2916.2007.01827.x 10.1016/j.cis.2017.10.002 10.1021/acs.chemmater.6b00610 10.1002/bbpc.19580620329 10.1002/aenm.201000050 10.1039/D0CC03556D 10.1002/aenm.201800933 10.1016/S0378-7753(99)00221-9 10.1016/j.ensm.2018.02.020 10.1016/j.jallcom.2018.03.027 10.1039/C8RA08436J 10.1021/ja909987j 10.1016/j.ssi.2011.07.003 10.1002/aenm.202001497 10.1002/adfm.201102479 10.1016/j.ssi.2010.10.013 10.1103/PhysRevB.54.11169 10.1016/j.isci.2020.101597 10.1021/acsenergylett.7b00849 10.1002/adma.201901131 10.1149/07208.0139ecst 10.1179/1753555713Y.0000000085 10.1016/j.ssi.2018.08.010 10.1021/acs.chemmater.9b05295 10.1111/j.1151-2916.1997.tb03070.x 10.1016/j.ssi.2006.04.010 10.1016/j.commatsci.2012.10.028 10.1039/C5TA08574H 10.1002/ciuz.19990330603 10.1016/S0378-7753(00)00407-9 10.1016/j.jpowsour.2018.04.022 10.1016/j.jpowsour.2008.08.009 10.1021/cm702327g 10.1016/j.jpowsour.2020.228468 10.1039/C7EE00534B 10.1149/1.1837894 10.5254/1.3535472 10.1093/nsr/nwaa150 10.1149/1.2128939 10.1088/1361-6528/ab5be7 10.1016/j.jpowsour.2008.07.080 10.1016/j.joule.2019.02.006 10.1021/acs.chemmater.6b02424 10.1039/C8EE01053F 10.1016/j.ensm.2018.10.012 10.1021/jp4051275 10.1016/0025-5408(83)90138-1 10.1021/acs.chemmater.5b04082 10.1038/nmat3066 10.1016/S0167-2738(98)00462-7 10.1063/1.4812323 10.1021/ie50273a019 10.1038/s41563-019-0576-0 10.1016/S0167-2738(02)00080-2 10.1021/cm901819c 10.1016/0013-4686(78)80023-1 10.1016/S0167-2738(88)80075-4 10.1103/PhysRevLett.77.3865 10.1039/C2JM31709E 10.1021/acsami.5b07517 10.1103/PhysRevB.50.17953 10.1021/acs.chemmater.7b02301 10.1002/adma.201705702 10.1021/acs.chemmater.0c03258 10.1039/C2EE23355J 10.1149/1945-7111/aba370 10.1038/nnano.2017.16 10.1021/acs.chemmater.6b04990 10.1016/j.ssi.2009.03.022 10.1016/j.ssi.2015.06.001 10.1039/C7TA04320A 10.1016/S0378-7753(98)00128-1 10.1016/j.jpowsour.2008.07.009 10.1016/j.ssi.2016.01.036 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.3389/fenrg.2021.682008 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2296-598X |
ExternalDocumentID | oai_doaj_org_article_2c9b81e437bd441cadcc6da1b230779d 10_3389_fenrg_2021_682008 |
GroupedDBID | 2XV 5VS 9T4 AAFWJ AAYXX ACGFS ACXDI ADBBV AFPKN ALMA_UNASSIGNED_HOLDINGS BCNDV CITATION GROUPED_DOAJ IAO IEA ISR KQ8 M~E OK1 |
ID | FETCH-LOGICAL-c420t-a364134abb628f79993bb73cb153d43034cadd39e8e68e952aa86ed321468b573 |
IEDL.DBID | DOA |
ISSN | 2296-598X |
IngestDate | Tue Oct 22 15:12:45 EDT 2024 Thu Sep 26 19:41:46 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c420t-a364134abb628f79993bb73cb153d43034cadd39e8e68e952aa86ed321468b573 |
OpenAccessLink | https://doaj.org/article/2c9b81e437bd441cadcc6da1b230779d |
ParticipantIDs | doaj_primary_oai_doaj_org_article_2c9b81e437bd441cadcc6da1b230779d crossref_primary_10_3389_fenrg_2021_682008 |
PublicationCentury | 2000 |
PublicationDate | 2021-05-27 |
PublicationDateYYYYMMDD | 2021-05-27 |
PublicationDate_xml | – month: 05 year: 2021 text: 2021-05-27 day: 27 |
PublicationDecade | 2020 |
PublicationTitle | Frontiers in energy research |
PublicationYear | 2021 |
Publisher | Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media S.A |
References | Zhu (B79) 2015; 7 Schwietert (B54) 2020; 19 Auvergniot (B4) 2017; 29 Jain (B30) 2013; 1 Weber (B62) 2016; 28 Meesala (B43) 2017; 2 Imanishi (B28) 2008; 185 Wenzel (B65) 2015; 278 Liang (B38) 2018; 8 Vetter (B60) 1958; 62 Xu (B71) 2007; 90 Chung (B10) 2017; 29 Zhang (B77) 2021; 33 Fu (B19) 1997; 80 Feng (B17) 2013; 28 Delmas (B13) 1988 Inozemtseva (B29) 2020; 167 Sun (B56) 2020; 471 Chen (B9) 2018; 14 Zheng (B78) 2018; 389 Hou (B26) 2020; 31 Kresse (B35) 1996; 54 Wang (B61) 2020; 8 Foran (B18) 2020; 23 Aurbach (B3) 2002; 148 Delaizir (B12) 2012; 22 Zhang (B73) 2017; 5 Liu (B40) 1999 Bard (B6) 2000 Paolella (B49) 2020; 10 Birke (B7) 1999; 118 Mankovsky (B42) 2020; 56 Winter (B67) 1999; 33 Tian (B59) 2017; 10 Ong (B47) 2013; 68 Holzapfel (B25) 2012 Lin (B39) 2017; 12 Knauth (B33) 2009; 180 Hasegawa (B24) 2009; 189 Hupfer (B27) 2016; 288 Aboulaich (B1) 2011; 1 Zhang (B76) 2019; 31 Dewey (B14) 1932; 24 Gao (B20) 2018; 30 Xiao (B69) 2019; 3 Cui (B11) 2016; 72 Dilshad (B15) 2012; 22 Feng (B16) 2010 Thokchom (B58) 2008; 185 Ong (B46) 2013; 6 Liu (B41) 2017; 250 Hartmann (B22) 2013; 117 Jiang (B31) 2010; 132 Shi (B55) 2018; 325 Kotobuki (B34) 2011; 198 Lau (B36) 2018; 8 Yoshio (B72) 2000; 90 Alpen (B2) 1978; 23 Perdew (B50) 1996; 77 Zhang (B75) 2018; 747 Ong (B45) 2008; 20 Zhu (B81) 2020; 32 Zhu (B80) 2016; 4 Han (B21) 2016; 6 Richards (B52) 2016; 28 Plummer (B51) 1930; 3 Thackeray (B57) 1983; 18 Wenzel (B66) 2016; 28 Li (B37) 1997; 144 Sakuda (B53) 2010; 22 Blöchl (B8) 1994; 50 Xu (B70) 2006; 177 Kamaya (B32) 2011; 10 Bag (B5) 2020 Xiao (B68) 2019; 19 Wen (B63) 1979; 126 Muramatsu (B44) 2011; 182 Orsini (B48) 1998; 76 Zhang (B74) 2018; 11 |
References_xml | – volume: 6 start-page: 1501590 year: 2016 ident: B21 article-title: Electrochemical Stability of Li10 GeP2 S12 and Li7 La3 Zr2 O12 Solid Electrolytes publication-title: Adv. Energ. Mater. doi: 10.1002/aenm.201501590 contributor: fullname: Han – volume: 90 start-page: 2802 year: 2007 ident: B71 article-title: Lithium Ion-Conducting Glass? Ceramics of Li1.5Al0.5Ge1.5(PO4)3?xLi2O (x=0.0?0.20) with Good Electrical and Electrochemical Properties publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1551-2916.2007.01827.x contributor: fullname: Xu – volume: 250 start-page: 64 year: 2017 ident: B41 article-title: Water Adsorption on Carbon - A Review publication-title: Adv. Colloid Interf. Sci. doi: 10.1016/j.cis.2017.10.002 contributor: fullname: Liu – volume: 28 start-page: 2400 year: 2016 ident: B66 article-title: Direct Observation of the Interfacial Instability of the Fast Ionic Conductor Li10GeP2S12 at the Lithium Metal Anode publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.6b00610 contributor: fullname: Wenzel – volume: 62 start-page: 378 year: 1958 ident: B60 article-title: Stromdichte- und pH-Abhängigkeit des elektrochemischen Auf- und Abbaus von Oxydschichten auf Pt, Pd und Au. Zeitschrift für Elektrochemie publication-title: Berichte der Bunsengesellschaft für physikalische Chem. doi: 10.1002/bbpc.19580620329 contributor: fullname: Vetter – volume: 1 start-page: 179 year: 2011 ident: B1 article-title: A New Approach to Develop Safe All-Inorganic Monolithic Li-Ion Batteries publication-title: Adv. Energ. Mater. doi: 10.1002/aenm.201000050 contributor: fullname: Aboulaich – start-page: 100 volume-title: Energy Storage and Conversion Materials year: 2020 ident: B5 article-title: CHAPTER 3 Electrolyte Development for Solid-State Lithium Batteries contributor: fullname: Bag – volume: 56 start-page: 10167 year: 2020 ident: B42 article-title: Water Content in Solid Polymer Electrolytes: the Lost Knowledge publication-title: Chem. Commun. doi: 10.1039/D0CC03556D contributor: fullname: Mankovsky – volume: 8 start-page: 1800933 year: 2018 ident: B36 article-title: Sulfide Solid Electrolytes for Lithium Battery Applications publication-title: Adv. Energ. Mater. doi: 10.1002/aenm.201800933 contributor: fullname: Lau – start-page: 416 year: 1999 ident: B40 article-title: Synthesis and Characterization of LiNi1−x−yCoxMnyO2 as the Cathode Materials of Secondary Lithium Batteries publication-title: J. Power Sourc. doi: 10.1016/S0378-7753(99)00221-9 contributor: fullname: Liu – volume: 14 start-page: 58 year: 2018 ident: B9 article-title: Sulfide Solid Electrolytes for All-Solid-State Lithium Batteries: Structure, Conductivity, Stability and Application publication-title: Energ. Storage Mater. doi: 10.1016/j.ensm.2018.02.020 contributor: fullname: Chen – volume: 747 start-page: 227 year: 2018 ident: B75 article-title: Synthesis and Characterization of Argyrodite Solid Electrolytes for All-Solid-State Li-Ion Batteries publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2018.03.027 contributor: fullname: Zhang – volume: 8 start-page: 40498 year: 2018 ident: B38 article-title: Preparation and Performance Study of a PVDF-LATP Ceramic Composite Polymer Electrolyte Membrane for Solid-State Batteries publication-title: RSC Adv. doi: 10.1039/C8RA08436J contributor: fullname: Liang – volume: 132 start-page: 2858 year: 2010 ident: B31 article-title: Room-Temperature Reaction of Oxygen with Gold: An In situ Ambient-Pressure X-Ray Photoelectron Spectroscopy Investigation publication-title: J. Am. Chem. Soc. doi: 10.1021/ja909987j contributor: fullname: Jiang – volume: 198 start-page: 22 year: 2011 ident: B34 article-title: Electrochemical Properties of Thin TiO2 Electrode on Li1+xAlxGe2−x(PO4)3 Solid Electrolyte publication-title: Solid State Ionics doi: 10.1016/j.ssi.2011.07.003 contributor: fullname: Kotobuki – volume-title: Electrochemical Methods and Applications year: 2000 ident: B6 contributor: fullname: Bard – volume: 10 start-page: 2001497 year: 2020 ident: B49 article-title: Understanding the Reactivity of a Thin Li 1.5 Al 0.5 Ge 1.5 (PO 4 ) 3 Solid-State Electrolyte toward Metallic Lithium Anode publication-title: Adv. Energ. Mater. doi: 10.1002/aenm.202001497 contributor: fullname: Paolella – volume: 22 start-page: 2140 year: 2012 ident: B12 article-title: The Stone Age Revisited: Building a Monolithic Inorganic Lithium-Ion Battery publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201102479 contributor: fullname: Delaizir – volume: 182 start-page: 116 year: 2011 ident: B44 article-title: Structural Change of Li2S-P2s5 Sulfide Solid Electrolytes in the Atmosphere publication-title: Solid State Ionics doi: 10.1016/j.ssi.2010.10.013 contributor: fullname: Muramatsu – volume: 54 start-page: 11169 year: 1996 ident: B35 article-title: Efficient Iterative Schemes Forab Initiototal-Energy Calculations Using a Plane-Wave Basis Set publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.54.11169 contributor: fullname: Kresse – year: 2012 ident: B25 contributor: fullname: Holzapfel – volume: 23 start-page: 101597 year: 2020 ident: B18 article-title: The Impact of Absorbed Solvent on the Performance of Solid Polymer Electrolytes for Use in Solid-State Lithium Batteries publication-title: iScience doi: 10.1016/j.isci.2020.101597 contributor: fullname: Foran – volume: 2 start-page: 2734 year: 2017 ident: B43 article-title: Recent Advancements in Li-Ion Conductors for All-Solid-State Li-Ion Batteries publication-title: ACS Energ. Lett. doi: 10.1021/acsenergylett.7b00849 contributor: fullname: Meesala – volume: 31 start-page: 1901131 year: 2019 ident: B76 article-title: Sulfide-Based Solid-State Electrolytes: Synthesis, Stability, and Potential for All-Solid-State Batteries publication-title: Adv. Mater. doi: 10.1002/adma.201901131 contributor: fullname: Zhang – volume: 72 start-page: 139 year: 2016 ident: B11 article-title: Ionic Conductivity and Stability of the Lithium Aluminum Germanium Phosphate publication-title: ECS Trans. doi: 10.1149/07208.0139ecst contributor: fullname: Cui – volume: 28 start-page: 276 year: 2013 ident: B17 article-title: All Solid State Lithium Ion Rechargeable Batteries Using NASICON Structured Electrolyte publication-title: Mater. Technol. doi: 10.1179/1753555713Y.0000000085 contributor: fullname: Feng – volume: 325 start-page: 112 year: 2018 ident: B55 article-title: Fabrication and Electrochemical Properties of LATP/PVDF Composite Electrolytes for Rechargeable Lithium-Ion Battery publication-title: Solid State Ionics doi: 10.1016/j.ssi.2018.08.010 contributor: fullname: Shi – volume: 32 start-page: 4998 year: 2020 ident: B81 article-title: Chemomechanical Failure Mechanism Study in NASICON-type Li1.3Al0.3Ti1.7(PO4)3 Solid-State Lithium Batteries publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.9b05295 contributor: fullname: Zhu – volume: 80 start-page: 1901 year: 1997 ident: B19 article-title: Fast Li+ Ion Conduction in Li2O-Al2O3-TiO2-SiO2-P2o2 Glass-Ceramics publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1151-2916.1997.tb03070.x contributor: fullname: Fu – volume: 177 start-page: 2611 year: 2006 ident: B70 article-title: High Lithium Ion Conductivity Glass-Ceramics in Li2O-Al2O3-TiO2-P2o5 from Nanoscaled Glassy Powders by Mechanical Milling publication-title: Solid State Ionics doi: 10.1016/j.ssi.2006.04.010 contributor: fullname: Xu – volume: 68 start-page: 314 year: 2013 ident: B47 article-title: Python Materials Genomics (Pymatgen): A Robust, Open-Source python Library for Materials Analysis publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2012.10.028 contributor: fullname: Ong – volume: 4 start-page: 3253 year: 2016 ident: B80 article-title: First Principles Study on Electrochemical and Chemical Stability of Solid Electrolyte-Electrode Interfaces in All-Solid-State Li-Ion Batteries publication-title: J. Mater. Chem. A. doi: 10.1039/C5TA08574H contributor: fullname: Zhu – year: 2010 ident: B16 contributor: fullname: Feng – volume: 33 start-page: 320 year: 1999 ident: B67 article-title: Wiederaufladbare Batterien publication-title: Chem. Unserer Zeit doi: 10.1002/ciuz.19990330603 contributor: fullname: Winter – volume: 90 start-page: 176 year: 2000 ident: B72 article-title: Preparation and Properties of LiCoyMnxNi1−x−yO2 as a Cathode for Lithium Ion Batteries publication-title: J. Power Sourc. doi: 10.1016/S0378-7753(00)00407-9 contributor: fullname: Yoshio – volume: 389 start-page: 198 year: 2018 ident: B78 article-title: Review on Solid Electrolytes for All-Solid-State Lithium-Ion Batteries publication-title: J. Power Sourc. doi: 10.1016/j.jpowsour.2018.04.022 contributor: fullname: Zheng – volume: 189 start-page: 371 year: 2009 ident: B24 article-title: Study on Lithium/air Secondary Batteries-Stability of NASICON-type Lithium Ion Conducting Glass-Ceramics with Water publication-title: J. Power Sourc. doi: 10.1016/j.jpowsour.2008.08.009 contributor: fullname: Hasegawa – volume: 20 start-page: 1798 year: 2008 ident: B45 article-title: Li−Fe−P−O2 Phase Diagram from First Principles Calculations publication-title: Chem. Mater. doi: 10.1021/cm702327g contributor: fullname: Ong – volume: 471 start-page: 228468 year: 2020 ident: B56 article-title: Decomposition Failure of Li1.5Al0.5Ge1.5(PO4)3 Solid Electrolytes Induced by Electric Field: A Multi-Scenario Study Using Scanning Probe Microscopy-Based Techniques publication-title: J. Power Sourc. doi: 10.1016/j.jpowsour.2020.228468 contributor: fullname: Sun – volume: 10 start-page: 1150 year: 2017 ident: B59 article-title: Compatibility Issues between Electrodes and Electrolytes in Solid-State Batteries publication-title: Energ. Environ. Sci. doi: 10.1039/C7EE00534B contributor: fullname: Tian – volume: 144 start-page: 2773 year: 1997 ident: B37 article-title: Morphology Effects on the Electrochemical Performance of LiNi[sub 1−x]Co[sub x]O[sub 2] publication-title: J. Electrochem. Soc. doi: 10.1149/1.1837894 contributor: fullname: Li – volume: 3 start-page: 185 year: 1930 ident: B51 article-title: Moisture Content of Carbon Blacks publication-title: Rubber Chem. Technol. doi: 10.5254/1.3535472 contributor: fullname: Plummer – volume: 8 year: 2020 ident: B61 article-title: Hybrid Solid Electrolyte Enabled Dendrite-free Li Anodes for High-Performance Quasi-Solid-State Lithium-Oxygen Batteries publication-title: Natl. Sci. Rev. doi: 10.1093/nsr/nwaa150 contributor: fullname: Wang – volume: 126 start-page: 2258 year: 1979 ident: B63 article-title: Thermodynamic and Mass Transport Properties of “LiAl” publication-title: J. Electrochem. Soc. doi: 10.1149/1.2128939 contributor: fullname: Wen – volume: 31 start-page: 132003 year: 2020 ident: B26 article-title: Challenges and Perspectives of NASICON-type Solid Electrolytes for All-Solid-State Lithium Batteries publication-title: Nanotechnology doi: 10.1088/1361-6528/ab5be7 contributor: fullname: Hou – volume: 185 start-page: 1392 year: 2008 ident: B28 article-title: Lithium Anode for Lithium-Air Secondary Batteries publication-title: J. Power Sourc. doi: 10.1016/j.jpowsour.2008.07.080 contributor: fullname: Imanishi – volume: 3 start-page: 1252 year: 2019 ident: B69 article-title: Computational Screening of Cathode Coatings for Solid-State Batteries publication-title: Joule doi: 10.1016/j.joule.2019.02.006 contributor: fullname: Xiao – volume: 28 start-page: 5905 year: 2016 ident: B62 article-title: Structural Insights and 3D Diffusion Pathways within the Lithium Superionic Conductor Li10GeP2S12 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.6b02424 contributor: fullname: Weber – volume: 11 start-page: 1945 year: 2018 ident: B74 article-title: New Horizons for Inorganic Solid State Ion Conductors publication-title: Energ. Environ. Sci. doi: 10.1039/C8EE01053F contributor: fullname: Zhang – volume: 19 start-page: 379 year: 2019 ident: B68 article-title: Recent Advances in Li1+xAlxTi2−x(PO4)3 Solid-State Electrolyte for Safe Lithium Batteries publication-title: Energ. Storage Mater. doi: 10.1016/j.ensm.2018.10.012 contributor: fullname: Xiao – volume: 117 start-page: 21064 year: 2013 ident: B22 article-title: Degradation of NASICON-type Materials in Contact with Lithium Metal: Formation of Mixed Conducting Interphases (MCI) on Solid Electrolytes publication-title: J. Phys. Chem. C doi: 10.1021/jp4051275 contributor: fullname: Hartmann – volume: 18 start-page: 461 year: 1983 ident: B57 article-title: Lithium Insertion into Manganese Spinels publication-title: Mater. Res. Bull. doi: 10.1016/0025-5408(83)90138-1 contributor: fullname: Thackeray – volume: 28 start-page: 266 year: 2016 ident: B52 article-title: Interface Stability in Solid-State Batteries publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.5b04082 contributor: fullname: Richards – volume: 10 start-page: 682 year: 2011 ident: B32 article-title: A Lithium Superionic Conductor publication-title: Nat. Mater doi: 10.1038/nmat3066 contributor: fullname: Kamaya – volume: 118 start-page: 149 year: 1999 ident: B7 article-title: A First Approach to a Monolithic All Solid State Inorganic Lithium Battery publication-title: Solid State Ionics doi: 10.1016/S0167-2738(98)00462-7 contributor: fullname: Birke – volume: 1 start-page: 011002 year: 2013 ident: B30 article-title: Commentary: The Materials Project: A Materials Genome Approach to Accelerating Materials Innovation publication-title: APL Mater. doi: 10.1063/1.4812323 contributor: fullname: Jain – volume: 24 start-page: 1045 year: 1932 ident: B14 article-title: Moisture Sorption by Carbon Black publication-title: Ind. Eng. Chem. doi: 10.1021/ie50273a019 contributor: fullname: Dewey – volume: 19 start-page: 428 year: 2020 ident: B54 article-title: Clarifying the Relationship between Redox Activity and Electrochemical Stability in Solid Electrolytes publication-title: Nat. Mater. doi: 10.1038/s41563-019-0576-0 contributor: fullname: Schwietert – volume: 148 start-page: 405 year: 2002 ident: B3 article-title: A Short Review of Failure Mechanisms of Lithium Metal and Lithiated Graphite Anodes in Liquid Electrolyte Solutions publication-title: Solid State Ionics doi: 10.1016/S0167-2738(02)00080-2 contributor: fullname: Aurbach – volume: 22 start-page: 949 year: 2010 ident: B53 article-title: Interfacial Observation between LiCoO2 Electrode and Li2S−P2S5 Solid Electrolytes of All-Solid-State Lithium Secondary Batteries Using Transmission Electron Microscopy publication-title: Chem. Mater. doi: 10.1021/cm901819c contributor: fullname: Sakuda – volume: 23 start-page: 1395 year: 1978 ident: B2 article-title: Ionic Conductivity of Li14Zn(GeO44 (Lisicon) publication-title: Electrochimica Acta doi: 10.1016/0013-4686(78)80023-1 contributor: fullname: Alpen – start-page: 419 year: 1988 ident: B13 article-title: The Nasicon-type Titanium Phosphates Ati2(PO4)3 (A=Li, Na) as Electrode Materials publication-title: Solid State Ionics doi: 10.1016/S0167-2738(88)80075-4 contributor: fullname: Delmas – volume: 77 start-page: 3865 year: 1996 ident: B50 article-title: Generalized Gradient Approximation Made Simple publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 contributor: fullname: Perdew – volume: 22 start-page: 10514 year: 2012 ident: B15 article-title: Amines as Dual Function Ligands in the Two-phase Synthesis of Stable AuxCu(1−x) Binary Nanoalloys publication-title: J. Mater. Chem. doi: 10.1039/C2JM31709E contributor: fullname: Dilshad – volume: 7 start-page: 23685 year: 2015 ident: B79 article-title: Origin of Outstanding Stability in the Lithium Solid Electrolyte Materials: Insights from Thermodynamic Analyses Based on First-Principles Calculations publication-title: ACS Appl. Mater. Inter. doi: 10.1021/acsami.5b07517 contributor: fullname: Zhu – volume: 50 start-page: 17953 year: 1994 ident: B8 article-title: Projector Augmented-Wave Method publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.50.17953 contributor: fullname: Blöchl – volume: 29 start-page: 8611 year: 2017 ident: B10 article-title: Mechanical and Thermal Failure Induced by Contact between a Li1.5Al0.5Ge1.5(PO4)3 Solid Electrolyte and Li Metal in an All Solid-State Li Cell publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.7b02301 contributor: fullname: Chung – volume: 30 start-page: 1705702 year: 2018 ident: B20 article-title: Promises, Challenges, and Recent Progress of Inorganic Solid-State Electrolytes for All-Solid-State Lithium Batteries publication-title: Adv. Mater. doi: 10.1002/adma.201705702 contributor: fullname: Gao – volume: 33 start-page: 524 year: 2021 ident: B77 article-title: Molecularly Tunable Polyanions for Single-Ion Conductors and Poly(solvate Ionic Liquids) publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.0c03258 contributor: fullname: Zhang – volume: 6 start-page: 148 year: 2013 ident: B46 article-title: Phase Stability, Electrochemical Stability and Ionic Conductivity of the Li10±1MP2X12(M = Ge, Si, Sn, Al or P, and X = O, S or Se) Family of Superionic Conductors publication-title: Energy Environ. Sci. doi: 10.1039/C2EE23355J contributor: fullname: Ong – volume: 167 start-page: 110533 year: 2020 ident: B29 article-title: In Situ XPS Studies of Solid Electrolyte Electroreduction through Graphene Electrode publication-title: J. Electrochem. Soc. doi: 10.1149/1945-7111/aba370 contributor: fullname: Inozemtseva – volume: 12 start-page: 194 year: 2017 ident: B39 article-title: Reviving the Lithium Metal Anode for High-Energy Batteries publication-title: Nat. Nanotech doi: 10.1038/nnano.2017.16 contributor: fullname: Lin – volume: 29 start-page: 3883 year: 2017 ident: B4 article-title: Interface Stability of Argyrodite Li6PS5Cl toward LiCoO2, LiNi1/3Co1/3Mn1/3O2, and LiMn2O4 in Bulk All-Solid-State Batteries publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.6b04990 contributor: fullname: Auvergniot – volume: 180 start-page: 911 year: 2009 ident: B33 article-title: Inorganic Solid Li Ion Conductors: An Overview publication-title: Solid State Ionics doi: 10.1016/j.ssi.2009.03.022 contributor: fullname: Knauth – volume: 278 start-page: 98 year: 2015 ident: B65 article-title: Interphase Formation on Lithium Solid Electrolytes-An In Situ Approach to Study Interfacial Reactions by Photoelectron Spectroscopy publication-title: Solid State Ionics doi: 10.1016/j.ssi.2015.06.001 contributor: fullname: Wenzel – volume: 5 start-page: 16984 year: 2017 ident: B73 article-title: An Advanced Construction Strategy of All-Solid-State Lithium Batteries with Excellent Interfacial Compatibility and Ultralong Cycle Life publication-title: J. Mater. Chem. A. doi: 10.1039/C7TA04320A contributor: fullname: Zhang – volume: 76 start-page: 19 year: 1998 ident: B48 article-title: In situ Scanning Electron Microscopy (SEM) Observation of Interfaces within Plastic Lithium Batteries publication-title: J. Power Sourc. doi: 10.1016/S0378-7753(98)00128-1 contributor: fullname: Orsini – volume: 185 start-page: 480 year: 2008 ident: B58 article-title: Composite Effect in Superionically Conducting Lithium Aluminium Germanium Phosphate Based Glass-Ceramic publication-title: J. Power Sourc. doi: 10.1016/j.jpowsour.2008.07.009 contributor: fullname: Thokchom – volume: 288 start-page: 235 year: 2016 ident: B27 article-title: Evolution of Microstructure and its Relation to Ionic Conductivity in Li1+xAlxTi2−x(PO4)3 publication-title: Solid State Ionics doi: 10.1016/j.ssi.2016.01.036 contributor: fullname: Hupfer |
SSID | ssj0001325410 |
Score | 2.3855197 |
Snippet | All-Solid-State Lithium Batteries (ASSLBs) are promising since they may enable the use of high potential materials as positive electrode and lithium metal as... |
SourceID | doaj crossref |
SourceType | Open Website Aggregation Database |
SubjectTerms | all-solid-state lithium batteries electrochemical stability window grand potential phase diagram potentiostatic intermittent titration technique solid electorolyte spark plasma sintering |
Title | Assessing the Electrochemical Stability Window of NASICON-Type Solid Electrolytes |
URI | https://doaj.org/article/2c9b81e437bd441cadcc6da1b230779d |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA6ykx7Enzh_kYMnoa5N0qQ5zrExBQcyh7uVvCQVYaxDJrL_3pe2k3ry4q2UtoTvpXnfl_fyHiE3TKdGaV9EzBgXCQkiMuiIcC6jtbUN-xhhH_JpIscz8ThP561WXyEnrC4PXAPXY1ZDlnjBFTh03dY4a6UzCYQMZqVdtfrGuiWmqt0VjsInacKYqMJ0r0BzvKEeZMmdzELQ_5cjatXrrxzL6IDsN4yQ9uuRHJIdvzwie606gcfkuQ7N4jVFvkaHdesa25z1p0gYqxTXDX1FhV1-0bKgk_70YYDLZNCZdFou3t32tcUG2eUJmY2GL4Nx1PRCiKxg8ToyXKK7EQZAsqxQSOs4gOIWcMVyAv2QQGQc1z7zMvM6Regz6V1oQyQzSBU_JZ1lufRnhMaIZ-AxsogB_2DQqQBeaG00ky5R0CW3W2DyVV3yIkepEFDMKxTzgGJeo9gl9wG6nwdDterqBtowb2yY_2XD8__4yAXZDeMKkX2mLkln_fHpr5AwrOG6mhvf02W9cg |
link.rule.ids | 315,783,787,867,2109,27936,27937 |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assessing+the+Electrochemical+Stability+Window+of+NASICON-Type+Solid+Electrolytes&rft.jtitle=Frontiers+in+energy+research&rft.au=Benabed%2C+Yasmine&rft.au=Rioux%2C+Maxime&rft.au=Rousselot%2C+Steeve&rft.au=Hautier%2C+Geoffroy&rft.date=2021-05-27&rft.issn=2296-598X&rft.eissn=2296-598X&rft.volume=9&rft_id=info:doi/10.3389%2Ffenrg.2021.682008&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_fenrg_2021_682008 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2296-598X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2296-598X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2296-598X&client=summon |