Assessing the Electrochemical Stability Window of NASICON-Type Solid Electrolytes

All-Solid-State Lithium Batteries (ASSLBs) are promising since they may enable the use of high potential materials as positive electrode and lithium metal as negative electrode. This is only possible through solid electrolytes (SEs) stated large electrochemical stability window (ESW). Nevertheless,...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in energy research Vol. 9
Main Authors Benabed, Yasmine, Rioux, Maxime, Rousselot, Steeve, Hautier, Geoffroy, Dollé, Mickaël
Format Journal Article
LanguageEnglish
Published Frontiers Media S.A 27.05.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract All-Solid-State Lithium Batteries (ASSLBs) are promising since they may enable the use of high potential materials as positive electrode and lithium metal as negative electrode. This is only possible through solid electrolytes (SEs) stated large electrochemical stability window (ESW). Nevertheless, reported values for these ESWs are very divergent in the literature. Establishing a robust procedure to accurately determine SEs’ ESWs has therefore become crucial. Our work focuses on bringing together theoretical results and an original experimental set up to assess the electrochemical stability window of the two NASICON-type SEs Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 (LATP) and Li 1.5 Al 0.5 Ge 1.5 (PO 4 ) 3 (LAGP). Using first principles, we computed thermodynamic ESWs for LATP and LAGP and their decomposition products upon redox potentials. The experimental set-up consists of a sintered stack of a thin SE layer and a SE-Au composite electrode to allow a large contact surface between SE and conductive gold particles, which maximizes the redox currents. Using Potentiostatic Intermittent Titration Technique (PITT) measurements, we were able to accurately determine the ESW of LATP and LAGP solid electrolytes. They are found to be [2.65–4.6 V] and [1.85–4.9 V] for LATP and LAGP respectively. Finally, we attempted to characterize the decomposition products of both materials upon oxidation. The use of an O 2 sensor coupled to the electrochemical setup enabled us to observe operando the production of O 2 upon LAGP and LATP oxidations, in agreement with first-principles calculations. Transmission Electron Microscopy (TEM) allowed to observe the presence of an amorphous phase at the interface between the gold particles and LAGP after oxidation. Electrochemical Impedance Spectroscopy (EIS) measurements confirmed that the resulting phase increased the total resistance of LAGP. This work aims at providing a method for an accurate determination of ESWs, considered a key parameter to a successful material selection for ASSLBs.
AbstractList All-Solid-State Lithium Batteries (ASSLBs) are promising since they may enable the use of high potential materials as positive electrode and lithium metal as negative electrode. This is only possible through solid electrolytes (SEs) stated large electrochemical stability window (ESW). Nevertheless, reported values for these ESWs are very divergent in the literature. Establishing a robust procedure to accurately determine SEs’ ESWs has therefore become crucial. Our work focuses on bringing together theoretical results and an original experimental set up to assess the electrochemical stability window of the two NASICON-type SEs Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 (LATP) and Li 1.5 Al 0.5 Ge 1.5 (PO 4 ) 3 (LAGP). Using first principles, we computed thermodynamic ESWs for LATP and LAGP and their decomposition products upon redox potentials. The experimental set-up consists of a sintered stack of a thin SE layer and a SE-Au composite electrode to allow a large contact surface between SE and conductive gold particles, which maximizes the redox currents. Using Potentiostatic Intermittent Titration Technique (PITT) measurements, we were able to accurately determine the ESW of LATP and LAGP solid electrolytes. They are found to be [2.65–4.6 V] and [1.85–4.9 V] for LATP and LAGP respectively. Finally, we attempted to characterize the decomposition products of both materials upon oxidation. The use of an O 2 sensor coupled to the electrochemical setup enabled us to observe operando the production of O 2 upon LAGP and LATP oxidations, in agreement with first-principles calculations. Transmission Electron Microscopy (TEM) allowed to observe the presence of an amorphous phase at the interface between the gold particles and LAGP after oxidation. Electrochemical Impedance Spectroscopy (EIS) measurements confirmed that the resulting phase increased the total resistance of LAGP. This work aims at providing a method for an accurate determination of ESWs, considered a key parameter to a successful material selection for ASSLBs.
All-Solid-State Lithium Batteries (ASSLBs) are promising since they may enable the use of high potential materials as positive electrode and lithium metal as negative electrode. This is only possible through solid electrolytes (SEs) stated large electrochemical stability window (ESW). Nevertheless, reported values for these ESWs are very divergent in the literature. Establishing a robust procedure to accurately determine SEs’ ESWs has therefore become crucial. Our work focuses on bringing together theoretical results and an original experimental set up to assess the electrochemical stability window of the two NASICON-type SEs Li1.3Al0.3Ti1.7(PO4)3 (LATP) and Li1.5Al0.5Ge1.5(PO4)3 (LAGP). Using first principles, we computed thermodynamic ESWs for LATP and LAGP and their decomposition products upon redox potentials. The experimental set-up consists of a sintered stack of a thin SE layer and a SE-Au composite electrode to allow a large contact surface between SE and conductive gold particles, which maximizes the redox currents. Using Potentiostatic Intermittent Titration Technique (PITT) measurements, we were able to accurately determine the ESW of LATP and LAGP solid electrolytes. They are found to be [2.65–4.6 V] and [1.85–4.9 V] for LATP and LAGP respectively. Finally, we attempted to characterize the decomposition products of both materials upon oxidation. The use of an O2 sensor coupled to the electrochemical setup enabled us to observe operando the production of O2 upon LAGP and LATP oxidations, in agreement with first-principles calculations. Transmission Electron Microscopy (TEM) allowed to observe the presence of an amorphous phase at the interface between the gold particles and LAGP after oxidation. Electrochemical Impedance Spectroscopy (EIS) measurements confirmed that the resulting phase increased the total resistance of LAGP. This work aims at providing a method for an accurate determination of ESWs, considered a key parameter to a successful material selection for ASSLBs.
Author Rousselot, Steeve
Benabed, Yasmine
Dollé, Mickaël
Hautier, Geoffroy
Rioux, Maxime
Author_xml – sequence: 1
  givenname: Yasmine
  surname: Benabed
  fullname: Benabed, Yasmine
– sequence: 2
  givenname: Maxime
  surname: Rioux
  fullname: Rioux, Maxime
– sequence: 3
  givenname: Steeve
  surname: Rousselot
  fullname: Rousselot, Steeve
– sequence: 4
  givenname: Geoffroy
  surname: Hautier
  fullname: Hautier, Geoffroy
– sequence: 5
  givenname: Mickaël
  surname: Dollé
  fullname: Dollé, Mickaël
BookMark eNpN0NtqAjEQgOFQLNRaH6B3-wJrc9psciliW0GUoqW9CznMamTdyGah-Pb10JZezTAw38V_j3pNbAChR4JHjEn1VEHTbkYUUzISkmIsb1CfUiXyQsnP3r_9Dg1T2mGMCaMFJ7iP3sYpQUqh2WTdFrJpDa5ro9vCPjhTZ6vO2FCH7ph9hMbHryxW2WK8mk2Wi3x9PEC2inXwv2_1sYP0gG4rUycY_swBen-eriev-Xz5MpuM57njFHe5YYITxo21gsqqVEoxa0vmLCmY5wwz7oz3TIEEIUEV1BgpwDNKuJC2KNkAza6uj2anD23Ym_aoown6cojtRpu2C64GTZ2ykgBnpfWckxPsnPCGWMpwWSp_ssjVcm1MqYXqzyNYnxPrS2J9Tqyvidk3QHhxwQ
CitedBy_id crossref_primary_10_3390_ma14143840
crossref_primary_10_1002_aenm_202301018
crossref_primary_10_3390_batteries9100506
crossref_primary_10_1002_batt_202200327
crossref_primary_10_3390_nano12203612
crossref_primary_10_1016_j_ensm_2023_103034
crossref_primary_10_1016_j_mtener_2023_101320
crossref_primary_10_1039_D2TA04847G
crossref_primary_10_1016_j_est_2024_112696
crossref_primary_10_1021_acs_jpcc_2c06240
crossref_primary_10_3390_batteries9020087
crossref_primary_10_1007_s10008_022_05206_x
crossref_primary_10_1016_j_ensm_2023_102918
crossref_primary_10_1021_acsami_2c10666
crossref_primary_10_5796_electrochemistry_23_00112
crossref_primary_10_1021_acs_chemmater_3c02389
crossref_primary_10_1088_2752_5724_accdf3
crossref_primary_10_1002_batt_202300001
crossref_primary_10_1016_j_jechem_2022_07_006
crossref_primary_10_1039_D2CC01220K
crossref_primary_10_1039_D2MA00971D
crossref_primary_10_1016_j_jeurceramsoc_2021_08_001
crossref_primary_10_1016_j_ssi_2022_115888
crossref_primary_10_1016_j_ceramint_2024_05_149
crossref_primary_10_1021_acsami_4c03003
crossref_primary_10_1111_ijac_14355
crossref_primary_10_1149_1945_7111_ad3ec0
crossref_primary_10_1016_j_coelec_2023_101251
crossref_primary_10_1021_acsanm_1c03187
crossref_primary_10_5796_electrochemistry_23_00088
crossref_primary_10_1007_s41918_023_00196_4
crossref_primary_10_1002_smll_202309306
Cites_doi 10.1002/aenm.201501590
10.1111/j.1551-2916.2007.01827.x
10.1016/j.cis.2017.10.002
10.1021/acs.chemmater.6b00610
10.1002/bbpc.19580620329
10.1002/aenm.201000050
10.1039/D0CC03556D
10.1002/aenm.201800933
10.1016/S0378-7753(99)00221-9
10.1016/j.ensm.2018.02.020
10.1016/j.jallcom.2018.03.027
10.1039/C8RA08436J
10.1021/ja909987j
10.1016/j.ssi.2011.07.003
10.1002/aenm.202001497
10.1002/adfm.201102479
10.1016/j.ssi.2010.10.013
10.1103/PhysRevB.54.11169
10.1016/j.isci.2020.101597
10.1021/acsenergylett.7b00849
10.1002/adma.201901131
10.1149/07208.0139ecst
10.1179/1753555713Y.0000000085
10.1016/j.ssi.2018.08.010
10.1021/acs.chemmater.9b05295
10.1111/j.1151-2916.1997.tb03070.x
10.1016/j.ssi.2006.04.010
10.1016/j.commatsci.2012.10.028
10.1039/C5TA08574H
10.1002/ciuz.19990330603
10.1016/S0378-7753(00)00407-9
10.1016/j.jpowsour.2018.04.022
10.1016/j.jpowsour.2008.08.009
10.1021/cm702327g
10.1016/j.jpowsour.2020.228468
10.1039/C7EE00534B
10.1149/1.1837894
10.5254/1.3535472
10.1093/nsr/nwaa150
10.1149/1.2128939
10.1088/1361-6528/ab5be7
10.1016/j.jpowsour.2008.07.080
10.1016/j.joule.2019.02.006
10.1021/acs.chemmater.6b02424
10.1039/C8EE01053F
10.1016/j.ensm.2018.10.012
10.1021/jp4051275
10.1016/0025-5408(83)90138-1
10.1021/acs.chemmater.5b04082
10.1038/nmat3066
10.1016/S0167-2738(98)00462-7
10.1063/1.4812323
10.1021/ie50273a019
10.1038/s41563-019-0576-0
10.1016/S0167-2738(02)00080-2
10.1021/cm901819c
10.1016/0013-4686(78)80023-1
10.1016/S0167-2738(88)80075-4
10.1103/PhysRevLett.77.3865
10.1039/C2JM31709E
10.1021/acsami.5b07517
10.1103/PhysRevB.50.17953
10.1021/acs.chemmater.7b02301
10.1002/adma.201705702
10.1021/acs.chemmater.0c03258
10.1039/C2EE23355J
10.1149/1945-7111/aba370
10.1038/nnano.2017.16
10.1021/acs.chemmater.6b04990
10.1016/j.ssi.2009.03.022
10.1016/j.ssi.2015.06.001
10.1039/C7TA04320A
10.1016/S0378-7753(98)00128-1
10.1016/j.jpowsour.2008.07.009
10.1016/j.ssi.2016.01.036
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.3389/fenrg.2021.682008
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2296-598X
ExternalDocumentID oai_doaj_org_article_2c9b81e437bd441cadcc6da1b230779d
10_3389_fenrg_2021_682008
GroupedDBID 2XV
5VS
9T4
AAFWJ
AAYXX
ACGFS
ACXDI
ADBBV
AFPKN
ALMA_UNASSIGNED_HOLDINGS
BCNDV
CITATION
GROUPED_DOAJ
IAO
IEA
ISR
KQ8
M~E
OK1
ID FETCH-LOGICAL-c420t-a364134abb628f79993bb73cb153d43034cadd39e8e68e952aa86ed321468b573
IEDL.DBID DOA
ISSN 2296-598X
IngestDate Tue Oct 22 15:12:45 EDT 2024
Thu Sep 26 19:41:46 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c420t-a364134abb628f79993bb73cb153d43034cadd39e8e68e952aa86ed321468b573
OpenAccessLink https://doaj.org/article/2c9b81e437bd441cadcc6da1b230779d
ParticipantIDs doaj_primary_oai_doaj_org_article_2c9b81e437bd441cadcc6da1b230779d
crossref_primary_10_3389_fenrg_2021_682008
PublicationCentury 2000
PublicationDate 2021-05-27
PublicationDateYYYYMMDD 2021-05-27
PublicationDate_xml – month: 05
  year: 2021
  text: 2021-05-27
  day: 27
PublicationDecade 2020
PublicationTitle Frontiers in energy research
PublicationYear 2021
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Zhu (B79) 2015; 7
Schwietert (B54) 2020; 19
Auvergniot (B4) 2017; 29
Jain (B30) 2013; 1
Weber (B62) 2016; 28
Meesala (B43) 2017; 2
Imanishi (B28) 2008; 185
Wenzel (B65) 2015; 278
Liang (B38) 2018; 8
Vetter (B60) 1958; 62
Xu (B71) 2007; 90
Chung (B10) 2017; 29
Zhang (B77) 2021; 33
Fu (B19) 1997; 80
Feng (B17) 2013; 28
Delmas (B13) 1988
Inozemtseva (B29) 2020; 167
Sun (B56) 2020; 471
Chen (B9) 2018; 14
Zheng (B78) 2018; 389
Hou (B26) 2020; 31
Kresse (B35) 1996; 54
Wang (B61) 2020; 8
Foran (B18) 2020; 23
Aurbach (B3) 2002; 148
Delaizir (B12) 2012; 22
Zhang (B73) 2017; 5
Liu (B40) 1999
Bard (B6) 2000
Paolella (B49) 2020; 10
Birke (B7) 1999; 118
Mankovsky (B42) 2020; 56
Winter (B67) 1999; 33
Tian (B59) 2017; 10
Ong (B47) 2013; 68
Holzapfel (B25) 2012
Lin (B39) 2017; 12
Knauth (B33) 2009; 180
Hasegawa (B24) 2009; 189
Hupfer (B27) 2016; 288
Aboulaich (B1) 2011; 1
Zhang (B76) 2019; 31
Dewey (B14) 1932; 24
Gao (B20) 2018; 30
Xiao (B69) 2019; 3
Cui (B11) 2016; 72
Dilshad (B15) 2012; 22
Feng (B16) 2010
Thokchom (B58) 2008; 185
Ong (B46) 2013; 6
Liu (B41) 2017; 250
Hartmann (B22) 2013; 117
Jiang (B31) 2010; 132
Shi (B55) 2018; 325
Kotobuki (B34) 2011; 198
Lau (B36) 2018; 8
Yoshio (B72) 2000; 90
Alpen (B2) 1978; 23
Perdew (B50) 1996; 77
Zhang (B75) 2018; 747
Ong (B45) 2008; 20
Zhu (B81) 2020; 32
Zhu (B80) 2016; 4
Han (B21) 2016; 6
Richards (B52) 2016; 28
Plummer (B51) 1930; 3
Thackeray (B57) 1983; 18
Wenzel (B66) 2016; 28
Li (B37) 1997; 144
Sakuda (B53) 2010; 22
Blöchl (B8) 1994; 50
Xu (B70) 2006; 177
Kamaya (B32) 2011; 10
Bag (B5) 2020
Xiao (B68) 2019; 19
Wen (B63) 1979; 126
Muramatsu (B44) 2011; 182
Orsini (B48) 1998; 76
Zhang (B74) 2018; 11
References_xml – volume: 6
  start-page: 1501590
  year: 2016
  ident: B21
  article-title: Electrochemical Stability of Li10 GeP2 S12 and Li7 La3 Zr2 O12 Solid Electrolytes
  publication-title: Adv. Energ. Mater.
  doi: 10.1002/aenm.201501590
  contributor:
    fullname: Han
– volume: 90
  start-page: 2802
  year: 2007
  ident: B71
  article-title: Lithium Ion-Conducting Glass? Ceramics of Li1.5Al0.5Ge1.5(PO4)3?xLi2O (x=0.0?0.20) with Good Electrical and Electrochemical Properties
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/j.1551-2916.2007.01827.x
  contributor:
    fullname: Xu
– volume: 250
  start-page: 64
  year: 2017
  ident: B41
  article-title: Water Adsorption on Carbon - A Review
  publication-title: Adv. Colloid Interf. Sci.
  doi: 10.1016/j.cis.2017.10.002
  contributor:
    fullname: Liu
– volume: 28
  start-page: 2400
  year: 2016
  ident: B66
  article-title: Direct Observation of the Interfacial Instability of the Fast Ionic Conductor Li10GeP2S12 at the Lithium Metal Anode
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.6b00610
  contributor:
    fullname: Wenzel
– volume: 62
  start-page: 378
  year: 1958
  ident: B60
  article-title: Stromdichte- und pH-Abhängigkeit des elektrochemischen Auf- und Abbaus von Oxydschichten auf Pt, Pd und Au. Zeitschrift für Elektrochemie
  publication-title: Berichte der Bunsengesellschaft für physikalische Chem.
  doi: 10.1002/bbpc.19580620329
  contributor:
    fullname: Vetter
– volume: 1
  start-page: 179
  year: 2011
  ident: B1
  article-title: A New Approach to Develop Safe All-Inorganic Monolithic Li-Ion Batteries
  publication-title: Adv. Energ. Mater.
  doi: 10.1002/aenm.201000050
  contributor:
    fullname: Aboulaich
– start-page: 100
  volume-title: Energy Storage and Conversion Materials
  year: 2020
  ident: B5
  article-title: CHAPTER 3 Electrolyte Development for Solid-State Lithium Batteries
  contributor:
    fullname: Bag
– volume: 56
  start-page: 10167
  year: 2020
  ident: B42
  article-title: Water Content in Solid Polymer Electrolytes: the Lost Knowledge
  publication-title: Chem. Commun.
  doi: 10.1039/D0CC03556D
  contributor:
    fullname: Mankovsky
– volume: 8
  start-page: 1800933
  year: 2018
  ident: B36
  article-title: Sulfide Solid Electrolytes for Lithium Battery Applications
  publication-title: Adv. Energ. Mater.
  doi: 10.1002/aenm.201800933
  contributor:
    fullname: Lau
– start-page: 416
  year: 1999
  ident: B40
  article-title: Synthesis and Characterization of LiNi1−x−yCoxMnyO2 as the Cathode Materials of Secondary Lithium Batteries
  publication-title: J. Power Sourc.
  doi: 10.1016/S0378-7753(99)00221-9
  contributor:
    fullname: Liu
– volume: 14
  start-page: 58
  year: 2018
  ident: B9
  article-title: Sulfide Solid Electrolytes for All-Solid-State Lithium Batteries: Structure, Conductivity, Stability and Application
  publication-title: Energ. Storage Mater.
  doi: 10.1016/j.ensm.2018.02.020
  contributor:
    fullname: Chen
– volume: 747
  start-page: 227
  year: 2018
  ident: B75
  article-title: Synthesis and Characterization of Argyrodite Solid Electrolytes for All-Solid-State Li-Ion Batteries
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2018.03.027
  contributor:
    fullname: Zhang
– volume: 8
  start-page: 40498
  year: 2018
  ident: B38
  article-title: Preparation and Performance Study of a PVDF-LATP Ceramic Composite Polymer Electrolyte Membrane for Solid-State Batteries
  publication-title: RSC Adv.
  doi: 10.1039/C8RA08436J
  contributor:
    fullname: Liang
– volume: 132
  start-page: 2858
  year: 2010
  ident: B31
  article-title: Room-Temperature Reaction of Oxygen with Gold: An In situ Ambient-Pressure X-Ray Photoelectron Spectroscopy Investigation
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja909987j
  contributor:
    fullname: Jiang
– volume: 198
  start-page: 22
  year: 2011
  ident: B34
  article-title: Electrochemical Properties of Thin TiO2 Electrode on Li1+xAlxGe2−x(PO4)3 Solid Electrolyte
  publication-title: Solid State Ionics
  doi: 10.1016/j.ssi.2011.07.003
  contributor:
    fullname: Kotobuki
– volume-title: Electrochemical Methods and Applications
  year: 2000
  ident: B6
  contributor:
    fullname: Bard
– volume: 10
  start-page: 2001497
  year: 2020
  ident: B49
  article-title: Understanding the Reactivity of a Thin Li 1.5 Al 0.5 Ge 1.5 (PO 4 ) 3 Solid-State Electrolyte toward Metallic Lithium Anode
  publication-title: Adv. Energ. Mater.
  doi: 10.1002/aenm.202001497
  contributor:
    fullname: Paolella
– volume: 22
  start-page: 2140
  year: 2012
  ident: B12
  article-title: The Stone Age Revisited: Building a Monolithic Inorganic Lithium-Ion Battery
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201102479
  contributor:
    fullname: Delaizir
– volume: 182
  start-page: 116
  year: 2011
  ident: B44
  article-title: Structural Change of Li2S-P2s5 Sulfide Solid Electrolytes in the Atmosphere
  publication-title: Solid State Ionics
  doi: 10.1016/j.ssi.2010.10.013
  contributor:
    fullname: Muramatsu
– volume: 54
  start-page: 11169
  year: 1996
  ident: B35
  article-title: Efficient Iterative Schemes Forab Initiototal-Energy Calculations Using a Plane-Wave Basis Set
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.54.11169
  contributor:
    fullname: Kresse
– year: 2012
  ident: B25
  contributor:
    fullname: Holzapfel
– volume: 23
  start-page: 101597
  year: 2020
  ident: B18
  article-title: The Impact of Absorbed Solvent on the Performance of Solid Polymer Electrolytes for Use in Solid-State Lithium Batteries
  publication-title: iScience
  doi: 10.1016/j.isci.2020.101597
  contributor:
    fullname: Foran
– volume: 2
  start-page: 2734
  year: 2017
  ident: B43
  article-title: Recent Advancements in Li-Ion Conductors for All-Solid-State Li-Ion Batteries
  publication-title: ACS Energ. Lett.
  doi: 10.1021/acsenergylett.7b00849
  contributor:
    fullname: Meesala
– volume: 31
  start-page: 1901131
  year: 2019
  ident: B76
  article-title: Sulfide-Based Solid-State Electrolytes: Synthesis, Stability, and Potential for All-Solid-State Batteries
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201901131
  contributor:
    fullname: Zhang
– volume: 72
  start-page: 139
  year: 2016
  ident: B11
  article-title: Ionic Conductivity and Stability of the Lithium Aluminum Germanium Phosphate
  publication-title: ECS Trans.
  doi: 10.1149/07208.0139ecst
  contributor:
    fullname: Cui
– volume: 28
  start-page: 276
  year: 2013
  ident: B17
  article-title: All Solid State Lithium Ion Rechargeable Batteries Using NASICON Structured Electrolyte
  publication-title: Mater. Technol.
  doi: 10.1179/1753555713Y.0000000085
  contributor:
    fullname: Feng
– volume: 325
  start-page: 112
  year: 2018
  ident: B55
  article-title: Fabrication and Electrochemical Properties of LATP/PVDF Composite Electrolytes for Rechargeable Lithium-Ion Battery
  publication-title: Solid State Ionics
  doi: 10.1016/j.ssi.2018.08.010
  contributor:
    fullname: Shi
– volume: 32
  start-page: 4998
  year: 2020
  ident: B81
  article-title: Chemomechanical Failure Mechanism Study in NASICON-type Li1.3Al0.3Ti1.7(PO4)3 Solid-State Lithium Batteries
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.9b05295
  contributor:
    fullname: Zhu
– volume: 80
  start-page: 1901
  year: 1997
  ident: B19
  article-title: Fast Li+ Ion Conduction in Li2O-Al2O3-TiO2-SiO2-P2o2 Glass-Ceramics
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/j.1151-2916.1997.tb03070.x
  contributor:
    fullname: Fu
– volume: 177
  start-page: 2611
  year: 2006
  ident: B70
  article-title: High Lithium Ion Conductivity Glass-Ceramics in Li2O-Al2O3-TiO2-P2o5 from Nanoscaled Glassy Powders by Mechanical Milling
  publication-title: Solid State Ionics
  doi: 10.1016/j.ssi.2006.04.010
  contributor:
    fullname: Xu
– volume: 68
  start-page: 314
  year: 2013
  ident: B47
  article-title: Python Materials Genomics (Pymatgen): A Robust, Open-Source python Library for Materials Analysis
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2012.10.028
  contributor:
    fullname: Ong
– volume: 4
  start-page: 3253
  year: 2016
  ident: B80
  article-title: First Principles Study on Electrochemical and Chemical Stability of Solid Electrolyte-Electrode Interfaces in All-Solid-State Li-Ion Batteries
  publication-title: J. Mater. Chem. A.
  doi: 10.1039/C5TA08574H
  contributor:
    fullname: Zhu
– year: 2010
  ident: B16
  contributor:
    fullname: Feng
– volume: 33
  start-page: 320
  year: 1999
  ident: B67
  article-title: Wiederaufladbare Batterien
  publication-title: Chem. Unserer Zeit
  doi: 10.1002/ciuz.19990330603
  contributor:
    fullname: Winter
– volume: 90
  start-page: 176
  year: 2000
  ident: B72
  article-title: Preparation and Properties of LiCoyMnxNi1−x−yO2 as a Cathode for Lithium Ion Batteries
  publication-title: J. Power Sourc.
  doi: 10.1016/S0378-7753(00)00407-9
  contributor:
    fullname: Yoshio
– volume: 389
  start-page: 198
  year: 2018
  ident: B78
  article-title: Review on Solid Electrolytes for All-Solid-State Lithium-Ion Batteries
  publication-title: J. Power Sourc.
  doi: 10.1016/j.jpowsour.2018.04.022
  contributor:
    fullname: Zheng
– volume: 189
  start-page: 371
  year: 2009
  ident: B24
  article-title: Study on Lithium/air Secondary Batteries-Stability of NASICON-type Lithium Ion Conducting Glass-Ceramics with Water
  publication-title: J. Power Sourc.
  doi: 10.1016/j.jpowsour.2008.08.009
  contributor:
    fullname: Hasegawa
– volume: 20
  start-page: 1798
  year: 2008
  ident: B45
  article-title: Li−Fe−P−O2 Phase Diagram from First Principles Calculations
  publication-title: Chem. Mater.
  doi: 10.1021/cm702327g
  contributor:
    fullname: Ong
– volume: 471
  start-page: 228468
  year: 2020
  ident: B56
  article-title: Decomposition Failure of Li1.5Al0.5Ge1.5(PO4)3 Solid Electrolytes Induced by Electric Field: A Multi-Scenario Study Using Scanning Probe Microscopy-Based Techniques
  publication-title: J. Power Sourc.
  doi: 10.1016/j.jpowsour.2020.228468
  contributor:
    fullname: Sun
– volume: 10
  start-page: 1150
  year: 2017
  ident: B59
  article-title: Compatibility Issues between Electrodes and Electrolytes in Solid-State Batteries
  publication-title: Energ. Environ. Sci.
  doi: 10.1039/C7EE00534B
  contributor:
    fullname: Tian
– volume: 144
  start-page: 2773
  year: 1997
  ident: B37
  article-title: Morphology Effects on the Electrochemical Performance of LiNi[sub 1−x]Co[sub x]O[sub 2]
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1837894
  contributor:
    fullname: Li
– volume: 3
  start-page: 185
  year: 1930
  ident: B51
  article-title: Moisture Content of Carbon Blacks
  publication-title: Rubber Chem. Technol.
  doi: 10.5254/1.3535472
  contributor:
    fullname: Plummer
– volume: 8
  year: 2020
  ident: B61
  article-title: Hybrid Solid Electrolyte Enabled Dendrite-free Li Anodes for High-Performance Quasi-Solid-State Lithium-Oxygen Batteries
  publication-title: Natl. Sci. Rev.
  doi: 10.1093/nsr/nwaa150
  contributor:
    fullname: Wang
– volume: 126
  start-page: 2258
  year: 1979
  ident: B63
  article-title: Thermodynamic and Mass Transport Properties of “LiAl”
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2128939
  contributor:
    fullname: Wen
– volume: 31
  start-page: 132003
  year: 2020
  ident: B26
  article-title: Challenges and Perspectives of NASICON-type Solid Electrolytes for All-Solid-State Lithium Batteries
  publication-title: Nanotechnology
  doi: 10.1088/1361-6528/ab5be7
  contributor:
    fullname: Hou
– volume: 185
  start-page: 1392
  year: 2008
  ident: B28
  article-title: Lithium Anode for Lithium-Air Secondary Batteries
  publication-title: J. Power Sourc.
  doi: 10.1016/j.jpowsour.2008.07.080
  contributor:
    fullname: Imanishi
– volume: 3
  start-page: 1252
  year: 2019
  ident: B69
  article-title: Computational Screening of Cathode Coatings for Solid-State Batteries
  publication-title: Joule
  doi: 10.1016/j.joule.2019.02.006
  contributor:
    fullname: Xiao
– volume: 28
  start-page: 5905
  year: 2016
  ident: B62
  article-title: Structural Insights and 3D Diffusion Pathways within the Lithium Superionic Conductor Li10GeP2S12
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.6b02424
  contributor:
    fullname: Weber
– volume: 11
  start-page: 1945
  year: 2018
  ident: B74
  article-title: New Horizons for Inorganic Solid State Ion Conductors
  publication-title: Energ. Environ. Sci.
  doi: 10.1039/C8EE01053F
  contributor:
    fullname: Zhang
– volume: 19
  start-page: 379
  year: 2019
  ident: B68
  article-title: Recent Advances in Li1+xAlxTi2−x(PO4)3 Solid-State Electrolyte for Safe Lithium Batteries
  publication-title: Energ. Storage Mater.
  doi: 10.1016/j.ensm.2018.10.012
  contributor:
    fullname: Xiao
– volume: 117
  start-page: 21064
  year: 2013
  ident: B22
  article-title: Degradation of NASICON-type Materials in Contact with Lithium Metal: Formation of Mixed Conducting Interphases (MCI) on Solid Electrolytes
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp4051275
  contributor:
    fullname: Hartmann
– volume: 18
  start-page: 461
  year: 1983
  ident: B57
  article-title: Lithium Insertion into Manganese Spinels
  publication-title: Mater. Res. Bull.
  doi: 10.1016/0025-5408(83)90138-1
  contributor:
    fullname: Thackeray
– volume: 28
  start-page: 266
  year: 2016
  ident: B52
  article-title: Interface Stability in Solid-State Batteries
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.5b04082
  contributor:
    fullname: Richards
– volume: 10
  start-page: 682
  year: 2011
  ident: B32
  article-title: A Lithium Superionic Conductor
  publication-title: Nat. Mater
  doi: 10.1038/nmat3066
  contributor:
    fullname: Kamaya
– volume: 118
  start-page: 149
  year: 1999
  ident: B7
  article-title: A First Approach to a Monolithic All Solid State Inorganic Lithium Battery
  publication-title: Solid State Ionics
  doi: 10.1016/S0167-2738(98)00462-7
  contributor:
    fullname: Birke
– volume: 1
  start-page: 011002
  year: 2013
  ident: B30
  article-title: Commentary: The Materials Project: A Materials Genome Approach to Accelerating Materials Innovation
  publication-title: APL Mater.
  doi: 10.1063/1.4812323
  contributor:
    fullname: Jain
– volume: 24
  start-page: 1045
  year: 1932
  ident: B14
  article-title: Moisture Sorption by Carbon Black
  publication-title: Ind. Eng. Chem.
  doi: 10.1021/ie50273a019
  contributor:
    fullname: Dewey
– volume: 19
  start-page: 428
  year: 2020
  ident: B54
  article-title: Clarifying the Relationship between Redox Activity and Electrochemical Stability in Solid Electrolytes
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-019-0576-0
  contributor:
    fullname: Schwietert
– volume: 148
  start-page: 405
  year: 2002
  ident: B3
  article-title: A Short Review of Failure Mechanisms of Lithium Metal and Lithiated Graphite Anodes in Liquid Electrolyte Solutions
  publication-title: Solid State Ionics
  doi: 10.1016/S0167-2738(02)00080-2
  contributor:
    fullname: Aurbach
– volume: 22
  start-page: 949
  year: 2010
  ident: B53
  article-title: Interfacial Observation between LiCoO2 Electrode and Li2S−P2S5 Solid Electrolytes of All-Solid-State Lithium Secondary Batteries Using Transmission Electron Microscopy
  publication-title: Chem. Mater.
  doi: 10.1021/cm901819c
  contributor:
    fullname: Sakuda
– volume: 23
  start-page: 1395
  year: 1978
  ident: B2
  article-title: Ionic Conductivity of Li14Zn(GeO44 (Lisicon)
  publication-title: Electrochimica Acta
  doi: 10.1016/0013-4686(78)80023-1
  contributor:
    fullname: Alpen
– start-page: 419
  year: 1988
  ident: B13
  article-title: The Nasicon-type Titanium Phosphates Ati2(PO4)3 (A=Li, Na) as Electrode Materials
  publication-title: Solid State Ionics
  doi: 10.1016/S0167-2738(88)80075-4
  contributor:
    fullname: Delmas
– volume: 77
  start-page: 3865
  year: 1996
  ident: B50
  article-title: Generalized Gradient Approximation Made Simple
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
  contributor:
    fullname: Perdew
– volume: 22
  start-page: 10514
  year: 2012
  ident: B15
  article-title: Amines as Dual Function Ligands in the Two-phase Synthesis of Stable AuxCu(1−x) Binary Nanoalloys
  publication-title: J. Mater. Chem.
  doi: 10.1039/C2JM31709E
  contributor:
    fullname: Dilshad
– volume: 7
  start-page: 23685
  year: 2015
  ident: B79
  article-title: Origin of Outstanding Stability in the Lithium Solid Electrolyte Materials: Insights from Thermodynamic Analyses Based on First-Principles Calculations
  publication-title: ACS Appl. Mater. Inter.
  doi: 10.1021/acsami.5b07517
  contributor:
    fullname: Zhu
– volume: 50
  start-page: 17953
  year: 1994
  ident: B8
  article-title: Projector Augmented-Wave Method
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.50.17953
  contributor:
    fullname: Blöchl
– volume: 29
  start-page: 8611
  year: 2017
  ident: B10
  article-title: Mechanical and Thermal Failure Induced by Contact between a Li1.5Al0.5Ge1.5(PO4)3 Solid Electrolyte and Li Metal in an All Solid-State Li Cell
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.7b02301
  contributor:
    fullname: Chung
– volume: 30
  start-page: 1705702
  year: 2018
  ident: B20
  article-title: Promises, Challenges, and Recent Progress of Inorganic Solid-State Electrolytes for All-Solid-State Lithium Batteries
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201705702
  contributor:
    fullname: Gao
– volume: 33
  start-page: 524
  year: 2021
  ident: B77
  article-title: Molecularly Tunable Polyanions for Single-Ion Conductors and Poly(solvate Ionic Liquids)
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.0c03258
  contributor:
    fullname: Zhang
– volume: 6
  start-page: 148
  year: 2013
  ident: B46
  article-title: Phase Stability, Electrochemical Stability and Ionic Conductivity of the Li10±1MP2X12(M = Ge, Si, Sn, Al or P, and X = O, S or Se) Family of Superionic Conductors
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C2EE23355J
  contributor:
    fullname: Ong
– volume: 167
  start-page: 110533
  year: 2020
  ident: B29
  article-title: In Situ XPS Studies of Solid Electrolyte Electroreduction through Graphene Electrode
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1945-7111/aba370
  contributor:
    fullname: Inozemtseva
– volume: 12
  start-page: 194
  year: 2017
  ident: B39
  article-title: Reviving the Lithium Metal Anode for High-Energy Batteries
  publication-title: Nat. Nanotech
  doi: 10.1038/nnano.2017.16
  contributor:
    fullname: Lin
– volume: 29
  start-page: 3883
  year: 2017
  ident: B4
  article-title: Interface Stability of Argyrodite Li6PS5Cl toward LiCoO2, LiNi1/3Co1/3Mn1/3O2, and LiMn2O4 in Bulk All-Solid-State Batteries
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.6b04990
  contributor:
    fullname: Auvergniot
– volume: 180
  start-page: 911
  year: 2009
  ident: B33
  article-title: Inorganic Solid Li Ion Conductors: An Overview
  publication-title: Solid State Ionics
  doi: 10.1016/j.ssi.2009.03.022
  contributor:
    fullname: Knauth
– volume: 278
  start-page: 98
  year: 2015
  ident: B65
  article-title: Interphase Formation on Lithium Solid Electrolytes-An In Situ Approach to Study Interfacial Reactions by Photoelectron Spectroscopy
  publication-title: Solid State Ionics
  doi: 10.1016/j.ssi.2015.06.001
  contributor:
    fullname: Wenzel
– volume: 5
  start-page: 16984
  year: 2017
  ident: B73
  article-title: An Advanced Construction Strategy of All-Solid-State Lithium Batteries with Excellent Interfacial Compatibility and Ultralong Cycle Life
  publication-title: J. Mater. Chem. A.
  doi: 10.1039/C7TA04320A
  contributor:
    fullname: Zhang
– volume: 76
  start-page: 19
  year: 1998
  ident: B48
  article-title: In situ Scanning Electron Microscopy (SEM) Observation of Interfaces within Plastic Lithium Batteries
  publication-title: J. Power Sourc.
  doi: 10.1016/S0378-7753(98)00128-1
  contributor:
    fullname: Orsini
– volume: 185
  start-page: 480
  year: 2008
  ident: B58
  article-title: Composite Effect in Superionically Conducting Lithium Aluminium Germanium Phosphate Based Glass-Ceramic
  publication-title: J. Power Sourc.
  doi: 10.1016/j.jpowsour.2008.07.009
  contributor:
    fullname: Thokchom
– volume: 288
  start-page: 235
  year: 2016
  ident: B27
  article-title: Evolution of Microstructure and its Relation to Ionic Conductivity in Li1+xAlxTi2−x(PO4)3
  publication-title: Solid State Ionics
  doi: 10.1016/j.ssi.2016.01.036
  contributor:
    fullname: Hupfer
SSID ssj0001325410
Score 2.3855197
Snippet All-Solid-State Lithium Batteries (ASSLBs) are promising since they may enable the use of high potential materials as positive electrode and lithium metal as...
SourceID doaj
crossref
SourceType Open Website
Aggregation Database
SubjectTerms all-solid-state lithium batteries
electrochemical stability window
grand potential phase diagram
potentiostatic intermittent titration technique
solid electorolyte
spark plasma sintering
Title Assessing the Electrochemical Stability Window of NASICON-Type Solid Electrolytes
URI https://doaj.org/article/2c9b81e437bd441cadcc6da1b230779d
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA6ykx7Enzh_kYMnoa5N0qQ5zrExBQcyh7uVvCQVYaxDJrL_3pe2k3ry4q2UtoTvpXnfl_fyHiE3TKdGaV9EzBgXCQkiMuiIcC6jtbUN-xhhH_JpIscz8ThP561WXyEnrC4PXAPXY1ZDlnjBFTh03dY4a6UzCYQMZqVdtfrGuiWmqt0VjsInacKYqMJ0r0BzvKEeZMmdzELQ_5cjatXrrxzL6IDsN4yQ9uuRHJIdvzwie606gcfkuQ7N4jVFvkaHdesa25z1p0gYqxTXDX1FhV1-0bKgk_70YYDLZNCZdFou3t32tcUG2eUJmY2GL4Nx1PRCiKxg8ToyXKK7EQZAsqxQSOs4gOIWcMVyAv2QQGQc1z7zMvM6Regz6V1oQyQzSBU_JZ1lufRnhMaIZ-AxsogB_2DQqQBeaG00ky5R0CW3W2DyVV3yIkepEFDMKxTzgGJeo9gl9wG6nwdDterqBtowb2yY_2XD8__4yAXZDeMKkX2mLkln_fHpr5AwrOG6mhvf02W9cg
link.rule.ids 315,783,787,867,2109,27936,27937
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assessing+the+Electrochemical+Stability+Window+of+NASICON-Type+Solid+Electrolytes&rft.jtitle=Frontiers+in+energy+research&rft.au=Benabed%2C+Yasmine&rft.au=Rioux%2C+Maxime&rft.au=Rousselot%2C+Steeve&rft.au=Hautier%2C+Geoffroy&rft.date=2021-05-27&rft.issn=2296-598X&rft.eissn=2296-598X&rft.volume=9&rft_id=info:doi/10.3389%2Ffenrg.2021.682008&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_fenrg_2021_682008
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2296-598X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2296-598X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2296-598X&client=summon