Phosphorylation of Arl4A/D promotes their binding by the HYPK chaperone for their stable recruitment to the plasma membrane

The Arl4 small GTPases participate in a variety of cellular events, including cytoskeleton remodeling, vesicle trafficking, cell migration, and neuronal development. Whereas small GTPases are typically regulated by their GTPase cycle, Arl4 proteins have been found to act independent of this canonica...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 119; no. 30; pp. 1 - 9
Main Authors Lin, Ming-Chieh, Yu, Chia-Jung, Lee, Fang-Jen S.
Format Journal Article
LanguageEnglish
Published Washington National Academy of Sciences 26.07.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The Arl4 small GTPases participate in a variety of cellular events, including cytoskeleton remodeling, vesicle trafficking, cell migration, and neuronal development. Whereas small GTPases are typically regulated by their GTPase cycle, Arl4 proteins have been found to act independent of this canonical regulatory mechanism. Here, we show that Arl4A and Arl4D (Arl4A/D) are unstable due to proteasomal degradation, but stimulation of cells by fibronectin (FN) inhibits this degradation to promote Arl4A/D stability. Proteomic analysis reveals that FN stimulation induces phosphorylation at S143 of Arl4A and at S144 of Arl4D. We identify Pak1 as the responsible kinase for these phosphorylations. Moreover, these phosphorylations promote the chaperone protein HYPK to bind Arl4A/D, which stabilizes their recruitment to the plasma membrane to promote cell migration. These findings not only advance a major mechanistic understanding of how Arl4 proteins act in cell migration but also achieve a fundamental understanding of how these small GTPases are modulated by revealing that protein stability, rather than the GTPase cycle, acts as a key regulatory mechanism.
AbstractList The Arl4 small GTPases participate in a variety of cellular events, including cytoskeleton remodeling, vesicle trafficking, cell migration, and neuronal development. Whereas small GTPases are typically regulated by their GTPase cycle, Arl4 proteins have been found to act independent of this canonical regulatory mechanism. Here, we show that Arl4A and Arl4D (Arl4A/D) are unstable due to proteasomal degradation, but stimulation of cells by fibronectin (FN) inhibits this degradation to promote Arl4A/D stability. Proteomic analysis reveals that FN stimulation induces phosphorylation at S143 of Arl4A and at S144 of Arl4D. We identify Pak1 as the responsible kinase for these phosphorylations. Moreover, these phosphorylations promote the chaperone protein HYPK to bind Arl4A/D, which stabilizes their recruitment to the plasma membrane to promote cell migration. These findings not only advance a major mechanistic understanding of how Arl4 proteins act in cell migration but also achieve a fundamental understanding of how these small GTPases are modulated by revealing that protein stability, rather than the GTPase cycle, acts as a key regulatory mechanism.The Arl4 small GTPases participate in a variety of cellular events, including cytoskeleton remodeling, vesicle trafficking, cell migration, and neuronal development. Whereas small GTPases are typically regulated by their GTPase cycle, Arl4 proteins have been found to act independent of this canonical regulatory mechanism. Here, we show that Arl4A and Arl4D (Arl4A/D) are unstable due to proteasomal degradation, but stimulation of cells by fibronectin (FN) inhibits this degradation to promote Arl4A/D stability. Proteomic analysis reveals that FN stimulation induces phosphorylation at S143 of Arl4A and at S144 of Arl4D. We identify Pak1 as the responsible kinase for these phosphorylations. Moreover, these phosphorylations promote the chaperone protein HYPK to bind Arl4A/D, which stabilizes their recruitment to the plasma membrane to promote cell migration. These findings not only advance a major mechanistic understanding of how Arl4 proteins act in cell migration but also achieve a fundamental understanding of how these small GTPases are modulated by revealing that protein stability, rather than the GTPase cycle, acts as a key regulatory mechanism.
The Arl4 small GTPases participate in a variety of cellular events, including cytoskeleton remodeling, vesicle trafficking, cell migration, and neuronal development. Whereas small GTPases are typically regulated by their GTPase cycle, Arl4 proteins have been found to act independent of this canonical regulatory mechanism. Here, we show that Arl4A and Arl4D (Arl4A/D) are unstable due to proteasomal degradation, but stimulation of cells by fibronectin (FN) inhibits this degradation to promote Arl4A/D stability. Proteomic analysis reveals that FN stimulation induces phosphorylation at S143 of Arl4A and at S144 of Arl4D. We identify Pak1 as the responsible kinase for these phosphorylations. Moreover, these phosphorylations promote the chaperone protein HYPK to bind Arl4A/D, which stabilizes their recruitment to the plasma membrane to promote cell migration. These findings not only advance a major mechanistic understanding of how Arl4 proteins act in cell migration but also achieve a fundamental understanding of how these small GTPases are modulated by revealing that protein stability, rather than the GTPase cycle, acts as a key regulatory mechanism.
Arl4 small GTPases act in cell migration through multiple effector proteins, but how they are regulated in this role has been unclear. We find that Pak1 kinase phosphorylates Arl4A and Arl4D (Arl4A/D), which then enables the chaperone protein HYPK to bind these small GTPases. The resulting complex prevents the proteasomal degradation of Arl4A/D and promotes their targeting to the plasma membrane for cell motility. These findings advance a major understanding of how Arl4 proteins act in cell migration by revealing a novel mechanism of regulating their function. The Arl4 small GTPases participate in a variety of cellular events, including cytoskeleton remodeling, vesicle trafficking, cell migration, and neuronal development. Whereas small GTPases are typically regulated by their GTPase cycle, Arl4 proteins have been found to act independent of this canonical regulatory mechanism. Here, we show that Arl4A and Arl4D (Arl4A/D) are unstable due to proteasomal degradation, but stimulation of cells by fibronectin (FN) inhibits this degradation to promote Arl4A/D stability. Proteomic analysis reveals that FN stimulation induces phosphorylation at S143 of Arl4A and at S144 of Arl4D. We identify Pak1 as the responsible kinase for these phosphorylations. Moreover, these phosphorylations promote the chaperone protein HYPK to bind Arl4A/D, which stabilizes their recruitment to the plasma membrane to promote cell migration. These findings not only advance a major mechanistic understanding of how Arl4 proteins act in cell migration but also achieve a fundamental understanding of how these small GTPases are modulated by revealing that protein stability, rather than the GTPase cycle, acts as a key regulatory mechanism.
Author Lin, Ming-Chieh
Lee, Fang-Jen S.
Yu, Chia-Jung
Author_xml – sequence: 1
  givenname: Ming-Chieh
  surname: Lin
  fullname: Lin, Ming-Chieh
– sequence: 2
  givenname: Chia-Jung
  surname: Yu
  fullname: Yu, Chia-Jung
– sequence: 3
  givenname: Fang-Jen S.
  surname: Lee
  fullname: Lee, Fang-Jen S.
BookMark eNp9kb9v1DAcxS1URK-FmQnJEgvL9fwjjuMF6VQoRVSiAwxMluN80_iU2MF2Kp3455v0TkV0YLJkf97ze3pn6MQHDwi9peSCEsk3ozfpgjEiC1pQql6gFSWKrstCkRO0IoTJdVWw4hSdpbQjhChRkVfolItKyKqsVujPbRfS2IW47012wePQ4m3si-3mEx5jGEKGhHMHLuLa-cb5O1zvlwt8_ev2G7adGSHOmXAb4pFL2dQ94Ag2Ti4P4DPO4VEy9iYNBg8w1NF4eI1etqZP8OZ4nqOfV59_XF6vb75_-Xq5vVnbgpG8VkJJS2lb1iUDRY2cWwHwyjJRlWDLWlYNt03FSkHbhjWc16CaRpaEzRgQfo4-HnzHqR6gsXOiaHo9RjeYuNfBOP3vi3edvgv3WnEuGF0MPhwNYvg9Qcp6cMlC388lwpQ0KxWTQjCyoO-fobswRT_XWyjJVUkVnanNgbIxpBShfQpDiV6G1cuw-u-ws0I8U1iXHxebE7v-P7p3B90u5RCfvmGSSkZYwR8A0xGz-g
CitedBy_id crossref_primary_10_1016_j_celrep_2024_113768
crossref_primary_10_1016_j_ceb_2023_102268
crossref_primary_10_1016_j_ijbiomac_2024_135117
crossref_primary_10_62347_JEIV8228
crossref_primary_10_1091_mbc_E22_08_0355
crossref_primary_10_1242_jcs_262140
Cites_doi 10.1016/j.febslet.2004.04.048
10.1091/mbc.e17-01-0059
10.1007/s12038-014-9442-z
10.15252/embr.201846794
10.1073/pnas.2002749117
10.1038/sj.bjc.6690809
10.1073/pnas.1712176114
10.1093/embo-reports/kvf221
10.1038/s41419-019-1572-7
10.1097/00005537-200307000-00023
10.1128/MCB.01199-09
10.7554/eLife.66721
10.1016/S0014-5793(99)00759-0
10.1083/jcb.147.4.831
10.1038/nrc3645
10.1091/mbc.e07-02-0149
10.1091/mbc.E18-01-0001
10.1093/jb/mvw069
10.1158/0008-5472.CAN-05-3401
10.1242/jcs.233361
10.1242/jcs.00123
10.1146/annurev.cellbio.23.090506.123209
10.1093/nar/gkab1038
10.1074/jbc.M002470200
10.1016/j.bbagen.2013.12.006
10.3892/ol.2017.5896
10.1128/MCB.16.6.2689
10.1074/jbc.M909663199
10.1093/hmg/ddm301
10.1002/path.5189
10.1111/cas.14303
10.1038/ncomms14105
10.1093/emboj/19.9.2008
10.1073/pnas.0409513102
10.1074/jbc.M111.274191
10.1038/onc.2014.402
10.1002/embj.201386942
10.1091/mbc.9.7.1863
10.1158/0008-5472.CAN-07-1436
10.1016/j.ccr.2004.05.022
10.1038/nrm1788
10.1371/journal.pone.0085552
10.1016/j.cub.2007.03.007
10.1083/jcb.200509075
10.1038/31735
10.1186/1755-1536-4-21
10.1074/jbc.M113.511105
10.1038/sj.emboj.7600612
10.1093/hmg/7.9.1463
ContentType Journal Article
Copyright Copyright © 2022 the Author(s)
Copyright National Academy of Sciences Jul 26, 2022
Copyright © 2022 the Author(s). Published by PNAS. 2022
Copyright_xml – notice: Copyright © 2022 the Author(s)
– notice: Copyright National Academy of Sciences Jul 26, 2022
– notice: Copyright © 2022 the Author(s). Published by PNAS. 2022
DBID AAYXX
CITATION
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
DOI 10.1073/pnas.2207414119
DatabaseName CrossRef
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef

Virology and AIDS Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage 9
ExternalDocumentID PMC9335210
10_1073_pnas_2207414119
27172024
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABOCM
ABPLY
ABPPZ
ABTLG
ABZEH
ACGOD
ACIWK
ACNCT
ACPRK
AENEX
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
BKOMP
CS3
D0L
DIK
DU5
E3Z
EBS
F5P
FRP
GX1
H13
HH5
HYE
JENOY
JLS
JSG
JST
KQ8
L7B
LU7
N9A
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
AAYXX
CITATION
2AX
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
ABBHK
AEUPB
AEXZC
C1K
DCCCD
FR3
H94
IPSME
JAAYA
JBMMH
JHFFW
JKQEH
JLXEF
JPM
M7N
P64
RC3
SA0
7X8
5PM
ID FETCH-LOGICAL-c420t-9597c11f6b62e91a7027ee38c2586ec6b78d3cd82651fd2d33be9dd7602ee3e03
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 18:32:04 EDT 2025
Thu Jul 10 22:42:00 EDT 2025
Wed Aug 13 11:02:01 EDT 2025
Thu Apr 24 22:51:45 EDT 2025
Tue Jul 01 01:03:20 EDT 2025
Thu May 29 08:49:24 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 30
Language English
License This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c420t-9597c11f6b62e91a7027ee38c2586ec6b78d3cd82651fd2d33be9dd7602ee3e03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Author contributions: M.-C.L. and F.-J.S.L. designed research; M.-C.L. performed research; C.-J.Y. contributed new reagents/analytic tools and supported the experiments; M.-C.L. and F.-J.S.L. analyzed data; M.-C.L. and F.-J.S.L. wrote the paper.
Edited by Peter Novick, Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA; received April 29, 2022; accepted June 20, 2022
ORCID 0000-0002-2167-2426
0000-0001-6301-7190
0000-0003-0876-9300
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC9335210
PMID 35857868
PQID 2697396191
PQPubID 42026
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9335210
proquest_miscellaneous_2692755200
proquest_journals_2697396191
crossref_primary_10_1073_pnas_2207414119
crossref_citationtrail_10_1073_pnas_2207414119
jstor_primary_27172024
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-07-26
PublicationDateYYYYMMDD 2022-07-26
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-07-26
  day: 26
PublicationDecade 2020
PublicationPlace Washington
PublicationPlace_xml – name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationYear 2022
Publisher National Academy of Sciences
Publisher_xml – name: National Academy of Sciences
References e_1_3_4_3_2
e_1_3_4_1_2
e_1_3_4_9_2
e_1_3_4_7_2
e_1_3_4_40_2
e_1_3_4_5_2
e_1_3_4_23_2
e_1_3_4_44_2
e_1_3_4_21_2
e_1_3_4_42_2
e_1_3_4_27_2
e_1_3_4_48_2
e_1_3_4_25_2
e_1_3_4_46_2
e_1_3_4_29_2
e_1_3_4_30_2
e_1_3_4_11_2
e_1_3_4_34_2
e_1_3_4_32_2
e_1_3_4_15_2
e_1_3_4_38_2
e_1_3_4_13_2
e_1_3_4_36_2
e_1_3_4_19_2
e_1_3_4_17_2
e_1_3_4_2_2
e_1_3_4_8_2
e_1_3_4_41_2
e_1_3_4_6_2
e_1_3_4_4_2
e_1_3_4_22_2
e_1_3_4_45_2
e_1_3_4_20_2
e_1_3_4_43_2
e_1_3_4_26_2
e_1_3_4_49_2
e_1_3_4_24_2
e_1_3_4_47_2
e_1_3_4_28_2
e_1_3_4_12_2
e_1_3_4_33_2
e_1_3_4_10_2
e_1_3_4_31_2
e_1_3_4_16_2
e_1_3_4_37_2
e_1_3_4_14_2
e_1_3_4_35_2
e_1_3_4_18_2
e_1_3_4_39_2
References_xml – ident: e_1_3_4_40_2
  doi: 10.1016/j.febslet.2004.04.048
– ident: e_1_3_4_4_2
  doi: 10.1091/mbc.e17-01-0059
– ident: e_1_3_4_36_2
  doi: 10.1007/s12038-014-9442-z
– ident: e_1_3_4_48_2
  doi: 10.15252/embr.201846794
– ident: e_1_3_4_42_2
  doi: 10.1073/pnas.2002749117
– ident: e_1_3_4_23_2
  doi: 10.1038/sj.bjc.6690809
– ident: e_1_3_4_31_2
  doi: 10.1073/pnas.1712176114
– ident: e_1_3_4_13_2
  doi: 10.1093/embo-reports/kvf221
– ident: e_1_3_4_29_2
  doi: 10.1038/s41419-019-1572-7
– ident: e_1_3_4_24_2
  doi: 10.1097/00005537-200307000-00023
– ident: e_1_3_4_39_2
  doi: 10.1128/MCB.01199-09
– ident: e_1_3_4_6_2
  doi: 10.7554/eLife.66721
– ident: e_1_3_4_14_2
  doi: 10.1016/S0014-5793(99)00759-0
– ident: e_1_3_4_18_2
  doi: 10.1083/jcb.147.4.831
– ident: e_1_3_4_15_2
  doi: 10.1038/nrc3645
– ident: e_1_3_4_10_2
  doi: 10.1091/mbc.e07-02-0149
– ident: e_1_3_4_2_2
  doi: 10.1091/mbc.E18-01-0001
– ident: e_1_3_4_8_2
  doi: 10.1093/jb/mvw069
– ident: e_1_3_4_27_2
  doi: 10.1158/0008-5472.CAN-05-3401
– ident: e_1_3_4_3_2
  doi: 10.1242/jcs.233361
– ident: e_1_3_4_33_2
  doi: 10.1242/jcs.00123
– ident: e_1_3_4_12_2
  doi: 10.1146/annurev.cellbio.23.090506.123209
– ident: e_1_3_4_49_2
  doi: 10.1093/nar/gkab1038
– ident: e_1_3_4_32_2
  doi: 10.1074/jbc.M002470200
– ident: e_1_3_4_38_2
  doi: 10.1016/j.bbagen.2013.12.006
– ident: e_1_3_4_28_2
  doi: 10.3892/ol.2017.5896
– ident: e_1_3_4_45_2
  doi: 10.1128/MCB.16.6.2689
– ident: e_1_3_4_21_2
  doi: 10.1074/jbc.M909663199
– ident: e_1_3_4_35_2
  doi: 10.1093/hmg/ddm301
– ident: e_1_3_4_5_2
  doi: 10.1002/path.5189
– ident: e_1_3_4_9_2
  doi: 10.1111/cas.14303
– ident: e_1_3_4_26_2
  doi: 10.1038/ncomms14105
– ident: e_1_3_4_20_2
  doi: 10.1093/emboj/19.9.2008
– ident: e_1_3_4_43_2
  doi: 10.1073/pnas.0409513102
– ident: e_1_3_4_1_2
  doi: 10.1074/jbc.M111.274191
– ident: e_1_3_4_7_2
  doi: 10.1038/onc.2014.402
– ident: e_1_3_4_41_2
  doi: 10.1002/embj.201386942
– ident: e_1_3_4_19_2
  doi: 10.1091/mbc.9.7.1863
– ident: e_1_3_4_25_2
  doi: 10.1158/0008-5472.CAN-07-1436
– ident: e_1_3_4_30_2
  doi: 10.1016/j.ccr.2004.05.022
– ident: e_1_3_4_44_2
  doi: 10.1038/nrm1788
– ident: e_1_3_4_37_2
  doi: 10.1371/journal.pone.0085552
– ident: e_1_3_4_11_2
  doi: 10.1016/j.cub.2007.03.007
– ident: e_1_3_4_16_2
  doi: 10.1083/jcb.200509075
– ident: e_1_3_4_17_2
  doi: 10.1038/31735
– ident: e_1_3_4_22_2
  doi: 10.1186/1755-1536-4-21
– ident: e_1_3_4_46_2
  doi: 10.1074/jbc.M113.511105
– ident: e_1_3_4_47_2
  doi: 10.1038/sj.emboj.7600612
– ident: e_1_3_4_34_2
  doi: 10.1093/hmg/7.9.1463
SSID ssj0009580
Score 2.4508278
Snippet The Arl4 small GTPases participate in a variety of cellular events, including cytoskeleton remodeling, vesicle trafficking, cell migration, and neuronal...
Arl4 small GTPases act in cell migration through multiple effector proteins, but how they are regulated in this role has been unclear. We find that Pak1 kinase...
SourceID pubmedcentral
proquest
crossref
jstor
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Biological Sciences
Cell adhesion & migration
Cell migration
Cytoskeleton
Degradation
Fibronectin
Guanosine triphosphatases
Kinases
Membranes
Phosphorylation
Proteasomes
Proteins
Proteomics
Recruitment
Regulatory mechanisms (biology)
Stability analysis
Stimulation
Title Phosphorylation of Arl4A/D promotes their binding by the HYPK chaperone for their stable recruitment to the plasma membrane
URI https://www.jstor.org/stable/27172024
https://www.proquest.com/docview/2697396191
https://www.proquest.com/docview/2692755200
https://pubmed.ncbi.nlm.nih.gov/PMC9335210
Volume 119
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FcuGCKFARKGiROBRVTu2148cxaqmiAFEOrdSeol17TSylTpTEh8Kv4h8ysw8_qlQCLlZkj53NzpfZGe83M4R8AqfCjVMvd5JIZk7AAwF2kCPBBsJnV4jAV-3bvk_D8XUwuRne9Hq_W6ylaicG6c-9eSX_o1U4B3rFLNl_0Gz9UDgBn0G_cAQNw_GvdDxbrLbrxWpzv6wdv9FmGYzgiRfIvAI1YAUHtRcgCp2_gu4mQGN8O_uKWb9YJ7yUlmwIcuAtYjIVGMJNVWgKunFP1-Bo32HP6TuIsMsOhWhWL4NbSzqY2reMoyZnxRiS7alzOps2HZC_FYbBX_5wzheFrN9Q31aaEVBwZ1KZJbYhD11ykJ9IsE-D9rsLpniuOkG-Xfp770jaRpvBQhroVOuB1HYa3BwnDHSn0dqQG-OrEWu2e7Rd9loLfLJ35QBTh-2OS74dMIZ-VmAf1y3HzSD-hZ8SPCFPGUQmiks6btd5jnXWkxmzrSYV-WcPnt1xhDQXthPldDm6Lafn6gV5bqIVOtLQOyQ9Wb4kh3by6IkpWv75Ffn1AIt0lVOFxbMLapFIFcKoQSIV93iCIhJpjUQKSDRyGom0hUS6W6lbNBKpReJrcn355ep87JjGHk4aMHfnJBDFpp6XhyJkMvF4BLMlpR-nbBiHMg1FFGd-mkHkO_TyjGW-L2SSZVHoMhCTrn9EDkoY0htC3Sh3OXYt4hy3_DMuJRfg9mYgz_OE98nAzvI8NVXvsfnKcq7YF5E_R7XMG7X0yUl9w1oXfHlc9EiprZaz2OiTY6vHuTEXcF-YRD6MNPH65GN9GYw57tDBXK0qJcOiIVZC65Ooo__6O7AcfPdKWSxUWfgE0yc99-1jo3pHnjX_wWNysNtU8j141DvxQWH4D1U9z3A
linkProvider ABC ChemistRy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Phosphorylation+of+Arl4A%2FD+promotes+their+binding+by+the+HYPK+chaperone+for+their+stable+recruitment+to+the+plasma+membrane&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Lin%2C+Ming-Chieh&rft.au=Yu%2C+Chia-Jung&rft.au=Lee%2C+Fang-Jen+S.&rft.date=2022-07-26&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=119&rft.issue=30&rft.spage=1&rft.epage=9&rft_id=info:doi/10.1073%2Fpnas.2207414119&rft.externalDocID=27172024
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon