Dawn of nitride ferroelectric semiconductors: from materials to devices

III-nitride semiconductors are promising optoelectronic and electronic materials and have been extensively investigated in the past decades. New functionalities, such as ferroelectricity, ferromagnetism, and superconductivity, have been implanted into III-nitrides to expand their capability in next-...

Full description

Saved in:
Bibliographic Details
Published inSemiconductor science and technology Vol. 38; no. 4; pp. 43002 - 43030
Main Authors Wang, Ping, Wang, Ding, Mondal, Shubham, Hu, Mingtao, Liu, Jiangnan, Mi, Zetian
Format Journal Article
LanguageEnglish
Published IOP Publishing 01.04.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract III-nitride semiconductors are promising optoelectronic and electronic materials and have been extensively investigated in the past decades. New functionalities, such as ferroelectricity, ferromagnetism, and superconductivity, have been implanted into III-nitrides to expand their capability in next-generation semiconductor and quantum technologies. The recent experimental demonstration of ferroelectricity in nitride materials, including ScAl(Ga)N, boron-substituted AlN, and hexagonal BN, has inspired tremendous research interest. Due to the large remnant polarization, high breakdown field, high Curie temperature, and significantly enhanced piezoelectric, linear and nonlinear optical properties, nitride ferroelectric semiconductors have enabled a wealth of applications in electronic, ferroelectronic, acoustoelectronic, optoelectronic, and quantum devices and systems. In this review, the development of nitride ferroelectric semiconductors from materials to devices is discussed. While expounding on the unique advantages and outstanding achievements of nitride ferroelectrics, the existing challenges and promising prospects have been also discussed.
AbstractList III-nitride semiconductors are promising optoelectronic and electronic materials and have been extensively investigated in the past decades. New functionalities, such as ferroelectricity, ferromagnetism, and superconductivity, have been implanted into III-nitrides to expand their capability in next-generation semiconductor and quantum technologies. The recent experimental demonstration of ferroelectricity in nitride materials, including ScAl(Ga)N, boron-substituted AlN, and hexagonal BN, has inspired tremendous research interest. Due to the large remnant polarization, high breakdown field, high Curie temperature, and significantly enhanced piezoelectric, linear and nonlinear optical properties, nitride ferroelectric semiconductors have enabled a wealth of applications in electronic, ferroelectronic, acoustoelectronic, optoelectronic, and quantum devices and systems. In this review, the development of nitride ferroelectric semiconductors from materials to devices is discussed. While expounding on the unique advantages and outstanding achievements of nitride ferroelectrics, the existing challenges and promising prospects have been also discussed.
Author Mi, Zetian
Mondal, Shubham
Wang, Ding
Liu, Jiangnan
Hu, Mingtao
Wang, Ping
Author_xml – sequence: 1
  givenname: Ping
  orcidid: 0000-0002-4716-5457
  surname: Wang
  fullname: Wang, Ping
  organization: University of Michigan Department of Electrical Engineering and Computer Science, Ann Arbor, MI 48109, United States of America
– sequence: 2
  givenname: Ding
  surname: Wang
  fullname: Wang, Ding
  organization: University of Michigan Department of Electrical Engineering and Computer Science, Ann Arbor, MI 48109, United States of America
– sequence: 3
  givenname: Shubham
  surname: Mondal
  fullname: Mondal, Shubham
  organization: University of Michigan Department of Electrical Engineering and Computer Science, Ann Arbor, MI 48109, United States of America
– sequence: 4
  givenname: Mingtao
  surname: Hu
  fullname: Hu, Mingtao
  organization: University of Michigan Department of Electrical Engineering and Computer Science, Ann Arbor, MI 48109, United States of America
– sequence: 5
  givenname: Jiangnan
  surname: Liu
  fullname: Liu, Jiangnan
  organization: University of Michigan Department of Electrical Engineering and Computer Science, Ann Arbor, MI 48109, United States of America
– sequence: 6
  givenname: Zetian
  orcidid: 0000-0001-9494-7390
  surname: Mi
  fullname: Mi, Zetian
  organization: University of Michigan Department of Electrical Engineering and Computer Science, Ann Arbor, MI 48109, United States of America
BookMark eNp9kEtLAzEUhYNUsK3uXWbnxrE3r3m4k6pVKLjRdcgTUjqTkqSK_94pFRciri7ncL4L58zQZIiDQ-iSwA2Btl0QVpOqrjlZKKNbcCdo-mNN0BRo3VaEcnqGZjlvAAhpGUzR6l59DDh6PISSgnXYu5Si2zozSoOz64OJg92bElO-xT7FHvequBTUNuMSsXXvwbh8jk796LiL7ztHb48Pr8unav2yel7erSvDKZSqY6KxVGvCoVGNFY4TTr1thBKdYJRpylgnNBHAFHBFvXfdGKSaqIYZr9kcwfGvSTHn5LzcpdCr9CkJyMMQ8tBaHlrL4xAjUv9CTCiqhDiUpML2P_D6CIa4k5u4T8PY7L_41R_xnItkreQSOAOgcmc9-wLcfYCk
CODEN SSTEET
CitedBy_id crossref_primary_10_1021_acsami_3c17282
crossref_primary_10_1088_1361_6641_ad7ef3
crossref_primary_10_1002_aelm_202400279
crossref_primary_10_1063_5_0197111
crossref_primary_10_1002_pssb_202400647
crossref_primary_10_1039_D4TA04335A
crossref_primary_10_1364_OME_545820
crossref_primary_10_3390_ma17112491
crossref_primary_10_35848_1882_0786_ad120b
crossref_primary_10_1021_acsami_4c14022
crossref_primary_10_1002_adfm_202315169
crossref_primary_10_1021_acsanm_4c04549
crossref_primary_10_1088_1361_6463_ad33f5
crossref_primary_10_1063_5_0159562
crossref_primary_10_1109_LED_2023_3347233
crossref_primary_10_1063_5_0217732
crossref_primary_10_1021_acsami_2c22798
crossref_primary_10_1063_5_0236507
crossref_primary_10_1002_pssr_202400157
crossref_primary_10_1111_jace_19540
crossref_primary_10_1007_s42247_024_00756_4
crossref_primary_10_1016_j_actamat_2023_119428
crossref_primary_10_1063_5_0206005
crossref_primary_10_1063_5_0195021
crossref_primary_10_1002_aelm_202400849
crossref_primary_10_1063_5_0184774
crossref_primary_10_1016_j_apsadv_2025_100722
crossref_primary_10_1039_D4TC04545A
crossref_primary_10_1063_5_0185066
crossref_primary_10_1063_5_0160163
crossref_primary_10_1063_5_0217301
crossref_primary_10_1002_smtd_202400722
crossref_primary_10_1063_5_0225280
crossref_primary_10_1063_5_0181217
crossref_primary_10_1002_adma_202210628
crossref_primary_10_1016_j_ceramint_2024_02_147
crossref_primary_10_1021_acsami_4c03112
crossref_primary_10_1063_5_0208517
crossref_primary_10_1103_PhysRevApplied_22_044071
crossref_primary_10_1063_5_0235294
crossref_primary_10_1063_5_0228924
crossref_primary_10_1063_5_0223553
crossref_primary_10_1088_2053_1583_ad4611
crossref_primary_10_1002_apxr_202300113
crossref_primary_10_1063_5_0205290
crossref_primary_10_1364_OL_541461
crossref_primary_10_1002_pssa_202400896
crossref_primary_10_1111_jace_20063
crossref_primary_10_3390_inorganics13020029
crossref_primary_10_1103_PhysRevB_110_205206
crossref_primary_10_1063_5_0239643
crossref_primary_10_1002_aelm_202300256
crossref_primary_10_1111_jace_20347
crossref_primary_10_3390_ma17133104
Cites_doi 10.1007/s10854-016-6213-7
10.1038/s41586-018-0855-y
10.1103/PhysRevLett.104.137601
10.1109/IPCon.2019.8908293
10.1002/adma.202201387
10.1088/0953-8984/27/24/245901
10.1016/s0002-9149(02)02694-2
10.1002/pssa.201100158
10.1063/5.0054539
10.1063/1.5066613
10.1063/5.0055851
10.1063/1.3248257
10.1002/pssr.201900535
10.1109/MEMS51782.2021.9375451
10.1016/j.tsf.2019.137623
10.1016/j.tsf.2005.08.370
10.1364/PRJ.443165
10.1063/1.4824179
10.1109/LED.2020.3006035
10.1557/mrc.2016.26
10.1038/nmat4148
10.1038/s41586-018-0854-z
10.1021/acsami.1c23381
10.1063/5.0049185
10.3390/mi13060877
10.1063/1.5017153
10.1021/acsami.2c22798
10.1007/s10854-014-2423-z
10.1109/LED.2019.2915555
10.1063/5.0087505
10.1063/1.2140889
10.1002/adma.202210628
10.1149/07706.0023ecst
10.1063/5.0096760
10.1002/adma.202109765
10.1109/LED.2011.2164613
10.1038/nmat2432
10.1109/JMEMS.2022.3147492
10.1109/MEMS51782.2021.9375203
10.1038/s41467-020-20667-2
10.1103/PhysRevLett.123.096801
10.1088/1361-6528/ac20fc
10.1063/1.5084945
10.1109/LED.2020.3034576
10.1126/science.1187597
10.1109/16.906439
10.1063/5.0048647
10.1088/2058-9565/ab788a
10.1063/5.0061787
10.1103/PhysRevB.66.201203
10.1063/5.0121621
10.1002/adfm.202112111
10.35848/1347-4065/abef15
10.1063/5.0054522
10.1109/ULTSYM.2013.0350
10.1109/LED.2021.3100036
10.1063/5.0097117
10.1103/PhysRevMaterials.5.044412
10.1002/pssa.201700831
10.1002/pssa.201532292
10.1021/acsami.0c15912
10.1002/pssb.201900612
10.1063/1.4896262
10.1063/1.4795784
10.1103/PhysRevB.87.094107
10.1063/1.4993908
10.1063/1.4966278
10.1063/5.0118075
10.1063/1.3489939
10.1109/Transducers50396.2021.9495515
10.1002/pssb.202200079
10.1038/srep14386
10.1088/1361-6641/abd924
10.1063/5.0090501
10.1038/nphoton.2009.229
10.1063/5.0056485
10.1103/PhysRevLett.90.257602
10.1063/5.0094533
10.1016/j.spmi.2013.05.010
10.1109/JMEMS.2020.3014584
10.1063/1.4981807
10.1002/pssr.202200312
10.35848/1347-4065/ac54f6
10.1002/adma.200802611
10.1109/MEMSYS.2013.6474347
10.3390/ma14216437
10.1063/5.0002445
10.1063/1.4871656
10.1109/ISAF51943.2021.9477328
10.1109/IPC53466.2022.9975776
10.1002/pssa.201200561
10.1063/5.0098979
10.1109/TUFFC.2013.2606
10.1021/acsami.8b22602
10.1063/1.4866969
10.1186/s11671-019-3043-6
10.1109/LED.2016.2558149
10.1063/1.4993254
10.1063/5.0099913
10.1002/pssa.200925060
10.1063/1.5144906
10.1016/j.optcom.2003.10.046
10.1063/5.0064041
10.1063/5.0075636
10.1063/1.5101043
10.1364/OL.32.002453
10.1002/pssr.202100087
10.1063/5.0015281
10.1109/IFCS-ISAF41089.2020.9234883
10.1143/APEX.5.015502
10.1109/IEDM.2006.346935
10.1109/EFTF/IFCS52194.2021.9604316
10.1109/LED.2022.3220877
10.1016/j.ijleo.2020.165313
10.1063/1.4934756
10.1063/1.3268466
10.1063/5.0013943
10.1021/acs.nanolett.5b04726
10.1002/adma.202106814
10.1038/nphoton.2010.221
10.1002/admt.201800589
10.1038/s41578-019-0089-0
10.1063/5.0035026
10.1109/TSM.2017.2749201
10.1364/PRJ.450465
10.1039/C3EE42454E
10.1016/j.jcrysgro.2007.12.053
10.1002/aelm.202100931
10.1039/D2MH00080F
10.1038/nnano.2008.18
10.1002/smtd.202000149
10.1038/nphoton.2010.15
10.1088/0953-8984/14/13/302
10.1117/12.2626712
10.1109/IEDM19574.2021.9720535
10.1021/acssensors.2c00980
10.35848/1882-0786/ac2261
10.1038/nature10679
10.1109/IFCS-ISAF41089.2020.9234831
10.1109/FCS.2018.8597447
10.1016/0022-5088(85)90066-9
10.1063/5.0057869
10.1109/LED.2009.2038935
10.1063/1.5040190
10.1126/science.abe8177
10.1109/TED.2021.3072612
10.1063/5.0068059
10.1002/aelm.201800651
10.1364/OL.38.002810
10.1021/acs.nanolett.0c05051
10.1117/12.2582707
10.35848/1882-0786/ab916a
10.1038/s41586-020-2970-9
10.1063/1.5116747
10.1109/MEMS51782.2021.9375427
10.1103/PhysRevMaterials.1.065001
10.1103/PhysRevB.73.174106
10.7567/1347-4065/ab124f
10.1021/nl3011885
10.1103/PhysRevX.6.021038
10.1063/5.0029488
10.1038/s41928-019-0338-7
10.1109/JMEMS.2016.2614660
10.1557/JMR.2000.0011
10.1016/j.spmi.2017.11.053
10.1038/nphoton.2015.277
10.35848/1347-4065/ac5db0
10.1109/IFCS-ISAF41089.2020.9234910
10.1088/1361-6463/ac3d5c
10.1063/5.0060021
10.1021/acsnano.1c02830
10.1002/pssr.202000575
10.1002/aelm.202000337
10.1002/adfm.202008452
10.1002/pssb.201451314
10.3390/mi13081282
10.1002/pssa.202100302
10.1063/1.1810626
10.1038/s41467-019-13993-7
10.1038/nature12622
10.1063/1.3251072
10.1063/5.0136265
10.1103/PhysRevApplied.10.044036
10.1063/5.0122943
10.1002/aelm.202200005
10.1063/5.0003615
10.1103/PhysRevB.70.193309
10.1364/JOSAB.14.002268
10.1109/LED.2021.3070274
10.1063/5.0052163
10.1002/adma.201905764
10.1109/IUS46767.2020.9251741
10.35848/1882-0786/ac8048
10.1063/1.5129387
10.1063/1.3448235
10.1016/j.ssmph.2018.04.004
10.1088/1361-6633/aa7bb2
10.1063/1.2773762
10.1103/PhysRevB.62.13538
10.1002/advs.201800844
10.1002/smll.202107575
10.1002/advs.202100569
10.1002/adfm.202109632
10.2109/jcersj2.21184
10.1021/acsnano.1c09119
10.1364/OPTICA.6.001361
10.35848/1347-4065/abe644
10.1109/ISAF51494.2022.9870108
10.1021/acs.nanolett.2c03169
10.1016/j.snb.2021.130437
10.1063/5.0024192
10.1088/2040-8986/abff94
10.1063/1.4848036
10.1021/nl071804g
10.1103/PhysRevB.65.045204
10.1126/science.abd3230
10.1002/adom.201900765
10.1038/natrevmats.2016.87
10.1063/1.4916679
10.1109/TED.2021.3107232
10.3390/mi13060887
10.1063/1.5008451
10.1063/5.0033205
10.1063/5.0003095
10.1039/C5CS00308C
10.1002/advs.202000917
10.1063/1.369664
10.1063/5.0035335
10.1038/nphoton.2008.285
10.1063/1.4997601
10.1063/5.0108475
10.1103/PhysRevB.56.R10024
10.1002/adfm.202007216
10.1002/aelm.201800646
10.1063/5.0051940
10.1002/pssr.202100034
10.1063/1.1370548
10.1063/1.4923429
10.1063/5.0053649
10.1109/TAP.2017.2774707
10.1038/s41467-019-10610-5
10.1063/5.0037617
10.1002/aelm.202200726
10.1109/MWSYM.2019.8700824
10.1093/biolre/ioac125
10.1557/adv.2016.510
10.1063/5.0060608
ContentType Journal Article
Copyright 2023 The Author(s). Published by IOP Publishing Ltd
Copyright_xml – notice: 2023 The Author(s). Published by IOP Publishing Ltd
DBID O3W
TSCCA
AAYXX
CITATION
DOI 10.1088/1361-6641/acb80e
DatabaseName Institute of Physics Open Access Journal Titles
IOPscience (Open Access)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
Database_xml – sequence: 1
  dbid: O3W
  name: Institute of Physics Open Access Journal Titles
  url: http://iopscience.iop.org/
  sourceTypes:
    Enrichment Source
    Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1361-6641
ExternalDocumentID 10_1088_1361_6641_acb80e
sstacb80e
GrantInformation_xml – fundername: Defense Advanced Research Projects Agency
  funderid: http://dx.doi.org/10.13039/100000185
– fundername: Office of Naval Research
  grantid: N00014-19-1-2225
  funderid: http://dx.doi.org/10.13039/100000006
GroupedDBID -~X
.DC
123
1JI
4.4
5B3
5PX
5VS
5ZH
7.M
7.Q
AAGCD
AAGID
AAHTB
AAJIO
AAJKP
AATNI
ABCXL
ABHWH
ABJNI
ABPEJ
ABQJV
ABVAM
ACAFW
ACBEA
ACGFO
ACGFS
ACHIP
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CBCFC
CEBXE
CJUJL
CRLBU
CS3
DU5
E.-
EBS
EDWGO
EMSAF
EPQRW
EQZZN
HAK
IHE
IJHAN
IOP
IZVLO
KOT
LAP
M45
N5L
N9A
O3W
P2P
PJBAE
PZZ
R4D
RIN
RNS
RO9
ROL
RPA
SY9
TAE
TN5
TSCCA
TWZ
UCJ
W28
XPP
ZMT
AAYXX
CITATION
ID FETCH-LOGICAL-c420t-9357d2bb1407a7d5e4142fd75a595323b23395b1503a04a2ffe97a72b1a73cfb3
IEDL.DBID O3W
ISSN 0268-1242
IngestDate Thu Apr 24 23:03:22 EDT 2025
Tue Jul 01 02:44:53 EDT 2025
Wed Jun 07 11:19:04 EDT 2023
Wed Aug 21 03:34:57 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c420t-9357d2bb1407a7d5e4142fd75a595323b23395b1503a04a2ffe97a72b1a73cfb3
Notes SST-109100.R1
ORCID 0000-0001-9494-7390
0000-0002-4716-5457
OpenAccessLink https://iopscience.iop.org/article/10.1088/1361-6641/acb80e
PageCount 29
ParticipantIDs iop_journals_10_1088_1361_6641_acb80e
crossref_primary_10_1088_1361_6641_acb80e
crossref_citationtrail_10_1088_1361_6641_acb80e
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-04-01
PublicationDateYYYYMMDD 2023-04-01
PublicationDate_xml – month: 04
  year: 2023
  text: 2023-04-01
  day: 01
PublicationDecade 2020
PublicationTitle Semiconductor science and technology
PublicationTitleAbbrev SST
PublicationTitleAlternate Semicond. Sci. Technol
PublicationYear 2023
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Medjdoub (sstacb80ebib197) 2006
Wang (sstacb80ebib223) 2021; 8
Akiyama (sstacb80ebib17) 2009; 95
Wang (sstacb80ebib47) 2020; 116
Liu (sstacb80ebib182) 2022; 120
Tsui (sstacb80ebib82) 2015; 212
Krishnamoorthy (sstacb80ebib174) 2021; 32
Theis (sstacb80ebib205) 2010; 327
Ng (sstacb80ebib249) 2021; 346
Tsai (sstacb80ebib145) 2021; 118
Giribaldi (sstacb80ebib30) 2021
Guo (sstacb80ebib222) 2022; 16
Li (sstacb80ebib63) 2022
Dudley (sstacb80ebib186) 2009; 3
Liu (sstacb80ebib138) 2020; 7
Leone (sstacb80ebib51) 2020; 14
Zhang (sstacb80ebib4) 2013; 114
Moustakas (sstacb80ebib74) 2017; 80
Islam (sstacb80ebib163) 2021; 118
Henry (sstacb80ebib228) 2017; 77
Lei (sstacb80ebib181) 2009; 95
Liu (sstacb80ebib253) 2021; 68
Wolff (sstacb80ebib167) 2022; 13
Íñiguez (sstacb80ebib210) 2019; 4
Li (sstacb80ebib96) 2022; 34
Jung (sstacb80ebib237) 2013; 38
Sun (sstacb80ebib240) 2019; 44
Takeuchi (sstacb80ebib42) 2002; 65
Casamento (sstacb80ebib19) 2022; 120
Rassay (sstacb80ebib152) 2021; 15
Shahrokhi (sstacb80ebib137) 2020; 4
Hashimoto (sstacb80ebib25) 2013; 60
Pirro (sstacb80ebib151) 2022; 13
Zhang (sstacb80ebib243) 2022
Constantin (sstacb80ebib78) 2004; 70
Mishra (sstacb80ebib194) 2002; 90
Wang (sstacb80ebib125) 2022; 121
Zhang (sstacb80ebib172) 2013; 114
Ng (sstacb80ebib250) 2022; 7
Eastman (sstacb80ebib193) 2001; 48
Ganeev (sstacb80ebib21) 2004; 229
Wolff (sstacb80ebib60) 2021; 129
Wang (sstacb80ebib232) 2020; 29
Uehara (sstacb80ebib67) 2019; 114
Knoll (sstacb80ebib81) 2012; 209
Shin (sstacb80ebib190) 2007; 32
Zheng (sstacb80ebib176) 2020; 588
Vasilyev (sstacb80ebib133) 2016; 1
Si (sstacb80ebib218) 2019; 2
Moustakas (sstacb80ebib73) 2016; 6
Ambacher (sstacb80ebib121) 2022; 131
Zhu (sstacb80ebib166) 2021; 119
Zheng (sstacb80ebib234) 2022
Wang (sstacb80ebib104) 2007; 91
Ranjan (sstacb80ebib2) 2003; 90
Hayden (sstacb80ebib114) 2021; 5
Wang (sstacb80ebib71) 2021; 31
Yanagitani (sstacb80ebib66) 2014; 104
Wang (sstacb80ebib217) 2023
Shin (sstacb80ebib241) 2021; 118
Lambrecht (sstacb80ebib40) 2000; 62
Caro (sstacb80ebib124) 2015; 27
Liu (sstacb80ebib86) 2018; 112
Zeuthen (sstacb80ebib38) 2018; 10
Yasuoka (sstacb80ebib149) 2021; 218
Gu (sstacb80ebib188) 2004; 85
Casamento (sstacb80ebib106) 2021; 9
Lauk (sstacb80ebib36) 2020; 5
Yasuoka (sstacb80ebib157) 2022; 130
Jin (sstacb80ebib119) 2020; 12
Ambacher (sstacb80ebib99) 2002; 14
Dreyer (sstacb80ebib98) 2016; 6
Shibukawa (sstacb80ebib146) 2022; 61
Zhu (sstacb80ebib242) 2020
Saha (sstacb80ebib109) 2015; 252
Liu (sstacb80ebib95) 2021; 31
Tominaga (sstacb80ebib150) 2021; 55
Farrer (sstacb80ebib1) 2002; 66
Grinberg (sstacb80ebib224) 2013; 503
Pandey (sstacb80ebib102) 2022; 10
Wang (sstacb80ebib103) 2022; 14
Pirro (sstacb80ebib235) 2021
Ambacher (sstacb80ebib18) 2021; 130
Saha (sstacb80ebib127) 2016; 109
Gund (sstacb80ebib165) 2021
Yasuda (sstacb80ebib179) 2021; 372
Uehara (sstacb80ebib68) 2021; 119
Sun (sstacb80ebib128) 2022; 259
Casamento (sstacb80ebib201) 2022; 121
Liu (sstacb80ebib245) 2022
Bernardini (sstacb80ebib41) 1997; 56
Kurz (sstacb80ebib135) 2018; 215
Huang (sstacb80ebib221) 2010; 4
Drury (sstacb80ebib11) 2022; 13
Yang (sstacb80ebib180) 2022; 9
Liu (sstacb80ebib214) 2021
Yang (sstacb80ebib215) 2009; 8
Wang (sstacb80ebib85) 2012; 5
Bette (sstacb80ebib134) 2019; 692
Wang (sstacb80ebib83) 2021; 119
Zheng (sstacb80ebib88) 2018; 113
Zhu (sstacb80ebib175) 2022; 8
Little (sstacb80ebib65) 2001; 78
Xiong (sstacb80ebib238) 2012; 12
Wang (sstacb80ebib89) 2020; 116
Reeber (sstacb80ebib93) 2000; 15
Umeda (sstacb80ebib28) 2013
Li (sstacb80ebib168) 2020
Wang (sstacb80ebib94) 2021; 118
Edgar (sstacb80ebib55) 2008; 310
Wang (sstacb80ebib161) 2023
Moram (sstacb80ebib80) 2009; 106
Mondal (sstacb80ebib225) 2022; 10
Pirro (sstacb80ebib147) 2021
Liu (sstacb80ebib213) 2022; 22
Zhang (sstacb80ebib59) 2015; 26
Casamento (sstacb80ebib48) 2020; 117
Wang (sstacb80ebib140) 2021; 130
Hardy (sstacb80ebib45) 2017; 110
Yasuoka (sstacb80ebib62) 2020; 128
Ng (sstacb80ebib29) 2020; 117
Casamento (sstacb80ebib105) 2020; 257
Liu (sstacb80ebib226) 2017; 65
Cheng (sstacb80ebib70) 2019; 14
Zheng (sstacb80ebib171) 2021; 130
Dismukes (sstacb80ebib77) 1996
Krause (sstacb80ebib202) 2022; 44
Shi (sstacb80ebib189) 2006; 496
Ambacher (sstacb80ebib192) 1999; 85
Wang (sstacb80ebib115) 2022; 34
Rong (sstacb80ebib247) 2015; 5
Fichtner (sstacb80ebib44) 2017; 122
Baeumler (sstacb80ebib61) 2019; 126
Wang (sstacb80ebib14) 2021; 15
Koleske (sstacb80ebib49) 2009
Salahuddin (sstacb80ebib203) 2008; 8
Wingqvist (sstacb80ebib122) 2010; 97
Uehara (sstacb80ebib173) 2022; 15
Yanagitani (sstacb80ebib123) 2014; 105
Shao (sstacb80ebib229) 2021; 42
Ambacher (sstacb80ebib120) 2021; 129
Kataoka (sstacb80ebib169) 2021; 60
Budimir (sstacb80ebib139) 2006; 73
Liu (sstacb80ebib75) 2021; 34
Deng (sstacb80ebib110) 2013; 102
Höglund (sstacb80ebib43) 2010; 107
Yadav (sstacb80ebib208) 2019; 565
Mayrhofer (sstacb80ebib252) 2016; 26
Ghatge (sstacb80ebib230) 2018
Wang (sstacb80ebib12) 2022; 31
Qian (sstacb80ebib216) 2019; 5
Green (sstacb80ebib22) 2019; 40
O’brien (sstacb80ebib35) 2009; 3
Wang (sstacb80ebib156) 2020; 41
Noor-A-Alam (sstacb80ebib142) 2019; 11
Shi (sstacb80ebib136) 2016; 45
Fichtner (sstacb80ebib5) 2019; 125
Wang (sstacb80ebib10) 2021; 118
Cassabois (sstacb80ebib116) 2016; 10
Manna (sstacb80ebib130) 2017; 122
Frei (sstacb80ebib46) 2019; 58
Tsai (sstacb80ebib170) 2022; 61
Engel (sstacb80ebib91) 2022; 132
Qiao (sstacb80ebib220) 2020; 8
Shoji (sstacb80ebib191) 1997; 14
Martin (sstacb80ebib7) 2016; 2
Shen (sstacb80ebib113) 2017; 1
Lu (sstacb80ebib92) 2018; 6
Gu (sstacb80ebib185) 2011
Sutherland (sstacb80ebib184) 2003
Park (sstacb80ebib233) 2021; 42
Upadhyay (sstacb80ebib33) 2019; 4
Wang (sstacb80ebib15) 2022; 121
Banerjee (sstacb80ebib6) 2022; 18
Schönweger (sstacb80ebib155) 2022; 17
Liu (sstacb80ebib101) 2022; 10
Fu (sstacb80ebib118) 2020; 117
Tsai (sstacb80ebib159) 2021; 60
Liu (sstacb80ebib13) 2021; 21
Herkert (sstacb80ebib187) 2021; 23
Schönweger (sstacb80ebib64) 2022; 32
Wang (sstacb80ebib164) 2021
Vizner Stern (sstacb80ebib177) 2021; 372
Boyd (sstacb80ebib183) 2020
Hoffmann (sstacb80ebib209) 2019; 565
Lin (sstacb80ebib231) 2021; 68
Rakher (sstacb80ebib37) 2010; 4
Ng (sstacb80ebib248) 2021
Lee (sstacb80ebib196) 2011; 32
Jiang (sstacb80ebib219) 2021; 15
Li (sstacb80ebib34) 2020; 32
Ligl (sstacb80ebib52) 2020; 127
Elias (sstacb80ebib117) 2019; 10
Khan (sstacb80ebib207) 2015; 14
Hardy (sstacb80ebib244) 2017; 30
Ionescu (sstacb80ebib206) 2011; 479
Deng (sstacb80ebib108) 2015; 118
Gund (sstacb80ebib148) 2021
Williams (sstacb80ebib112) 2019; 115
Wang (sstacb80ebib236) 2021; 15
Tsui (sstacb80ebib107) 2015; 106
Quach (sstacb80ebib39) 2020; 116
Konno (sstacb80ebib227) 2013
Satoh (sstacb80ebib126) 2022; 132
Moustakas (sstacb80ebib72) 2013; 210
Ryoo (sstacb80ebib160) 2022; 8
Wang (sstacb80ebib27) 2020
Green (sstacb80ebib23) 2020; 41
Wang (sstacb80ebib87) 2019; 5
Zhang (sstacb80ebib153) 2021; 14
Zhirnov (sstacb80ebib204) 2008; 3
Liu (sstacb80ebib97) 2022; 32
Hardy (sstacb80ebib90) 2020; 13
Tang (sstacb80ebib57) 2017; 28
Woods (sstacb80ebib178) 2021; 12
Jiang (sstacb80ebib143) 2019; 123
Bowen (sstacb80ebib251) 2014; 7
Wang (sstacb80ebib100) 2016; 16
Moustakas (sstacb80ebib76) 1996
Dzuba (sstacb80ebib246) 2022; 132
Wang (sstacb80ebib162) 2023; 122
Schuster (sstacb80ebib84) 1985; 109
Saidi (sstacb80ebib50) 2013; 60
Wu (sstacb80ebib8) 2020; 6
Yang (sstacb80ebib199) 2019; 115
Mizutani (sstacb80ebib158) 2021; 14
Wang (sstacb80ebib69) 2022; 120
Oshima (sstacb80ebib56) 2014; 115
Hardy (sstacb80ebib200) 2018
Hao (sstacb80ebib26) 2019
Fichtner (sstacb80ebib154) 2020
Cao (sstacb80ebib212) 2020; 11
Yazawa (sstacb80ebib141) 2022; 121
Mikolajick (sstacb80ebib9) 2021; 129
Bohnen (sstacb80ebib54) 2009; 206
Aziz (sstacb80ebib211) 2016; 37
Fichtner (sstacb80ebib58) 2015; 3
Wang (sstacb80ebib198) 2018; 5
Liu (sstacb80ebib132) 2017; 111
Chung (sstacb80ebib195) 2010; 31
Wang (sstacb80ebib32) 2022; 8
Manz (sstacb80ebib53) 2021; 36
Williams (sstacb80ebib111) 2017; 111
Wang (sstacb80ebib24) 2021; 119
Jing (sstacb80ebib131) 2022; 131
Liu (sstacb80ebib31) 2021; 118
Wang (sstacb80ebib144) 2020
Tasnadi (sstacb80ebib3) 2010; 104
Bruch (sstacb80ebib239) 2019; 6
Akiyama (sstacb80ebib16) 2009; 21
Yoshioka (sstacb80ebib20) 2021; 9
Constantin (sstacb80ebib79) 2005; 98
Tholander (sstacb80ebib129) 2013; 87
References_xml – volume: 28
  start-page: 5512
  year: 2017
  ident: sstacb80ebib57
  article-title: Deposition of highly c-axis-oriented ScAlN thin films at different sputtering power
  publication-title: J. Mater. Sci., Mater. Electron.
  doi: 10.1007/s10854-016-6213-7
– volume: 565
  start-page: 468
  year: 2019
  ident: sstacb80ebib208
  article-title: Spatially resolved steady-state negative capacitance
  publication-title: Nature
  doi: 10.1038/s41586-018-0855-y
– volume: 104
  year: 2010
  ident: sstacb80ebib3
  article-title: Origin of the anomalous piezoelectric response in wurtzite Sc x Al1−x N alloys
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.104.137601
– volume: 44
  start-page: 5679
  year: 2019
  ident: sstacb80ebib240
  article-title: Ultrahigh Q microring resonators using a single-crystal aluminum-nitride-on-sapphire platform
  publication-title: Opt. Lett.
  doi: 10.1109/IPCon.2019.8908293
– volume: 34
  year: 2022
  ident: sstacb80ebib115
  article-title: Scalable synthesis of monolayer hexagonal boron nitride on graphene with giant bandgap renormalization
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202201387
– volume: 27
  year: 2015
  ident: sstacb80ebib124
  article-title: Piezoelectric coefficients and spontaneous polarization of ScAlN
  publication-title: J. Phys.: Condens. Matter
  doi: 10.1088/0953-8984/27/24/245901
– volume: 90
  start-page: 1022
  year: 2002
  ident: sstacb80ebib194
  article-title: AlGaN/GaN HEMTs-an overview of device operation and applications
  publication-title: Proc. IEEE
  doi: 10.1016/s0002-9149(02)02694-2
– volume: 209
  start-page: 33
  year: 2012
  ident: sstacb80ebib81
  article-title: Growth, microstructure and morphology of epitaxial ScGaN films
  publication-title: Phys. Status Solid a
  doi: 10.1002/pssa.201100158
– volume: 118
  year: 2021
  ident: sstacb80ebib10
  article-title: Fully epitaxial ferroelectric ScAlN grown by molecular beam epitaxy
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/5.0054539
– volume: 114
  year: 2019
  ident: sstacb80ebib67
  article-title: Increase in the piezoelectric response of scandium-doped gallium nitride thin films sputtered using a metal interlayer for piezo MEMS
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.5066613
– volume: 119
  year: 2021
  ident: sstacb80ebib24
  article-title: N-polar ScAlN and HEMTs grown by molecular beam epitaxy
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/5.0055851
– volume: 95
  year: 2009
  ident: sstacb80ebib181
  article-title: Ferromagnetic Sc-doped AlN sixfold-symmetrical hierarchical nanostructures
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3248257
– volume: 14
  year: 2020
  ident: sstacb80ebib51
  article-title: Metal‐organic chemical vapor deposition of aluminum scandium nitride
  publication-title: Phys. Status Solidi
  doi: 10.1002/pssr.201900535
– start-page: 650
  year: 2021
  ident: sstacb80ebib30
  article-title: Compensation of contact nature-dependent asymmetry in the leakage current of ferroelectric Sc x Al1−x N thin-film capacitors
  doi: 10.1109/MEMS51782.2021.9375451
– volume: 692
  year: 2019
  ident: sstacb80ebib134
  article-title: Infrared-laser based characterization of the pyroelectricity in AlScN thin-films
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2019.137623
– volume: 496
  start-page: 333
  year: 2006
  ident: sstacb80ebib189
  article-title: The third-order optical nonlinearity of Bi3.25La0.75Ti3O12 ferroelectric thin film on quartz
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2005.08.370
– volume: 10
  start-page: 587
  year: 2022
  ident: sstacb80ebib101
  article-title: N-polar InGaN nanowires: breaking the efficiency bottleneck of nano and micro LEDs
  publication-title: Photon. Res.
  doi: 10.1364/PRJ.443165
– volume: 114
  year: 2013
  ident: sstacb80ebib4
  article-title: Tunable optoelectronic and ferroelectric properties in Sc-based III-nitrides
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4824179
– volume: 41
  start-page: 1181
  year: 2020
  ident: sstacb80ebib23
  article-title: RF power performance of Sc(al, Ga) N/GaN HEMTs at Ka-band
  publication-title: IEEE Electon. Device Lett.
  doi: 10.1109/LED.2020.3006035
– volume: 6
  start-page: 247
  year: 2016
  ident: sstacb80ebib73
  article-title: Ultraviolet optoelectronic devices based on AlGaN alloys grown by molecular beam epitaxy
  publication-title: MRS Commun.
  doi: 10.1557/mrc.2016.26
– volume: 14
  start-page: 182
  year: 2015
  ident: sstacb80ebib207
  article-title: Negative capacitance in a ferroelectric capacitor
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4148
– year: 1996
  ident: sstacb80ebib77
– volume: 565
  start-page: 464
  year: 2019
  ident: sstacb80ebib209
  article-title: Unveiling the double-well energy landscape in a ferroelectric layer
  publication-title: Nature
  doi: 10.1038/s41586-018-0854-z
– volume: 14
  start-page: 15747
  year: 2022
  ident: sstacb80ebib103
  article-title: Interfacial modulated lattice-polarity-controlled epitaxy of III-nitride heterostructures on Si (111)
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c23381
– volume: 129
  year: 2021
  ident: sstacb80ebib120
  article-title: Polarization induced interface and electron sheet charges of pseudomorphic ScAlN/GaN, GaAlN/GaN, InAlN/GaN, and InAlN/InN heterostructures
  publication-title: J. Appl. Phys.
  doi: 10.1063/5.0049185
– volume: 13
  start-page: 877
  year: 2022
  ident: sstacb80ebib151
  article-title: Effect of substrate-RF on sub-200 nm Al0.7Sc0.3N thin films
  publication-title: Micromachines
  doi: 10.3390/mi13060877
– volume: 112
  year: 2018
  ident: sstacb80ebib86
  article-title: High-electron-mobility InN epilayers grown on silicon substrate
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.5017153
– year: 2023
  ident: sstacb80ebib217
  article-title: Ferroelectric nitride heterostructures on CMOS compatible molybdenum for synaptic memristors
  doi: 10.1021/acsami.2c22798
– volume: 26
  start-page: 472
  year: 2015
  ident: sstacb80ebib59
  article-title: Effects of sputtering atmosphere on the properties of c-plane ScAlN thin films prepared on sapphire substrate
  publication-title: J. Mater. Sci., Mater. Electron.
  doi: 10.1007/s10854-014-2423-z
– volume: 40
  start-page: 1056
  year: 2019
  ident: sstacb80ebib22
  article-title: ScAlN/GaN high-electron-mobility transistors with 2.4-A/mm current density and 0.67-S/mm transconductance
  publication-title: IEEE Electon. Device Lett.
  doi: 10.1109/LED.2019.2915555
– volume: 132
  year: 2022
  ident: sstacb80ebib126
  article-title: Crystal structure deformation and phase transition of AlScN thin films in whole Sc concentration range
  publication-title: J. Appl. Phys.
  doi: 10.1063/5.0087505
– volume: 98
  year: 2005
  ident: sstacb80ebib79
  article-title: Composition-dependent structural properties in ScGaN alloy films: a combined experimental and theoretical study
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.2140889
– year: 2023
  ident: sstacb80ebib161
  article-title: Ultrathin nitride ferroic memory with large ON/OFF ratios for analog in-memory computing
  doi: 10.1002/adma.202210628
– volume: 77
  start-page: 23
  year: 2017
  ident: sstacb80ebib228
  article-title: AlN and ScAlN contour mode resonators for RF filters
  publication-title: ECS Trans.
  doi: 10.1149/07706.0023ecst
– volume: 120
  year: 2022
  ident: sstacb80ebib182
  article-title: Coexistence of ferroelectricity and ferromagnetism in Ni-doped Al0.7Sc0.3N thin films
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/5.0096760
– volume: 34
  year: 2022
  ident: sstacb80ebib96
  article-title: Deep‐ultraviolet micro‐LEDs exhibiting high output power and high modulation bandwidth simultaneously
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202109765
– volume: 32
  start-page: 1525
  year: 2011
  ident: sstacb80ebib196
  article-title: 300 ghz inaln/gan hemts with ingan back barrier
  publication-title: IEEE Electon. Device Lett.
  doi: 10.1109/LED.2011.2164613
– volume: 8
  start-page: 485
  year: 2009
  ident: sstacb80ebib215
  article-title: Electric modulation of conduction in multiferroic Ca-doped BiFeO3 films
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2432
– volume: 31
  start-page: 234
  year: 2022
  ident: sstacb80ebib12
  article-title: High-temperature acoustic and electric characterization of ferroelectric Al0 7Sc0 3N films
  publication-title: J. Microelectromech. Syst.
  doi: 10.1109/JMEMS.2022.3147492
– start-page: 214
  year: 2021
  ident: sstacb80ebib164
  article-title: Thermal characterization of ferroelectric aluminum scandium nitride acoustic resonators
  doi: 10.1109/MEMS51782.2021.9375203
– volume: 12
  start-page: 1
  year: 2021
  ident: sstacb80ebib178
  article-title: Charge-polarized interfacial superlattices in marginally twisted hexagonal boron nitride
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-20667-2
– volume: 123
  year: 2019
  ident: sstacb80ebib143
  article-title: Designing multifunctionality via assembling dissimilar materials: epitaxial AlN/ScN superlattices
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.123.096801
– volume: 32
  start-page: 49LT02
  year: 2021
  ident: sstacb80ebib174
  article-title: Electric-field-induced crossover of polarization reversal mechanisms in Al1−x Sc x N ferroelectrics
  publication-title: Nanotechnology
  doi: 10.1088/1361-6528/ac20fc
– volume: 125
  year: 2019
  ident: sstacb80ebib5
  article-title: AlScN: a III–V semiconductor based ferroelectric
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.5084945
– volume: 41
  start-page: 1774
  year: 2020
  ident: sstacb80ebib156
  article-title: Ferroelectric switching in sub-20 nm aluminum scandium nitride thin films
  publication-title: IEEE Electon. Device Lett.
  doi: 10.1109/LED.2020.3034576
– volume: 327
  start-page: 1600
  year: 2010
  ident: sstacb80ebib205
  article-title: It’s time to reinvent the transistor!
  publication-title: Science
  doi: 10.1126/science.1187597
– volume: 48
  start-page: 479
  year: 2001
  ident: sstacb80ebib193
  article-title: Undoped AlGaN/GaN HEMTs for microwave power amplification
  publication-title: IEEE Trans. Electron Devices
  doi: 10.1109/16.906439
– volume: 130
  year: 2021
  ident: sstacb80ebib18
  article-title: Wurtzite ScAlN, InAlN, and GaAlN crystals, a comparison of structural, elastic, dielectric, and piezoelectric properties
  publication-title: J. Appl. Phys.
  doi: 10.1063/5.0048647
– volume: 5
  year: 2020
  ident: sstacb80ebib36
  article-title: Perspectives on quantum transduction
  publication-title: Quantum Sci. Technol.
  doi: 10.1088/2058-9565/ab788a
– volume: 9
  year: 2021
  ident: sstacb80ebib20
  article-title: Strongly enhanced second-order optical nonlinearity in CMOS-compatible Al1−x Sc x N thin films
  publication-title: APL Mater.
  doi: 10.1063/5.0061787
– volume: 66
  year: 2002
  ident: sstacb80ebib1
  article-title: Properties of hexagonal ScN versus wurtzite GaN and InN
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.66.201203
– volume: 132
  year: 2022
  ident: sstacb80ebib91
  article-title: Overcoming metal-rich surface chemistry limitations of ScAlN for high electrical performance heterostructures
  publication-title: J. Appl. Phys.
  doi: 10.1063/5.0121621
– volume: 32
  year: 2022
  ident: sstacb80ebib97
  article-title: Drive high power UVC‐LED wafer into low‐cost 4‐inch era: effect of strain modulation
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202112111
– volume: 60
  start-page: SBBA05
  year: 2021
  ident: sstacb80ebib159
  article-title: On the thickness scaling of ferroelectricity in Al0.78Sc0.22N films
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.35848/1347-4065/abef15
– volume: 9
  year: 2021
  ident: sstacb80ebib106
  article-title: Strong effect of scandium source purity on chemical and electronic properties of epitaxial Sc x Al1−x N/GaN heterostructures
  publication-title: APL Mater.
  doi: 10.1063/5.0054522
– start-page: 1378
  year: 2013
  ident: sstacb80ebib227
  article-title: ScAlN Lamb wave resonator in GHz range released by XeF2 etching
  doi: 10.1109/ULTSYM.2013.0350
– volume: 42
  start-page: 1378
  year: 2021
  ident: sstacb80ebib229
  article-title: High figure-of-merit Lamb wave resonators based on Al0.7Sc0.3N thin film
  publication-title: IEEE Electon. Device Lett.
  doi: 10.1109/LED.2021.3100036
– volume: 121
  year: 2022
  ident: sstacb80ebib125
  article-title: Ferroelectric N-polar ScAlN/GaN heterostructures grown by molecular beam epitaxy
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/5.0097117
– volume: 5
  year: 2021
  ident: sstacb80ebib114
  article-title: Ferroelectricity in boron-substituted aluminum nitride thin films
  publication-title: Phys. Rev. Mater.
  doi: 10.1103/PhysRevMaterials.5.044412
– volume: 215
  year: 2018
  ident: sstacb80ebib135
  article-title: Temperature dependence of the pyroelectric coefficient of AlScN thin films
  publication-title: Phys. Status Solid a
  doi: 10.1002/pssa.201700831
– volume: 212
  start-page: 2837
  year: 2015
  ident: sstacb80ebib82
  article-title: The effect of metal‐rich growth conditions on the microstructure of Sc x Ga1−x N films grown using molecular beam epitaxy
  publication-title: Phys. Status Solidi a
  doi: 10.1002/pssa.201532292
– volume: 12
  start-page: 52192
  year: 2020
  ident: sstacb80ebib119
  article-title: Band Alignment of Sc x Al1–x N/GaN Heterojunctions
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c15912
– volume: 257
  year: 2020
  ident: sstacb80ebib105
  article-title: Oxygen incorporation in the molecular beam epitaxy growth of Sc x Ga1−x N and Sc x Al1−x N
  publication-title: Phys. Status Solid b
  doi: 10.1002/pssb.201900612
– volume: 105
  year: 2014
  ident: sstacb80ebib123
  article-title: Electromechanical coupling and gigahertz elastic properties of ScAlN films near phase boundary
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4896262
– volume: 102
  year: 2013
  ident: sstacb80ebib110
  article-title: Bandgap in Al1−x Sc x N
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4795784
– volume: 87
  year: 2013
  ident: sstacb80ebib129
  article-title: Volume matching condition to establish the enhanced piezoelectricity in ternary (Sc, Y) 0.5 (Al, Ga, In) 0.5N alloys
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.87.094107
– volume: 122
  year: 2017
  ident: sstacb80ebib44
  article-title: Identifying and overcoming the interface originating c-axis instability in highly Sc enhanced AlN for piezoelectric micro-electromechanical systems
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4993908
– volume: 109
  year: 2016
  ident: sstacb80ebib127
  article-title: Understanding the Rocksalt-to-Wurtzite phase transformation through microstructural analysis of (Al, Sc) N epitaxial thin films
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4966278
– volume: 132
  year: 2022
  ident: sstacb80ebib246
  article-title: Elimination of remnant phases in low-temperature growth of wurtzite ScAlN by molecular-beam epitaxy
  publication-title: J. Appl. Phys.
  doi: 10.1063/5.0118075
– volume: 97
  year: 2010
  ident: sstacb80ebib122
  article-title: Increased electromechanical coupling in w−Sc x Al1−x N
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3489939
– start-page: 1064
  year: 2021
  ident: sstacb80ebib148
  article-title: Towards realizing the low-coercive field operation of sputtered ferroelectric Sc x Al1−x N
  doi: 10.1109/Transducers50396.2021.9495515
– volume: 259
  year: 2022
  ident: sstacb80ebib128
  article-title: Ferroelectricity and piezoelectric response of (Sc, Y) N/(Al, Ga, In) N monolayer alternating stacked structures by first‐principles calculations
  publication-title: Phys. Status Solid b
  doi: 10.1002/pssb.202200079
– volume: 5
  start-page: 1
  year: 2015
  ident: sstacb80ebib247
  article-title: Mid-infrared photoconductive response in AlGaN/GaN step quantum wells
  publication-title: Sci. Rep.
  doi: 10.1038/srep14386
– volume: 36
  year: 2021
  ident: sstacb80ebib53
  article-title: Improved AlScN/GaN heterostructures grown by metal-organic chemical vapor deposition
  publication-title: Semicond. Sci. Technol.
  doi: 10.1088/1361-6641/abd924
– volume: 131
  year: 2022
  ident: sstacb80ebib131
  article-title: Large piezoelectric and elastic properties in B and Sc codoped wurtzite AlN
  publication-title: J. Appl. Phys.
  doi: 10.1063/5.0090501
– volume: 3
  start-page: 687
  year: 2009
  ident: sstacb80ebib35
  article-title: Photonic quantum technologies
  publication-title: Nat. Photon.
  doi: 10.1038/nphoton.2009.229
– volume: 130
  year: 2021
  ident: sstacb80ebib140
  article-title: Piezoelectric effect and polarization switching in Al1−x Sc x N
  publication-title: J. Appl. Phys.
  doi: 10.1063/5.0056485
– volume: 90
  year: 2003
  ident: sstacb80ebib2
  article-title: Strained hexagonal ScN: a material with unusual structural and optical properties
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.90.257602
– volume: 131
  year: 2022
  ident: sstacb80ebib121
  article-title: Electron accumulation and distribution at interfaces of hexagonal Sc x Al1−x N/GaN-and Sc x Al1−x N/InN-heterostructures
  publication-title: J. Appl. Phys.
  doi: 10.1063/5.0094533
– volume: 60
  start-page: 120
  year: 2013
  ident: sstacb80ebib50
  article-title: Growth of scandium doped GaN by MOVPE
  publication-title: Superlattices Microstruct.
  doi: 10.1016/j.spmi.2013.05.010
– volume: 29
  start-page: 741
  year: 2020
  ident: sstacb80ebib232
  article-title: A film bulk acoustic resonator based on ferroelectric aluminum scandium nitride films
  publication-title: J. Microelectromech. Syst.
  doi: 10.1109/JMEMS.2020.3014584
– volume: 110
  year: 2017
  ident: sstacb80ebib45
  article-title: Epitaxial ScAlN grown by molecular beam epitaxy on GaN and SiC substrates
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4981807
– volume: 17
  year: 2022
  ident: sstacb80ebib155
  article-title: Ultrathin Al1−x Sc x N for low-voltage-driven ferroelectric-based devices
  publication-title: Phys. Status Solidi
  doi: 10.1002/pssr.202200312
– volume: 61
  start-page: SJ1005
  year: 2022
  ident: sstacb80ebib170
  article-title: Field cycling behavior and breakdown mechanism of ferroelectric Al0.78Sc0.22N films
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.35848/1347-4065/ac54f6
– volume: 21
  start-page: 593
  year: 2009
  ident: sstacb80ebib16
  article-title: Enhancement of piezoelectric response in scandium aluminum nitride alloy thin films prepared by dual reactive cosputtering
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200802611
– start-page: 733
  year: 2013
  ident: sstacb80ebib28
  article-title: Piezoelectric properties of ScAlN thin films for piezo-MEMS devices
  doi: 10.1109/MEMSYS.2013.6474347
– volume: 14
  start-page: 6437
  year: 2021
  ident: sstacb80ebib153
  article-title: Deposition, characterization, and modeling of scandium-doped aluminum nitride thin film for piezoelectric devices
  publication-title: Materials
  doi: 10.3390/ma14216437
– volume: 116
  year: 2020
  ident: sstacb80ebib47
  article-title: Molecular beam epitaxy and characterization of wurtzite Sc x Al1−x N
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/5.0002445
– volume: 115
  year: 2014
  ident: sstacb80ebib56
  article-title: Hydride vapor phase epitaxy and characterization of high-quality ScN epilayers
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4871656
– start-page: 1
  year: 2021
  ident: sstacb80ebib165
  article-title: Temperature-dependent lowering of coercive field in 300 nm sputtered ferroelectric Al0.70Sc0.30N
  doi: 10.1109/ISAF51943.2021.9477328
– year: 2022
  ident: sstacb80ebib245
  doi: 10.1109/IPC53466.2022.9975776
– volume: 210
  start-page: 169
  year: 2013
  ident: sstacb80ebib72
  article-title: The role of extended defects on the performance of optoelectronic devices in nitride semiconductors
  publication-title: Phys. Status Solid a
  doi: 10.1002/pssa.201200561
– volume: 121
  year: 2022
  ident: sstacb80ebib141
  article-title: A landau-devonshire analysis of strain effects on ferroelectric Al1−x Sc x N
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/5.0098979
– volume: 60
  start-page: 637
  year: 2013
  ident: sstacb80ebib25
  article-title: High-performance surface acoustic wave resonators in the 1 to 3 GHz range using a ScAlN/6H-SiC structure
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
  doi: 10.1109/TUFFC.2013.2606
– volume: 11
  start-page: 20482
  year: 2019
  ident: sstacb80ebib142
  article-title: Ferroelectricity and large piezoelectric response of AlN/ScN superlattice
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b22602
– volume: 104
  year: 2014
  ident: sstacb80ebib66
  article-title: Enhanced piezoelectricity in YbGaN films near phase boundary
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4866969
– volume: 14
  start-page: 1
  year: 2019
  ident: sstacb80ebib70
  article-title: Dominant influence of interface roughness scattering on the performance of GaN terahertz quantum cascade lasers
  publication-title: Nanoscale Res. Lett.
  doi: 10.1186/s11671-019-3043-6
– volume: 37
  start-page: 805
  year: 2016
  ident: sstacb80ebib211
  article-title: Physics-based circuit-compatible SPICE model for ferroelectric transistors
  publication-title: IEEE Electon. Device Lett.
  doi: 10.1109/LED.2016.2558149
– year: 2009
  ident: sstacb80ebib49
– volume: 122
  year: 2017
  ident: sstacb80ebib130
  article-title: Tuning the piezoelectric and mechanical properties of the AlN system via alloying with YN and BN
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4993254
– volume: 121
  year: 2022
  ident: sstacb80ebib15
  article-title: Impact of dislocation density on the ferroelectric properties of ScAlN grown by molecular beam epitaxy
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/5.0099913
– volume: 206
  start-page: 2809
  year: 2009
  ident: sstacb80ebib54
  article-title: Growth of scandium aluminum nitride nanowires on ScN (111) films on 6H‐SiC substrates by HVPE
  publication-title: Phys. Status Solid a
  doi: 10.1002/pssa.200925060
– volume: 116
  year: 2020
  ident: sstacb80ebib89
  article-title: Graphene-assisted molecular beam epitaxy of AlN for AlGaN deep-ultraviolet light-emitting diodes
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.5144906
– start-page: 1
  year: 2020
  ident: sstacb80ebib242
  article-title: Integrated ScAlN photonic circuits on silicon substrate
– volume: 229
  start-page: 403
  year: 2004
  ident: sstacb80ebib21
  article-title: Characterization of nonlinear optical parameters of KDP, LiNbO3 and BBO crystals
  publication-title: Opt. Commun.
  doi: 10.1016/j.optcom.2003.10.046
– volume: 130
  year: 2021
  ident: sstacb80ebib171
  article-title: Electrical breakdown strength enhancement in aluminum scandium nitride through a compositionally modulated periodic multilayer structure
  publication-title: J. Appl. Phys.
  doi: 10.1063/5.0064041
– volume: 120
  year: 2022
  ident: sstacb80ebib19
  article-title: Epitaxial Sc x Al1−x N on GaN exhibits attractive high-K dielectric properties
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/5.0075636
– volume: 126
  year: 2019
  ident: sstacb80ebib61
  article-title: Optical constants and band gap of wurtzite Al1−x Sc x N/Al2O3 prepared by magnetron sputter epitaxy for scandium concentrations up to x = 0.41
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.5101043
– volume: 32
  start-page: 2453
  year: 2007
  ident: sstacb80ebib190
  article-title: Large nonlinear optical response of polycrystalline Bi3.25La0.75Ti3O12 ferroelectric thin films on quartz substrates
  publication-title: Opt. Lett.
  doi: 10.1364/OL.32.002453
– volume: 15
  year: 2021
  ident: sstacb80ebib152
  article-title: A segmented‐target sputtering process for growth of sub‐50 nm ferroelectric scandium–aluminum–nitride films with composition and stress tuning
  publication-title: Phys. Status Solidi
  doi: 10.1002/pssr.202100087
– volume: 128
  year: 2020
  ident: sstacb80ebib62
  article-title: Effects of deposition conditions on the ferroelectric properties of (Al1−x Sc x ) N thin films
  publication-title: J. Appl. Phys.
  doi: 10.1063/5.0015281
– start-page: 1
  year: 2020
  ident: sstacb80ebib154
  article-title: Ferroelectricity in AlScN: switching, imprint and sub-150 nm films
  doi: 10.1109/IFCS-ISAF41089.2020.9234883
– volume: 5
  year: 2012
  ident: sstacb80ebib85
  article-title: High-electron-mobility InN layers grown by boundary-temperature-controlled epitaxy
  publication-title: Appl. Phys. Express
  doi: 10.1143/APEX.5.015502
– start-page: 1
  year: 2006
  ident: sstacb80ebib197
  article-title: Can InAlN/GaN be an alternative to high power/high temperature AlGaN/GaN devices?
  doi: 10.1109/IEDM.2006.346935
– start-page: 1
  year: 2021
  ident: sstacb80ebib147
  article-title: Ferroelectric considerations on co-sputtered 30% ALSCN with different DC+RF ratios
  doi: 10.1109/EFTF/IFCS52194.2021.9604316
– volume: 44
  start-page: 17
  year: 2022
  ident: sstacb80ebib202
  article-title: AlScN/GaN HEMTs grown by metal-organic chemical vapor deposition with 8.4 W/mm output power and 48% power-added efficiency at 30 GHz
  publication-title: IEEE Electon. Device Lett.
  doi: 10.1109/LED.2022.3220877
– year: 2020
  ident: sstacb80ebib183
  doi: 10.1016/j.ijleo.2020.165313
– volume: 3
  year: 2015
  ident: sstacb80ebib58
  article-title: Stress controlled pulsed direct current co-sputtered Al1−x Sc x N as piezoelectric phase for micromechanical sensor applications
  publication-title: APL Mater.
  doi: 10.1063/1.4934756
– volume: 106
  year: 2009
  ident: sstacb80ebib80
  article-title: Structural properties of wurtzitelike ScGaN films grown by NH 3-molecular beam epitaxy
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3268466
– volume: 117
  year: 2020
  ident: sstacb80ebib48
  article-title: Structural and piezoelectric properties of ultra-thin Sc x Al1−x N films grown on GaN by molecular beam epitaxy
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/5.0013943
– volume: 16
  start-page: 1328
  year: 2016
  ident: sstacb80ebib100
  article-title: Lattice-polarity-driven epitaxy of hexagonal semiconductor nanowires
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b04726
– volume: 34
  year: 2021
  ident: sstacb80ebib75
  article-title: Lattice polarity manipulation of quasi‐vdW epitaxial GaN films on graphene through interface atomic configuration
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202106814
– volume: 4
  start-page: 786
  year: 2010
  ident: sstacb80ebib37
  article-title: Quantum transduction of telecommunications-band single photons from a quantum dot by frequency upconversion
  publication-title: Nat. Photon.
  doi: 10.1038/nphoton.2010.221
– volume: 4
  year: 2019
  ident: sstacb80ebib33
  article-title: Emerging memory devices for neuromorphic computing
  publication-title: Adv. Mater. Technol.
  doi: 10.1002/admt.201800589
– volume: 4
  start-page: 243
  year: 2019
  ident: sstacb80ebib210
  article-title: Ferroelectric negative capacitance
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/s41578-019-0089-0
– volume: 118
  year: 2021
  ident: sstacb80ebib94
  article-title: Oxygen defect dominated photoluminescence emission of Sc x Al1−x N grown by molecular beam epitaxy
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/5.0035026
– volume: 30
  start-page: 475
  year: 2017
  ident: sstacb80ebib244
  article-title: Epitaxial ScAlN etch-stop layers grown by molecular beam epitaxy for selective etching of AlN and GaN
  publication-title: IEEE Trans. Semicond. Manuf.
  doi: 10.1109/TSM.2017.2749201
– volume: 10
  start-page: 1107
  year: 2022
  ident: sstacb80ebib102
  article-title: N-polar InGaN/GaN nanowires: overcoming the efficiency cliff of red-emitting micro-LEDs
  publication-title: Photon. Res.
  doi: 10.1364/PRJ.450465
– volume: 7
  start-page: 25
  year: 2014
  ident: sstacb80ebib251
  article-title: Piezoelectric and ferroelectric materials and structures for energy harvesting applications
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C3EE42454E
– volume: 310
  start-page: 1075
  year: 2008
  ident: sstacb80ebib55
  article-title: HVPE of scandium nitride on 6H–SiC (0 0 0 1)
  publication-title: J. Cryst. Growth
  doi: 10.1016/j.jcrysgro.2007.12.053
– volume: 8
  year: 2022
  ident: sstacb80ebib175
  article-title: Wake‐up in Al1−x B x N ferroelectric films
  publication-title: Adv. Electron. Mater.
  doi: 10.1002/aelm.202100931
– volume: 9
  start-page: 1422
  year: 2022
  ident: sstacb80ebib180
  article-title: Giant tunnelling electroresistance through 2D sliding ferroelectric materials
  publication-title: Mater. Horiz.
  doi: 10.1039/D2MH00080F
– volume: 3
  start-page: 77
  year: 2008
  ident: sstacb80ebib204
  article-title: Negative capacitance to the rescue?
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2008.18
– volume: 4
  year: 2020
  ident: sstacb80ebib137
  article-title: Emergence of ferroelectricity in halide perovskites
  publication-title: Small Methods
  doi: 10.1002/smtd.202000149
– volume: 4
  start-page: 134
  year: 2010
  ident: sstacb80ebib221
  article-title: Ferroelectric photovoltaics
  publication-title: Nat. Photon.
  doi: 10.1038/nphoton.2010.15
– volume: 14
  start-page: 3399
  year: 2002
  ident: sstacb80ebib99
  article-title: Pyroelectric properties of Al (In) GaN/GaN hetero-and quantum well structures
  publication-title: J. Phys.: Condens. Matter
  doi: 10.1088/0953-8984/14/13/302
– start-page: 78
  year: 2022
  ident: sstacb80ebib243
  article-title: Aluminum scandium nitride waveguide in the near-infrared
  doi: 10.1117/12.2626712
– start-page: 8.1
  year: 2021
  ident: sstacb80ebib214
  article-title: Multiscale modeling of Al0.7Sc0.3N-based FeRAM: the steep switching, leakage and selector-free array
  doi: 10.1109/IEDM19574.2021.9720535
– volume: 7
  start-page: 2345
  year: 2022
  ident: sstacb80ebib250
  article-title: Miniaturized CO2 gas sensor using 20% ScAlN-based pyroelectric detector
  publication-title: ACS Sens.
  doi: 10.1021/acssensors.2c00980
– start-page: p 197
  year: 1996
  ident: sstacb80ebib76
  article-title: Growth of polycrystalline scandium nitride by
– volume: 14
  year: 2021
  ident: sstacb80ebib158
  article-title: Thickness scaling of (Al0.8Sc0.2)N films with remanent polarization beyond 100 μC cm−2 around 10 nm in thickness
  publication-title: Appl. Phys. Express
  doi: 10.35848/1882-0786/ac2261
– volume: 479
  start-page: 329
  year: 2011
  ident: sstacb80ebib206
  article-title: Tunnel field-effect transistors as energy-efficient electronic switches
  publication-title: Nature
  doi: 10.1038/nature10679
– start-page: 1
  year: 2020
  ident: sstacb80ebib27
  article-title: A high-kt 2 switchable ferroelectric Al0.7Sc0.3N film bulk acoustic resonator
  doi: 10.1109/IFCS-ISAF41089.2020.9234831
– start-page: 1
  year: 2018
  ident: sstacb80ebib230
  article-title: High k2 tQ waveguide-based ScAlN-on-Si UHF and SHF resonators
  doi: 10.1109/FCS.2018.8597447
– volume: 109
  start-page: 345
  year: 1985
  ident: sstacb80ebib84
  article-title: The ternary systems ScAlN and YAlN
  publication-title: J. Less-Common Met.
  doi: 10.1016/0022-5088(85)90066-9
– volume: 119
  year: 2021
  ident: sstacb80ebib166
  article-title: Strongly temperature dependent ferroelectric switching in AlN, Al1−x Sc x N, and Al1−x B x N thin films
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/5.0057869
– volume: 31
  start-page: 195
  year: 2010
  ident: sstacb80ebib195
  article-title: AlGaN/GaN HEMT with 300-GHz f max
  publication-title: IEEE Electon. Device Lett.
  doi: 10.1109/LED.2009.2038935
– year: 2003
  ident: sstacb80ebib184
– volume: 6
  year: 2018
  ident: sstacb80ebib92
  article-title: Elastic modulus and coefficient of thermal expansion of piezoelectric Al1−x Sc x N (up to x = 0.41) thin films
  publication-title: APL Mater.
  doi: 10.1063/1.5040190
– volume: 372
  start-page: 1462
  year: 2021
  ident: sstacb80ebib177
  article-title: Interfacial ferroelectricity by van der Waals sliding
  publication-title: Science
  doi: 10.1126/science.abe8177
– volume: 68
  start-page: 2971
  year: 2021
  ident: sstacb80ebib253
  article-title: Design and performance of scAlN/AlN trapezoidal cantilever-based MEMS piezoelectric energy harvesters
  publication-title: IEEE Trans. Electron Devices
  doi: 10.1109/TED.2021.3072612
– volume: 119
  year: 2021
  ident: sstacb80ebib68
  article-title: Demonstration of ferroelectricity in ScGaN thin film using sputtering method
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/5.0068059
– volume: 5
  year: 2019
  ident: sstacb80ebib87
  article-title: Repeatable room temperature negative differential resistance in AlN/GaN resonant tunneling diodes grown on sapphire
  publication-title: Adv. Electron. Mater.
  doi: 10.1002/aelm.201800651
– volume: 38
  start-page: 2810
  year: 2013
  ident: sstacb80ebib237
  article-title: Optical frequency comb generation from aluminum nitride microring resonator
  publication-title: Opt. Lett.
  doi: 10.1364/OL.38.002810
– volume: 21
  start-page: 3753
  year: 2021
  ident: sstacb80ebib13
  article-title: Post-CMOS compatible aluminum scandium nitride/2D channel ferroelectric field-effect-transistor memory
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.0c05051
– start-page: 152
  year: 2021
  ident: sstacb80ebib248
  article-title: CMOS compatible MEMS pyroelectric infrared detectors: from AlN to ScAlN
  doi: 10.1117/12.2582707
– volume: 13
  year: 2020
  ident: sstacb80ebib90
  article-title: Control of phase purity in high scandium fraction heteroepitaxial ScAlN grown by molecular beam epitaxy
  publication-title: Appl. Phys. Express
  doi: 10.35848/1882-0786/ab916a
– volume: 588
  start-page: 71
  year: 2020
  ident: sstacb80ebib176
  article-title: Unconventional ferroelectricity in moiré heterostructures
  publication-title: Nature
  doi: 10.1038/s41586-020-2970-9
– volume: 115
  year: 2019
  ident: sstacb80ebib199
  article-title: Planar anisotropic Shubnikov-de-Haas oscillations of two-dimensional electron gas in AlN/GaN heterostructure
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.5116747
– start-page: 646
  year: 2021
  ident: sstacb80ebib235
  article-title: Characterization of dielectric and piezoelectric properties of ferroelectric alscn thin films
  doi: 10.1109/MEMS51782.2021.9375427
– volume: 1
  year: 2017
  ident: sstacb80ebib113
  article-title: Band bowing and the direct-to-indirect crossover in random BAlN alloys
  publication-title: Phys. Rev. Mater.
  doi: 10.1103/PhysRevMaterials.1.065001
– volume: 73
  year: 2006
  ident: sstacb80ebib139
  article-title: Piezoelectric response and free-energy instability in the perovskite crystals BaTiO3, PbTiO3, and Pb(Zr, Ti)O3
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.73.174106
– volume: 58
  start-page: SC1045
  year: 2019
  ident: sstacb80ebib46
  article-title: Investigation of growth parameters for ScAlN-barrier HEMT structures by plasma-assisted MBE
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.7567/1347-4065/ab124f
– volume: 12
  start-page: 3562
  year: 2012
  ident: sstacb80ebib238
  article-title: Low-loss, silicon integrated, aluminum nitride photonic circuits and their use for electro-optic signal processing
  publication-title: Nano Lett.
  doi: 10.1021/nl3011885
– volume: 6
  year: 2016
  ident: sstacb80ebib98
  article-title: Correct implementation of polarization constants in wurtzite materials and impact on III-nitrides
  publication-title: Phys. Rev. X
  doi: 10.1103/PhysRevX.6.021038
– volume: 117
  year: 2020
  ident: sstacb80ebib118
  article-title: Band alignment of ScAlN/GaN heterojunction
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/5.0029488
– volume: 2
  start-page: 580
  year: 2019
  ident: sstacb80ebib218
  article-title: A ferroelectric semiconductor field-effect transistor
  publication-title: Nat. Electron.
  doi: 10.1038/s41928-019-0338-7
– volume: 26
  start-page: 102
  year: 2016
  ident: sstacb80ebib252
  article-title: ScAlN MEMS cantilevers for vibrational energy harvesting purposes
  publication-title: J. Microelectromech. Syst.
  doi: 10.1109/JMEMS.2016.2614660
– volume: 15
  start-page: 40
  year: 2000
  ident: sstacb80ebib93
  article-title: Lattice parameters and thermal expansion of GaN
  publication-title: J. Mater. Res.
  doi: 10.1557/JMR.2000.0011
– volume: 113
  start-page: 650
  year: 2018
  ident: sstacb80ebib88
  article-title: Effect of indium droplets on growth of InGaN film by molecular beam epitaxy
  publication-title: Superlattices Microstruct.
  doi: 10.1016/j.spmi.2017.11.053
– volume: 10
  start-page: 262
  year: 2016
  ident: sstacb80ebib116
  article-title: Hexagonal boron nitride is an indirect bandgap semiconductor
  publication-title: Nat. Photon.
  doi: 10.1038/nphoton.2015.277
– volume: 61
  start-page: SH1003
  year: 2022
  ident: sstacb80ebib146
  article-title: Influence of sputtering power on the switching and reliability of ferroelectric Al0.7Sc0.3N films
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.35848/1347-4065/ac5db0
– start-page: 1
  year: 2020
  ident: sstacb80ebib144
  article-title: Ferroelectric c-axis textured aluminum scandium nitride thin films of 100 nm thickness
  doi: 10.1109/IFCS-ISAF41089.2020.9234910
– volume: 55
  year: 2021
  ident: sstacb80ebib150
  article-title: Negative-ion bombardment increases during low-pressure sputtering deposition and their effects on the crystallinities and piezoelectric properties of scandium aluminum nitride films
  publication-title: J. Appl. Phys.
  doi: 10.1088/1361-6463/ac3d5c
– volume: 119
  year: 2021
  ident: sstacb80ebib83
  article-title: Fully epitaxial ferroelectric ScGaN grown on GaN by molecular beam epitaxy
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/5.0060021
– volume: 15
  start-page: 14295
  year: 2021
  ident: sstacb80ebib219
  article-title: Photovoltaic field-effect photodiodes based on double van der Waals heterojunctions
  publication-title: ACS Nano
  doi: 10.1021/acsnano.1c02830
– volume: 15
  year: 2021
  ident: sstacb80ebib14
  article-title: Sub‐microsecond polarization switching in (Al, Sc) N ferroelectric capacitors grown on complementary metal–oxide–semiconductor‐compatible aluminum electrodes
  publication-title: Phys. Status Solidi
  doi: 10.1002/pssr.202000575
– volume: 6
  year: 2020
  ident: sstacb80ebib8
  article-title: Controlling defect formation of nanoscale AlN: toward efficient current conduction of ultrawide‐bandgap semiconductors
  publication-title: Adv. Electron. Mater.
  doi: 10.1002/aelm.202000337
– volume: 31
  year: 2021
  ident: sstacb80ebib95
  article-title: Sec‐eliminating the SARS‐CoV‐2 by AlGaN based high power deep ultraviolet light source
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202008452
– volume: 252
  start-page: 251
  year: 2015
  ident: sstacb80ebib109
  article-title: Development of epitaxial Al x Sc1−x N for artificially structured metal/semiconductor superlattice metamaterials
  publication-title: Phys. Status Solid b
  doi: 10.1002/pssb.201451314
– volume: 13
  start-page: 1282
  year: 2022
  ident: sstacb80ebib167
  article-title: Al1−x Sc x N thin films at high temperatures: sc-dependent instability and anomalous thermal expansion
  publication-title: Micromachines
  doi: 10.3390/mi13081282
– volume: 218
  year: 2021
  ident: sstacb80ebib149
  article-title: Impact of deposition temperature on crystal structure and ferroelectric properties of (Al1−x Sc x )N films prepared by sputtering method
  publication-title: Phys. Status Solid a
  doi: 10.1002/pssa.202100302
– volume: 85
  start-page: 3687
  year: 2004
  ident: sstacb80ebib188
  article-title: Giant optical nonlinearity of a Bi2Nd2Ti3O12 ferroelectric thin film
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1810626
– volume: 11
  start-page: 1
  year: 2020
  ident: sstacb80ebib212
  article-title: Is negative capacitance FET a steep-slope logic switch?
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-13993-7
– volume: 503
  start-page: 509
  year: 2013
  ident: sstacb80ebib224
  article-title: Perovskite oxides for visible-light-absorbing ferroelectric and photovoltaic materials
  publication-title: Nature
  doi: 10.1038/nature12622
– volume: 95
  year: 2009
  ident: sstacb80ebib17
  article-title: Influence of growth temperature and scandium concentration on piezoelectric response of scandium aluminum nitride alloy thin films
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3251072
– volume: 122
  year: 2023
  ident: sstacb80ebib162
  article-title: Thickness scaling down to 5 nm of ferroelectric ScAlN on CMOS compatible molybdenum grown by molecular beam epitaxy
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/5.0136265
– volume: 10
  year: 2018
  ident: sstacb80ebib38
  article-title: Electrooptomechanical equivalent circuits for quantum transduction
  publication-title: Phys. Rev. Appl.
  doi: 10.1103/PhysRevApplied.10.044036
– volume: 10
  year: 2022
  ident: sstacb80ebib225
  article-title: Reconfigurable self-powered deep UV photodetectors based on ultrawide bandgap ferroelectric ScAlN
  publication-title: APL Mater.
  doi: 10.1063/5.0122943
– volume: 8
  year: 2022
  ident: sstacb80ebib32
  article-title: An epitaxial ferroelectric ScAlN/GaN heterostructure memory
  publication-title: Adv. Electron. Mater.
  doi: 10.1002/aelm.202200005
– year: 2011
  ident: sstacb80ebib185
– volume: 116
  year: 2020
  ident: sstacb80ebib39
  article-title: A GaN/AlN quantum cascade detector with a broad response from the mid-infrared (4.1 μ m) to the visible (550 nm) spectral range
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/5.0003615
– volume: 70
  year: 2004
  ident: sstacb80ebib78
  article-title: ScGaN alloy growth by molecular beam epitaxy: evidence for a metastable layered hexagonal phase
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.70.193309
– volume: 14
  start-page: 2268
  year: 1997
  ident: sstacb80ebib191
  article-title: Absolute scale of second-order nonlinear-optical coefficients
  publication-title: J. Opt. Soc. Am. B
  doi: 10.1364/JOSAB.14.002268
– volume: 42
  start-page: 911
  year: 2021
  ident: sstacb80ebib233
  article-title: High-overtone thin film ferroelectric AlScN-on-silicon composite resonators
  publication-title: IEEE Electon. Device Lett.
  doi: 10.1109/LED.2021.3070274
– volume: 118
  year: 2021
  ident: sstacb80ebib241
  article-title: Demonstration of green and UV wavelength high Q aluminum nitride on sapphire microring resonators integrated with microheaters
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/5.0052163
– volume: 32
  year: 2020
  ident: sstacb80ebib34
  article-title: Reproducible ultrathin ferroelectric domain switching for high‐performance neuromorphic computing
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201905764
– start-page: 1
  year: 2020
  ident: sstacb80ebib168
  article-title: Effects of post-annealing on texture evolution of sputtered ScAlN films
  doi: 10.1109/IUS46767.2020.9251741
– volume: 15
  year: 2022
  ident: sstacb80ebib173
  article-title: Lower ferroelectric coercive field of ScGaN with equivalent remanent polarization as ScAlN
  publication-title: Appl. Phys. Express
  doi: 10.35848/1882-0786/ac8048
– volume: 115
  year: 2019
  ident: sstacb80ebib112
  article-title: BAlGaN alloys nearly lattice-matched to AlN for efficient UV LEDs
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.5129387
– volume: 107
  year: 2010
  ident: sstacb80ebib43
  article-title: Wurtzite structure Sc1−x Al x N solid solution films grown by reactive magnetron sputter epitaxy: structural characterization and first-principles calculations
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3448235
– start-page: 1
  year: 2018
  ident: sstacb80ebib200
  article-title: Scandium aluminum nitride as an emerging material for high power transistors
  doi: 10.1016/j.ssmph.2018.04.004
– volume: 80
  year: 2017
  ident: sstacb80ebib74
  article-title: Optoelectronic device physics and technology of nitride semiconductors from the UV to the terahertz
  publication-title: Rep. Prog. Phys.
  doi: 10.1088/1361-6633/aa7bb2
– volume: 91
  year: 2007
  ident: sstacb80ebib104
  article-title: Polarity inversion in high Mg-doped In-polar InN epitaxial layers
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2773762
– volume: 62
  year: 2000
  ident: sstacb80ebib40
  article-title: Electronic structure and optical spectra of the semimetal ScAs and of the indirect-band-gap semiconductors ScN and GdN
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.62.13538
– volume: 5
  year: 2018
  ident: sstacb80ebib198
  article-title: High‐mobility two‐dimensional electron gas at InGaN/InN heterointerface grown by molecular beam epitaxy
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201800844
– volume: 18
  year: 2022
  ident: sstacb80ebib6
  article-title: Hafnium oxide (HfO2)–a multifunctional oxide: a review on the prospect and challenges of hafnium oxide in resistive switching and ferroelectric memories
  publication-title: Small
  doi: 10.1002/smll.202107575
– volume: 8
  year: 2021
  ident: sstacb80ebib223
  article-title: Recent progress on electrical and optical manipulations of perovskite photodetectors
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202100569
– volume: 32
  year: 2022
  ident: sstacb80ebib64
  article-title: From fully strained to relaxed: epitaxial ferroelectric Al1−x Sc x N for III‐N technology
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202109632
– volume: 130
  start-page: 436
  year: 2022
  ident: sstacb80ebib157
  article-title: Enhancement of crystal anisotropy and ferroelectricity by decreasing thickness in (Al, Sc)N films
  publication-title: J. Ceram. Soc. Japan
  doi: 10.2109/jcersj2.21184
– volume: 16
  start-page: 1280
  year: 2022
  ident: sstacb80ebib222
  article-title: Ferro-pyro-phototronic effect in monocrystalline 2D ferroelectric perovskite for high-sensitive, self-powered, and stable ultraviolet photodetector
  publication-title: ACS Nano
  doi: 10.1021/acsnano.1c09119
– volume: 6
  start-page: 1361
  year: 2019
  ident: sstacb80ebib239
  article-title: On-chip χ (2) microring optical parametric oscillator
  publication-title: Optica
  doi: 10.1364/OPTICA.6.001361
– volume: 60
  year: 2021
  ident: sstacb80ebib169
  article-title: A possible origin of the large leakage current in ferroelectric Al1−x Sc x N films
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.35848/1347-4065/abe644
– start-page: 1
  year: 2022
  ident: sstacb80ebib63
  article-title: Texture evolution of ferroelectric AlScN films on metal under-layers
  doi: 10.1109/ISAF51494.2022.9870108
– volume: 22
  start-page: 7690
  year: 2022
  ident: sstacb80ebib213
  article-title: Reconfigurable compute-in-memory on field-programmable ferroelectric diodes
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.2c03169
– volume: 346
  year: 2021
  ident: sstacb80ebib249
  article-title: NDIR CO2 gas sensing using CMOS compatible MEMS ScAlN-based pyroelectric detector
  publication-title: Sens. Actuators B
  doi: 10.1016/j.snb.2021.130437
– volume: 117
  year: 2020
  ident: sstacb80ebib29
  article-title: A functional CMOS compatible MEMS pyroelectric detector using 12%-doped scandium aluminum nitride
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/5.0024192
– volume: 23
  year: 2021
  ident: sstacb80ebib187
  article-title: Roadmap on bio-nano-photonics
  publication-title: J. Opt.
  doi: 10.1088/2040-8986/abff94
– volume: 114
  year: 2013
  ident: sstacb80ebib172
  article-title: Elastic constants and critical thicknesses of ScGaN and ScAlN
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4848036
– volume: 8
  start-page: 405
  year: 2008
  ident: sstacb80ebib203
  article-title: Use of negative capacitance to provide voltage amplification for low power nanoscale devices
  publication-title: Nano Lett.
  doi: 10.1021/nl071804g
– volume: 65
  year: 2002
  ident: sstacb80ebib42
  article-title: First-principles calculations of the ground-state properties and stability of ScN
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.65.045204
– volume: 372
  start-page: 1458
  year: 2021
  ident: sstacb80ebib179
  article-title: Stacking-engineered ferroelectricity in bilayer boron nitride
  publication-title: Science
  doi: 10.1126/science.abd3230
– volume: 8
  year: 2020
  ident: sstacb80ebib220
  article-title: Self‐powered photodetectors based on 2D materials
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.201900765
– volume: 2
  start-page: 1
  year: 2016
  ident: sstacb80ebib7
  article-title: Thin-film ferroelectric materials and their applications
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/natrevmats.2016.87
– volume: 106
  year: 2015
  ident: sstacb80ebib107
  article-title: Band gaps of wurtzite Sc x Ga1−x N alloys
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4916679
– volume: 68
  start-page: 5192
  year: 2021
  ident: sstacb80ebib231
  article-title: A high Q value ScAlN/AlN-based SAW resonator for load sensing
  publication-title: IEEE Trans. Electron Devices
  doi: 10.1109/TED.2021.3107232
– volume: 13
  start-page: 887
  year: 2022
  ident: sstacb80ebib11
  article-title: High-temperature ferroelectric behavior of Al0.7Sc0.3N
  publication-title: Micromachines
  doi: 10.3390/mi13060887
– volume: 111
  year: 2017
  ident: sstacb80ebib132
  article-title: Wurtzite BAlN and BGaN alloys for heterointerface polarization engineering
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.5008451
– volume: 129
  year: 2021
  ident: sstacb80ebib60
  article-title: Atomic scale confirmation of ferroelectric polarization inversion in wurtzite-type AlScN
  publication-title: J. Appl. Phys.
  doi: 10.1063/5.0033205
– volume: 127
  year: 2020
  ident: sstacb80ebib52
  article-title: Metalorganic chemical vapor phase deposition of AlScN/GaN heterostructures
  publication-title: J. Appl. Phys.
  doi: 10.1063/5.0003095
– volume: 45
  start-page: 3811
  year: 2016
  ident: sstacb80ebib136
  article-title: Symmetry breaking in molecular ferroelectrics
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C5CS00308C
– volume: 7
  year: 2020
  ident: sstacb80ebib138
  article-title: Hexagonal BN‐assisted epitaxy of strain released GaN films for true green light‐emitting diodes
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202000917
– volume: 85
  start-page: 3222
  year: 1999
  ident: sstacb80ebib192
  article-title: Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N-and Ga-face AlGaN/GaN heterostructures
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.369664
– volume: 118
  year: 2021
  ident: sstacb80ebib145
  article-title: Room-temperature deposition of a poling-free ferroelectric AlScN film by reactive sputtering
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/5.0035335
– volume: 3
  start-page: 85
  year: 2009
  ident: sstacb80ebib186
  article-title: Ten years of nonlinear optics in photonic crystal fibre
  publication-title: Nat. Photon.
  doi: 10.1038/nphoton.2008.285
– volume: 111
  year: 2017
  ident: sstacb80ebib111
  article-title: BInGaN alloys nearly lattice-matched to GaN for high-power high-efficiency visible LEDs
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4997601
– volume: 121
  year: 2022
  ident: sstacb80ebib201
  article-title: Transport properties of polarization-induced 2D electron gases in epitaxial AlScN/GaN heterojunctions
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/5.0108475
– volume: 56
  year: 1997
  ident: sstacb80ebib41
  article-title: Spontaneous polarization and piezoelectric constants of III–V nitrides
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.56.R10024
– volume: 31
  year: 2021
  ident: sstacb80ebib71
  article-title: Controlling phase‐coherent electron transport in III‐nitrides: toward room temperature negative differential resistance in AlGaN/GaN double barrier structures
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202007216
– volume: 5
  year: 2019
  ident: sstacb80ebib216
  article-title: Synergetic electronic and ionic contributions to electroresistance in ferroelectric capacitors
  publication-title: Adv. Electron. Mater.
  doi: 10.1002/aelm.201800646
– volume: 118
  year: 2021
  ident: sstacb80ebib31
  article-title: Aluminum scandium nitride-based metal–ferroelectric–metal diode memory devices with high on/off ratios
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/5.0051940
– volume: 15
  year: 2021
  ident: sstacb80ebib236
  article-title: Ferroelectric aluminum scandium nitride thin film bulk acoustic resonators with polarization‐dependent operating states
  publication-title: Phys. Status Solidi
  doi: 10.1002/pssr.202100034
– volume: 78
  start-page: 2891
  year: 2001
  ident: sstacb80ebib65
  article-title: Band-gap engineering in sputter-deposited Sc x Ga1−x N
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1370548
– volume: 118
  year: 2015
  ident: sstacb80ebib108
  article-title: Optical and electron transport properties of rock-salt Sc1−x Al x N
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4923429
– volume: 118
  year: 2021
  ident: sstacb80ebib163
  article-title: On the exceptional temperature stability of ferroelectric Al1−x Sc x N thin films
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/5.0053649
– volume: 65
  start-page: 6205
  year: 2017
  ident: sstacb80ebib226
  article-title: What will 5G antennas and propagation be?
  publication-title: IEEE Trans. Antennas Propag.
  doi: 10.1109/TAP.2017.2774707
– volume: 10
  start-page: 2639
  year: 2019
  ident: sstacb80ebib117
  article-title: Direct band-gap crossover in epitaxial monolayer boron nitride
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-10610-5
– volume: 129
  year: 2021
  ident: sstacb80ebib9
  article-title: Next generation ferroelectric materials for semiconductor process integration and their applications
  publication-title: J. Appl. Phys.
  doi: 10.1063/5.0037617
– volume: 8
  year: 2022
  ident: sstacb80ebib160
  article-title: Investigation of optimum deposition conditions of radio frequency reactive magnetron sputtering of Al0.7Sc0.3N film with thickness down to 20 nm
  publication-title: Adv. Electron. Mater.
  doi: 10.1002/aelm.202200726
– start-page: 786
  year: 2019
  ident: sstacb80ebib26
  article-title: Single crystalline ScAlN surface acoustic wave resonators with large figure of merit (Q×kt 2)
  doi: 10.1109/MWSYM.2019.8700824
– start-page: 1046
  year: 2022
  ident: sstacb80ebib234
  article-title: High-order Sezawa mode Alscn/Gan/sapphire surface acoustic wave resonators
  doi: 10.1093/biolre/ioac125
– volume: 1
  start-page: 2711
  year: 2016
  ident: sstacb80ebib133
  article-title: Al1−x Sc x N thin film structures for pyroelectric sensing applications
  publication-title: MRS Adv.
  doi: 10.1557/adv.2016.510
– volume: 120
  year: 2022
  ident: sstacb80ebib69
  article-title: Quaternary alloy ScAlGaN: a promising strategy to improve the quality of ScAlN
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/5.0060608
SSID ssj0011830
Score 2.5959089
SecondaryResourceType review_article
Snippet III-nitride semiconductors are promising optoelectronic and electronic materials and have been extensively investigated in the past decades. New...
SourceID crossref
iop
SourceType Enrichment Source
Index Database
Publisher
StartPage 43002
SubjectTerms BAlN
ferroelectric
hBN
nitride semiconductors
ScAlN
ScGaN
Title Dawn of nitride ferroelectric semiconductors: from materials to devices
URI https://iopscience.iop.org/article/10.1088/1361-6641/acb80e
Volume 38
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS9xAFH_sWgp6kNYqfrQyB3vwkG4yb2YyqydRt1aoeqjU2zCTmYAgyZKk-O_7ZhMXhSLecniZCT_eZ94XwAFFXM6rgAl3FhMh0SUuU47kiudk0FUoRWxw_n2lLm7F5Z28G8Hxshemng-q_wc99oOCewiHgjg9yVBliVIim9jC6TSM4QNqpWPkdY1_lykE4tXhBwuFSWSIhhzl_054ZZPGdO8LEzP7BOuDb8hO-i_5DKNQbcDai4mBG_BxUbFZtF_g55l9rFhdMpLJ5t4HVoamqfutNvcFa2PRe13Faa510x6x2EbCyDvtGY51NfNhoSQ24XZ2_uf0Ihm2IiSF4GmXTFHmnjtHkVFucy-DyAQvfS6tnErk6DjiVDpy9NCmwvKyDFMi5C6zORalwy1YqeoqbAMjX0WSjQ-Yk5FPQ2691soLnyJp8FQXOzB5xsUUw8jwuLniwSxS11qbiKSJSJoeyR04XL4x78dlvEH7naA2g8y0b9CxV3Rt2xnURpg4rizlZu7L3XcetQercV18X3nzFVa65l_4Rk5F5_Zh_Ov6Zn_BQk88p8Rk
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS-UwFA56RRkXg09GndEsdOGi3jYnSXvdyTjX69uForuQNCkI0l7ain_fkzaKgsjsujhNysd59rwI2cWIy1jpIGJGQ8QFmMgk0qBcsRQNunQF9w3Ol1dycsfPHsRD2HPa9cJU06D6D_CxHxTcQxgK4rJhAjKJpOTJUOcmi91waotZMidASr-74Rru39MIyK_hJwuGSmiMQp7yq1M-2aVZvPuDmRkvkZ_BP6RH_dcskxlXrpDFD1MDV8h8V7WZN6vk5Fi_lLQqKMpl_WgdLVxdV_1mm8ecNr7wvSr9RNeqbg6pbyWh6KH2TEfbilrXKYo1cjf-d_t3EoXNCFHOWdxGIxCpZcZgdJTq1ArHE84KmwotRgIYGAYwEgadPdAx16wo3AgJmUl0CnlhYJ0Myqp0vwhFf0WgnXeQoqGPXaptlknLbQyoxeMs3yDDN1xUHsaG--0VT6pLX2eZ8kgqj6Tqkdwg--9vTPuRGd_Q7iHUKshN8w0d_UTXNK2CTHHlR5bFTCELbP7nUTtk4eZ4rC5Or863yA-_Pb4vxPlNBm397P6gj9Ga7Y6PXgHdOcdK
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dawn+of+nitride+ferroelectric+semiconductors%3A+from+materials+to+devices&rft.jtitle=Semiconductor+science+and+technology&rft.au=Wang%2C+Ping&rft.au=Wang%2C+Ding&rft.au=Mondal%2C+Shubham&rft.au=Hu%2C+Mingtao&rft.date=2023-04-01&rft.issn=0268-1242&rft.eissn=1361-6641&rft.volume=38&rft.issue=4&rft.spage=43002&rft_id=info:doi/10.1088%2F1361-6641%2Facb80e&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1361_6641_acb80e
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0268-1242&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0268-1242&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0268-1242&client=summon