Dawn of nitride ferroelectric semiconductors: from materials to devices
III-nitride semiconductors are promising optoelectronic and electronic materials and have been extensively investigated in the past decades. New functionalities, such as ferroelectricity, ferromagnetism, and superconductivity, have been implanted into III-nitrides to expand their capability in next-...
Saved in:
Published in | Semiconductor science and technology Vol. 38; no. 4; pp. 43002 - 43030 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
IOP Publishing
01.04.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | III-nitride semiconductors are promising optoelectronic and electronic materials and have been extensively investigated in the past decades. New functionalities, such as ferroelectricity, ferromagnetism, and superconductivity, have been implanted into III-nitrides to expand their capability in next-generation semiconductor and quantum technologies. The recent experimental demonstration of ferroelectricity in nitride materials, including ScAl(Ga)N, boron-substituted AlN, and hexagonal BN, has inspired tremendous research interest. Due to the large remnant polarization, high breakdown field, high Curie temperature, and significantly enhanced piezoelectric, linear and nonlinear optical properties, nitride ferroelectric semiconductors have enabled a wealth of applications in electronic, ferroelectronic, acoustoelectronic, optoelectronic, and quantum devices and systems. In this review, the development of nitride ferroelectric semiconductors from materials to devices is discussed. While expounding on the unique advantages and outstanding achievements of nitride ferroelectrics, the existing challenges and promising prospects have been also discussed. |
---|---|
AbstractList | III-nitride semiconductors are promising optoelectronic and electronic materials and have been extensively investigated in the past decades. New functionalities, such as ferroelectricity, ferromagnetism, and superconductivity, have been implanted into III-nitrides to expand their capability in next-generation semiconductor and quantum technologies. The recent experimental demonstration of ferroelectricity in nitride materials, including ScAl(Ga)N, boron-substituted AlN, and hexagonal BN, has inspired tremendous research interest. Due to the large remnant polarization, high breakdown field, high Curie temperature, and significantly enhanced piezoelectric, linear and nonlinear optical properties, nitride ferroelectric semiconductors have enabled a wealth of applications in electronic, ferroelectronic, acoustoelectronic, optoelectronic, and quantum devices and systems. In this review, the development of nitride ferroelectric semiconductors from materials to devices is discussed. While expounding on the unique advantages and outstanding achievements of nitride ferroelectrics, the existing challenges and promising prospects have been also discussed. |
Author | Mi, Zetian Mondal, Shubham Wang, Ding Liu, Jiangnan Hu, Mingtao Wang, Ping |
Author_xml | – sequence: 1 givenname: Ping orcidid: 0000-0002-4716-5457 surname: Wang fullname: Wang, Ping organization: University of Michigan Department of Electrical Engineering and Computer Science, Ann Arbor, MI 48109, United States of America – sequence: 2 givenname: Ding surname: Wang fullname: Wang, Ding organization: University of Michigan Department of Electrical Engineering and Computer Science, Ann Arbor, MI 48109, United States of America – sequence: 3 givenname: Shubham surname: Mondal fullname: Mondal, Shubham organization: University of Michigan Department of Electrical Engineering and Computer Science, Ann Arbor, MI 48109, United States of America – sequence: 4 givenname: Mingtao surname: Hu fullname: Hu, Mingtao organization: University of Michigan Department of Electrical Engineering and Computer Science, Ann Arbor, MI 48109, United States of America – sequence: 5 givenname: Jiangnan surname: Liu fullname: Liu, Jiangnan organization: University of Michigan Department of Electrical Engineering and Computer Science, Ann Arbor, MI 48109, United States of America – sequence: 6 givenname: Zetian orcidid: 0000-0001-9494-7390 surname: Mi fullname: Mi, Zetian organization: University of Michigan Department of Electrical Engineering and Computer Science, Ann Arbor, MI 48109, United States of America |
BookMark | eNp9kEtLAzEUhYNUsK3uXWbnxrE3r3m4k6pVKLjRdcgTUjqTkqSK_94pFRciri7ncL4L58zQZIiDQ-iSwA2Btl0QVpOqrjlZKKNbcCdo-mNN0BRo3VaEcnqGZjlvAAhpGUzR6l59DDh6PISSgnXYu5Si2zozSoOz64OJg92bElO-xT7FHvequBTUNuMSsXXvwbh8jk796LiL7ztHb48Pr8unav2yel7erSvDKZSqY6KxVGvCoVGNFY4TTr1thBKdYJRpylgnNBHAFHBFvXfdGKSaqIYZr9kcwfGvSTHn5LzcpdCr9CkJyMMQ8tBaHlrL4xAjUv9CTCiqhDiUpML2P_D6CIa4k5u4T8PY7L_41R_xnItkreQSOAOgcmc9-wLcfYCk |
CODEN | SSTEET |
CitedBy_id | crossref_primary_10_1021_acsami_3c17282 crossref_primary_10_1088_1361_6641_ad7ef3 crossref_primary_10_1002_aelm_202400279 crossref_primary_10_1063_5_0197111 crossref_primary_10_1002_pssb_202400647 crossref_primary_10_1039_D4TA04335A crossref_primary_10_1364_OME_545820 crossref_primary_10_3390_ma17112491 crossref_primary_10_35848_1882_0786_ad120b crossref_primary_10_1021_acsami_4c14022 crossref_primary_10_1002_adfm_202315169 crossref_primary_10_1021_acsanm_4c04549 crossref_primary_10_1088_1361_6463_ad33f5 crossref_primary_10_1063_5_0159562 crossref_primary_10_1109_LED_2023_3347233 crossref_primary_10_1063_5_0217732 crossref_primary_10_1021_acsami_2c22798 crossref_primary_10_1063_5_0236507 crossref_primary_10_1002_pssr_202400157 crossref_primary_10_1111_jace_19540 crossref_primary_10_1007_s42247_024_00756_4 crossref_primary_10_1016_j_actamat_2023_119428 crossref_primary_10_1063_5_0206005 crossref_primary_10_1063_5_0195021 crossref_primary_10_1002_aelm_202400849 crossref_primary_10_1063_5_0184774 crossref_primary_10_1016_j_apsadv_2025_100722 crossref_primary_10_1039_D4TC04545A crossref_primary_10_1063_5_0185066 crossref_primary_10_1063_5_0160163 crossref_primary_10_1063_5_0217301 crossref_primary_10_1002_smtd_202400722 crossref_primary_10_1063_5_0225280 crossref_primary_10_1063_5_0181217 crossref_primary_10_1002_adma_202210628 crossref_primary_10_1016_j_ceramint_2024_02_147 crossref_primary_10_1021_acsami_4c03112 crossref_primary_10_1063_5_0208517 crossref_primary_10_1103_PhysRevApplied_22_044071 crossref_primary_10_1063_5_0235294 crossref_primary_10_1063_5_0228924 crossref_primary_10_1063_5_0223553 crossref_primary_10_1088_2053_1583_ad4611 crossref_primary_10_1002_apxr_202300113 crossref_primary_10_1063_5_0205290 crossref_primary_10_1364_OL_541461 crossref_primary_10_1002_pssa_202400896 crossref_primary_10_1111_jace_20063 crossref_primary_10_3390_inorganics13020029 crossref_primary_10_1103_PhysRevB_110_205206 crossref_primary_10_1063_5_0239643 crossref_primary_10_1002_aelm_202300256 crossref_primary_10_1111_jace_20347 crossref_primary_10_3390_ma17133104 |
Cites_doi | 10.1007/s10854-016-6213-7 10.1038/s41586-018-0855-y 10.1103/PhysRevLett.104.137601 10.1109/IPCon.2019.8908293 10.1002/adma.202201387 10.1088/0953-8984/27/24/245901 10.1016/s0002-9149(02)02694-2 10.1002/pssa.201100158 10.1063/5.0054539 10.1063/1.5066613 10.1063/5.0055851 10.1063/1.3248257 10.1002/pssr.201900535 10.1109/MEMS51782.2021.9375451 10.1016/j.tsf.2019.137623 10.1016/j.tsf.2005.08.370 10.1364/PRJ.443165 10.1063/1.4824179 10.1109/LED.2020.3006035 10.1557/mrc.2016.26 10.1038/nmat4148 10.1038/s41586-018-0854-z 10.1021/acsami.1c23381 10.1063/5.0049185 10.3390/mi13060877 10.1063/1.5017153 10.1021/acsami.2c22798 10.1007/s10854-014-2423-z 10.1109/LED.2019.2915555 10.1063/5.0087505 10.1063/1.2140889 10.1002/adma.202210628 10.1149/07706.0023ecst 10.1063/5.0096760 10.1002/adma.202109765 10.1109/LED.2011.2164613 10.1038/nmat2432 10.1109/JMEMS.2022.3147492 10.1109/MEMS51782.2021.9375203 10.1038/s41467-020-20667-2 10.1103/PhysRevLett.123.096801 10.1088/1361-6528/ac20fc 10.1063/1.5084945 10.1109/LED.2020.3034576 10.1126/science.1187597 10.1109/16.906439 10.1063/5.0048647 10.1088/2058-9565/ab788a 10.1063/5.0061787 10.1103/PhysRevB.66.201203 10.1063/5.0121621 10.1002/adfm.202112111 10.35848/1347-4065/abef15 10.1063/5.0054522 10.1109/ULTSYM.2013.0350 10.1109/LED.2021.3100036 10.1063/5.0097117 10.1103/PhysRevMaterials.5.044412 10.1002/pssa.201700831 10.1002/pssa.201532292 10.1021/acsami.0c15912 10.1002/pssb.201900612 10.1063/1.4896262 10.1063/1.4795784 10.1103/PhysRevB.87.094107 10.1063/1.4993908 10.1063/1.4966278 10.1063/5.0118075 10.1063/1.3489939 10.1109/Transducers50396.2021.9495515 10.1002/pssb.202200079 10.1038/srep14386 10.1088/1361-6641/abd924 10.1063/5.0090501 10.1038/nphoton.2009.229 10.1063/5.0056485 10.1103/PhysRevLett.90.257602 10.1063/5.0094533 10.1016/j.spmi.2013.05.010 10.1109/JMEMS.2020.3014584 10.1063/1.4981807 10.1002/pssr.202200312 10.35848/1347-4065/ac54f6 10.1002/adma.200802611 10.1109/MEMSYS.2013.6474347 10.3390/ma14216437 10.1063/5.0002445 10.1063/1.4871656 10.1109/ISAF51943.2021.9477328 10.1109/IPC53466.2022.9975776 10.1002/pssa.201200561 10.1063/5.0098979 10.1109/TUFFC.2013.2606 10.1021/acsami.8b22602 10.1063/1.4866969 10.1186/s11671-019-3043-6 10.1109/LED.2016.2558149 10.1063/1.4993254 10.1063/5.0099913 10.1002/pssa.200925060 10.1063/1.5144906 10.1016/j.optcom.2003.10.046 10.1063/5.0064041 10.1063/5.0075636 10.1063/1.5101043 10.1364/OL.32.002453 10.1002/pssr.202100087 10.1063/5.0015281 10.1109/IFCS-ISAF41089.2020.9234883 10.1143/APEX.5.015502 10.1109/IEDM.2006.346935 10.1109/EFTF/IFCS52194.2021.9604316 10.1109/LED.2022.3220877 10.1016/j.ijleo.2020.165313 10.1063/1.4934756 10.1063/1.3268466 10.1063/5.0013943 10.1021/acs.nanolett.5b04726 10.1002/adma.202106814 10.1038/nphoton.2010.221 10.1002/admt.201800589 10.1038/s41578-019-0089-0 10.1063/5.0035026 10.1109/TSM.2017.2749201 10.1364/PRJ.450465 10.1039/C3EE42454E 10.1016/j.jcrysgro.2007.12.053 10.1002/aelm.202100931 10.1039/D2MH00080F 10.1038/nnano.2008.18 10.1002/smtd.202000149 10.1038/nphoton.2010.15 10.1088/0953-8984/14/13/302 10.1117/12.2626712 10.1109/IEDM19574.2021.9720535 10.1021/acssensors.2c00980 10.35848/1882-0786/ac2261 10.1038/nature10679 10.1109/IFCS-ISAF41089.2020.9234831 10.1109/FCS.2018.8597447 10.1016/0022-5088(85)90066-9 10.1063/5.0057869 10.1109/LED.2009.2038935 10.1063/1.5040190 10.1126/science.abe8177 10.1109/TED.2021.3072612 10.1063/5.0068059 10.1002/aelm.201800651 10.1364/OL.38.002810 10.1021/acs.nanolett.0c05051 10.1117/12.2582707 10.35848/1882-0786/ab916a 10.1038/s41586-020-2970-9 10.1063/1.5116747 10.1109/MEMS51782.2021.9375427 10.1103/PhysRevMaterials.1.065001 10.1103/PhysRevB.73.174106 10.7567/1347-4065/ab124f 10.1021/nl3011885 10.1103/PhysRevX.6.021038 10.1063/5.0029488 10.1038/s41928-019-0338-7 10.1109/JMEMS.2016.2614660 10.1557/JMR.2000.0011 10.1016/j.spmi.2017.11.053 10.1038/nphoton.2015.277 10.35848/1347-4065/ac5db0 10.1109/IFCS-ISAF41089.2020.9234910 10.1088/1361-6463/ac3d5c 10.1063/5.0060021 10.1021/acsnano.1c02830 10.1002/pssr.202000575 10.1002/aelm.202000337 10.1002/adfm.202008452 10.1002/pssb.201451314 10.3390/mi13081282 10.1002/pssa.202100302 10.1063/1.1810626 10.1038/s41467-019-13993-7 10.1038/nature12622 10.1063/1.3251072 10.1063/5.0136265 10.1103/PhysRevApplied.10.044036 10.1063/5.0122943 10.1002/aelm.202200005 10.1063/5.0003615 10.1103/PhysRevB.70.193309 10.1364/JOSAB.14.002268 10.1109/LED.2021.3070274 10.1063/5.0052163 10.1002/adma.201905764 10.1109/IUS46767.2020.9251741 10.35848/1882-0786/ac8048 10.1063/1.5129387 10.1063/1.3448235 10.1016/j.ssmph.2018.04.004 10.1088/1361-6633/aa7bb2 10.1063/1.2773762 10.1103/PhysRevB.62.13538 10.1002/advs.201800844 10.1002/smll.202107575 10.1002/advs.202100569 10.1002/adfm.202109632 10.2109/jcersj2.21184 10.1021/acsnano.1c09119 10.1364/OPTICA.6.001361 10.35848/1347-4065/abe644 10.1109/ISAF51494.2022.9870108 10.1021/acs.nanolett.2c03169 10.1016/j.snb.2021.130437 10.1063/5.0024192 10.1088/2040-8986/abff94 10.1063/1.4848036 10.1021/nl071804g 10.1103/PhysRevB.65.045204 10.1126/science.abd3230 10.1002/adom.201900765 10.1038/natrevmats.2016.87 10.1063/1.4916679 10.1109/TED.2021.3107232 10.3390/mi13060887 10.1063/1.5008451 10.1063/5.0033205 10.1063/5.0003095 10.1039/C5CS00308C 10.1002/advs.202000917 10.1063/1.369664 10.1063/5.0035335 10.1038/nphoton.2008.285 10.1063/1.4997601 10.1063/5.0108475 10.1103/PhysRevB.56.R10024 10.1002/adfm.202007216 10.1002/aelm.201800646 10.1063/5.0051940 10.1002/pssr.202100034 10.1063/1.1370548 10.1063/1.4923429 10.1063/5.0053649 10.1109/TAP.2017.2774707 10.1038/s41467-019-10610-5 10.1063/5.0037617 10.1002/aelm.202200726 10.1109/MWSYM.2019.8700824 10.1093/biolre/ioac125 10.1557/adv.2016.510 10.1063/5.0060608 |
ContentType | Journal Article |
Copyright | 2023 The Author(s). Published by IOP Publishing Ltd |
Copyright_xml | – notice: 2023 The Author(s). Published by IOP Publishing Ltd |
DBID | O3W TSCCA AAYXX CITATION |
DOI | 10.1088/1361-6641/acb80e |
DatabaseName | Institute of Physics Open Access Journal Titles IOPscience (Open Access) CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: O3W name: Institute of Physics Open Access Journal Titles url: http://iopscience.iop.org/ sourceTypes: Enrichment Source Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1361-6641 |
ExternalDocumentID | 10_1088_1361_6641_acb80e sstacb80e |
GrantInformation_xml | – fundername: Defense Advanced Research Projects Agency funderid: http://dx.doi.org/10.13039/100000185 – fundername: Office of Naval Research grantid: N00014-19-1-2225 funderid: http://dx.doi.org/10.13039/100000006 |
GroupedDBID | -~X .DC 123 1JI 4.4 5B3 5PX 5VS 5ZH 7.M 7.Q AAGCD AAGID AAHTB AAJIO AAJKP AATNI ABCXL ABHWH ABJNI ABPEJ ABQJV ABVAM ACAFW ACBEA ACGFO ACGFS ACHIP AEFHF AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CBCFC CEBXE CJUJL CRLBU CS3 DU5 E.- EBS EDWGO EMSAF EPQRW EQZZN HAK IHE IJHAN IOP IZVLO KOT LAP M45 N5L N9A O3W P2P PJBAE PZZ R4D RIN RNS RO9 ROL RPA SY9 TAE TN5 TSCCA TWZ UCJ W28 XPP ZMT AAYXX CITATION |
ID | FETCH-LOGICAL-c420t-9357d2bb1407a7d5e4142fd75a595323b23395b1503a04a2ffe97a72b1a73cfb3 |
IEDL.DBID | O3W |
ISSN | 0268-1242 |
IngestDate | Thu Apr 24 23:03:22 EDT 2025 Tue Jul 01 02:44:53 EDT 2025 Wed Jun 07 11:19:04 EDT 2023 Wed Aug 21 03:34:57 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c420t-9357d2bb1407a7d5e4142fd75a595323b23395b1503a04a2ffe97a72b1a73cfb3 |
Notes | SST-109100.R1 |
ORCID | 0000-0001-9494-7390 0000-0002-4716-5457 |
OpenAccessLink | https://iopscience.iop.org/article/10.1088/1361-6641/acb80e |
PageCount | 29 |
ParticipantIDs | iop_journals_10_1088_1361_6641_acb80e crossref_primary_10_1088_1361_6641_acb80e crossref_citationtrail_10_1088_1361_6641_acb80e |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-04-01 |
PublicationDateYYYYMMDD | 2023-04-01 |
PublicationDate_xml | – month: 04 year: 2023 text: 2023-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Semiconductor science and technology |
PublicationTitleAbbrev | SST |
PublicationTitleAlternate | Semicond. Sci. Technol |
PublicationYear | 2023 |
Publisher | IOP Publishing |
Publisher_xml | – name: IOP Publishing |
References | Medjdoub (sstacb80ebib197) 2006 Wang (sstacb80ebib223) 2021; 8 Akiyama (sstacb80ebib17) 2009; 95 Wang (sstacb80ebib47) 2020; 116 Liu (sstacb80ebib182) 2022; 120 Tsui (sstacb80ebib82) 2015; 212 Krishnamoorthy (sstacb80ebib174) 2021; 32 Theis (sstacb80ebib205) 2010; 327 Ng (sstacb80ebib249) 2021; 346 Tsai (sstacb80ebib145) 2021; 118 Giribaldi (sstacb80ebib30) 2021 Guo (sstacb80ebib222) 2022; 16 Li (sstacb80ebib63) 2022 Dudley (sstacb80ebib186) 2009; 3 Liu (sstacb80ebib138) 2020; 7 Leone (sstacb80ebib51) 2020; 14 Zhang (sstacb80ebib4) 2013; 114 Moustakas (sstacb80ebib74) 2017; 80 Islam (sstacb80ebib163) 2021; 118 Henry (sstacb80ebib228) 2017; 77 Lei (sstacb80ebib181) 2009; 95 Liu (sstacb80ebib253) 2021; 68 Wolff (sstacb80ebib167) 2022; 13 Íñiguez (sstacb80ebib210) 2019; 4 Li (sstacb80ebib96) 2022; 34 Jung (sstacb80ebib237) 2013; 38 Sun (sstacb80ebib240) 2019; 44 Takeuchi (sstacb80ebib42) 2002; 65 Casamento (sstacb80ebib19) 2022; 120 Rassay (sstacb80ebib152) 2021; 15 Shahrokhi (sstacb80ebib137) 2020; 4 Hashimoto (sstacb80ebib25) 2013; 60 Pirro (sstacb80ebib151) 2022; 13 Zhang (sstacb80ebib243) 2022 Constantin (sstacb80ebib78) 2004; 70 Mishra (sstacb80ebib194) 2002; 90 Wang (sstacb80ebib125) 2022; 121 Zhang (sstacb80ebib172) 2013; 114 Ng (sstacb80ebib250) 2022; 7 Eastman (sstacb80ebib193) 2001; 48 Ganeev (sstacb80ebib21) 2004; 229 Wolff (sstacb80ebib60) 2021; 129 Wang (sstacb80ebib232) 2020; 29 Uehara (sstacb80ebib67) 2019; 114 Knoll (sstacb80ebib81) 2012; 209 Shin (sstacb80ebib190) 2007; 32 Zheng (sstacb80ebib176) 2020; 588 Vasilyev (sstacb80ebib133) 2016; 1 Si (sstacb80ebib218) 2019; 2 Moustakas (sstacb80ebib73) 2016; 6 Ambacher (sstacb80ebib121) 2022; 131 Zhu (sstacb80ebib166) 2021; 119 Zheng (sstacb80ebib234) 2022 Wang (sstacb80ebib104) 2007; 91 Ranjan (sstacb80ebib2) 2003; 90 Hayden (sstacb80ebib114) 2021; 5 Wang (sstacb80ebib71) 2021; 31 Yanagitani (sstacb80ebib66) 2014; 104 Wang (sstacb80ebib217) 2023 Shin (sstacb80ebib241) 2021; 118 Lambrecht (sstacb80ebib40) 2000; 62 Caro (sstacb80ebib124) 2015; 27 Liu (sstacb80ebib86) 2018; 112 Zeuthen (sstacb80ebib38) 2018; 10 Yasuoka (sstacb80ebib149) 2021; 218 Gu (sstacb80ebib188) 2004; 85 Casamento (sstacb80ebib106) 2021; 9 Lauk (sstacb80ebib36) 2020; 5 Yasuoka (sstacb80ebib157) 2022; 130 Jin (sstacb80ebib119) 2020; 12 Ambacher (sstacb80ebib99) 2002; 14 Dreyer (sstacb80ebib98) 2016; 6 Shibukawa (sstacb80ebib146) 2022; 61 Zhu (sstacb80ebib242) 2020 Saha (sstacb80ebib109) 2015; 252 Liu (sstacb80ebib95) 2021; 31 Tominaga (sstacb80ebib150) 2021; 55 Farrer (sstacb80ebib1) 2002; 66 Grinberg (sstacb80ebib224) 2013; 503 Pandey (sstacb80ebib102) 2022; 10 Wang (sstacb80ebib103) 2022; 14 Pirro (sstacb80ebib235) 2021 Ambacher (sstacb80ebib18) 2021; 130 Saha (sstacb80ebib127) 2016; 109 Gund (sstacb80ebib165) 2021 Yasuda (sstacb80ebib179) 2021; 372 Uehara (sstacb80ebib68) 2021; 119 Sun (sstacb80ebib128) 2022; 259 Casamento (sstacb80ebib201) 2022; 121 Liu (sstacb80ebib245) 2022 Bernardini (sstacb80ebib41) 1997; 56 Kurz (sstacb80ebib135) 2018; 215 Huang (sstacb80ebib221) 2010; 4 Drury (sstacb80ebib11) 2022; 13 Yang (sstacb80ebib180) 2022; 9 Liu (sstacb80ebib214) 2021 Yang (sstacb80ebib215) 2009; 8 Wang (sstacb80ebib85) 2012; 5 Bette (sstacb80ebib134) 2019; 692 Wang (sstacb80ebib83) 2021; 119 Zheng (sstacb80ebib88) 2018; 113 Zhu (sstacb80ebib175) 2022; 8 Little (sstacb80ebib65) 2001; 78 Xiong (sstacb80ebib238) 2012; 12 Wang (sstacb80ebib89) 2020; 116 Reeber (sstacb80ebib93) 2000; 15 Umeda (sstacb80ebib28) 2013 Li (sstacb80ebib168) 2020 Wang (sstacb80ebib94) 2021; 118 Edgar (sstacb80ebib55) 2008; 310 Wang (sstacb80ebib161) 2023 Moram (sstacb80ebib80) 2009; 106 Mondal (sstacb80ebib225) 2022; 10 Pirro (sstacb80ebib147) 2021 Liu (sstacb80ebib213) 2022; 22 Zhang (sstacb80ebib59) 2015; 26 Casamento (sstacb80ebib48) 2020; 117 Wang (sstacb80ebib140) 2021; 130 Hardy (sstacb80ebib45) 2017; 110 Yasuoka (sstacb80ebib62) 2020; 128 Ng (sstacb80ebib29) 2020; 117 Casamento (sstacb80ebib105) 2020; 257 Liu (sstacb80ebib226) 2017; 65 Cheng (sstacb80ebib70) 2019; 14 Zheng (sstacb80ebib171) 2021; 130 Dismukes (sstacb80ebib77) 1996 Krause (sstacb80ebib202) 2022; 44 Shi (sstacb80ebib189) 2006; 496 Ambacher (sstacb80ebib192) 1999; 85 Wang (sstacb80ebib115) 2022; 34 Rong (sstacb80ebib247) 2015; 5 Fichtner (sstacb80ebib44) 2017; 122 Baeumler (sstacb80ebib61) 2019; 126 Wang (sstacb80ebib14) 2021; 15 Koleske (sstacb80ebib49) 2009 Salahuddin (sstacb80ebib203) 2008; 8 Wingqvist (sstacb80ebib122) 2010; 97 Uehara (sstacb80ebib173) 2022; 15 Yanagitani (sstacb80ebib123) 2014; 105 Shao (sstacb80ebib229) 2021; 42 Ambacher (sstacb80ebib120) 2021; 129 Kataoka (sstacb80ebib169) 2021; 60 Budimir (sstacb80ebib139) 2006; 73 Liu (sstacb80ebib75) 2021; 34 Deng (sstacb80ebib110) 2013; 102 Höglund (sstacb80ebib43) 2010; 107 Yadav (sstacb80ebib208) 2019; 565 Mayrhofer (sstacb80ebib252) 2016; 26 Ghatge (sstacb80ebib230) 2018 Wang (sstacb80ebib12) 2022; 31 Qian (sstacb80ebib216) 2019; 5 Green (sstacb80ebib22) 2019; 40 O’brien (sstacb80ebib35) 2009; 3 Wang (sstacb80ebib156) 2020; 41 Noor-A-Alam (sstacb80ebib142) 2019; 11 Shi (sstacb80ebib136) 2016; 45 Fichtner (sstacb80ebib5) 2019; 125 Wang (sstacb80ebib10) 2021; 118 Cassabois (sstacb80ebib116) 2016; 10 Manna (sstacb80ebib130) 2017; 122 Frei (sstacb80ebib46) 2019; 58 Tsai (sstacb80ebib170) 2022; 61 Engel (sstacb80ebib91) 2022; 132 Qiao (sstacb80ebib220) 2020; 8 Shoji (sstacb80ebib191) 1997; 14 Martin (sstacb80ebib7) 2016; 2 Shen (sstacb80ebib113) 2017; 1 Lu (sstacb80ebib92) 2018; 6 Gu (sstacb80ebib185) 2011 Sutherland (sstacb80ebib184) 2003 Park (sstacb80ebib233) 2021; 42 Upadhyay (sstacb80ebib33) 2019; 4 Wang (sstacb80ebib15) 2022; 121 Banerjee (sstacb80ebib6) 2022; 18 Schönweger (sstacb80ebib155) 2022; 17 Liu (sstacb80ebib101) 2022; 10 Fu (sstacb80ebib118) 2020; 117 Tsai (sstacb80ebib159) 2021; 60 Liu (sstacb80ebib13) 2021; 21 Herkert (sstacb80ebib187) 2021; 23 Schönweger (sstacb80ebib64) 2022; 32 Wang (sstacb80ebib164) 2021 Vizner Stern (sstacb80ebib177) 2021; 372 Boyd (sstacb80ebib183) 2020 Hoffmann (sstacb80ebib209) 2019; 565 Lin (sstacb80ebib231) 2021; 68 Rakher (sstacb80ebib37) 2010; 4 Ng (sstacb80ebib248) 2021 Lee (sstacb80ebib196) 2011; 32 Jiang (sstacb80ebib219) 2021; 15 Li (sstacb80ebib34) 2020; 32 Ligl (sstacb80ebib52) 2020; 127 Elias (sstacb80ebib117) 2019; 10 Khan (sstacb80ebib207) 2015; 14 Hardy (sstacb80ebib244) 2017; 30 Ionescu (sstacb80ebib206) 2011; 479 Deng (sstacb80ebib108) 2015; 118 Gund (sstacb80ebib148) 2021 Williams (sstacb80ebib112) 2019; 115 Wang (sstacb80ebib236) 2021; 15 Tsui (sstacb80ebib107) 2015; 106 Quach (sstacb80ebib39) 2020; 116 Konno (sstacb80ebib227) 2013 Satoh (sstacb80ebib126) 2022; 132 Moustakas (sstacb80ebib72) 2013; 210 Ryoo (sstacb80ebib160) 2022; 8 Wang (sstacb80ebib27) 2020 Green (sstacb80ebib23) 2020; 41 Wang (sstacb80ebib87) 2019; 5 Zhang (sstacb80ebib153) 2021; 14 Zhirnov (sstacb80ebib204) 2008; 3 Liu (sstacb80ebib97) 2022; 32 Hardy (sstacb80ebib90) 2020; 13 Tang (sstacb80ebib57) 2017; 28 Woods (sstacb80ebib178) 2021; 12 Jiang (sstacb80ebib143) 2019; 123 Bowen (sstacb80ebib251) 2014; 7 Wang (sstacb80ebib100) 2016; 16 Moustakas (sstacb80ebib76) 1996 Dzuba (sstacb80ebib246) 2022; 132 Wang (sstacb80ebib162) 2023; 122 Schuster (sstacb80ebib84) 1985; 109 Saidi (sstacb80ebib50) 2013; 60 Wu (sstacb80ebib8) 2020; 6 Yang (sstacb80ebib199) 2019; 115 Mizutani (sstacb80ebib158) 2021; 14 Wang (sstacb80ebib69) 2022; 120 Oshima (sstacb80ebib56) 2014; 115 Hardy (sstacb80ebib200) 2018 Hao (sstacb80ebib26) 2019 Fichtner (sstacb80ebib154) 2020 Cao (sstacb80ebib212) 2020; 11 Yazawa (sstacb80ebib141) 2022; 121 Mikolajick (sstacb80ebib9) 2021; 129 Bohnen (sstacb80ebib54) 2009; 206 Aziz (sstacb80ebib211) 2016; 37 Fichtner (sstacb80ebib58) 2015; 3 Wang (sstacb80ebib198) 2018; 5 Liu (sstacb80ebib132) 2017; 111 Chung (sstacb80ebib195) 2010; 31 Wang (sstacb80ebib32) 2022; 8 Manz (sstacb80ebib53) 2021; 36 Williams (sstacb80ebib111) 2017; 111 Wang (sstacb80ebib24) 2021; 119 Jing (sstacb80ebib131) 2022; 131 Liu (sstacb80ebib31) 2021; 118 Wang (sstacb80ebib144) 2020 Tasnadi (sstacb80ebib3) 2010; 104 Bruch (sstacb80ebib239) 2019; 6 Akiyama (sstacb80ebib16) 2009; 21 Yoshioka (sstacb80ebib20) 2021; 9 Constantin (sstacb80ebib79) 2005; 98 Tholander (sstacb80ebib129) 2013; 87 |
References_xml | – volume: 28 start-page: 5512 year: 2017 ident: sstacb80ebib57 article-title: Deposition of highly c-axis-oriented ScAlN thin films at different sputtering power publication-title: J. Mater. Sci., Mater. Electron. doi: 10.1007/s10854-016-6213-7 – volume: 565 start-page: 468 year: 2019 ident: sstacb80ebib208 article-title: Spatially resolved steady-state negative capacitance publication-title: Nature doi: 10.1038/s41586-018-0855-y – volume: 104 year: 2010 ident: sstacb80ebib3 article-title: Origin of the anomalous piezoelectric response in wurtzite Sc x Al1−x N alloys publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.104.137601 – volume: 44 start-page: 5679 year: 2019 ident: sstacb80ebib240 article-title: Ultrahigh Q microring resonators using a single-crystal aluminum-nitride-on-sapphire platform publication-title: Opt. Lett. doi: 10.1109/IPCon.2019.8908293 – volume: 34 year: 2022 ident: sstacb80ebib115 article-title: Scalable synthesis of monolayer hexagonal boron nitride on graphene with giant bandgap renormalization publication-title: Adv. Mater. doi: 10.1002/adma.202201387 – volume: 27 year: 2015 ident: sstacb80ebib124 article-title: Piezoelectric coefficients and spontaneous polarization of ScAlN publication-title: J. Phys.: Condens. Matter doi: 10.1088/0953-8984/27/24/245901 – volume: 90 start-page: 1022 year: 2002 ident: sstacb80ebib194 article-title: AlGaN/GaN HEMTs-an overview of device operation and applications publication-title: Proc. IEEE doi: 10.1016/s0002-9149(02)02694-2 – volume: 209 start-page: 33 year: 2012 ident: sstacb80ebib81 article-title: Growth, microstructure and morphology of epitaxial ScGaN films publication-title: Phys. Status Solid a doi: 10.1002/pssa.201100158 – volume: 118 year: 2021 ident: sstacb80ebib10 article-title: Fully epitaxial ferroelectric ScAlN grown by molecular beam epitaxy publication-title: Appl. Phys. Lett. doi: 10.1063/5.0054539 – volume: 114 year: 2019 ident: sstacb80ebib67 article-title: Increase in the piezoelectric response of scandium-doped gallium nitride thin films sputtered using a metal interlayer for piezo MEMS publication-title: Appl. Phys. Lett. doi: 10.1063/1.5066613 – volume: 119 year: 2021 ident: sstacb80ebib24 article-title: N-polar ScAlN and HEMTs grown by molecular beam epitaxy publication-title: Appl. Phys. Lett. doi: 10.1063/5.0055851 – volume: 95 year: 2009 ident: sstacb80ebib181 article-title: Ferromagnetic Sc-doped AlN sixfold-symmetrical hierarchical nanostructures publication-title: Appl. Phys. Lett. doi: 10.1063/1.3248257 – volume: 14 year: 2020 ident: sstacb80ebib51 article-title: Metal‐organic chemical vapor deposition of aluminum scandium nitride publication-title: Phys. Status Solidi doi: 10.1002/pssr.201900535 – start-page: 650 year: 2021 ident: sstacb80ebib30 article-title: Compensation of contact nature-dependent asymmetry in the leakage current of ferroelectric Sc x Al1−x N thin-film capacitors doi: 10.1109/MEMS51782.2021.9375451 – volume: 692 year: 2019 ident: sstacb80ebib134 article-title: Infrared-laser based characterization of the pyroelectricity in AlScN thin-films publication-title: Thin Solid Films doi: 10.1016/j.tsf.2019.137623 – volume: 496 start-page: 333 year: 2006 ident: sstacb80ebib189 article-title: The third-order optical nonlinearity of Bi3.25La0.75Ti3O12 ferroelectric thin film on quartz publication-title: Thin Solid Films doi: 10.1016/j.tsf.2005.08.370 – volume: 10 start-page: 587 year: 2022 ident: sstacb80ebib101 article-title: N-polar InGaN nanowires: breaking the efficiency bottleneck of nano and micro LEDs publication-title: Photon. Res. doi: 10.1364/PRJ.443165 – volume: 114 year: 2013 ident: sstacb80ebib4 article-title: Tunable optoelectronic and ferroelectric properties in Sc-based III-nitrides publication-title: J. Appl. Phys. doi: 10.1063/1.4824179 – volume: 41 start-page: 1181 year: 2020 ident: sstacb80ebib23 article-title: RF power performance of Sc(al, Ga) N/GaN HEMTs at Ka-band publication-title: IEEE Electon. Device Lett. doi: 10.1109/LED.2020.3006035 – volume: 6 start-page: 247 year: 2016 ident: sstacb80ebib73 article-title: Ultraviolet optoelectronic devices based on AlGaN alloys grown by molecular beam epitaxy publication-title: MRS Commun. doi: 10.1557/mrc.2016.26 – volume: 14 start-page: 182 year: 2015 ident: sstacb80ebib207 article-title: Negative capacitance in a ferroelectric capacitor publication-title: Nat. Mater. doi: 10.1038/nmat4148 – year: 1996 ident: sstacb80ebib77 – volume: 565 start-page: 464 year: 2019 ident: sstacb80ebib209 article-title: Unveiling the double-well energy landscape in a ferroelectric layer publication-title: Nature doi: 10.1038/s41586-018-0854-z – volume: 14 start-page: 15747 year: 2022 ident: sstacb80ebib103 article-title: Interfacial modulated lattice-polarity-controlled epitaxy of III-nitride heterostructures on Si (111) publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c23381 – volume: 129 year: 2021 ident: sstacb80ebib120 article-title: Polarization induced interface and electron sheet charges of pseudomorphic ScAlN/GaN, GaAlN/GaN, InAlN/GaN, and InAlN/InN heterostructures publication-title: J. Appl. Phys. doi: 10.1063/5.0049185 – volume: 13 start-page: 877 year: 2022 ident: sstacb80ebib151 article-title: Effect of substrate-RF on sub-200 nm Al0.7Sc0.3N thin films publication-title: Micromachines doi: 10.3390/mi13060877 – volume: 112 year: 2018 ident: sstacb80ebib86 article-title: High-electron-mobility InN epilayers grown on silicon substrate publication-title: Appl. Phys. Lett. doi: 10.1063/1.5017153 – year: 2023 ident: sstacb80ebib217 article-title: Ferroelectric nitride heterostructures on CMOS compatible molybdenum for synaptic memristors doi: 10.1021/acsami.2c22798 – volume: 26 start-page: 472 year: 2015 ident: sstacb80ebib59 article-title: Effects of sputtering atmosphere on the properties of c-plane ScAlN thin films prepared on sapphire substrate publication-title: J. Mater. Sci., Mater. Electron. doi: 10.1007/s10854-014-2423-z – volume: 40 start-page: 1056 year: 2019 ident: sstacb80ebib22 article-title: ScAlN/GaN high-electron-mobility transistors with 2.4-A/mm current density and 0.67-S/mm transconductance publication-title: IEEE Electon. Device Lett. doi: 10.1109/LED.2019.2915555 – volume: 132 year: 2022 ident: sstacb80ebib126 article-title: Crystal structure deformation and phase transition of AlScN thin films in whole Sc concentration range publication-title: J. Appl. Phys. doi: 10.1063/5.0087505 – volume: 98 year: 2005 ident: sstacb80ebib79 article-title: Composition-dependent structural properties in ScGaN alloy films: a combined experimental and theoretical study publication-title: J. Appl. Phys. doi: 10.1063/1.2140889 – year: 2023 ident: sstacb80ebib161 article-title: Ultrathin nitride ferroic memory with large ON/OFF ratios for analog in-memory computing doi: 10.1002/adma.202210628 – volume: 77 start-page: 23 year: 2017 ident: sstacb80ebib228 article-title: AlN and ScAlN contour mode resonators for RF filters publication-title: ECS Trans. doi: 10.1149/07706.0023ecst – volume: 120 year: 2022 ident: sstacb80ebib182 article-title: Coexistence of ferroelectricity and ferromagnetism in Ni-doped Al0.7Sc0.3N thin films publication-title: Appl. Phys. Lett. doi: 10.1063/5.0096760 – volume: 34 year: 2022 ident: sstacb80ebib96 article-title: Deep‐ultraviolet micro‐LEDs exhibiting high output power and high modulation bandwidth simultaneously publication-title: Adv. Mater. doi: 10.1002/adma.202109765 – volume: 32 start-page: 1525 year: 2011 ident: sstacb80ebib196 article-title: 300 ghz inaln/gan hemts with ingan back barrier publication-title: IEEE Electon. Device Lett. doi: 10.1109/LED.2011.2164613 – volume: 8 start-page: 485 year: 2009 ident: sstacb80ebib215 article-title: Electric modulation of conduction in multiferroic Ca-doped BiFeO3 films publication-title: Nat. Mater. doi: 10.1038/nmat2432 – volume: 31 start-page: 234 year: 2022 ident: sstacb80ebib12 article-title: High-temperature acoustic and electric characterization of ferroelectric Al0 7Sc0 3N films publication-title: J. Microelectromech. Syst. doi: 10.1109/JMEMS.2022.3147492 – start-page: 214 year: 2021 ident: sstacb80ebib164 article-title: Thermal characterization of ferroelectric aluminum scandium nitride acoustic resonators doi: 10.1109/MEMS51782.2021.9375203 – volume: 12 start-page: 1 year: 2021 ident: sstacb80ebib178 article-title: Charge-polarized interfacial superlattices in marginally twisted hexagonal boron nitride publication-title: Nat. Commun. doi: 10.1038/s41467-020-20667-2 – volume: 123 year: 2019 ident: sstacb80ebib143 article-title: Designing multifunctionality via assembling dissimilar materials: epitaxial AlN/ScN superlattices publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.123.096801 – volume: 32 start-page: 49LT02 year: 2021 ident: sstacb80ebib174 article-title: Electric-field-induced crossover of polarization reversal mechanisms in Al1−x Sc x N ferroelectrics publication-title: Nanotechnology doi: 10.1088/1361-6528/ac20fc – volume: 125 year: 2019 ident: sstacb80ebib5 article-title: AlScN: a III–V semiconductor based ferroelectric publication-title: J. Appl. Phys. doi: 10.1063/1.5084945 – volume: 41 start-page: 1774 year: 2020 ident: sstacb80ebib156 article-title: Ferroelectric switching in sub-20 nm aluminum scandium nitride thin films publication-title: IEEE Electon. Device Lett. doi: 10.1109/LED.2020.3034576 – volume: 327 start-page: 1600 year: 2010 ident: sstacb80ebib205 article-title: It’s time to reinvent the transistor! publication-title: Science doi: 10.1126/science.1187597 – volume: 48 start-page: 479 year: 2001 ident: sstacb80ebib193 article-title: Undoped AlGaN/GaN HEMTs for microwave power amplification publication-title: IEEE Trans. Electron Devices doi: 10.1109/16.906439 – volume: 130 year: 2021 ident: sstacb80ebib18 article-title: Wurtzite ScAlN, InAlN, and GaAlN crystals, a comparison of structural, elastic, dielectric, and piezoelectric properties publication-title: J. Appl. Phys. doi: 10.1063/5.0048647 – volume: 5 year: 2020 ident: sstacb80ebib36 article-title: Perspectives on quantum transduction publication-title: Quantum Sci. Technol. doi: 10.1088/2058-9565/ab788a – volume: 9 year: 2021 ident: sstacb80ebib20 article-title: Strongly enhanced second-order optical nonlinearity in CMOS-compatible Al1−x Sc x N thin films publication-title: APL Mater. doi: 10.1063/5.0061787 – volume: 66 year: 2002 ident: sstacb80ebib1 article-title: Properties of hexagonal ScN versus wurtzite GaN and InN publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.66.201203 – volume: 132 year: 2022 ident: sstacb80ebib91 article-title: Overcoming metal-rich surface chemistry limitations of ScAlN for high electrical performance heterostructures publication-title: J. Appl. Phys. doi: 10.1063/5.0121621 – volume: 32 year: 2022 ident: sstacb80ebib97 article-title: Drive high power UVC‐LED wafer into low‐cost 4‐inch era: effect of strain modulation publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202112111 – volume: 60 start-page: SBBA05 year: 2021 ident: sstacb80ebib159 article-title: On the thickness scaling of ferroelectricity in Al0.78Sc0.22N films publication-title: Jpn. J. Appl. Phys. doi: 10.35848/1347-4065/abef15 – volume: 9 year: 2021 ident: sstacb80ebib106 article-title: Strong effect of scandium source purity on chemical and electronic properties of epitaxial Sc x Al1−x N/GaN heterostructures publication-title: APL Mater. doi: 10.1063/5.0054522 – start-page: 1378 year: 2013 ident: sstacb80ebib227 article-title: ScAlN Lamb wave resonator in GHz range released by XeF2 etching doi: 10.1109/ULTSYM.2013.0350 – volume: 42 start-page: 1378 year: 2021 ident: sstacb80ebib229 article-title: High figure-of-merit Lamb wave resonators based on Al0.7Sc0.3N thin film publication-title: IEEE Electon. Device Lett. doi: 10.1109/LED.2021.3100036 – volume: 121 year: 2022 ident: sstacb80ebib125 article-title: Ferroelectric N-polar ScAlN/GaN heterostructures grown by molecular beam epitaxy publication-title: Appl. Phys. Lett. doi: 10.1063/5.0097117 – volume: 5 year: 2021 ident: sstacb80ebib114 article-title: Ferroelectricity in boron-substituted aluminum nitride thin films publication-title: Phys. Rev. Mater. doi: 10.1103/PhysRevMaterials.5.044412 – volume: 215 year: 2018 ident: sstacb80ebib135 article-title: Temperature dependence of the pyroelectric coefficient of AlScN thin films publication-title: Phys. Status Solid a doi: 10.1002/pssa.201700831 – volume: 212 start-page: 2837 year: 2015 ident: sstacb80ebib82 article-title: The effect of metal‐rich growth conditions on the microstructure of Sc x Ga1−x N films grown using molecular beam epitaxy publication-title: Phys. Status Solidi a doi: 10.1002/pssa.201532292 – volume: 12 start-page: 52192 year: 2020 ident: sstacb80ebib119 article-title: Band Alignment of Sc x Al1–x N/GaN Heterojunctions publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c15912 – volume: 257 year: 2020 ident: sstacb80ebib105 article-title: Oxygen incorporation in the molecular beam epitaxy growth of Sc x Ga1−x N and Sc x Al1−x N publication-title: Phys. Status Solid b doi: 10.1002/pssb.201900612 – volume: 105 year: 2014 ident: sstacb80ebib123 article-title: Electromechanical coupling and gigahertz elastic properties of ScAlN films near phase boundary publication-title: Appl. Phys. Lett. doi: 10.1063/1.4896262 – volume: 102 year: 2013 ident: sstacb80ebib110 article-title: Bandgap in Al1−x Sc x N publication-title: Appl. Phys. Lett. doi: 10.1063/1.4795784 – volume: 87 year: 2013 ident: sstacb80ebib129 article-title: Volume matching condition to establish the enhanced piezoelectricity in ternary (Sc, Y) 0.5 (Al, Ga, In) 0.5N alloys publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.87.094107 – volume: 122 year: 2017 ident: sstacb80ebib44 article-title: Identifying and overcoming the interface originating c-axis instability in highly Sc enhanced AlN for piezoelectric micro-electromechanical systems publication-title: J. Appl. Phys. doi: 10.1063/1.4993908 – volume: 109 year: 2016 ident: sstacb80ebib127 article-title: Understanding the Rocksalt-to-Wurtzite phase transformation through microstructural analysis of (Al, Sc) N epitaxial thin films publication-title: Appl. Phys. Lett. doi: 10.1063/1.4966278 – volume: 132 year: 2022 ident: sstacb80ebib246 article-title: Elimination of remnant phases in low-temperature growth of wurtzite ScAlN by molecular-beam epitaxy publication-title: J. Appl. Phys. doi: 10.1063/5.0118075 – volume: 97 year: 2010 ident: sstacb80ebib122 article-title: Increased electromechanical coupling in w−Sc x Al1−x N publication-title: Appl. Phys. Lett. doi: 10.1063/1.3489939 – start-page: 1064 year: 2021 ident: sstacb80ebib148 article-title: Towards realizing the low-coercive field operation of sputtered ferroelectric Sc x Al1−x N doi: 10.1109/Transducers50396.2021.9495515 – volume: 259 year: 2022 ident: sstacb80ebib128 article-title: Ferroelectricity and piezoelectric response of (Sc, Y) N/(Al, Ga, In) N monolayer alternating stacked structures by first‐principles calculations publication-title: Phys. Status Solid b doi: 10.1002/pssb.202200079 – volume: 5 start-page: 1 year: 2015 ident: sstacb80ebib247 article-title: Mid-infrared photoconductive response in AlGaN/GaN step quantum wells publication-title: Sci. Rep. doi: 10.1038/srep14386 – volume: 36 year: 2021 ident: sstacb80ebib53 article-title: Improved AlScN/GaN heterostructures grown by metal-organic chemical vapor deposition publication-title: Semicond. Sci. Technol. doi: 10.1088/1361-6641/abd924 – volume: 131 year: 2022 ident: sstacb80ebib131 article-title: Large piezoelectric and elastic properties in B and Sc codoped wurtzite AlN publication-title: J. Appl. Phys. doi: 10.1063/5.0090501 – volume: 3 start-page: 687 year: 2009 ident: sstacb80ebib35 article-title: Photonic quantum technologies publication-title: Nat. Photon. doi: 10.1038/nphoton.2009.229 – volume: 130 year: 2021 ident: sstacb80ebib140 article-title: Piezoelectric effect and polarization switching in Al1−x Sc x N publication-title: J. Appl. Phys. doi: 10.1063/5.0056485 – volume: 90 year: 2003 ident: sstacb80ebib2 article-title: Strained hexagonal ScN: a material with unusual structural and optical properties publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.90.257602 – volume: 131 year: 2022 ident: sstacb80ebib121 article-title: Electron accumulation and distribution at interfaces of hexagonal Sc x Al1−x N/GaN-and Sc x Al1−x N/InN-heterostructures publication-title: J. Appl. Phys. doi: 10.1063/5.0094533 – volume: 60 start-page: 120 year: 2013 ident: sstacb80ebib50 article-title: Growth of scandium doped GaN by MOVPE publication-title: Superlattices Microstruct. doi: 10.1016/j.spmi.2013.05.010 – volume: 29 start-page: 741 year: 2020 ident: sstacb80ebib232 article-title: A film bulk acoustic resonator based on ferroelectric aluminum scandium nitride films publication-title: J. Microelectromech. Syst. doi: 10.1109/JMEMS.2020.3014584 – volume: 110 year: 2017 ident: sstacb80ebib45 article-title: Epitaxial ScAlN grown by molecular beam epitaxy on GaN and SiC substrates publication-title: Appl. Phys. Lett. doi: 10.1063/1.4981807 – volume: 17 year: 2022 ident: sstacb80ebib155 article-title: Ultrathin Al1−x Sc x N for low-voltage-driven ferroelectric-based devices publication-title: Phys. Status Solidi doi: 10.1002/pssr.202200312 – volume: 61 start-page: SJ1005 year: 2022 ident: sstacb80ebib170 article-title: Field cycling behavior and breakdown mechanism of ferroelectric Al0.78Sc0.22N films publication-title: Jpn. J. Appl. Phys. doi: 10.35848/1347-4065/ac54f6 – volume: 21 start-page: 593 year: 2009 ident: sstacb80ebib16 article-title: Enhancement of piezoelectric response in scandium aluminum nitride alloy thin films prepared by dual reactive cosputtering publication-title: Adv. Mater. doi: 10.1002/adma.200802611 – start-page: 733 year: 2013 ident: sstacb80ebib28 article-title: Piezoelectric properties of ScAlN thin films for piezo-MEMS devices doi: 10.1109/MEMSYS.2013.6474347 – volume: 14 start-page: 6437 year: 2021 ident: sstacb80ebib153 article-title: Deposition, characterization, and modeling of scandium-doped aluminum nitride thin film for piezoelectric devices publication-title: Materials doi: 10.3390/ma14216437 – volume: 116 year: 2020 ident: sstacb80ebib47 article-title: Molecular beam epitaxy and characterization of wurtzite Sc x Al1−x N publication-title: Appl. Phys. Lett. doi: 10.1063/5.0002445 – volume: 115 year: 2014 ident: sstacb80ebib56 article-title: Hydride vapor phase epitaxy and characterization of high-quality ScN epilayers publication-title: J. Appl. Phys. doi: 10.1063/1.4871656 – start-page: 1 year: 2021 ident: sstacb80ebib165 article-title: Temperature-dependent lowering of coercive field in 300 nm sputtered ferroelectric Al0.70Sc0.30N doi: 10.1109/ISAF51943.2021.9477328 – year: 2022 ident: sstacb80ebib245 doi: 10.1109/IPC53466.2022.9975776 – volume: 210 start-page: 169 year: 2013 ident: sstacb80ebib72 article-title: The role of extended defects on the performance of optoelectronic devices in nitride semiconductors publication-title: Phys. Status Solid a doi: 10.1002/pssa.201200561 – volume: 121 year: 2022 ident: sstacb80ebib141 article-title: A landau-devonshire analysis of strain effects on ferroelectric Al1−x Sc x N publication-title: Appl. Phys. Lett. doi: 10.1063/5.0098979 – volume: 60 start-page: 637 year: 2013 ident: sstacb80ebib25 article-title: High-performance surface acoustic wave resonators in the 1 to 3 GHz range using a ScAlN/6H-SiC structure publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control doi: 10.1109/TUFFC.2013.2606 – volume: 11 start-page: 20482 year: 2019 ident: sstacb80ebib142 article-title: Ferroelectricity and large piezoelectric response of AlN/ScN superlattice publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b22602 – volume: 104 year: 2014 ident: sstacb80ebib66 article-title: Enhanced piezoelectricity in YbGaN films near phase boundary publication-title: Appl. Phys. Lett. doi: 10.1063/1.4866969 – volume: 14 start-page: 1 year: 2019 ident: sstacb80ebib70 article-title: Dominant influence of interface roughness scattering on the performance of GaN terahertz quantum cascade lasers publication-title: Nanoscale Res. Lett. doi: 10.1186/s11671-019-3043-6 – volume: 37 start-page: 805 year: 2016 ident: sstacb80ebib211 article-title: Physics-based circuit-compatible SPICE model for ferroelectric transistors publication-title: IEEE Electon. Device Lett. doi: 10.1109/LED.2016.2558149 – year: 2009 ident: sstacb80ebib49 – volume: 122 year: 2017 ident: sstacb80ebib130 article-title: Tuning the piezoelectric and mechanical properties of the AlN system via alloying with YN and BN publication-title: J. Appl. Phys. doi: 10.1063/1.4993254 – volume: 121 year: 2022 ident: sstacb80ebib15 article-title: Impact of dislocation density on the ferroelectric properties of ScAlN grown by molecular beam epitaxy publication-title: Appl. Phys. Lett. doi: 10.1063/5.0099913 – volume: 206 start-page: 2809 year: 2009 ident: sstacb80ebib54 article-title: Growth of scandium aluminum nitride nanowires on ScN (111) films on 6H‐SiC substrates by HVPE publication-title: Phys. Status Solid a doi: 10.1002/pssa.200925060 – volume: 116 year: 2020 ident: sstacb80ebib89 article-title: Graphene-assisted molecular beam epitaxy of AlN for AlGaN deep-ultraviolet light-emitting diodes publication-title: Appl. Phys. Lett. doi: 10.1063/1.5144906 – start-page: 1 year: 2020 ident: sstacb80ebib242 article-title: Integrated ScAlN photonic circuits on silicon substrate – volume: 229 start-page: 403 year: 2004 ident: sstacb80ebib21 article-title: Characterization of nonlinear optical parameters of KDP, LiNbO3 and BBO crystals publication-title: Opt. Commun. doi: 10.1016/j.optcom.2003.10.046 – volume: 130 year: 2021 ident: sstacb80ebib171 article-title: Electrical breakdown strength enhancement in aluminum scandium nitride through a compositionally modulated periodic multilayer structure publication-title: J. Appl. Phys. doi: 10.1063/5.0064041 – volume: 120 year: 2022 ident: sstacb80ebib19 article-title: Epitaxial Sc x Al1−x N on GaN exhibits attractive high-K dielectric properties publication-title: Appl. Phys. Lett. doi: 10.1063/5.0075636 – volume: 126 year: 2019 ident: sstacb80ebib61 article-title: Optical constants and band gap of wurtzite Al1−x Sc x N/Al2O3 prepared by magnetron sputter epitaxy for scandium concentrations up to x = 0.41 publication-title: J. Appl. Phys. doi: 10.1063/1.5101043 – volume: 32 start-page: 2453 year: 2007 ident: sstacb80ebib190 article-title: Large nonlinear optical response of polycrystalline Bi3.25La0.75Ti3O12 ferroelectric thin films on quartz substrates publication-title: Opt. Lett. doi: 10.1364/OL.32.002453 – volume: 15 year: 2021 ident: sstacb80ebib152 article-title: A segmented‐target sputtering process for growth of sub‐50 nm ferroelectric scandium–aluminum–nitride films with composition and stress tuning publication-title: Phys. Status Solidi doi: 10.1002/pssr.202100087 – volume: 128 year: 2020 ident: sstacb80ebib62 article-title: Effects of deposition conditions on the ferroelectric properties of (Al1−x Sc x ) N thin films publication-title: J. Appl. Phys. doi: 10.1063/5.0015281 – start-page: 1 year: 2020 ident: sstacb80ebib154 article-title: Ferroelectricity in AlScN: switching, imprint and sub-150 nm films doi: 10.1109/IFCS-ISAF41089.2020.9234883 – volume: 5 year: 2012 ident: sstacb80ebib85 article-title: High-electron-mobility InN layers grown by boundary-temperature-controlled epitaxy publication-title: Appl. Phys. Express doi: 10.1143/APEX.5.015502 – start-page: 1 year: 2006 ident: sstacb80ebib197 article-title: Can InAlN/GaN be an alternative to high power/high temperature AlGaN/GaN devices? doi: 10.1109/IEDM.2006.346935 – start-page: 1 year: 2021 ident: sstacb80ebib147 article-title: Ferroelectric considerations on co-sputtered 30% ALSCN with different DC+RF ratios doi: 10.1109/EFTF/IFCS52194.2021.9604316 – volume: 44 start-page: 17 year: 2022 ident: sstacb80ebib202 article-title: AlScN/GaN HEMTs grown by metal-organic chemical vapor deposition with 8.4 W/mm output power and 48% power-added efficiency at 30 GHz publication-title: IEEE Electon. Device Lett. doi: 10.1109/LED.2022.3220877 – year: 2020 ident: sstacb80ebib183 doi: 10.1016/j.ijleo.2020.165313 – volume: 3 year: 2015 ident: sstacb80ebib58 article-title: Stress controlled pulsed direct current co-sputtered Al1−x Sc x N as piezoelectric phase for micromechanical sensor applications publication-title: APL Mater. doi: 10.1063/1.4934756 – volume: 106 year: 2009 ident: sstacb80ebib80 article-title: Structural properties of wurtzitelike ScGaN films grown by NH 3-molecular beam epitaxy publication-title: J. Appl. Phys. doi: 10.1063/1.3268466 – volume: 117 year: 2020 ident: sstacb80ebib48 article-title: Structural and piezoelectric properties of ultra-thin Sc x Al1−x N films grown on GaN by molecular beam epitaxy publication-title: Appl. Phys. Lett. doi: 10.1063/5.0013943 – volume: 16 start-page: 1328 year: 2016 ident: sstacb80ebib100 article-title: Lattice-polarity-driven epitaxy of hexagonal semiconductor nanowires publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b04726 – volume: 34 year: 2021 ident: sstacb80ebib75 article-title: Lattice polarity manipulation of quasi‐vdW epitaxial GaN films on graphene through interface atomic configuration publication-title: Adv. Mater. doi: 10.1002/adma.202106814 – volume: 4 start-page: 786 year: 2010 ident: sstacb80ebib37 article-title: Quantum transduction of telecommunications-band single photons from a quantum dot by frequency upconversion publication-title: Nat. Photon. doi: 10.1038/nphoton.2010.221 – volume: 4 year: 2019 ident: sstacb80ebib33 article-title: Emerging memory devices for neuromorphic computing publication-title: Adv. Mater. Technol. doi: 10.1002/admt.201800589 – volume: 4 start-page: 243 year: 2019 ident: sstacb80ebib210 article-title: Ferroelectric negative capacitance publication-title: Nat. Rev. Mater. doi: 10.1038/s41578-019-0089-0 – volume: 118 year: 2021 ident: sstacb80ebib94 article-title: Oxygen defect dominated photoluminescence emission of Sc x Al1−x N grown by molecular beam epitaxy publication-title: Appl. Phys. Lett. doi: 10.1063/5.0035026 – volume: 30 start-page: 475 year: 2017 ident: sstacb80ebib244 article-title: Epitaxial ScAlN etch-stop layers grown by molecular beam epitaxy for selective etching of AlN and GaN publication-title: IEEE Trans. Semicond. Manuf. doi: 10.1109/TSM.2017.2749201 – volume: 10 start-page: 1107 year: 2022 ident: sstacb80ebib102 article-title: N-polar InGaN/GaN nanowires: overcoming the efficiency cliff of red-emitting micro-LEDs publication-title: Photon. Res. doi: 10.1364/PRJ.450465 – volume: 7 start-page: 25 year: 2014 ident: sstacb80ebib251 article-title: Piezoelectric and ferroelectric materials and structures for energy harvesting applications publication-title: Energy Environ. Sci. doi: 10.1039/C3EE42454E – volume: 310 start-page: 1075 year: 2008 ident: sstacb80ebib55 article-title: HVPE of scandium nitride on 6H–SiC (0 0 0 1) publication-title: J. Cryst. Growth doi: 10.1016/j.jcrysgro.2007.12.053 – volume: 8 year: 2022 ident: sstacb80ebib175 article-title: Wake‐up in Al1−x B x N ferroelectric films publication-title: Adv. Electron. Mater. doi: 10.1002/aelm.202100931 – volume: 9 start-page: 1422 year: 2022 ident: sstacb80ebib180 article-title: Giant tunnelling electroresistance through 2D sliding ferroelectric materials publication-title: Mater. Horiz. doi: 10.1039/D2MH00080F – volume: 3 start-page: 77 year: 2008 ident: sstacb80ebib204 article-title: Negative capacitance to the rescue? publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2008.18 – volume: 4 year: 2020 ident: sstacb80ebib137 article-title: Emergence of ferroelectricity in halide perovskites publication-title: Small Methods doi: 10.1002/smtd.202000149 – volume: 4 start-page: 134 year: 2010 ident: sstacb80ebib221 article-title: Ferroelectric photovoltaics publication-title: Nat. Photon. doi: 10.1038/nphoton.2010.15 – volume: 14 start-page: 3399 year: 2002 ident: sstacb80ebib99 article-title: Pyroelectric properties of Al (In) GaN/GaN hetero-and quantum well structures publication-title: J. Phys.: Condens. Matter doi: 10.1088/0953-8984/14/13/302 – start-page: 78 year: 2022 ident: sstacb80ebib243 article-title: Aluminum scandium nitride waveguide in the near-infrared doi: 10.1117/12.2626712 – start-page: 8.1 year: 2021 ident: sstacb80ebib214 article-title: Multiscale modeling of Al0.7Sc0.3N-based FeRAM: the steep switching, leakage and selector-free array doi: 10.1109/IEDM19574.2021.9720535 – volume: 7 start-page: 2345 year: 2022 ident: sstacb80ebib250 article-title: Miniaturized CO2 gas sensor using 20% ScAlN-based pyroelectric detector publication-title: ACS Sens. doi: 10.1021/acssensors.2c00980 – start-page: p 197 year: 1996 ident: sstacb80ebib76 article-title: Growth of polycrystalline scandium nitride by – volume: 14 year: 2021 ident: sstacb80ebib158 article-title: Thickness scaling of (Al0.8Sc0.2)N films with remanent polarization beyond 100 μC cm−2 around 10 nm in thickness publication-title: Appl. Phys. Express doi: 10.35848/1882-0786/ac2261 – volume: 479 start-page: 329 year: 2011 ident: sstacb80ebib206 article-title: Tunnel field-effect transistors as energy-efficient electronic switches publication-title: Nature doi: 10.1038/nature10679 – start-page: 1 year: 2020 ident: sstacb80ebib27 article-title: A high-kt 2 switchable ferroelectric Al0.7Sc0.3N film bulk acoustic resonator doi: 10.1109/IFCS-ISAF41089.2020.9234831 – start-page: 1 year: 2018 ident: sstacb80ebib230 article-title: High k2 tQ waveguide-based ScAlN-on-Si UHF and SHF resonators doi: 10.1109/FCS.2018.8597447 – volume: 109 start-page: 345 year: 1985 ident: sstacb80ebib84 article-title: The ternary systems ScAlN and YAlN publication-title: J. Less-Common Met. doi: 10.1016/0022-5088(85)90066-9 – volume: 119 year: 2021 ident: sstacb80ebib166 article-title: Strongly temperature dependent ferroelectric switching in AlN, Al1−x Sc x N, and Al1−x B x N thin films publication-title: Appl. Phys. Lett. doi: 10.1063/5.0057869 – volume: 31 start-page: 195 year: 2010 ident: sstacb80ebib195 article-title: AlGaN/GaN HEMT with 300-GHz f max publication-title: IEEE Electon. Device Lett. doi: 10.1109/LED.2009.2038935 – year: 2003 ident: sstacb80ebib184 – volume: 6 year: 2018 ident: sstacb80ebib92 article-title: Elastic modulus and coefficient of thermal expansion of piezoelectric Al1−x Sc x N (up to x = 0.41) thin films publication-title: APL Mater. doi: 10.1063/1.5040190 – volume: 372 start-page: 1462 year: 2021 ident: sstacb80ebib177 article-title: Interfacial ferroelectricity by van der Waals sliding publication-title: Science doi: 10.1126/science.abe8177 – volume: 68 start-page: 2971 year: 2021 ident: sstacb80ebib253 article-title: Design and performance of scAlN/AlN trapezoidal cantilever-based MEMS piezoelectric energy harvesters publication-title: IEEE Trans. Electron Devices doi: 10.1109/TED.2021.3072612 – volume: 119 year: 2021 ident: sstacb80ebib68 article-title: Demonstration of ferroelectricity in ScGaN thin film using sputtering method publication-title: Appl. Phys. Lett. doi: 10.1063/5.0068059 – volume: 5 year: 2019 ident: sstacb80ebib87 article-title: Repeatable room temperature negative differential resistance in AlN/GaN resonant tunneling diodes grown on sapphire publication-title: Adv. Electron. Mater. doi: 10.1002/aelm.201800651 – volume: 38 start-page: 2810 year: 2013 ident: sstacb80ebib237 article-title: Optical frequency comb generation from aluminum nitride microring resonator publication-title: Opt. Lett. doi: 10.1364/OL.38.002810 – volume: 21 start-page: 3753 year: 2021 ident: sstacb80ebib13 article-title: Post-CMOS compatible aluminum scandium nitride/2D channel ferroelectric field-effect-transistor memory publication-title: Nano Lett. doi: 10.1021/acs.nanolett.0c05051 – start-page: 152 year: 2021 ident: sstacb80ebib248 article-title: CMOS compatible MEMS pyroelectric infrared detectors: from AlN to ScAlN doi: 10.1117/12.2582707 – volume: 13 year: 2020 ident: sstacb80ebib90 article-title: Control of phase purity in high scandium fraction heteroepitaxial ScAlN grown by molecular beam epitaxy publication-title: Appl. Phys. Express doi: 10.35848/1882-0786/ab916a – volume: 588 start-page: 71 year: 2020 ident: sstacb80ebib176 article-title: Unconventional ferroelectricity in moiré heterostructures publication-title: Nature doi: 10.1038/s41586-020-2970-9 – volume: 115 year: 2019 ident: sstacb80ebib199 article-title: Planar anisotropic Shubnikov-de-Haas oscillations of two-dimensional electron gas in AlN/GaN heterostructure publication-title: Appl. Phys. Lett. doi: 10.1063/1.5116747 – start-page: 646 year: 2021 ident: sstacb80ebib235 article-title: Characterization of dielectric and piezoelectric properties of ferroelectric alscn thin films doi: 10.1109/MEMS51782.2021.9375427 – volume: 1 year: 2017 ident: sstacb80ebib113 article-title: Band bowing and the direct-to-indirect crossover in random BAlN alloys publication-title: Phys. Rev. Mater. doi: 10.1103/PhysRevMaterials.1.065001 – volume: 73 year: 2006 ident: sstacb80ebib139 article-title: Piezoelectric response and free-energy instability in the perovskite crystals BaTiO3, PbTiO3, and Pb(Zr, Ti)O3 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.73.174106 – volume: 58 start-page: SC1045 year: 2019 ident: sstacb80ebib46 article-title: Investigation of growth parameters for ScAlN-barrier HEMT structures by plasma-assisted MBE publication-title: Jpn. J. Appl. Phys. doi: 10.7567/1347-4065/ab124f – volume: 12 start-page: 3562 year: 2012 ident: sstacb80ebib238 article-title: Low-loss, silicon integrated, aluminum nitride photonic circuits and their use for electro-optic signal processing publication-title: Nano Lett. doi: 10.1021/nl3011885 – volume: 6 year: 2016 ident: sstacb80ebib98 article-title: Correct implementation of polarization constants in wurtzite materials and impact on III-nitrides publication-title: Phys. Rev. X doi: 10.1103/PhysRevX.6.021038 – volume: 117 year: 2020 ident: sstacb80ebib118 article-title: Band alignment of ScAlN/GaN heterojunction publication-title: Appl. Phys. Lett. doi: 10.1063/5.0029488 – volume: 2 start-page: 580 year: 2019 ident: sstacb80ebib218 article-title: A ferroelectric semiconductor field-effect transistor publication-title: Nat. Electron. doi: 10.1038/s41928-019-0338-7 – volume: 26 start-page: 102 year: 2016 ident: sstacb80ebib252 article-title: ScAlN MEMS cantilevers for vibrational energy harvesting purposes publication-title: J. Microelectromech. Syst. doi: 10.1109/JMEMS.2016.2614660 – volume: 15 start-page: 40 year: 2000 ident: sstacb80ebib93 article-title: Lattice parameters and thermal expansion of GaN publication-title: J. Mater. Res. doi: 10.1557/JMR.2000.0011 – volume: 113 start-page: 650 year: 2018 ident: sstacb80ebib88 article-title: Effect of indium droplets on growth of InGaN film by molecular beam epitaxy publication-title: Superlattices Microstruct. doi: 10.1016/j.spmi.2017.11.053 – volume: 10 start-page: 262 year: 2016 ident: sstacb80ebib116 article-title: Hexagonal boron nitride is an indirect bandgap semiconductor publication-title: Nat. Photon. doi: 10.1038/nphoton.2015.277 – volume: 61 start-page: SH1003 year: 2022 ident: sstacb80ebib146 article-title: Influence of sputtering power on the switching and reliability of ferroelectric Al0.7Sc0.3N films publication-title: Jpn. J. Appl. Phys. doi: 10.35848/1347-4065/ac5db0 – start-page: 1 year: 2020 ident: sstacb80ebib144 article-title: Ferroelectric c-axis textured aluminum scandium nitride thin films of 100 nm thickness doi: 10.1109/IFCS-ISAF41089.2020.9234910 – volume: 55 year: 2021 ident: sstacb80ebib150 article-title: Negative-ion bombardment increases during low-pressure sputtering deposition and their effects on the crystallinities and piezoelectric properties of scandium aluminum nitride films publication-title: J. Appl. Phys. doi: 10.1088/1361-6463/ac3d5c – volume: 119 year: 2021 ident: sstacb80ebib83 article-title: Fully epitaxial ferroelectric ScGaN grown on GaN by molecular beam epitaxy publication-title: Appl. Phys. Lett. doi: 10.1063/5.0060021 – volume: 15 start-page: 14295 year: 2021 ident: sstacb80ebib219 article-title: Photovoltaic field-effect photodiodes based on double van der Waals heterojunctions publication-title: ACS Nano doi: 10.1021/acsnano.1c02830 – volume: 15 year: 2021 ident: sstacb80ebib14 article-title: Sub‐microsecond polarization switching in (Al, Sc) N ferroelectric capacitors grown on complementary metal–oxide–semiconductor‐compatible aluminum electrodes publication-title: Phys. Status Solidi doi: 10.1002/pssr.202000575 – volume: 6 year: 2020 ident: sstacb80ebib8 article-title: Controlling defect formation of nanoscale AlN: toward efficient current conduction of ultrawide‐bandgap semiconductors publication-title: Adv. Electron. Mater. doi: 10.1002/aelm.202000337 – volume: 31 year: 2021 ident: sstacb80ebib95 article-title: Sec‐eliminating the SARS‐CoV‐2 by AlGaN based high power deep ultraviolet light source publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202008452 – volume: 252 start-page: 251 year: 2015 ident: sstacb80ebib109 article-title: Development of epitaxial Al x Sc1−x N for artificially structured metal/semiconductor superlattice metamaterials publication-title: Phys. Status Solid b doi: 10.1002/pssb.201451314 – volume: 13 start-page: 1282 year: 2022 ident: sstacb80ebib167 article-title: Al1−x Sc x N thin films at high temperatures: sc-dependent instability and anomalous thermal expansion publication-title: Micromachines doi: 10.3390/mi13081282 – volume: 218 year: 2021 ident: sstacb80ebib149 article-title: Impact of deposition temperature on crystal structure and ferroelectric properties of (Al1−x Sc x )N films prepared by sputtering method publication-title: Phys. Status Solid a doi: 10.1002/pssa.202100302 – volume: 85 start-page: 3687 year: 2004 ident: sstacb80ebib188 article-title: Giant optical nonlinearity of a Bi2Nd2Ti3O12 ferroelectric thin film publication-title: Appl. Phys. Lett. doi: 10.1063/1.1810626 – volume: 11 start-page: 1 year: 2020 ident: sstacb80ebib212 article-title: Is negative capacitance FET a steep-slope logic switch? publication-title: Nat. Commun. doi: 10.1038/s41467-019-13993-7 – volume: 503 start-page: 509 year: 2013 ident: sstacb80ebib224 article-title: Perovskite oxides for visible-light-absorbing ferroelectric and photovoltaic materials publication-title: Nature doi: 10.1038/nature12622 – volume: 95 year: 2009 ident: sstacb80ebib17 article-title: Influence of growth temperature and scandium concentration on piezoelectric response of scandium aluminum nitride alloy thin films publication-title: Appl. Phys. Lett. doi: 10.1063/1.3251072 – volume: 122 year: 2023 ident: sstacb80ebib162 article-title: Thickness scaling down to 5 nm of ferroelectric ScAlN on CMOS compatible molybdenum grown by molecular beam epitaxy publication-title: Appl. Phys. Lett. doi: 10.1063/5.0136265 – volume: 10 year: 2018 ident: sstacb80ebib38 article-title: Electrooptomechanical equivalent circuits for quantum transduction publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.10.044036 – volume: 10 year: 2022 ident: sstacb80ebib225 article-title: Reconfigurable self-powered deep UV photodetectors based on ultrawide bandgap ferroelectric ScAlN publication-title: APL Mater. doi: 10.1063/5.0122943 – volume: 8 year: 2022 ident: sstacb80ebib32 article-title: An epitaxial ferroelectric ScAlN/GaN heterostructure memory publication-title: Adv. Electron. Mater. doi: 10.1002/aelm.202200005 – year: 2011 ident: sstacb80ebib185 – volume: 116 year: 2020 ident: sstacb80ebib39 article-title: A GaN/AlN quantum cascade detector with a broad response from the mid-infrared (4.1 μ m) to the visible (550 nm) spectral range publication-title: Appl. Phys. Lett. doi: 10.1063/5.0003615 – volume: 70 year: 2004 ident: sstacb80ebib78 article-title: ScGaN alloy growth by molecular beam epitaxy: evidence for a metastable layered hexagonal phase publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.70.193309 – volume: 14 start-page: 2268 year: 1997 ident: sstacb80ebib191 article-title: Absolute scale of second-order nonlinear-optical coefficients publication-title: J. Opt. Soc. Am. B doi: 10.1364/JOSAB.14.002268 – volume: 42 start-page: 911 year: 2021 ident: sstacb80ebib233 article-title: High-overtone thin film ferroelectric AlScN-on-silicon composite resonators publication-title: IEEE Electon. Device Lett. doi: 10.1109/LED.2021.3070274 – volume: 118 year: 2021 ident: sstacb80ebib241 article-title: Demonstration of green and UV wavelength high Q aluminum nitride on sapphire microring resonators integrated with microheaters publication-title: Appl. Phys. Lett. doi: 10.1063/5.0052163 – volume: 32 year: 2020 ident: sstacb80ebib34 article-title: Reproducible ultrathin ferroelectric domain switching for high‐performance neuromorphic computing publication-title: Adv. Mater. doi: 10.1002/adma.201905764 – start-page: 1 year: 2020 ident: sstacb80ebib168 article-title: Effects of post-annealing on texture evolution of sputtered ScAlN films doi: 10.1109/IUS46767.2020.9251741 – volume: 15 year: 2022 ident: sstacb80ebib173 article-title: Lower ferroelectric coercive field of ScGaN with equivalent remanent polarization as ScAlN publication-title: Appl. Phys. Express doi: 10.35848/1882-0786/ac8048 – volume: 115 year: 2019 ident: sstacb80ebib112 article-title: BAlGaN alloys nearly lattice-matched to AlN for efficient UV LEDs publication-title: Appl. Phys. Lett. doi: 10.1063/1.5129387 – volume: 107 year: 2010 ident: sstacb80ebib43 article-title: Wurtzite structure Sc1−x Al x N solid solution films grown by reactive magnetron sputter epitaxy: structural characterization and first-principles calculations publication-title: J. Appl. Phys. doi: 10.1063/1.3448235 – start-page: 1 year: 2018 ident: sstacb80ebib200 article-title: Scandium aluminum nitride as an emerging material for high power transistors doi: 10.1016/j.ssmph.2018.04.004 – volume: 80 year: 2017 ident: sstacb80ebib74 article-title: Optoelectronic device physics and technology of nitride semiconductors from the UV to the terahertz publication-title: Rep. Prog. Phys. doi: 10.1088/1361-6633/aa7bb2 – volume: 91 year: 2007 ident: sstacb80ebib104 article-title: Polarity inversion in high Mg-doped In-polar InN epitaxial layers publication-title: Appl. Phys. Lett. doi: 10.1063/1.2773762 – volume: 62 year: 2000 ident: sstacb80ebib40 article-title: Electronic structure and optical spectra of the semimetal ScAs and of the indirect-band-gap semiconductors ScN and GdN publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.62.13538 – volume: 5 year: 2018 ident: sstacb80ebib198 article-title: High‐mobility two‐dimensional electron gas at InGaN/InN heterointerface grown by molecular beam epitaxy publication-title: Adv. Sci. doi: 10.1002/advs.201800844 – volume: 18 year: 2022 ident: sstacb80ebib6 article-title: Hafnium oxide (HfO2)–a multifunctional oxide: a review on the prospect and challenges of hafnium oxide in resistive switching and ferroelectric memories publication-title: Small doi: 10.1002/smll.202107575 – volume: 8 year: 2021 ident: sstacb80ebib223 article-title: Recent progress on electrical and optical manipulations of perovskite photodetectors publication-title: Adv. Sci. doi: 10.1002/advs.202100569 – volume: 32 year: 2022 ident: sstacb80ebib64 article-title: From fully strained to relaxed: epitaxial ferroelectric Al1−x Sc x N for III‐N technology publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202109632 – volume: 130 start-page: 436 year: 2022 ident: sstacb80ebib157 article-title: Enhancement of crystal anisotropy and ferroelectricity by decreasing thickness in (Al, Sc)N films publication-title: J. Ceram. Soc. Japan doi: 10.2109/jcersj2.21184 – volume: 16 start-page: 1280 year: 2022 ident: sstacb80ebib222 article-title: Ferro-pyro-phototronic effect in monocrystalline 2D ferroelectric perovskite for high-sensitive, self-powered, and stable ultraviolet photodetector publication-title: ACS Nano doi: 10.1021/acsnano.1c09119 – volume: 6 start-page: 1361 year: 2019 ident: sstacb80ebib239 article-title: On-chip χ (2) microring optical parametric oscillator publication-title: Optica doi: 10.1364/OPTICA.6.001361 – volume: 60 year: 2021 ident: sstacb80ebib169 article-title: A possible origin of the large leakage current in ferroelectric Al1−x Sc x N films publication-title: Jpn. J. Appl. Phys. doi: 10.35848/1347-4065/abe644 – start-page: 1 year: 2022 ident: sstacb80ebib63 article-title: Texture evolution of ferroelectric AlScN films on metal under-layers doi: 10.1109/ISAF51494.2022.9870108 – volume: 22 start-page: 7690 year: 2022 ident: sstacb80ebib213 article-title: Reconfigurable compute-in-memory on field-programmable ferroelectric diodes publication-title: Nano Lett. doi: 10.1021/acs.nanolett.2c03169 – volume: 346 year: 2021 ident: sstacb80ebib249 article-title: NDIR CO2 gas sensing using CMOS compatible MEMS ScAlN-based pyroelectric detector publication-title: Sens. Actuators B doi: 10.1016/j.snb.2021.130437 – volume: 117 year: 2020 ident: sstacb80ebib29 article-title: A functional CMOS compatible MEMS pyroelectric detector using 12%-doped scandium aluminum nitride publication-title: Appl. Phys. Lett. doi: 10.1063/5.0024192 – volume: 23 year: 2021 ident: sstacb80ebib187 article-title: Roadmap on bio-nano-photonics publication-title: J. Opt. doi: 10.1088/2040-8986/abff94 – volume: 114 year: 2013 ident: sstacb80ebib172 article-title: Elastic constants and critical thicknesses of ScGaN and ScAlN publication-title: J. Appl. Phys. doi: 10.1063/1.4848036 – volume: 8 start-page: 405 year: 2008 ident: sstacb80ebib203 article-title: Use of negative capacitance to provide voltage amplification for low power nanoscale devices publication-title: Nano Lett. doi: 10.1021/nl071804g – volume: 65 year: 2002 ident: sstacb80ebib42 article-title: First-principles calculations of the ground-state properties and stability of ScN publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.65.045204 – volume: 372 start-page: 1458 year: 2021 ident: sstacb80ebib179 article-title: Stacking-engineered ferroelectricity in bilayer boron nitride publication-title: Science doi: 10.1126/science.abd3230 – volume: 8 year: 2020 ident: sstacb80ebib220 article-title: Self‐powered photodetectors based on 2D materials publication-title: Adv. Opt. Mater. doi: 10.1002/adom.201900765 – volume: 2 start-page: 1 year: 2016 ident: sstacb80ebib7 article-title: Thin-film ferroelectric materials and their applications publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2016.87 – volume: 106 year: 2015 ident: sstacb80ebib107 article-title: Band gaps of wurtzite Sc x Ga1−x N alloys publication-title: Appl. Phys. Lett. doi: 10.1063/1.4916679 – volume: 68 start-page: 5192 year: 2021 ident: sstacb80ebib231 article-title: A high Q value ScAlN/AlN-based SAW resonator for load sensing publication-title: IEEE Trans. Electron Devices doi: 10.1109/TED.2021.3107232 – volume: 13 start-page: 887 year: 2022 ident: sstacb80ebib11 article-title: High-temperature ferroelectric behavior of Al0.7Sc0.3N publication-title: Micromachines doi: 10.3390/mi13060887 – volume: 111 year: 2017 ident: sstacb80ebib132 article-title: Wurtzite BAlN and BGaN alloys for heterointerface polarization engineering publication-title: Appl. Phys. Lett. doi: 10.1063/1.5008451 – volume: 129 year: 2021 ident: sstacb80ebib60 article-title: Atomic scale confirmation of ferroelectric polarization inversion in wurtzite-type AlScN publication-title: J. Appl. Phys. doi: 10.1063/5.0033205 – volume: 127 year: 2020 ident: sstacb80ebib52 article-title: Metalorganic chemical vapor phase deposition of AlScN/GaN heterostructures publication-title: J. Appl. Phys. doi: 10.1063/5.0003095 – volume: 45 start-page: 3811 year: 2016 ident: sstacb80ebib136 article-title: Symmetry breaking in molecular ferroelectrics publication-title: Chem. Soc. Rev. doi: 10.1039/C5CS00308C – volume: 7 year: 2020 ident: sstacb80ebib138 article-title: Hexagonal BN‐assisted epitaxy of strain released GaN films for true green light‐emitting diodes publication-title: Adv. Sci. doi: 10.1002/advs.202000917 – volume: 85 start-page: 3222 year: 1999 ident: sstacb80ebib192 article-title: Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N-and Ga-face AlGaN/GaN heterostructures publication-title: J. Appl. Phys. doi: 10.1063/1.369664 – volume: 118 year: 2021 ident: sstacb80ebib145 article-title: Room-temperature deposition of a poling-free ferroelectric AlScN film by reactive sputtering publication-title: Appl. Phys. Lett. doi: 10.1063/5.0035335 – volume: 3 start-page: 85 year: 2009 ident: sstacb80ebib186 article-title: Ten years of nonlinear optics in photonic crystal fibre publication-title: Nat. Photon. doi: 10.1038/nphoton.2008.285 – volume: 111 year: 2017 ident: sstacb80ebib111 article-title: BInGaN alloys nearly lattice-matched to GaN for high-power high-efficiency visible LEDs publication-title: Appl. Phys. Lett. doi: 10.1063/1.4997601 – volume: 121 year: 2022 ident: sstacb80ebib201 article-title: Transport properties of polarization-induced 2D electron gases in epitaxial AlScN/GaN heterojunctions publication-title: Appl. Phys. Lett. doi: 10.1063/5.0108475 – volume: 56 year: 1997 ident: sstacb80ebib41 article-title: Spontaneous polarization and piezoelectric constants of III–V nitrides publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.56.R10024 – volume: 31 year: 2021 ident: sstacb80ebib71 article-title: Controlling phase‐coherent electron transport in III‐nitrides: toward room temperature negative differential resistance in AlGaN/GaN double barrier structures publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202007216 – volume: 5 year: 2019 ident: sstacb80ebib216 article-title: Synergetic electronic and ionic contributions to electroresistance in ferroelectric capacitors publication-title: Adv. Electron. Mater. doi: 10.1002/aelm.201800646 – volume: 118 year: 2021 ident: sstacb80ebib31 article-title: Aluminum scandium nitride-based metal–ferroelectric–metal diode memory devices with high on/off ratios publication-title: Appl. Phys. Lett. doi: 10.1063/5.0051940 – volume: 15 year: 2021 ident: sstacb80ebib236 article-title: Ferroelectric aluminum scandium nitride thin film bulk acoustic resonators with polarization‐dependent operating states publication-title: Phys. Status Solidi doi: 10.1002/pssr.202100034 – volume: 78 start-page: 2891 year: 2001 ident: sstacb80ebib65 article-title: Band-gap engineering in sputter-deposited Sc x Ga1−x N publication-title: Appl. Phys. Lett. doi: 10.1063/1.1370548 – volume: 118 year: 2015 ident: sstacb80ebib108 article-title: Optical and electron transport properties of rock-salt Sc1−x Al x N publication-title: J. Appl. Phys. doi: 10.1063/1.4923429 – volume: 118 year: 2021 ident: sstacb80ebib163 article-title: On the exceptional temperature stability of ferroelectric Al1−x Sc x N thin films publication-title: Appl. Phys. Lett. doi: 10.1063/5.0053649 – volume: 65 start-page: 6205 year: 2017 ident: sstacb80ebib226 article-title: What will 5G antennas and propagation be? publication-title: IEEE Trans. Antennas Propag. doi: 10.1109/TAP.2017.2774707 – volume: 10 start-page: 2639 year: 2019 ident: sstacb80ebib117 article-title: Direct band-gap crossover in epitaxial monolayer boron nitride publication-title: Nat. Commun. doi: 10.1038/s41467-019-10610-5 – volume: 129 year: 2021 ident: sstacb80ebib9 article-title: Next generation ferroelectric materials for semiconductor process integration and their applications publication-title: J. Appl. Phys. doi: 10.1063/5.0037617 – volume: 8 year: 2022 ident: sstacb80ebib160 article-title: Investigation of optimum deposition conditions of radio frequency reactive magnetron sputtering of Al0.7Sc0.3N film with thickness down to 20 nm publication-title: Adv. Electron. Mater. doi: 10.1002/aelm.202200726 – start-page: 786 year: 2019 ident: sstacb80ebib26 article-title: Single crystalline ScAlN surface acoustic wave resonators with large figure of merit (Q×kt 2) doi: 10.1109/MWSYM.2019.8700824 – start-page: 1046 year: 2022 ident: sstacb80ebib234 article-title: High-order Sezawa mode Alscn/Gan/sapphire surface acoustic wave resonators doi: 10.1093/biolre/ioac125 – volume: 1 start-page: 2711 year: 2016 ident: sstacb80ebib133 article-title: Al1−x Sc x N thin film structures for pyroelectric sensing applications publication-title: MRS Adv. doi: 10.1557/adv.2016.510 – volume: 120 year: 2022 ident: sstacb80ebib69 article-title: Quaternary alloy ScAlGaN: a promising strategy to improve the quality of ScAlN publication-title: Appl. Phys. Lett. doi: 10.1063/5.0060608 |
SSID | ssj0011830 |
Score | 2.5959089 |
SecondaryResourceType | review_article |
Snippet | III-nitride semiconductors are promising optoelectronic and electronic materials and have been extensively investigated in the past decades. New... |
SourceID | crossref iop |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 43002 |
SubjectTerms | BAlN ferroelectric hBN nitride semiconductors ScAlN ScGaN |
Title | Dawn of nitride ferroelectric semiconductors: from materials to devices |
URI | https://iopscience.iop.org/article/10.1088/1361-6641/acb80e |
Volume | 38 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS9xAFH_sWgp6kNYqfrQyB3vwkG4yb2YyqydRt1aoeqjU2zCTmYAgyZKk-O_7ZhMXhSLecniZCT_eZ94XwAFFXM6rgAl3FhMh0SUuU47kiudk0FUoRWxw_n2lLm7F5Z28G8Hxshemng-q_wc99oOCewiHgjg9yVBliVIim9jC6TSM4QNqpWPkdY1_lykE4tXhBwuFSWSIhhzl_054ZZPGdO8LEzP7BOuDb8hO-i_5DKNQbcDai4mBG_BxUbFZtF_g55l9rFhdMpLJ5t4HVoamqfutNvcFa2PRe13Faa510x6x2EbCyDvtGY51NfNhoSQ24XZ2_uf0Ihm2IiSF4GmXTFHmnjtHkVFucy-DyAQvfS6tnErk6DjiVDpy9NCmwvKyDFMi5C6zORalwy1YqeoqbAMjX0WSjQ-Yk5FPQ2691soLnyJp8FQXOzB5xsUUw8jwuLniwSxS11qbiKSJSJoeyR04XL4x78dlvEH7naA2g8y0b9CxV3Rt2xnURpg4rizlZu7L3XcetQercV18X3nzFVa65l_4Rk5F5_Zh_Ov6Zn_BQk88p8Rk |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS-UwFA56RRkXg09GndEsdOGi3jYnSXvdyTjX69uForuQNCkI0l7ain_fkzaKgsjsujhNysd59rwI2cWIy1jpIGJGQ8QFmMgk0qBcsRQNunQF9w3Ol1dycsfPHsRD2HPa9cJU06D6D_CxHxTcQxgK4rJhAjKJpOTJUOcmi91waotZMidASr-74Rru39MIyK_hJwuGSmiMQp7yq1M-2aVZvPuDmRkvkZ_BP6RH_dcskxlXrpDFD1MDV8h8V7WZN6vk5Fi_lLQqKMpl_WgdLVxdV_1mm8ecNr7wvSr9RNeqbg6pbyWh6KH2TEfbilrXKYo1cjf-d_t3EoXNCFHOWdxGIxCpZcZgdJTq1ArHE84KmwotRgIYGAYwEgadPdAx16wo3AgJmUl0CnlhYJ0Myqp0vwhFf0WgnXeQoqGPXaptlknLbQyoxeMs3yDDN1xUHsaG--0VT6pLX2eZ8kgqj6Tqkdwg--9vTPuRGd_Q7iHUKshN8w0d_UTXNK2CTHHlR5bFTCELbP7nUTtk4eZ4rC5Or863yA-_Pb4vxPlNBm397P6gj9Ga7Y6PXgHdOcdK |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dawn+of+nitride+ferroelectric+semiconductors%3A+from+materials+to+devices&rft.jtitle=Semiconductor+science+and+technology&rft.au=Wang%2C+Ping&rft.au=Wang%2C+Ding&rft.au=Mondal%2C+Shubham&rft.au=Hu%2C+Mingtao&rft.date=2023-04-01&rft.issn=0268-1242&rft.eissn=1361-6641&rft.volume=38&rft.issue=4&rft.spage=43002&rft_id=info:doi/10.1088%2F1361-6641%2Facb80e&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1361_6641_acb80e |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0268-1242&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0268-1242&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0268-1242&client=summon |