Continuous electrical pumping membrane process for seawater lithium mining

Seawater contains significantly larger quantities of lithium than is found on land, thereby providing an almost unlimited resource of lithium for meeting the rapid growth in demand for lithium batteries. However, lithium extraction from seawater is exceptionally challenging because of its low concen...

Full description

Saved in:
Bibliographic Details
Published inEnergy & environmental science Vol. 14; no. 5; pp. 3152 - 3159
Main Authors Li, Zhen, Li, Chunyang, Liu, Xiaowei, Cao, Li, Li, Peipei, Wei, Ruicong, Li, Xiang, Guo, Dong, Huang, Kuo-Wei, Lai, Zhiping
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 01.01.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Seawater contains significantly larger quantities of lithium than is found on land, thereby providing an almost unlimited resource of lithium for meeting the rapid growth in demand for lithium batteries. However, lithium extraction from seawater is exceptionally challenging because of its low concentration (∼0.1-0.2 ppm) and an abundance of interfering ions. Herein, we creatively employed a solid-state electrolyte membrane, and design a continuous electrically-driven membrane process, which successfully enriches lithium from seawater samples of the Red Sea by 43 000 times ( i.e. , from 0.21 to 9013.43 ppm) with a nominal Li/Mg selectivity >45 million. Lithium phosphate with a purity of 99.94% was precipitated directly from the enriched solution, thereby meeting the purity requirements for application in the lithium battery industry. Furthermore, a preliminary economic analysis shows that the process can be made profitable when coupled with the Chlor-alkali industry. Lithium was enriched up to 10 000 ppm from seawater by a continuous electrical pumping membrane process and collected as battery-grade product by simple precipitation.
AbstractList Seawater contains significantly larger quantities of lithium than is found on land, thereby providing an almost unlimited resource of lithium for meeting the rapid growth in demand for lithium batteries. However, lithium extraction from seawater is exceptionally challenging because of its low concentration (∼0.1–0.2 ppm) and an abundance of interfering ions. Herein, we creatively employed a solid-state electrolyte membrane, and design a continuous electrically-driven membrane process, which successfully enriches lithium from seawater samples of the Red Sea by 43 000 times (i.e., from 0.21 to 9013.43 ppm) with a nominal Li/Mg selectivity >45 million. Lithium phosphate with a purity of 99.94% was precipitated directly from the enriched solution, thereby meeting the purity requirements for application in the lithium battery industry. Furthermore, a preliminary economic analysis shows that the process can be made profitable when coupled with the Chlor-alkali industry.
Seawater contains significantly larger quantities of lithium than is found on land, thereby providing an almost unlimited resource of lithium for meeting the rapid growth in demand for lithium batteries. However, lithium extraction from seawater is exceptionally challenging because of its low concentration (∼0.1-0.2 ppm) and an abundance of interfering ions. Herein, we creatively employed a solid-state electrolyte membrane, and design a continuous electrically-driven membrane process, which successfully enriches lithium from seawater samples of the Red Sea by 43 000 times ( i.e. , from 0.21 to 9013.43 ppm) with a nominal Li/Mg selectivity >45 million. Lithium phosphate with a purity of 99.94% was precipitated directly from the enriched solution, thereby meeting the purity requirements for application in the lithium battery industry. Furthermore, a preliminary economic analysis shows that the process can be made profitable when coupled with the Chlor-alkali industry. Lithium was enriched up to 10 000 ppm from seawater by a continuous electrical pumping membrane process and collected as battery-grade product by simple precipitation.
Seawater contains significantly larger quantities of lithium than is found on land, thereby providing an almost unlimited resource of lithium for meeting the rapid growth in demand for lithium batteries. However, lithium extraction from seawater is exceptionally challenging because of its low concentration (∼0.1–0.2 ppm) and an abundance of interfering ions. Herein, we creatively employed a solid-state electrolyte membrane, and design a continuous electrically-driven membrane process, which successfully enriches lithium from seawater samples of the Red Sea by 43 000 times ( i.e. , from 0.21 to 9013.43 ppm) with a nominal Li/Mg selectivity >45 million. Lithium phosphate with a purity of 99.94% was precipitated directly from the enriched solution, thereby meeting the purity requirements for application in the lithium battery industry. Furthermore, a preliminary economic analysis shows that the process can be made profitable when coupled with the Chlor-alkali industry.
Author Liu, Xiaowei
Li, Zhen
Wei, Ruicong
Lai, Zhiping
Guo, Dong
Cao, Li
Li, Xiang
Huang, Kuo-Wei
Li, Chunyang
Li, Peipei
AuthorAffiliation King Abdullah University of Science and Technology (KAUST)
Division of Physicals Science and Engineering
AuthorAffiliation_xml – name: Division of Physicals Science and Engineering
– name: King Abdullah University of Science and Technology (KAUST)
Author_xml – sequence: 1
  givenname: Zhen
  surname: Li
  fullname: Li, Zhen
– sequence: 2
  givenname: Chunyang
  surname: Li
  fullname: Li, Chunyang
– sequence: 3
  givenname: Xiaowei
  surname: Liu
  fullname: Liu, Xiaowei
– sequence: 4
  givenname: Li
  surname: Cao
  fullname: Cao, Li
– sequence: 5
  givenname: Peipei
  surname: Li
  fullname: Li, Peipei
– sequence: 6
  givenname: Ruicong
  surname: Wei
  fullname: Wei, Ruicong
– sequence: 7
  givenname: Xiang
  surname: Li
  fullname: Li, Xiang
– sequence: 8
  givenname: Dong
  surname: Guo
  fullname: Guo, Dong
– sequence: 9
  givenname: Kuo-Wei
  surname: Huang
  fullname: Huang, Kuo-Wei
– sequence: 10
  givenname: Zhiping
  surname: Lai
  fullname: Lai, Zhiping
BookMark eNpF0MtLxDAQBvAgK7i7evEuBLwJ1aRpXkdd1xcLXvRc0nSqWdqkJi3if291fZxmDj--Gb4FmvngAaFjSs4pYfqipgCEMF5Ue2hOJS8yLomY_e5C5wdokdKWEJETqefoYRX84PwYxoShBTtEZ02L-7HrnX_BHXRVNB5wH4OFlHATIk5g3s0AEbdueHVjhzvnJ3yI9hvTJjj6mUv0fLN-Wt1lm8fb-9XlJrNFToZM1bVoCl7zqrImZ0wpTYkylBlKilrnNRGMV5JRC0xKkJxRLoWWwuiGNFCwJTrd5U4_vY2QhnIbxuink2XOc6WYVlJO6mynbAwpRWjKPrrOxI-SkvKrq_KartffXV1N-GSHY7J_7r9L9gnzLGdn
CitedBy_id crossref_primary_10_1016_j_polymertesting_2022_107647
crossref_primary_10_1016_j_matt_2022_06_050
crossref_primary_10_1016_j_electacta_2022_140093
crossref_primary_10_3390_pr10122654
crossref_primary_10_1021_acsanm_3c04421
crossref_primary_10_1016_j_mineng_2023_108398
crossref_primary_10_1021_acsnano_3c12978
crossref_primary_10_1016_j_coelec_2022_101087
crossref_primary_10_1002_adfm_202108672
crossref_primary_10_1002_anie_202302286
crossref_primary_10_1039_D4TA01939C
crossref_primary_10_1016_j_cej_2021_131429
crossref_primary_10_26599_NRE_2023_9120059
crossref_primary_10_1016_j_nanoen_2023_108683
crossref_primary_10_1016_j_memsci_2022_120976
crossref_primary_10_1002_EXP_20220050
crossref_primary_10_1016_j_matt_2022_04_034
crossref_primary_10_1002_smll_202107773
crossref_primary_10_1002_adma_202207303
crossref_primary_10_1007_s12274_023_6121_0
crossref_primary_10_1007_s40820_023_01106_5
crossref_primary_10_1016_j_gexplo_2023_107212
crossref_primary_10_1039_D3TA05099H
crossref_primary_10_1149_1945_7111_acd818
crossref_primary_10_1016_j_desal_2024_117659
crossref_primary_10_3390_modelling4030024
crossref_primary_10_1016_j_cej_2024_152519
crossref_primary_10_1002_chem_202302776
crossref_primary_10_1007_s40820_022_00844_2
crossref_primary_10_1016_j_desal_2022_115847
crossref_primary_10_3390_pr11082355
crossref_primary_10_1073_pnas_2200751119
crossref_primary_10_1002_smll_202207020
crossref_primary_10_1021_acssuschemeng_3c02348
crossref_primary_10_1002_anie_202202558
crossref_primary_10_1080_08827508_2022_2047041
crossref_primary_10_3390_membranes12020233
crossref_primary_10_1016_j_seppur_2022_121520
crossref_primary_10_1002_marc_202400325
crossref_primary_10_1002_cssc_202301526
crossref_primary_10_2139_ssrn_4122757
crossref_primary_10_1016_j_cej_2022_135658
crossref_primary_10_1002_eem2_12742
crossref_primary_10_1016_j_desal_2022_116022
crossref_primary_10_1016_j_desal_2024_117835
crossref_primary_10_1016_j_fusengdes_2023_113521
crossref_primary_10_1016_j_memsci_2022_120703
crossref_primary_10_1016_j_cej_2023_142112
crossref_primary_10_1021_acsenergylett_2c01216
crossref_primary_10_1016_j_memsci_2023_121358
crossref_primary_10_1016_j_memsci_2024_122843
crossref_primary_10_1016_j_mineng_2022_107652
crossref_primary_10_1016_j_mser_2024_100797
crossref_primary_10_1002_ange_202202558
crossref_primary_10_1016_j_gsf_2024_101868
crossref_primary_10_1021_acsnano_3c10910
crossref_primary_10_1186_s43074_023_00100_9
crossref_primary_10_1002_adma_202310657
crossref_primary_10_1021_acs_est_3c09111
crossref_primary_10_1016_j_desal_2022_116117
crossref_primary_10_1016_j_watres_2022_118969
crossref_primary_10_1021_acsestwater_3c00013
crossref_primary_10_1021_acs_energyfuels_3c02323
crossref_primary_10_1016_j_esci_2021_10_001
crossref_primary_10_1007_s12598_021_01918_7
crossref_primary_10_1016_j_cej_2022_138662
crossref_primary_10_1016_j_memlet_2023_100059
crossref_primary_10_3390_membranes12111042
crossref_primary_10_1016_j_jece_2023_110878
crossref_primary_10_1038_s41559_022_01812_0
crossref_primary_10_1016_j_seppur_2024_128058
crossref_primary_10_1038_s41467_023_44625_w
crossref_primary_10_1002_ange_202302286
crossref_primary_10_3390_en15134619
crossref_primary_10_1016_j_jpcs_2022_110983
crossref_primary_10_1021_acsenergylett_2c01746
crossref_primary_10_1016_j_seppur_2022_122997
crossref_primary_10_1021_acsami_3c16092
crossref_primary_10_5796_electrochemistry_24_00046
crossref_primary_10_2139_ssrn_4066812
crossref_primary_10_1021_acs_est_3c05935
crossref_primary_10_1039_D3TA03192F
crossref_primary_10_1002_aic_18212
crossref_primary_10_1038_s44172_024_00174_8
crossref_primary_10_1016_j_watres_2022_118822
crossref_primary_10_1016_j_cej_2022_140074
crossref_primary_10_1002_adfm_202316178
crossref_primary_10_1002_chem_202302460
crossref_primary_10_1039_D3TA01831H
crossref_primary_10_1021_acs_estlett_2c00551
crossref_primary_10_2139_ssrn_3917206
crossref_primary_10_2139_ssrn_4055905
crossref_primary_10_1002_adma_202206354
crossref_primary_10_1016_j_xcrp_2022_100844
crossref_primary_10_2139_ssrn_4147718
crossref_primary_10_1016_j_cej_2022_136780
crossref_primary_10_1016_j_mineng_2023_108284
crossref_primary_10_1073_pnas_2316716121
crossref_primary_10_4150_KPMI_2023_30_4_324
crossref_primary_10_3390_polym15183847
crossref_primary_10_1016_j_seppur_2024_126415
crossref_primary_10_1039_D4EW00125G
crossref_primary_10_1016_j_desal_2024_117477
crossref_primary_10_1186_s13068_023_02394_0
crossref_primary_10_1088_1755_1315_1078_1_012125
Cites_doi 10.1039/D0CC01883J
10.1016/j.jhazmat.2019.03.120
10.1016/S0958-2118(00)86634-3
10.1038/ncomms10748
10.1016/j.seppur.2016.08.031
10.1016/j.jpowsour.2012.11.098
10.1149/1.2055043
10.1038/532435a
10.1016/j.joule.2018.07.006
10.1016/j.fusengdes.2013.06.009
10.1039/C9CC08927F
10.1039/c4ee00382a
10.1016/j.seppur.2018.10.049
10.1016/j.hydromet.2012.11.013
10.1016/j.cej.2017.12.130
10.1039/C9EE03828K
10.1016/j.joule.2019.07.006
10.1016/j.hydromet.2016.05.010
10.1016/j.desal.2014.12.018
10.1080/10408436.2018.1485551
10.1016/j.desal.2013.02.014
10.1016/j.ijhydene.2019.01.108
10.1016/j.cej.2018.09.090
10.1149/1.2043988
10.1016/j.rser.2011.11.023
10.1002/anie.201710841
10.1016/j.joule.2020.05.017
10.1039/C9AY00510B
10.1016/j.ijhydene.2019.06.162
10.1016/j.seppur.2020.116940
10.1016/j.jiec.2019.08.061
10.1021/acs.est.5b00463
10.1021/acsami.9b21612
10.1016/j.ssi.2017.05.020
10.1016/j.memsci.2012.03.020
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2021
Copyright_xml – notice: Copyright Royal Society of Chemistry 2021
DBID AAYXX
CITATION
7SP
7ST
7TB
8FD
C1K
FR3
L7M
SOI
DOI 10.1039/d1ee00354b
DatabaseName CrossRef
Electronics & Communications Abstracts
Environment Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Advanced Technologies Database with Aerospace
Environment Abstracts
DatabaseTitle CrossRef
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
Environmental Sciences and Pollution Management
DatabaseTitleList Technology Research Database

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1754-5706
EndPage 3159
ExternalDocumentID 10_1039_D1EE00354B
d1ee00354b
GroupedDBID 0-7
0R
29G
4.4
5GY
70
705
7~J
AAEMU
AAGNR
AAIWI
AANOJ
AAXPP
ABASK
ABDVN
ABGFH
ABRYZ
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AENEX
AFRAH
AFVBQ
AGRSR
AGSTE
AGSWI
ALMA_UNASSIGNED_HOLDINGS
ANUXI
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
CKLOX
CS3
EBS
ECGLT
EE0
EF-
GNO
HZ
H~N
J3I
JG
M4U
N9A
O-G
O9-
P2P
RCNCU
RIG
RPMJG
RRC
RSCEA
SKA
SLH
TOV
UCJ
-JG
0R~
70~
AAJAE
AARTK
AAWGC
AAXHV
AAYXX
ABEMK
ABJNI
ABPDG
ABXOH
ACGFO
AEFDR
AENGV
AESAV
AETIL
AFLYV
AFOGI
AGEGJ
AHGCF
AKBGW
APEMP
CITATION
GGIMP
H13
HZ~
RAOCF
RVUXY
7SP
7ST
7TB
8FD
C1K
FR3
L7M
SOI
ID FETCH-LOGICAL-c420t-8dd6f45d5bbca233889108a13a104d92d0635b731ce377e7531576976a9f0fe43
ISSN 1754-5692
IngestDate Thu Oct 10 17:43:52 EDT 2024
Fri Aug 23 02:10:35 EDT 2024
Sat Apr 09 14:23:24 EDT 2022
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c420t-8dd6f45d5bbca233889108a13a104d92d0635b731ce377e7531576976a9f0fe43
Notes 10.1039/d1ee00354b
Electronic supplementary information (ESI) available. See DOI
ORCID 0000-0002-1055-482X
0000-0001-9555-6009
0000-0003-1900-2658
OpenAccessLink https://pubs.rsc.org/en/content/articlepdf/2021/ee/d1ee00354b
PQID 2528839877
PQPubID 2047494
PageCount 8
ParticipantIDs proquest_journals_2528839877
crossref_primary_10_1039_D1EE00354B
rsc_primary_d1ee00354b
PublicationCentury 2000
PublicationDate 20210101
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 20210101
  day: 01
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Energy & environmental science
PublicationYear 2021
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Zhao (D1EE00354B-(cit6)/*[position()=1]) 2013; 133
Amat (D1EE00354B-(cit20)/*[position()=1]) 2017
Wang (D1EE00354B-(cit32)/*[position()=1]) 2012; 405-406
Torrejos (D1EE00354B-(cit13)/*[position()=1]) 2016; 164
Sun (D1EE00354B-(cit29)/*[position()=1]) 2019; 44
Ma (D1EE00354B-(cit27)/*[position()=1]) 2014; 7
Tang (D1EE00354B-(cit8)/*[position()=1]) 2020; 12
Inaguma (D1EE00354B-(cit25)/*[position()=1]) 2013; 228
Hoshino (D1EE00354B-(cit15)/*[position()=1]) 2015; 359
Kawai (D1EE00354B-(cit31)/*[position()=1]) 1994; 141
Zhu (D1EE00354B-(cit14)/*[position()=1]) 2020
Zhang (D1EE00354B-(cit23)/*[position()=1]) 2020; 56
Han (D1EE00354B-(cit10)/*[position()=1]) 2020; 81
Ryu (D1EE00354B-(cit9)/*[position()=1]) 2017; 308
Zhao (D1EE00354B-(cit24)/*[position()=1]) 2020; 56
Inaguma (D1EE00354B-(cit30)/*[position()=1]) 1995; 142
Schorer (D1EE00354B-(cit22)/*[position()=1]) 2019; 44
Bae (D1EE00354B-(cit28)/*[position()=1]) 2018; 57
Ball (D1EE00354B-(cit19)/*[position()=1]) 2000; 2000
Li (D1EE00354B-(cit26)/*[position()=1]) 2020; 13
Grosjean (D1EE00354B-(cit2)/*[position()=1]) 2012; 16
Yang (D1EE00354B-(cit3)/*[position()=1]) 2018; 2
Liu (D1EE00354B-(cit36)/*[position()=1]) 2019; 377
Diallo (D1EE00354B-(cit5)/*[position()=1]) 2015; 49
Hoshino (D1EE00354B-(cit17)/*[position()=1]) 2013; 88
He (D1EE00354B-(cit35)/*[position()=1]) 2019; 375
Hoshino (D1EE00354B-(cit16)/*[position()=1]) 2013; 317
Kurniawan (D1EE00354B-(cit11)/*[position()=1]) 2019; 211
Bernardo (D1EE00354B-(cit21)/*[position()=1]) 2020; 45
Hong (D1EE00354B-(cit7)/*[position()=1]) 2018; 337
Guerra (D1EE00354B-(cit34)/*[position()=1]) 2019; 3
Liu (D1EE00354B-(cit4)/*[position()=1]) 2020; 4
Sholl (D1EE00354B-(cit18)/*[position()=1]) 2016; 532
Kas (D1EE00354B-(cit33)/*[position()=1]) 2016; 7
Swain (D1EE00354B-(cit1)/*[position()=1]) 2017; 172
Yazdanpanah (D1EE00354B-(cit12)/*[position()=1]) 2019; 11
References_xml – issn: 2017
  doi: Amat
– volume: 56
  start-page: 6396
  year: 2020
  ident: D1EE00354B-(cit23)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/D0CC01883J
  contributor:
    fullname: Zhang
– volume: 375
  start-page: 43
  year: 2019
  ident: D1EE00354B-(cit35)/*[position()=1]
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2019.03.120
  contributor:
    fullname: He
– volume: 2000
  start-page: 10
  year: 2000
  ident: D1EE00354B-(cit19)/*[position()=1]
  publication-title: Membr. Technol.
  doi: 10.1016/S0958-2118(00)86634-3
  contributor:
    fullname: Ball
– volume: 7
  start-page: 10748
  year: 2016
  ident: D1EE00354B-(cit33)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms10748
  contributor:
    fullname: Kas
– volume: 172
  start-page: 388
  year: 2017
  ident: D1EE00354B-(cit1)/*[position()=1]
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2016.08.031
  contributor:
    fullname: Swain
– volume: 228
  start-page: 250
  year: 2013
  ident: D1EE00354B-(cit25)/*[position()=1]
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2012.11.098
  contributor:
    fullname: Inaguma
– volume: 141
  start-page: L78
  year: 1994
  ident: D1EE00354B-(cit31)/*[position()=1]
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2055043
  contributor:
    fullname: Kawai
– volume: 532
  start-page: 435
  year: 2016
  ident: D1EE00354B-(cit18)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/532435a
  contributor:
    fullname: Sholl
– volume: 2
  start-page: 1648
  year: 2018
  ident: D1EE00354B-(cit3)/*[position()=1]
  publication-title: Joule
  doi: 10.1016/j.joule.2018.07.006
  contributor:
    fullname: Yang
– volume: 88
  start-page: 2956
  year: 2013
  ident: D1EE00354B-(cit17)/*[position()=1]
  publication-title: Fusion Eng. Des.
  doi: 10.1016/j.fusengdes.2013.06.009
  contributor:
    fullname: Hoshino
– volume: 56
  start-page: 1577
  year: 2020
  ident: D1EE00354B-(cit24)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C9CC08927F
  contributor:
    fullname: Zhao
– volume: 7
  start-page: 1638
  year: 2014
  ident: D1EE00354B-(cit27)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c4ee00382a
  contributor:
    fullname: Ma
– volume: 211
  start-page: 925
  year: 2019
  ident: D1EE00354B-(cit11)/*[position()=1]
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2018.10.049
  contributor:
    fullname: Kurniawan
– volume: 133
  start-page: 75
  year: 2013
  ident: D1EE00354B-(cit6)/*[position()=1]
  publication-title: Hydrometallurgy
  doi: 10.1016/j.hydromet.2012.11.013
  contributor:
    fullname: Zhao
– volume: 337
  start-page: 455
  year: 2018
  ident: D1EE00354B-(cit7)/*[position()=1]
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2017.12.130
  contributor:
    fullname: Hong
– volume: 13
  start-page: 1429
  year: 2020
  ident: D1EE00354B-(cit26)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C9EE03828K
  contributor:
    fullname: Li
– volume: 3
  start-page: 2425
  year: 2019
  ident: D1EE00354B-(cit34)/*[position()=1]
  publication-title: Joule
  doi: 10.1016/j.joule.2019.07.006
  contributor:
    fullname: Guerra
– volume: 164
  start-page: 362
  year: 2016
  ident: D1EE00354B-(cit13)/*[position()=1]
  publication-title: Hydrometallurgy
  doi: 10.1016/j.hydromet.2016.05.010
  contributor:
    fullname: Torrejos
– volume: 359
  start-page: 59
  year: 2015
  ident: D1EE00354B-(cit15)/*[position()=1]
  publication-title: Desalination
  doi: 10.1016/j.desal.2014.12.018
  contributor:
    fullname: Hoshino
– volume: 44
  start-page: 265
  year: 2019
  ident: D1EE00354B-(cit29)/*[position()=1]
  publication-title: Crit. Rev. Solid State Mater. Sci.
  doi: 10.1080/10408436.2018.1485551
  contributor:
    fullname: Sun
– volume: 317
  start-page: 11
  year: 2013
  ident: D1EE00354B-(cit16)/*[position()=1]
  publication-title: Desalination
  doi: 10.1016/j.desal.2013.02.014
  contributor:
    fullname: Hoshino
– volume: 44
  start-page: 12708
  year: 2019
  ident: D1EE00354B-(cit22)/*[position()=1]
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2019.01.108
  contributor:
    fullname: Schorer
– year: 2017
  ident: D1EE00354B-(cit20)/*[position()=1]
  contributor:
    fullname: Amat
– volume: 377
  start-page: 119929
  year: 2019
  ident: D1EE00354B-(cit36)/*[position()=1]
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.09.090
  contributor:
    fullname: Liu
– volume: 142
  start-page: L8
  year: 1995
  ident: D1EE00354B-(cit30)/*[position()=1]
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2043988
  contributor:
    fullname: Inaguma
– volume: 16
  start-page: 1735
  year: 2012
  ident: D1EE00354B-(cit2)/*[position()=1]
  publication-title: Renewable Sustainable Energy Rev.
  doi: 10.1016/j.rser.2011.11.023
  contributor:
    fullname: Grosjean
– volume: 57
  start-page: 2096
  year: 2018
  ident: D1EE00354B-(cit28)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201710841
  contributor:
    fullname: Bae
– volume: 4
  start-page: 1459
  year: 2020
  ident: D1EE00354B-(cit4)/*[position()=1]
  publication-title: Joule
  doi: 10.1016/j.joule.2020.05.017
  contributor:
    fullname: Liu
– volume: 11
  start-page: 2720
  year: 2019
  ident: D1EE00354B-(cit12)/*[position()=1]
  publication-title: Anal. Methods
  doi: 10.1039/C9AY00510B
  contributor:
    fullname: Yazdanpanah
– volume: 45
  start-page: 7313
  year: 2020
  ident: D1EE00354B-(cit21)/*[position()=1]
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2019.06.162
  contributor:
    fullname: Bernardo
– start-page: 116940
  year: 2020
  ident: D1EE00354B-(cit14)/*[position()=1]
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2020.116940
  contributor:
    fullname: Zhu
– volume: 81
  start-page: 115
  year: 2020
  ident: D1EE00354B-(cit10)/*[position()=1]
  publication-title: J. Ind. Eng. Chem.
  doi: 10.1016/j.jiec.2019.08.061
  contributor:
    fullname: Han
– volume: 49
  start-page: 9390
  year: 2015
  ident: D1EE00354B-(cit5)/*[position()=1]
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.5b00463
  contributor:
    fullname: Diallo
– volume: 12
  start-page: 9775
  year: 2020
  ident: D1EE00354B-(cit8)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b21612
  contributor:
    fullname: Tang
– volume: 308
  start-page: 77
  year: 2017
  ident: D1EE00354B-(cit9)/*[position()=1]
  publication-title: Solid State Ionics
  doi: 10.1016/j.ssi.2017.05.020
  contributor:
    fullname: Ryu
– volume: 405-406
  start-page: 275
  year: 2012
  ident: D1EE00354B-(cit32)/*[position()=1]
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2012.03.020
  contributor:
    fullname: Wang
SSID ssj0062079
Score 2.6620142
Snippet Seawater contains significantly larger quantities of lithium than is found on land, thereby providing an almost unlimited resource of lithium for meeting the...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Publisher
StartPage 3152
SubjectTerms Batteries
Chemical analysis
Economic analysis
Lithium
Lithium batteries
Membrane processes
Membranes
Purity
Seawater
Selectivity
Water analysis
Title Continuous electrical pumping membrane process for seawater lithium mining
URI https://www.proquest.com/docview/2528839877
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdY9wIPiK-JsoEswRvKiL8S-3EbHdMo46UVFS-RkzhqH5pOW6Np--s5O3GdTtMEvETJSbGiu1_Od-f7QOhTyoUyJE8iO1sn4oqUkSSiiipqwO0RZSLcOJ8fF8nZlJ_PxCwcxbjqknV-WNw9WFfyP1IFGsjVVsn-g2Q3iwIB7kG-cAUJw_WvZGxbSy3qxmaxtuNsHMcvQUI2ALA0S3CFa1sJ5YoBXEYhIPtG28aIYH7PF83y89JNiNgK0LflgBYTvTI4XzwZkDB2iQC_56GYrKWczJv6VndrOmpjybOFXt2YRTj0WLUxgX7cgZJ7cYc2uuFTS13qSDegrqdNU8EjkbTD7g5Nj5bGyZYK5j2oiZ4-ZUTQ3t4Mj-pBvR8z2za1JMbYo1Geh93Nn-hf_MxOp-NxNhnNJjtol4JekgO0e_T9-Nsvv3UnNHbNGTff7fvZMvUlrL1twQS3ZOfKz4xxtsnkBXreORX4qEXIS_TE1K_Qs16rydfoPGAFB6zgDivYYwV3WMGAFeyxgjus4BYrb9D0dDQ5OYu6ORpRwWm8jmRZJhUXpcjzQlPGpAQbUWrCNPjipaIlmKkiTxkpDEtTAw4sAS8U7FStqrgynO2hQb2qzVuElTQ6kaxgvGI8B_NQ54qmVCtYLpaVGqKPnjfZZdsuJXNpDkxlX8lo5Dh4PEQHnm1Z9ztdZ1TYwddKpukQ7QErN-8Hzr97_L199DQA9QAN1leNeQ8m4zr_0An6D43hbc0
link.rule.ids 315,783,787,27938,27939
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Continuous+electrical+pumping+membrane+process+for+seawater+lithium+mining&rft.jtitle=Energy+%26+environmental+science&rft.au=Li%2C+Zhen&rft.au=Li%2C+Chunyang&rft.au=Liu%2C+Xiaowei&rft.au=Cao%2C+Li&rft.date=2021-01-01&rft.pub=Royal+Society+of+Chemistry&rft.issn=1754-5692&rft.eissn=1754-5706&rft.volume=14&rft.issue=5&rft.spage=3152&rft.epage=3159&rft_id=info:doi/10.1039%2Fd1ee00354b&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1754-5692&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1754-5692&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1754-5692&client=summon