Continuous electrical pumping membrane process for seawater lithium mining
Seawater contains significantly larger quantities of lithium than is found on land, thereby providing an almost unlimited resource of lithium for meeting the rapid growth in demand for lithium batteries. However, lithium extraction from seawater is exceptionally challenging because of its low concen...
Saved in:
Published in | Energy & environmental science Vol. 14; no. 5; pp. 3152 - 3159 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
01.01.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Seawater contains significantly larger quantities of lithium than is found on land, thereby providing an almost unlimited resource of lithium for meeting the rapid growth in demand for lithium batteries. However, lithium extraction from seawater is exceptionally challenging because of its low concentration (∼0.1-0.2 ppm) and an abundance of interfering ions. Herein, we creatively employed a solid-state electrolyte membrane, and design a continuous electrically-driven membrane process, which successfully enriches lithium from seawater samples of the Red Sea by 43 000 times (
i.e.
, from 0.21 to 9013.43 ppm) with a nominal Li/Mg selectivity >45 million. Lithium phosphate with a purity of 99.94% was precipitated directly from the enriched solution, thereby meeting the purity requirements for application in the lithium battery industry. Furthermore, a preliminary economic analysis shows that the process can be made profitable when coupled with the Chlor-alkali industry.
Lithium was enriched up to 10 000 ppm from seawater by a continuous electrical pumping membrane process and collected as battery-grade product by simple precipitation. |
---|---|
AbstractList | Seawater contains significantly larger quantities of lithium than is found on land, thereby providing an almost unlimited resource of lithium for meeting the rapid growth in demand for lithium batteries. However, lithium extraction from seawater is exceptionally challenging because of its low concentration (∼0.1–0.2 ppm) and an abundance of interfering ions. Herein, we creatively employed a solid-state electrolyte membrane, and design a continuous electrically-driven membrane process, which successfully enriches lithium from seawater samples of the Red Sea by 43 000 times (i.e., from 0.21 to 9013.43 ppm) with a nominal Li/Mg selectivity >45 million. Lithium phosphate with a purity of 99.94% was precipitated directly from the enriched solution, thereby meeting the purity requirements for application in the lithium battery industry. Furthermore, a preliminary economic analysis shows that the process can be made profitable when coupled with the Chlor-alkali industry. Seawater contains significantly larger quantities of lithium than is found on land, thereby providing an almost unlimited resource of lithium for meeting the rapid growth in demand for lithium batteries. However, lithium extraction from seawater is exceptionally challenging because of its low concentration (∼0.1-0.2 ppm) and an abundance of interfering ions. Herein, we creatively employed a solid-state electrolyte membrane, and design a continuous electrically-driven membrane process, which successfully enriches lithium from seawater samples of the Red Sea by 43 000 times ( i.e. , from 0.21 to 9013.43 ppm) with a nominal Li/Mg selectivity >45 million. Lithium phosphate with a purity of 99.94% was precipitated directly from the enriched solution, thereby meeting the purity requirements for application in the lithium battery industry. Furthermore, a preliminary economic analysis shows that the process can be made profitable when coupled with the Chlor-alkali industry. Lithium was enriched up to 10 000 ppm from seawater by a continuous electrical pumping membrane process and collected as battery-grade product by simple precipitation. Seawater contains significantly larger quantities of lithium than is found on land, thereby providing an almost unlimited resource of lithium for meeting the rapid growth in demand for lithium batteries. However, lithium extraction from seawater is exceptionally challenging because of its low concentration (∼0.1–0.2 ppm) and an abundance of interfering ions. Herein, we creatively employed a solid-state electrolyte membrane, and design a continuous electrically-driven membrane process, which successfully enriches lithium from seawater samples of the Red Sea by 43 000 times ( i.e. , from 0.21 to 9013.43 ppm) with a nominal Li/Mg selectivity >45 million. Lithium phosphate with a purity of 99.94% was precipitated directly from the enriched solution, thereby meeting the purity requirements for application in the lithium battery industry. Furthermore, a preliminary economic analysis shows that the process can be made profitable when coupled with the Chlor-alkali industry. |
Author | Liu, Xiaowei Li, Zhen Wei, Ruicong Lai, Zhiping Guo, Dong Cao, Li Li, Xiang Huang, Kuo-Wei Li, Chunyang Li, Peipei |
AuthorAffiliation | King Abdullah University of Science and Technology (KAUST) Division of Physicals Science and Engineering |
AuthorAffiliation_xml | – name: Division of Physicals Science and Engineering – name: King Abdullah University of Science and Technology (KAUST) |
Author_xml | – sequence: 1 givenname: Zhen surname: Li fullname: Li, Zhen – sequence: 2 givenname: Chunyang surname: Li fullname: Li, Chunyang – sequence: 3 givenname: Xiaowei surname: Liu fullname: Liu, Xiaowei – sequence: 4 givenname: Li surname: Cao fullname: Cao, Li – sequence: 5 givenname: Peipei surname: Li fullname: Li, Peipei – sequence: 6 givenname: Ruicong surname: Wei fullname: Wei, Ruicong – sequence: 7 givenname: Xiang surname: Li fullname: Li, Xiang – sequence: 8 givenname: Dong surname: Guo fullname: Guo, Dong – sequence: 9 givenname: Kuo-Wei surname: Huang fullname: Huang, Kuo-Wei – sequence: 10 givenname: Zhiping surname: Lai fullname: Lai, Zhiping |
BookMark | eNpF0MtLxDAQBvAgK7i7evEuBLwJ1aRpXkdd1xcLXvRc0nSqWdqkJi3if291fZxmDj--Gb4FmvngAaFjSs4pYfqipgCEMF5Ue2hOJS8yLomY_e5C5wdokdKWEJETqefoYRX84PwYxoShBTtEZ02L-7HrnX_BHXRVNB5wH4OFlHATIk5g3s0AEbdueHVjhzvnJ3yI9hvTJjj6mUv0fLN-Wt1lm8fb-9XlJrNFToZM1bVoCl7zqrImZ0wpTYkylBlKilrnNRGMV5JRC0xKkJxRLoWWwuiGNFCwJTrd5U4_vY2QhnIbxuink2XOc6WYVlJO6mynbAwpRWjKPrrOxI-SkvKrq_KartffXV1N-GSHY7J_7r9L9gnzLGdn |
CitedBy_id | crossref_primary_10_1016_j_polymertesting_2022_107647 crossref_primary_10_1016_j_matt_2022_06_050 crossref_primary_10_1016_j_electacta_2022_140093 crossref_primary_10_3390_pr10122654 crossref_primary_10_1021_acsanm_3c04421 crossref_primary_10_1016_j_mineng_2023_108398 crossref_primary_10_1021_acsnano_3c12978 crossref_primary_10_1016_j_coelec_2022_101087 crossref_primary_10_1002_adfm_202108672 crossref_primary_10_1002_anie_202302286 crossref_primary_10_1039_D4TA01939C crossref_primary_10_1016_j_cej_2021_131429 crossref_primary_10_26599_NRE_2023_9120059 crossref_primary_10_1016_j_nanoen_2023_108683 crossref_primary_10_1016_j_memsci_2022_120976 crossref_primary_10_1002_EXP_20220050 crossref_primary_10_1016_j_matt_2022_04_034 crossref_primary_10_1002_smll_202107773 crossref_primary_10_1002_adma_202207303 crossref_primary_10_1007_s12274_023_6121_0 crossref_primary_10_1007_s40820_023_01106_5 crossref_primary_10_1016_j_gexplo_2023_107212 crossref_primary_10_1039_D3TA05099H crossref_primary_10_1149_1945_7111_acd818 crossref_primary_10_1016_j_desal_2024_117659 crossref_primary_10_3390_modelling4030024 crossref_primary_10_1016_j_cej_2024_152519 crossref_primary_10_1002_chem_202302776 crossref_primary_10_1007_s40820_022_00844_2 crossref_primary_10_1016_j_desal_2022_115847 crossref_primary_10_3390_pr11082355 crossref_primary_10_1073_pnas_2200751119 crossref_primary_10_1002_smll_202207020 crossref_primary_10_1021_acssuschemeng_3c02348 crossref_primary_10_1002_anie_202202558 crossref_primary_10_1080_08827508_2022_2047041 crossref_primary_10_3390_membranes12020233 crossref_primary_10_1016_j_seppur_2022_121520 crossref_primary_10_1002_marc_202400325 crossref_primary_10_1002_cssc_202301526 crossref_primary_10_2139_ssrn_4122757 crossref_primary_10_1016_j_cej_2022_135658 crossref_primary_10_1002_eem2_12742 crossref_primary_10_1016_j_desal_2022_116022 crossref_primary_10_1016_j_desal_2024_117835 crossref_primary_10_1016_j_fusengdes_2023_113521 crossref_primary_10_1016_j_memsci_2022_120703 crossref_primary_10_1016_j_cej_2023_142112 crossref_primary_10_1021_acsenergylett_2c01216 crossref_primary_10_1016_j_memsci_2023_121358 crossref_primary_10_1016_j_memsci_2024_122843 crossref_primary_10_1016_j_mineng_2022_107652 crossref_primary_10_1016_j_mser_2024_100797 crossref_primary_10_1002_ange_202202558 crossref_primary_10_1016_j_gsf_2024_101868 crossref_primary_10_1021_acsnano_3c10910 crossref_primary_10_1186_s43074_023_00100_9 crossref_primary_10_1002_adma_202310657 crossref_primary_10_1021_acs_est_3c09111 crossref_primary_10_1016_j_desal_2022_116117 crossref_primary_10_1016_j_watres_2022_118969 crossref_primary_10_1021_acsestwater_3c00013 crossref_primary_10_1021_acs_energyfuels_3c02323 crossref_primary_10_1016_j_esci_2021_10_001 crossref_primary_10_1007_s12598_021_01918_7 crossref_primary_10_1016_j_cej_2022_138662 crossref_primary_10_1016_j_memlet_2023_100059 crossref_primary_10_3390_membranes12111042 crossref_primary_10_1016_j_jece_2023_110878 crossref_primary_10_1038_s41559_022_01812_0 crossref_primary_10_1016_j_seppur_2024_128058 crossref_primary_10_1038_s41467_023_44625_w crossref_primary_10_1002_ange_202302286 crossref_primary_10_3390_en15134619 crossref_primary_10_1016_j_jpcs_2022_110983 crossref_primary_10_1021_acsenergylett_2c01746 crossref_primary_10_1016_j_seppur_2022_122997 crossref_primary_10_1021_acsami_3c16092 crossref_primary_10_5796_electrochemistry_24_00046 crossref_primary_10_2139_ssrn_4066812 crossref_primary_10_1021_acs_est_3c05935 crossref_primary_10_1039_D3TA03192F crossref_primary_10_1002_aic_18212 crossref_primary_10_1038_s44172_024_00174_8 crossref_primary_10_1016_j_watres_2022_118822 crossref_primary_10_1016_j_cej_2022_140074 crossref_primary_10_1002_adfm_202316178 crossref_primary_10_1002_chem_202302460 crossref_primary_10_1039_D3TA01831H crossref_primary_10_1021_acs_estlett_2c00551 crossref_primary_10_2139_ssrn_3917206 crossref_primary_10_2139_ssrn_4055905 crossref_primary_10_1002_adma_202206354 crossref_primary_10_1016_j_xcrp_2022_100844 crossref_primary_10_2139_ssrn_4147718 crossref_primary_10_1016_j_cej_2022_136780 crossref_primary_10_1016_j_mineng_2023_108284 crossref_primary_10_1073_pnas_2316716121 crossref_primary_10_4150_KPMI_2023_30_4_324 crossref_primary_10_3390_polym15183847 crossref_primary_10_1016_j_seppur_2024_126415 crossref_primary_10_1039_D4EW00125G crossref_primary_10_1016_j_desal_2024_117477 crossref_primary_10_1186_s13068_023_02394_0 crossref_primary_10_1088_1755_1315_1078_1_012125 |
Cites_doi | 10.1039/D0CC01883J 10.1016/j.jhazmat.2019.03.120 10.1016/S0958-2118(00)86634-3 10.1038/ncomms10748 10.1016/j.seppur.2016.08.031 10.1016/j.jpowsour.2012.11.098 10.1149/1.2055043 10.1038/532435a 10.1016/j.joule.2018.07.006 10.1016/j.fusengdes.2013.06.009 10.1039/C9CC08927F 10.1039/c4ee00382a 10.1016/j.seppur.2018.10.049 10.1016/j.hydromet.2012.11.013 10.1016/j.cej.2017.12.130 10.1039/C9EE03828K 10.1016/j.joule.2019.07.006 10.1016/j.hydromet.2016.05.010 10.1016/j.desal.2014.12.018 10.1080/10408436.2018.1485551 10.1016/j.desal.2013.02.014 10.1016/j.ijhydene.2019.01.108 10.1016/j.cej.2018.09.090 10.1149/1.2043988 10.1016/j.rser.2011.11.023 10.1002/anie.201710841 10.1016/j.joule.2020.05.017 10.1039/C9AY00510B 10.1016/j.ijhydene.2019.06.162 10.1016/j.seppur.2020.116940 10.1016/j.jiec.2019.08.061 10.1021/acs.est.5b00463 10.1021/acsami.9b21612 10.1016/j.ssi.2017.05.020 10.1016/j.memsci.2012.03.020 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2021 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2021 |
DBID | AAYXX CITATION 7SP 7ST 7TB 8FD C1K FR3 L7M SOI |
DOI | 10.1039/d1ee00354b |
DatabaseName | CrossRef Electronics & Communications Abstracts Environment Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Advanced Technologies Database with Aerospace Environment Abstracts |
DatabaseTitle | CrossRef Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Environment Abstracts Advanced Technologies Database with Aerospace Environmental Sciences and Pollution Management |
DatabaseTitleList | Technology Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1754-5706 |
EndPage | 3159 |
ExternalDocumentID | 10_1039_D1EE00354B d1ee00354b |
GroupedDBID | 0-7 0R 29G 4.4 5GY 70 705 7~J AAEMU AAGNR AAIWI AANOJ AAXPP ABASK ABDVN ABGFH ABRYZ ACGFS ACIWK ACLDK ADMRA ADSRN AENEX AFRAH AFVBQ AGRSR AGSTE AGSWI ALMA_UNASSIGNED_HOLDINGS ANUXI ASKNT AUDPV AZFZN BLAPV BSQNT C6K CKLOX CS3 EBS ECGLT EE0 EF- GNO HZ H~N J3I JG M4U N9A O-G O9- P2P RCNCU RIG RPMJG RRC RSCEA SKA SLH TOV UCJ -JG 0R~ 70~ AAJAE AARTK AAWGC AAXHV AAYXX ABEMK ABJNI ABPDG ABXOH ACGFO AEFDR AENGV AESAV AETIL AFLYV AFOGI AGEGJ AHGCF AKBGW APEMP CITATION GGIMP H13 HZ~ RAOCF RVUXY 7SP 7ST 7TB 8FD C1K FR3 L7M SOI |
ID | FETCH-LOGICAL-c420t-8dd6f45d5bbca233889108a13a104d92d0635b731ce377e7531576976a9f0fe43 |
ISSN | 1754-5692 |
IngestDate | Thu Oct 10 17:43:52 EDT 2024 Fri Aug 23 02:10:35 EDT 2024 Sat Apr 09 14:23:24 EDT 2022 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c420t-8dd6f45d5bbca233889108a13a104d92d0635b731ce377e7531576976a9f0fe43 |
Notes | 10.1039/d1ee00354b Electronic supplementary information (ESI) available. See DOI |
ORCID | 0000-0002-1055-482X 0000-0001-9555-6009 0000-0003-1900-2658 |
OpenAccessLink | https://pubs.rsc.org/en/content/articlepdf/2021/ee/d1ee00354b |
PQID | 2528839877 |
PQPubID | 2047494 |
PageCount | 8 |
ParticipantIDs | proquest_journals_2528839877 crossref_primary_10_1039_D1EE00354B rsc_primary_d1ee00354b |
PublicationCentury | 2000 |
PublicationDate | 20210101 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – month: 01 year: 2021 text: 20210101 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Energy & environmental science |
PublicationYear | 2021 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Zhao (D1EE00354B-(cit6)/*[position()=1]) 2013; 133 Amat (D1EE00354B-(cit20)/*[position()=1]) 2017 Wang (D1EE00354B-(cit32)/*[position()=1]) 2012; 405-406 Torrejos (D1EE00354B-(cit13)/*[position()=1]) 2016; 164 Sun (D1EE00354B-(cit29)/*[position()=1]) 2019; 44 Ma (D1EE00354B-(cit27)/*[position()=1]) 2014; 7 Tang (D1EE00354B-(cit8)/*[position()=1]) 2020; 12 Inaguma (D1EE00354B-(cit25)/*[position()=1]) 2013; 228 Hoshino (D1EE00354B-(cit15)/*[position()=1]) 2015; 359 Kawai (D1EE00354B-(cit31)/*[position()=1]) 1994; 141 Zhu (D1EE00354B-(cit14)/*[position()=1]) 2020 Zhang (D1EE00354B-(cit23)/*[position()=1]) 2020; 56 Han (D1EE00354B-(cit10)/*[position()=1]) 2020; 81 Ryu (D1EE00354B-(cit9)/*[position()=1]) 2017; 308 Zhao (D1EE00354B-(cit24)/*[position()=1]) 2020; 56 Inaguma (D1EE00354B-(cit30)/*[position()=1]) 1995; 142 Schorer (D1EE00354B-(cit22)/*[position()=1]) 2019; 44 Bae (D1EE00354B-(cit28)/*[position()=1]) 2018; 57 Ball (D1EE00354B-(cit19)/*[position()=1]) 2000; 2000 Li (D1EE00354B-(cit26)/*[position()=1]) 2020; 13 Grosjean (D1EE00354B-(cit2)/*[position()=1]) 2012; 16 Yang (D1EE00354B-(cit3)/*[position()=1]) 2018; 2 Liu (D1EE00354B-(cit36)/*[position()=1]) 2019; 377 Diallo (D1EE00354B-(cit5)/*[position()=1]) 2015; 49 Hoshino (D1EE00354B-(cit17)/*[position()=1]) 2013; 88 He (D1EE00354B-(cit35)/*[position()=1]) 2019; 375 Hoshino (D1EE00354B-(cit16)/*[position()=1]) 2013; 317 Kurniawan (D1EE00354B-(cit11)/*[position()=1]) 2019; 211 Bernardo (D1EE00354B-(cit21)/*[position()=1]) 2020; 45 Hong (D1EE00354B-(cit7)/*[position()=1]) 2018; 337 Guerra (D1EE00354B-(cit34)/*[position()=1]) 2019; 3 Liu (D1EE00354B-(cit4)/*[position()=1]) 2020; 4 Sholl (D1EE00354B-(cit18)/*[position()=1]) 2016; 532 Kas (D1EE00354B-(cit33)/*[position()=1]) 2016; 7 Swain (D1EE00354B-(cit1)/*[position()=1]) 2017; 172 Yazdanpanah (D1EE00354B-(cit12)/*[position()=1]) 2019; 11 |
References_xml | – issn: 2017 doi: Amat – volume: 56 start-page: 6396 year: 2020 ident: D1EE00354B-(cit23)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/D0CC01883J contributor: fullname: Zhang – volume: 375 start-page: 43 year: 2019 ident: D1EE00354B-(cit35)/*[position()=1] publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2019.03.120 contributor: fullname: He – volume: 2000 start-page: 10 year: 2000 ident: D1EE00354B-(cit19)/*[position()=1] publication-title: Membr. Technol. doi: 10.1016/S0958-2118(00)86634-3 contributor: fullname: Ball – volume: 7 start-page: 10748 year: 2016 ident: D1EE00354B-(cit33)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms10748 contributor: fullname: Kas – volume: 172 start-page: 388 year: 2017 ident: D1EE00354B-(cit1)/*[position()=1] publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2016.08.031 contributor: fullname: Swain – volume: 228 start-page: 250 year: 2013 ident: D1EE00354B-(cit25)/*[position()=1] publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2012.11.098 contributor: fullname: Inaguma – volume: 141 start-page: L78 year: 1994 ident: D1EE00354B-(cit31)/*[position()=1] publication-title: J. Electrochem. Soc. doi: 10.1149/1.2055043 contributor: fullname: Kawai – volume: 532 start-page: 435 year: 2016 ident: D1EE00354B-(cit18)/*[position()=1] publication-title: Nature doi: 10.1038/532435a contributor: fullname: Sholl – volume: 2 start-page: 1648 year: 2018 ident: D1EE00354B-(cit3)/*[position()=1] publication-title: Joule doi: 10.1016/j.joule.2018.07.006 contributor: fullname: Yang – volume: 88 start-page: 2956 year: 2013 ident: D1EE00354B-(cit17)/*[position()=1] publication-title: Fusion Eng. Des. doi: 10.1016/j.fusengdes.2013.06.009 contributor: fullname: Hoshino – volume: 56 start-page: 1577 year: 2020 ident: D1EE00354B-(cit24)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C9CC08927F contributor: fullname: Zhao – volume: 7 start-page: 1638 year: 2014 ident: D1EE00354B-(cit27)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/c4ee00382a contributor: fullname: Ma – volume: 211 start-page: 925 year: 2019 ident: D1EE00354B-(cit11)/*[position()=1] publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2018.10.049 contributor: fullname: Kurniawan – volume: 133 start-page: 75 year: 2013 ident: D1EE00354B-(cit6)/*[position()=1] publication-title: Hydrometallurgy doi: 10.1016/j.hydromet.2012.11.013 contributor: fullname: Zhao – volume: 337 start-page: 455 year: 2018 ident: D1EE00354B-(cit7)/*[position()=1] publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.12.130 contributor: fullname: Hong – volume: 13 start-page: 1429 year: 2020 ident: D1EE00354B-(cit26)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/C9EE03828K contributor: fullname: Li – volume: 3 start-page: 2425 year: 2019 ident: D1EE00354B-(cit34)/*[position()=1] publication-title: Joule doi: 10.1016/j.joule.2019.07.006 contributor: fullname: Guerra – volume: 164 start-page: 362 year: 2016 ident: D1EE00354B-(cit13)/*[position()=1] publication-title: Hydrometallurgy doi: 10.1016/j.hydromet.2016.05.010 contributor: fullname: Torrejos – volume: 359 start-page: 59 year: 2015 ident: D1EE00354B-(cit15)/*[position()=1] publication-title: Desalination doi: 10.1016/j.desal.2014.12.018 contributor: fullname: Hoshino – volume: 44 start-page: 265 year: 2019 ident: D1EE00354B-(cit29)/*[position()=1] publication-title: Crit. Rev. Solid State Mater. Sci. doi: 10.1080/10408436.2018.1485551 contributor: fullname: Sun – volume: 317 start-page: 11 year: 2013 ident: D1EE00354B-(cit16)/*[position()=1] publication-title: Desalination doi: 10.1016/j.desal.2013.02.014 contributor: fullname: Hoshino – volume: 44 start-page: 12708 year: 2019 ident: D1EE00354B-(cit22)/*[position()=1] publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2019.01.108 contributor: fullname: Schorer – year: 2017 ident: D1EE00354B-(cit20)/*[position()=1] contributor: fullname: Amat – volume: 377 start-page: 119929 year: 2019 ident: D1EE00354B-(cit36)/*[position()=1] publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.09.090 contributor: fullname: Liu – volume: 142 start-page: L8 year: 1995 ident: D1EE00354B-(cit30)/*[position()=1] publication-title: J. Electrochem. Soc. doi: 10.1149/1.2043988 contributor: fullname: Inaguma – volume: 16 start-page: 1735 year: 2012 ident: D1EE00354B-(cit2)/*[position()=1] publication-title: Renewable Sustainable Energy Rev. doi: 10.1016/j.rser.2011.11.023 contributor: fullname: Grosjean – volume: 57 start-page: 2096 year: 2018 ident: D1EE00354B-(cit28)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201710841 contributor: fullname: Bae – volume: 4 start-page: 1459 year: 2020 ident: D1EE00354B-(cit4)/*[position()=1] publication-title: Joule doi: 10.1016/j.joule.2020.05.017 contributor: fullname: Liu – volume: 11 start-page: 2720 year: 2019 ident: D1EE00354B-(cit12)/*[position()=1] publication-title: Anal. Methods doi: 10.1039/C9AY00510B contributor: fullname: Yazdanpanah – volume: 45 start-page: 7313 year: 2020 ident: D1EE00354B-(cit21)/*[position()=1] publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2019.06.162 contributor: fullname: Bernardo – start-page: 116940 year: 2020 ident: D1EE00354B-(cit14)/*[position()=1] publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2020.116940 contributor: fullname: Zhu – volume: 81 start-page: 115 year: 2020 ident: D1EE00354B-(cit10)/*[position()=1] publication-title: J. Ind. Eng. Chem. doi: 10.1016/j.jiec.2019.08.061 contributor: fullname: Han – volume: 49 start-page: 9390 year: 2015 ident: D1EE00354B-(cit5)/*[position()=1] publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.5b00463 contributor: fullname: Diallo – volume: 12 start-page: 9775 year: 2020 ident: D1EE00354B-(cit8)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b21612 contributor: fullname: Tang – volume: 308 start-page: 77 year: 2017 ident: D1EE00354B-(cit9)/*[position()=1] publication-title: Solid State Ionics doi: 10.1016/j.ssi.2017.05.020 contributor: fullname: Ryu – volume: 405-406 start-page: 275 year: 2012 ident: D1EE00354B-(cit32)/*[position()=1] publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2012.03.020 contributor: fullname: Wang |
SSID | ssj0062079 |
Score | 2.6620142 |
Snippet | Seawater contains significantly larger quantities of lithium than is found on land, thereby providing an almost unlimited resource of lithium for meeting the... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Publisher |
StartPage | 3152 |
SubjectTerms | Batteries Chemical analysis Economic analysis Lithium Lithium batteries Membrane processes Membranes Purity Seawater Selectivity Water analysis |
Title | Continuous electrical pumping membrane process for seawater lithium mining |
URI | https://www.proquest.com/docview/2528839877 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdY9wIPiK-JsoEswRvKiL8S-3EbHdMo46UVFS-RkzhqH5pOW6Np--s5O3GdTtMEvETJSbGiu1_Od-f7QOhTyoUyJE8iO1sn4oqUkSSiiipqwO0RZSLcOJ8fF8nZlJ_PxCwcxbjqknV-WNw9WFfyP1IFGsjVVsn-g2Q3iwIB7kG-cAUJw_WvZGxbSy3qxmaxtuNsHMcvQUI2ALA0S3CFa1sJ5YoBXEYhIPtG28aIYH7PF83y89JNiNgK0LflgBYTvTI4XzwZkDB2iQC_56GYrKWczJv6VndrOmpjybOFXt2YRTj0WLUxgX7cgZJ7cYc2uuFTS13qSDegrqdNU8EjkbTD7g5Nj5bGyZYK5j2oiZ4-ZUTQ3t4Mj-pBvR8z2za1JMbYo1Geh93Nn-hf_MxOp-NxNhnNJjtol4JekgO0e_T9-Nsvv3UnNHbNGTff7fvZMvUlrL1twQS3ZOfKz4xxtsnkBXreORX4qEXIS_TE1K_Qs16rydfoPGAFB6zgDivYYwV3WMGAFeyxgjus4BYrb9D0dDQ5OYu6ORpRwWm8jmRZJhUXpcjzQlPGpAQbUWrCNPjipaIlmKkiTxkpDEtTAw4sAS8U7FStqrgynO2hQb2qzVuElTQ6kaxgvGI8B_NQ54qmVCtYLpaVGqKPnjfZZdsuJXNpDkxlX8lo5Dh4PEQHnm1Z9ztdZ1TYwddKpukQ7QErN-8Hzr97_L199DQA9QAN1leNeQ8m4zr_0An6D43hbc0 |
link.rule.ids | 315,783,787,27938,27939 |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Continuous+electrical+pumping+membrane+process+for+seawater+lithium+mining&rft.jtitle=Energy+%26+environmental+science&rft.au=Li%2C+Zhen&rft.au=Li%2C+Chunyang&rft.au=Liu%2C+Xiaowei&rft.au=Cao%2C+Li&rft.date=2021-01-01&rft.pub=Royal+Society+of+Chemistry&rft.issn=1754-5692&rft.eissn=1754-5706&rft.volume=14&rft.issue=5&rft.spage=3152&rft.epage=3159&rft_id=info:doi/10.1039%2Fd1ee00354b&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1754-5692&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1754-5692&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1754-5692&client=summon |