Estimating wheat yield by integrating the WheatGrow and PROSAIL models

•PROSAIL model was integrated with the WheatGrow model, integrating RS and growth•We developed a look-up table between VIs and measured wheat parameters.•Time-series VIs obtained by fusing high spatial- and temporal-resolution images.•Three-band Vi RNir/(RRed+RGreen) and two-band VI SAVI(RNir,RRed)...

Full description

Saved in:
Bibliographic Details
Published inField crops research Vol. 192; pp. 55 - 66
Main Authors Zhang, L., Guo, C.L., Zhao, L.Y., Zhu, Y., Cao, W.X., Tian, Y.C., Cheng, T., Wang, X.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.06.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •PROSAIL model was integrated with the WheatGrow model, integrating RS and growth•We developed a look-up table between VIs and measured wheat parameters.•Time-series VIs obtained by fusing high spatial- and temporal-resolution images.•Three-band Vi RNir/(RRed+RGreen) and two-band VI SAVI(RNir,RRed) were optimal.•Accuracy is best using multiple RS data from late jointing to initial filling. Coupling remote sensing data with crop models is an important way to predict crop yield on a regional scale. Here, we developed a method for wheat yield forecasting based on integrating a wheat growth model (WheatGrow) with a radiative transfer model (PROSAIL). Based on the assimilation algorithm, the PROSAIL model was joined to the coupling model, integrating the remote sensing (RS) and growth models. Wheat VIs (vegetation indices) from different growth periods, which were obtained by fusing high spatial resolution and high temporal resolution images, were used for coupling parameters. Moreover, a LUT (look-up table) was developed between VIs and the measured management parameters (sowing date, sowing rate and nitrogen rate) based on the coupling model. Management parameters including sowing date, sowing rate and nitrogen rate, which are difficult to accurately obtain, were then inverted at the regional scale. Reducing the uncertainty from the input parameters of the WheatGrow model, such as management parameters, improved the accuracy of regional-scale yield prediction. We also used measured data from different years and different ecological sites to determine the optimum coupling VI and coupling frequency based on the integration of RS and crop models. The results show that (1) the three-band VI RNir/(RRed+RGreen) and the two-band VI SAVI (RNir,RRed) are the best coupling VIs; (2) the heading or anthesis stage is the best coupling stage if only one RS image is available; (3) good prediction accuracy can be achieved if three to four high spatial and temporal resolution images from the late jointing to initial filling stages are assimilated. In the study areas, the spatial and temporal distribution of winter wheat growth and productivity parameters were well simulated. The RRMSE of leaf area index and leaf nitrogen accumulation between predicted and measured values were 17.8% and 20.3%, respectively, and the RRMSE of grain yield were less than 10%. The results of this study provide an important theoretical and technical foundation for monitoring and estimating winter wheat growth status on a regional scale and can be extended to other types of crops from varied ecological regions.
AbstractList Coupling remote sensing data with crop models is an important way to predict crop yield on a regional scale. Here, we developed a method for wheat yield forecasting based on integrating a wheat growth model (WheatGrow) with a radiative transfer model (PROSAIL). Based on the assimilation algorithm, the PROSAIL model was joined to the coupling model, integrating the remote sensing (RS) and growth models. Wheat VIs (vegetation indices) from different growth periods, which were obtained by fusing high spatial resolution and high temporal resolution images, were used for coupling parameters. Moreover, a LUT (look-up table) was developed between VIs and the measured management parameters (sowing date, sowing rate and nitrogen rate) based on the coupling model. Management parameters including sowing date, sowing rate and nitrogen rate, which are difficult to accurately obtain, were then inverted at the regional scale. Reducing the uncertainty from the input parameters of the WheatGrow model, such as management parameters, improved the accuracy of regional-scale yield prediction. We also used measured data from different years and different ecological sites to determine the optimum coupling VI and coupling frequency based on the integration of RS and crop models. The results show that (1) the three-band VI R sub(Nir)/(R sub(Red) + R sub(Green)) and the two-band VI SAVI (R sub(Nir),R sub(Red)) are the best coupling VIs; (2) the heading or anthesis stage is the best coupling stage if only one RS image is available; (3) good prediction accuracy can be achieved if three to four high spatial and temporal resolution images from the late jointing to initial filling stages are assimilated. In the study areas, the spatial and temporal distribution of winter wheat growth and productivity parameters were well simulated. The RRMSE of leaf area index and leaf nitrogen accumulation between predicted and measured values were 17.8% and 20.3%, respectively, and the RRMSE of grain yield were less than 10%. The results of this study provide an important theoretical and technical foundation for monitoring and estimating winter wheat growth status on a regional scale and can be extended to other types of crops from varied ecological regions.
Coupling remote sensing data with crop models is an important way to predict crop yield on a regional scale. Here, we developed a method for wheat yield forecasting based on integrating a wheat growth model (WheatGrow) with a radiative transfer model (PROSAIL). Based on the assimilation algorithm, the PROSAIL model was joined to the coupling model, integrating the remote sensing (RS) and growth models. Wheat VIs (vegetation indices) from different growth periods, which were obtained by fusing high spatial resolution and high temporal resolution images, were used for coupling parameters. Moreover, a LUT (look-up table) was developed between VIs and the measured management parameters (sowing date, sowing rate and nitrogen rate) based on the coupling model. Management parameters including sowing date, sowing rate and nitrogen rate, which are difficult to accurately obtain, were then inverted at the regional scale. Reducing the uncertainty from the input parameters of the WheatGrow model, such as management parameters, improved the accuracy of regional-scale yield prediction. We also used measured data from different years and different ecological sites to determine the optimum coupling VI and coupling frequency based on the integration of RS and crop models. The results show that (1) the three-band VI RNir/(RRed+RGreen) and the two-band VI SAVI (RNir,RRed) are the best coupling VIs; (2) the heading or anthesis stage is the best coupling stage if only one RS image is available; (3) good prediction accuracy can be achieved if three to four high spatial and temporal resolution images from the late jointing to initial filling stages are assimilated. In the study areas, the spatial and temporal distribution of winter wheat growth and productivity parameters were well simulated. The RRMSE of leaf area index and leaf nitrogen accumulation between predicted and measured values were 17.8% and 20.3%, respectively, and the RRMSE of grain yield were less than 10%. The results of this study provide an important theoretical and technical foundation for monitoring and estimating winter wheat growth status on a regional scale and can be extended to other types of crops from varied ecological regions.
•PROSAIL model was integrated with the WheatGrow model, integrating RS and growth•We developed a look-up table between VIs and measured wheat parameters.•Time-series VIs obtained by fusing high spatial- and temporal-resolution images.•Three-band Vi RNir/(RRed+RGreen) and two-band VI SAVI(RNir,RRed) were optimal.•Accuracy is best using multiple RS data from late jointing to initial filling. Coupling remote sensing data with crop models is an important way to predict crop yield on a regional scale. Here, we developed a method for wheat yield forecasting based on integrating a wheat growth model (WheatGrow) with a radiative transfer model (PROSAIL). Based on the assimilation algorithm, the PROSAIL model was joined to the coupling model, integrating the remote sensing (RS) and growth models. Wheat VIs (vegetation indices) from different growth periods, which were obtained by fusing high spatial resolution and high temporal resolution images, were used for coupling parameters. Moreover, a LUT (look-up table) was developed between VIs and the measured management parameters (sowing date, sowing rate and nitrogen rate) based on the coupling model. Management parameters including sowing date, sowing rate and nitrogen rate, which are difficult to accurately obtain, were then inverted at the regional scale. Reducing the uncertainty from the input parameters of the WheatGrow model, such as management parameters, improved the accuracy of regional-scale yield prediction. We also used measured data from different years and different ecological sites to determine the optimum coupling VI and coupling frequency based on the integration of RS and crop models. The results show that (1) the three-band VI RNir/(RRed+RGreen) and the two-band VI SAVI (RNir,RRed) are the best coupling VIs; (2) the heading or anthesis stage is the best coupling stage if only one RS image is available; (3) good prediction accuracy can be achieved if three to four high spatial and temporal resolution images from the late jointing to initial filling stages are assimilated. In the study areas, the spatial and temporal distribution of winter wheat growth and productivity parameters were well simulated. The RRMSE of leaf area index and leaf nitrogen accumulation between predicted and measured values were 17.8% and 20.3%, respectively, and the RRMSE of grain yield were less than 10%. The results of this study provide an important theoretical and technical foundation for monitoring and estimating winter wheat growth status on a regional scale and can be extended to other types of crops from varied ecological regions.
Author Zhang, L.
Zhao, L.Y.
Cheng, T.
Wang, X.
Guo, C.L.
Cao, W.X.
Tian, Y.C.
Zhu, Y.
Author_xml – sequence: 1
  givenname: L.
  surname: Zhang
  fullname: Zhang, L.
  email: zl_1023@126.com
– sequence: 2
  givenname: C.L.
  surname: Guo
  fullname: Guo, C.L.
  email: sxgclxwh@163.com
– sequence: 3
  givenname: L.Y.
  surname: Zhao
  fullname: Zhao, L.Y.
  email: zhaoly27@163.com
– sequence: 4
  givenname: Y.
  surname: Zhu
  fullname: Zhu, Y.
  email: yanzhu@njau.edu.cn
– sequence: 5
  givenname: W.X.
  surname: Cao
  fullname: Cao, W.X.
  email: caow@njau.edu.cn
– sequence: 6
  givenname: Y.C.
  surname: Tian
  fullname: Tian, Y.C.
  email: yctian@njau.edu.cn
– sequence: 7
  givenname: T.
  surname: Cheng
  fullname: Cheng, T.
  email: tcheng@njau.edu.cn
– sequence: 8
  givenname: X.
  surname: Wang
  fullname: Wang, X.
  email: wangxue@njau.edu.cn
BookMark eNp9kEFrwkAUhJdioWr7A3pqjr0kfZtsNht6ElErCJZa6XHZbF50JSZ2N1b8901Izz29B_PNwMyIDKq6QkIeKQQUKH85BIW2Qdi-AbAAKLshQyqS0OciDgdkCFEifBamcEdGzh0AgHPKh2Q-c405qsZUO--yR9V4V4Nl7mVXz1QN7mwvNXv0vjp5YeuLp6rce_9YbybLlXescyzdPbktVOnw4e-OyXY--5y--av1YjmdrHzNQmh8IeJcM1RCFJBBWmTAdJqHcRYrUAkWKovygmc0ZqGKoiiNuU45MIqIIgIN0Zg897knW3-f0TXyaJzGslQV1mcnqQDBY5aEHUp7VNvaOYuFPNm2qb1KCrLbTB5ku5nsNpPAZLtZ63nqPYWqpdpZ4-R20wEAVKSUdamvPdGWxh-DVjptsNKYG4u6kXlt_sn_BVbQfnI
CitedBy_id crossref_primary_10_3390_rs10122026
crossref_primary_10_1016_j_jag_2021_102373
crossref_primary_10_1093_jxb_erw227
crossref_primary_10_3390_rs11202456
crossref_primary_10_1016_j_agrformet_2022_109178
crossref_primary_10_1016_j_eja_2022_126537
crossref_primary_10_1016_j_eja_2023_126837
crossref_primary_10_3390_rs16010121
crossref_primary_10_1016_j_jag_2021_102454
crossref_primary_10_1016_j_agsy_2021_103299
crossref_primary_10_3390_rs15164066
crossref_primary_10_1016_j_rse_2024_114277
crossref_primary_10_1016_j_agsy_2023_103711
crossref_primary_10_1016_j_agrformet_2024_110101
crossref_primary_10_1270_jsbbs_21069
crossref_primary_10_1016_j_agrformet_2019_01_023
crossref_primary_10_1016_j_compag_2019_05_044
crossref_primary_10_1016_j_eja_2018_10_008
crossref_primary_10_3390_rs10121968
crossref_primary_10_1016_j_agrformet_2018_03_014
crossref_primary_10_1016_j_agrformet_2023_109574
crossref_primary_10_1016_j_isprsjprs_2023_05_012
crossref_primary_10_1016_j_fcr_2022_108449
crossref_primary_10_3390_rs11161928
crossref_primary_10_1007_s11119_017_9498_5
crossref_primary_10_1016_j_compag_2023_108335
crossref_primary_10_1016_j_compag_2024_108731
crossref_primary_10_1016_j_fcr_2017_05_025
crossref_primary_10_3390_s20061577
Cites_doi 10.1016/j.rse.2007.04.004
10.1016/0034-4257(79)90013-0
10.1117/1.JRS.8.083674
10.1016/j.fcr.2006.12.005
10.1016/j.jag.2007.09.002
10.1016/j.rse.2007.12.003
10.1016/S0034-4257(01)00255-3
10.1016/j.agrformet.2015.02.001
10.1016/0034-4257(90)90100-Z
10.1016/j.agrformet.2012.12.008
10.1016/S1161-0301(02)00101-6
10.1016/j.rse.2014.06.006
10.1626/pps.16.352
10.1016/j.rse.2004.06.016
10.1016/j.fcr.2014.05.001
10.1080/01431160903505310
10.1626/pps.5.248
10.1016/j.rse.2006.05.021
10.1016/S0034-4257(03)00146-9
10.1016/j.rse.2004.05.017
10.1016/S0167-8809(00)00168-7
10.1016/0034-4257(89)90015-1
10.1016/j.rse.2012.05.013
10.1016/S1671-2927(11)60156-9
10.1016/0034-4257(88)90106-X
10.1109/LGRS.2007.912089
10.1016/j.mcm.2011.10.038
10.1109/TGRS.2006.872081
10.2134/agronj1993.00021962008500020035x
10.1016/S0034-4257(02)00035-4
10.1016/j.fcr.2010.11.002
10.1016/j.fcr.2015.08.004
10.1016/0378-4290(91)90040-3
10.2134/agronj1988.00021962008000040021x
10.1016/j.envsoft.2014.08.010
10.1016/j.jag.2011.09.004
10.1626/pps.9.323
10.1016/0924-2716(92)90030-D
10.1016/j.agee.2005.06.005
10.1016/j.jag.2006.05.003
10.1051/agro:2002008
ContentType Journal Article
Copyright 2016 Elsevier B.V.
Copyright_xml – notice: 2016 Elsevier B.V.
DBID FBQ
AAYXX
CITATION
7ST
C1K
SOI
DOI 10.1016/j.fcr.2016.04.014
DatabaseName AGRIS
CrossRef
Environment Abstracts
Environmental Sciences and Pollution Management
Environment Abstracts
DatabaseTitle CrossRef
Environment Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Environment Abstracts


Database_xml – sequence: 1
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1872-6852
EndPage 66
ExternalDocumentID 10_1016_j_fcr_2016_04_014
US201600189140
S0378429016300983
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
29H
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
ABFNM
ABFRF
ABGRD
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
ADMUD
ADQTV
AEBSH
AEFWE
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CBWCG
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HMC
HVGLF
HZ~
IHE
J1W
KOM
LW9
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SDF
SDG
SEN
SES
SEW
SPCBC
SSA
SSZ
T5K
UNMZH
WUQ
Y6R
~G-
~KM
ABPIF
ABPTK
FBQ
AAHBH
AAXKI
AAYXX
AFJKZ
AKRWK
CITATION
7ST
C1K
SOI
ID FETCH-LOGICAL-c420t-885dc4ea88f0b09fb04c9d25b5a0a7efab3df6b1542a333956c96041eee830c03
IEDL.DBID AIKHN
ISSN 0378-4290
IngestDate Fri Oct 25 05:13:40 EDT 2024
Thu Sep 26 17:44:03 EDT 2024
Wed Dec 27 19:02:44 EST 2023
Fri Feb 23 02:33:47 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Data fusion
LUT
Wheat
PROSAIL model
Grain yield
WheatGrow model
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c420t-885dc4ea88f0b09fb04c9d25b5a0a7efab3df6b1542a333956c96041eee830c03
Notes http://dx.doi.org/10.1016/j.fcr.2016.04.014
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1808654720
PQPubID 23462
PageCount 12
ParticipantIDs proquest_miscellaneous_1808654720
crossref_primary_10_1016_j_fcr_2016_04_014
fao_agris_US201600189140
elsevier_sciencedirect_doi_10_1016_j_fcr_2016_04_014
PublicationCentury 2000
PublicationDate 2016-06-01
PublicationDateYYYYMMDD 2016-06-01
PublicationDate_xml – month: 06
  year: 2016
  text: 2016-06-01
  day: 01
PublicationDecade 2010
PublicationTitle Field crops research
PublicationYear 2016
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Cao, Liu, Luo, Wang, Pan, Guo (bib0020) 2002; 5
Pan, Zhu, Cao, Dai, Jiang (bib0195) 2006; 9
Huang, Zhu, Wang, Yao, Cao, Hannaway, Tian (bib0085) 2011; 31
Pearson, Miller (bib0205) 1972; VIII
Dorigo, Zurita-Milla, Witf, Braziled, Singhe, Schaepmanc (bib0055) 2007; 9
Hu, Cao, Luo (bib0080) 2004; 15
Huete (bib0100) 1988; 25
Delecolle, Maas, Guerif, Baret (bib0045) 1992; 47
Supit, Hooijer, Van Diepen (bib0215) 1994
Guerif, Duke (bib0075) 2000; 81
Shen, Niu, Chen, Wang (bib0210) 2007; 23
Yan, Cao, Luo, Jiang (bib0250) 2000; 11
Module (bib0175) 2009
Tian, Yao, Yang, Cao, Hannaway, Zhu (bib0225) 2011; 120
Lavergne, Kaminski, Pinty, Taberner, Gobron, Verstraete, Vossbeck, Widlowski, Giering (bib0125) 2007; 107
Batchelor, Basso, Paz (bib0010) 2002; 18
Combal, Baret, Weiss, Trubuil, Macé, Pragnère, Myneni, Knyazikhin, Wang (bib0030) 2003; 84
Atzberger (bib0005) 2004; 93
Huang, Zhu, Li, Cao, Tian (bib0090) 2013; 16
Maas (bib0160) 1988; 80
Nilson, Kuusk (bib0185) 1989; 27
Ma, Huang, Wu, Fan, Zou, Wu (bib0155) 2013; 58
Verger, Vigneau, Chéron, Gilliot, Comar, Baret (bib0235) 2014; 152
Yang, Sun, Fang, Yao, Zhang, Zhu, Song, Wang, Hu (bib0260) 2012; 18
Liu, Liu, Ding, Wu (bib0140) 2015; 183
Nouvellon, Moran, Seen, Bryant, Rambal, Ni, Bégué, Chehbouni, Emmerich, Heilman, Qi (bib0190) 2001; 78
Yang, Shen, Li, Le Toan, He (bib0255) 2008; 5
Doraiswamy, Hatfield, Jackson, Akhmedov, Prueger, Stern (bib0050) 2004; 92
Gastellu-Etchegorry, Gascon, Estève (bib0070) 2003; 87
Wang, Zhu, Li, Cao, Tian (bib0240) 2014; 8
Launay, Guerif (bib0120) 2005; 111
Wang, Tian, Yao, Zhu, Cao (bib0245) 2014; 164
Ma, Wang, Zhang, Hou, Zhuang, He, Wang (bib0150) 2008; 10
Fang, Liang, Hoogenboom (bib0060) 2011; 32
Tucker (bib0230) 1979; 8
Zhu, Zhu, Huang, Yao, Liu, Cao, Tian (bib0265) 2010
Huang, Tian, Liang, Ma, Becker-Reshef, Huang, Su, Zhang, Zhu, Wu (bib0095) 2015; 204
Lv, Liu, Cao, Zhu (bib0145) 2013; 171–142
Li, Li, Dong, Liu, Wang, Yang, Pan (bib0130) 2011; 10
Combal, Baret, Weiss (bib0025) 2002; 22
Machwitz, Giustarini, Bossung, Frantz, Schlerf, Lilienthal, Wandera, Matgen, Hoffmann, Udelhoven (bib0170) 2014; 62
Jamieson, Porter, Wilson (bib0110) 1991; 27
Pan, Zhu, Cao (bib0200) 2007; 101
Gao, Masek, Schwaller, Hall (bib0065) 2006; 44
Maas (bib0165) 1993; 85
Jacquemoud, Baret (bib0105) 1990; 34
Liu, Cao, Tang, Cao, Zhu (bib0135) 2010; 24
Moulin, Guerif (bib0180) 1999; 20
Thorp, Wang, West, Moran, Bronson, White, Mon (bib0220) 2012; 124
Darvishzadeh, Skidmore, Schlerf, Atzberger (bib0035) 2008; 112
Delecolle, Guerif (bib0040) 1988; 287
Jin (bib0115) 1996
Busetto, Meroni, Colombo (bib0015) 2008; 112
Maas (10.1016/j.fcr.2016.04.014_bib0160) 1988; 80
Supit (10.1016/j.fcr.2016.04.014_bib0215) 1994
Ma (10.1016/j.fcr.2016.04.014_bib0155) 2013; 58
Atzberger (10.1016/j.fcr.2016.04.014_bib0005) 2004; 93
Delecolle (10.1016/j.fcr.2016.04.014_bib0040) 1988; 287
Maas (10.1016/j.fcr.2016.04.014_bib0165) 1993; 85
Moulin (10.1016/j.fcr.2016.04.014_bib0180) 1999; 20
Ma (10.1016/j.fcr.2016.04.014_bib0150) 2008; 10
Thorp (10.1016/j.fcr.2016.04.014_bib0220) 2012; 124
Combal (10.1016/j.fcr.2016.04.014_bib0030) 2003; 84
Huang (10.1016/j.fcr.2016.04.014_bib0095) 2015; 204
Gastellu-Etchegorry (10.1016/j.fcr.2016.04.014_bib0070) 2003; 87
Tucker (10.1016/j.fcr.2016.04.014_bib0230) 1979; 8
Module (10.1016/j.fcr.2016.04.014_bib0175) 2009
Shen (10.1016/j.fcr.2016.04.014_bib0210) 2007; 23
Li (10.1016/j.fcr.2016.04.014_bib0130) 2011; 10
Jacquemoud (10.1016/j.fcr.2016.04.014_bib0105) 1990; 34
Combal (10.1016/j.fcr.2016.04.014_bib0025) 2002; 22
Zhu (10.1016/j.fcr.2016.04.014_bib0265) 2010
Batchelor (10.1016/j.fcr.2016.04.014_bib0010) 2002; 18
Huang (10.1016/j.fcr.2016.04.014_bib0085) 2011; 31
Yan (10.1016/j.fcr.2016.04.014_bib0250) 2000; 11
Pan (10.1016/j.fcr.2016.04.014_bib0200) 2007; 101
Yang (10.1016/j.fcr.2016.04.014_bib0255) 2008; 5
Busetto (10.1016/j.fcr.2016.04.014_bib0015) 2008; 112
Launay (10.1016/j.fcr.2016.04.014_bib0120) 2005; 111
Jamieson (10.1016/j.fcr.2016.04.014_bib0110) 1991; 27
Huang (10.1016/j.fcr.2016.04.014_bib0090) 2013; 16
Huete (10.1016/j.fcr.2016.04.014_bib0100) 1988; 25
Cao (10.1016/j.fcr.2016.04.014_bib0020) 2002; 5
Gao (10.1016/j.fcr.2016.04.014_bib0065) 2006; 44
Pearson (10.1016/j.fcr.2016.04.014_bib0205) 1972; VIII
Wang (10.1016/j.fcr.2016.04.014_bib0240) 2014; 8
Jin (10.1016/j.fcr.2016.04.014_bib0115) 1996
Lavergne (10.1016/j.fcr.2016.04.014_bib0125) 2007; 107
Yang (10.1016/j.fcr.2016.04.014_bib0260) 2012; 18
Guerif (10.1016/j.fcr.2016.04.014_bib0075) 2000; 81
Liu (10.1016/j.fcr.2016.04.014_bib0135) 2010; 24
Dorigo (10.1016/j.fcr.2016.04.014_bib0055) 2007; 9
Lv (10.1016/j.fcr.2016.04.014_bib0145) 2013; 171–142
Fang (10.1016/j.fcr.2016.04.014_bib0060) 2011; 32
Tian (10.1016/j.fcr.2016.04.014_bib0225) 2011; 120
Darvishzadeh (10.1016/j.fcr.2016.04.014_bib0035) 2008; 112
Doraiswamy (10.1016/j.fcr.2016.04.014_bib0050) 2004; 92
Delecolle (10.1016/j.fcr.2016.04.014_bib0045) 1992; 47
Wang (10.1016/j.fcr.2016.04.014_bib0245) 2014; 164
Nouvellon (10.1016/j.fcr.2016.04.014_bib0190) 2001; 78
Pan (10.1016/j.fcr.2016.04.014_bib0195) 2006; 9
Liu (10.1016/j.fcr.2016.04.014_bib0140) 2015; 183
Nilson (10.1016/j.fcr.2016.04.014_bib0185) 1989; 27
Machwitz (10.1016/j.fcr.2016.04.014_bib0170) 2014; 62
Hu (10.1016/j.fcr.2016.04.014_bib0080) 2004; 15
Verger (10.1016/j.fcr.2016.04.014_bib0235) 2014; 152
References_xml – volume: 204
  start-page: 106
  year: 2015
  end-page: 121
  ident: bib0095
  article-title: Improving winter wheat yield estimation by assimilation of the leaf area index from Landsat TM and MODIS data into the WOFOST model
  publication-title: Agric. For. Meteorol.
  contributor:
    fullname: Wu
– volume: 23
  start-page: 27
  year: 2007
  end-page: 30
  ident: bib0210
  article-title: Rational consideration about construction land expansion of Changsha urban area in the last ten years
  publication-title: Geogr. Geo-Inf. Sci.
  contributor:
    fullname: Wang
– year: 1994
  ident: bib0215
  article-title: System Description of the Wofost 6.0 Crop Simulation Model Implemented in CGMS
  contributor:
    fullname: Van Diepen
– volume: 112
  start-page: 118
  year: 2008
  end-page: 131
  ident: bib0015
  article-title: Combining medium and coarse spatial resolution satellite data to improve the estimation of sub-pixel NDVI time series
  publication-title: Remote Sens. Environ.
  contributor:
    fullname: Colombo
– volume: 31
  start-page: 1073
  year: 2011
  end-page: 1084
  ident: bib0085
  article-title: Predicting winter wheat growth based on integrating remote sensing and crop growth modeling techniques
  publication-title: Acta Ecol. Sin.
  contributor:
    fullname: Tian
– volume: 112
  start-page: 2592
  year: 2008
  end-page: 2604
  ident: bib0035
  article-title: Inversion of a radiative transfer model for estimating vegetation LAI and chlorophyll in a heterogeneous grassland
  publication-title: Remote Sens. Environ.
  contributor:
    fullname: Atzberger
– volume: 34
  start-page: 75
  year: 1990
  end-page: 91
  ident: bib0105
  article-title: PROSPECT: a model of leaf optical properties spectra
  publication-title: Remote Sens. Environ.
  contributor:
    fullname: Baret
– year: 2009
  ident: bib0175
  article-title: QUAC and FLAASH User’s Guide
  contributor:
    fullname: Module
– volume: 101
  start-page: 276
  year: 2007
  end-page: 284
  ident: bib0200
  article-title: Modeling plant carbon flow and grain starch accumulation in wheat
  publication-title: Field Crops Res.
  contributor:
    fullname: Cao
– volume: 80
  start-page: 655
  year: 1988
  end-page: 662
  ident: bib0160
  article-title: Using satellite data to improve model estimates of crop yield
  publication-title: Agron. J.
  contributor:
    fullname: Maas
– volume: 171–142
  start-page: 234
  year: 2013
  end-page: 248
  ident: bib0145
  article-title: Climate change impacts on regional winter wheat production in main wheat production regions of China
  publication-title: Agric. Forest Meteorol.
  contributor:
    fullname: Zhu
– volume: 27
  start-page: 337
  year: 1991
  end-page: 350
  ident: bib0110
  article-title: A test of the computer simulation model ARCWHEAT1 on wheat crops grown in New Zealand
  publication-title: Field Crops Res.
  contributor:
    fullname: Wilson
– volume: 5
  start-page: 108
  year: 2008
  end-page: 112
  ident: bib0255
  article-title: Rice mapping and monitoring using ENVISAT ASAR data
  publication-title: Geosci. Remote Sens. Lett. IEEE
  contributor:
    fullname: He
– volume: 16
  start-page: 352
  year: 2013
  end-page: 364
  ident: bib0090
  article-title: Assimilating remotely sensed information with the WheatGrow model based on the Ensemble Square Root Filter for improving regional wheat yield forecasts
  publication-title: Plant Prod. Sci.
  contributor:
    fullname: Tian
– volume: 18
  start-page: 462
  year: 2012
  end-page: 471
  ident: bib0260
  article-title: Comparison of different methods for corn LAI estimation over northeastern China
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
  contributor:
    fullname: Hu
– volume: 10
  start-page: 426
  year: 2008
  end-page: 437
  ident: bib0150
  article-title: Monitoring winter wheat growth in North China by combining a crop model and remote sensing data
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
  contributor:
    fullname: Wang
– volume: 78
  start-page: 131
  year: 2001
  end-page: 149
  ident: bib0190
  article-title: Coupling a grassland ecosystem model with Landsat imagery for a 10-year simulation of carbon and water budgets
  publication-title: Remote Sens. Environ.
  contributor:
    fullname: Qi
– volume: 93
  start-page: 53
  year: 2004
  end-page: 67
  ident: bib0005
  article-title: Object-based retrieval of biophysical canopy variables using artificial neural nets and radiative transfer models
  publication-title: Remote Sens. Environ.
  contributor:
    fullname: Atzberger
– volume: 287
  start-page: 125
  year: 1988
  ident: bib0040
  article-title: Introducing spectral data into a plant process model for improving its prediction ability
  publication-title: Spectral Signatures Objects Remote Sens.
  contributor:
    fullname: Guerif
– volume: 84
  start-page: 1
  year: 2003
  end-page: 15
  ident: bib0030
  article-title: Retrieval of canopy biophysical variables from bidirectional reflectance: using prior information to solve the ill-posed inverse problem
  publication-title: Remote Sens. Environ.
  contributor:
    fullname: Wang
– volume: 10
  start-page: 1595
  year: 2011
  end-page: 1602
  ident: bib0130
  article-title: Assimilation of remote sensing and crop model for LAI estimation based on ensemble kalman filter
  publication-title: Agric. Sci. China
  contributor:
    fullname: Pan
– volume: 22
  start-page: 205
  year: 2002
  end-page: 215
  ident: bib0025
  article-title: Improving canopy variables estimation from remote sensing data by exploiting ancillary information. Case sudy sugar beet canopies
  publication-title: Agronomie
  contributor:
    fullname: Weiss
– volume: 8
  start-page: 127
  year: 1979
  end-page: 150
  ident: bib0230
  article-title: Red and photographic infrared linear combinations for monitoring vegetation
  publication-title: Remote Sens. Environ.
  contributor:
    fullname: Tucker
– volume: VIII
  start-page: 1355
  year: 1972
  ident: bib0205
  article-title: Remote mapping of standing crop biomass for estimation of the productivity of the shortgrass prairie
  publication-title: Remote Sens. Environ.
  contributor:
    fullname: Miller
– volume: 164
  start-page: 178
  year: 2014
  end-page: 188
  ident: bib0245
  article-title: Predicting grain yield and protein content in wheat by fusing multi-sensor and multi-temporal remote-sensing images
  publication-title: Field Crops Res.
  contributor:
    fullname: Cao
– volume: 18
  start-page: 141
  year: 2002
  end-page: 158
  ident: bib0010
  article-title: Examples of strategies to analyze spatial and temporal yield variability using crop models
  publication-title: Eur. J. Agron.
  contributor:
    fullname: Paz
– volume: 47
  start-page: 145
  year: 1992
  end-page: 161
  ident: bib0045
  article-title: Remote sensing and crop production models – present trends
  publication-title: ISPRS J. Photogramm. Remote Sens.
  contributor:
    fullname: Baret
– volume: 15
  start-page: 41
  year: 2004
  end-page: 50
  ident: bib0080
  article-title: A soil-water balance model under waterlogging condition in winter wheat
  publication-title: J. Appl. Meteorol. Sci.
  contributor:
    fullname: Luo
– volume: 120
  start-page: 299
  year: 2011
  end-page: 310
  ident: bib0225
  article-title: Assessing newly developed and published vegetation indices for estimating rice leaf nitrogen concentration with ground- and space-based hyperspectral reflectance
  publication-title: Field Crops Res.
  contributor:
    fullname: Zhu
– volume: 9
  start-page: 165
  year: 2007
  end-page: 193
  ident: bib0055
  article-title: A review on reflective remote sensing and data assimilation techniques for enhanced agroecosystem modeling
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
  contributor:
    fullname: Schaepmanc
– year: 1996
  ident: bib0115
  article-title: Chinese Wheat
  contributor:
    fullname: Jin
– volume: 124
  start-page: 224
  year: 2012
  end-page: 233
  ident: bib0220
  article-title: Estimating crop biophysical properties from remote sensing data by inverting linked radiative transfer and ecophysiological models
  publication-title: Remote Sens. Environ.
  contributor:
    fullname: Mon
– volume: 5
  start-page: 248
  year: 2002
  end-page: 256
  ident: bib0020
  article-title: Simulating organ growth in wheat based on the organ-weight fraction concept
  publication-title: Plant Prod. Sci.
  contributor:
    fullname: Guo
– volume: 81
  start-page: 57
  year: 2000
  end-page: 69
  ident: bib0075
  article-title: Adjustment procedures of a crop model to the site specific characteristics of soil and crop using remote sensing data assimilation
  publication-title: Agric. Ecosyst. Environ.
  contributor:
    fullname: Duke
– start-page: 1226
  year: 2010
  end-page: 1240
  ident: bib0265
  article-title: Assimilation technique of remote sensing information and rice growth model based on particle swarm optimization
  publication-title: J. Remote Sens.
  contributor:
    fullname: Tian
– volume: 44
  start-page: 2207
  year: 2006
  end-page: 2218
  ident: bib0065
  article-title: On the blending of the landsat and modis surface reflectance: predicting daily landsat surface reflectance
  publication-title: Geosci. Remote Sens. IEEE Trans.
  contributor:
    fullname: Hall
– volume: 27
  start-page: 157
  year: 1989
  end-page: 167
  ident: bib0185
  article-title: A reflectance model for the homogeneous plant canopy and its inversion
  publication-title: Remote Sens. Environ. Geoinf.
  contributor:
    fullname: Kuusk
– volume: 24
  start-page: 297
  year: 2010
  end-page: 302
  ident: bib0135
  article-title: Development and application of a model and GIS-based decision support system for rice production management
  publication-title: Chin. J. Rice Sci.
  contributor:
    fullname: Zhu
– volume: 111
  start-page: 321
  year: 2005
  end-page: 339
  ident: bib0120
  article-title: Assimilating remote sensing data into a crop model to improve predictive performance for spatial applications
  publication-title: Agric. Ecosyst. Environ.
  contributor:
    fullname: Guerif
– volume: 11
  start-page: 355
  year: 2000
  end-page: 359
  ident: bib0250
  article-title: A mechanistic model of phasic and phenological development of wheat I: assumption and description of the model
  publication-title: Chin. J. Appl. Ecol.
  contributor:
    fullname: Jiang
– volume: 183
  start-page: 225
  year: 2015
  end-page: 234
  ident: bib0140
  article-title: The dynamic simulation of rice growth parameters under cadmium stress with the assimilation of multi-period spectral indices and crop model
  publication-title: Field Crops Res.
  contributor:
    fullname: Wu
– volume: 25
  start-page: 295
  year: 1988
  end-page: 309
  ident: bib0100
  article-title: A soil-adjusted vegetation index (SAVI)
  publication-title: Remote Sens. Environ.
  contributor:
    fullname: Huete
– volume: 152
  start-page: 654
  year: 2014
  end-page: 664
  ident: bib0235
  article-title: Green area index from an unmanned aerial system over wheat andrapeseed crops
  publication-title: Remote Sens. Environ.
  contributor:
    fullname: Baret
– volume: 20
  start-page: 213
  year: 1999
  end-page: 218
  ident: bib0180
  article-title: Impacts of model parameter uncertainties on crop reflectance estimates: a regional case study on wheat
  publication-title: Int. J. Appl. Earth Obs.
  contributor:
    fullname: Guerif
– volume: 32
  start-page: 1039
  year: 2011
  end-page: 1065
  ident: bib0060
  article-title: Integration of MODIS LAI and vegetation index products with the CSM-CERES-maize model for corn yield estimation
  publication-title: Int. J. Remote Sens.
  contributor:
    fullname: Hoogenboom
– volume: 58
  start-page: 634
  year: 2013
  end-page: 643
  ident: bib0155
  article-title: Assimilation of MODIS-LAI into the WOFOST model for forecasting regional winter wheat yield
  publication-title: Math. Comput. Modell.
  contributor:
    fullname: Wu
– volume: 87
  start-page: 55
  year: 2003
  end-page: 71
  ident: bib0070
  article-title: An interpolation procedure for generalizing a look-up table inversion method
  publication-title: Remote Sens. Environ.
  contributor:
    fullname: Estève
– volume: 85
  start-page: 354
  year: 1993
  end-page: 358
  ident: bib0165
  article-title: Parameterized model of gramineous crop growth: II. Within-season simulation calibration
  publication-title: Agron. J.
  contributor:
    fullname: Maas
– volume: 8
  start-page: 083674
  year: 2014
  ident: bib0240
  article-title: Integrating remotely sensed leaf area index and leaf nitrogen accumulation with RiceGrow model based on particle swarm optimization algorithm for rice grain yield assessment
  publication-title: J. Appl. Remote Sens.
  contributor:
    fullname: Tian
– volume: 62
  start-page: 437
  year: 2014
  end-page: 453
  ident: bib0170
  article-title: Enhanced biomass prediction by assimilating satellite data into a crop growth model
  publication-title: Environ. Modell. Software
  contributor:
    fullname: Udelhoven
– volume: 107
  start-page: 362
  year: 2007
  end-page: 375
  ident: bib0125
  article-title: Application to MISR land products of an RPV model inversion package using adjoint and Hessian codes
  publication-title: Remote Sens. Environ.
  contributor:
    fullname: Giering
– volume: 9
  start-page: 323
  year: 2006
  end-page: 333
  ident: bib0195
  article-title: Predicting the protein content of grain in winter wheat with meteorological and genotypic factors (Agronomy)
  publication-title: Plant Prod. Sci.
  contributor:
    fullname: Jiang
– volume: 92
  start-page: 548
  year: 2004
  end-page: 559
  ident: bib0050
  article-title: Crop condition and yield simulations using Landsat and MODIS
  publication-title: Remote Sens. Environ.
  contributor:
    fullname: Stern
– year: 2009
  ident: 10.1016/j.fcr.2016.04.014_bib0175
  contributor:
    fullname: Module
– volume: 23
  start-page: 27
  year: 2007
  ident: 10.1016/j.fcr.2016.04.014_bib0210
  article-title: Rational consideration about construction land expansion of Changsha urban area in the last ten years
  publication-title: Geogr. Geo-Inf. Sci.
  contributor:
    fullname: Shen
– volume: 112
  start-page: 118
  year: 2008
  ident: 10.1016/j.fcr.2016.04.014_bib0015
  article-title: Combining medium and coarse spatial resolution satellite data to improve the estimation of sub-pixel NDVI time series
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2007.04.004
  contributor:
    fullname: Busetto
– volume: 8
  start-page: 127
  year: 1979
  ident: 10.1016/j.fcr.2016.04.014_bib0230
  article-title: Red and photographic infrared linear combinations for monitoring vegetation
  publication-title: Remote Sens. Environ.
  doi: 10.1016/0034-4257(79)90013-0
  contributor:
    fullname: Tucker
– year: 1994
  ident: 10.1016/j.fcr.2016.04.014_bib0215
  contributor:
    fullname: Supit
– volume: 8
  start-page: 083674
  year: 2014
  ident: 10.1016/j.fcr.2016.04.014_bib0240
  article-title: Integrating remotely sensed leaf area index and leaf nitrogen accumulation with RiceGrow model based on particle swarm optimization algorithm for rice grain yield assessment
  publication-title: J. Appl. Remote Sens.
  doi: 10.1117/1.JRS.8.083674
  contributor:
    fullname: Wang
– volume: 11
  start-page: 355
  year: 2000
  ident: 10.1016/j.fcr.2016.04.014_bib0250
  article-title: A mechanistic model of phasic and phenological development of wheat I: assumption and description of the model
  publication-title: Chin. J. Appl. Ecol.
  contributor:
    fullname: Yan
– volume: 101
  start-page: 276
  year: 2007
  ident: 10.1016/j.fcr.2016.04.014_bib0200
  article-title: Modeling plant carbon flow and grain starch accumulation in wheat
  publication-title: Field Crops Res.
  doi: 10.1016/j.fcr.2006.12.005
  contributor:
    fullname: Pan
– volume: 10
  start-page: 426
  year: 2008
  ident: 10.1016/j.fcr.2016.04.014_bib0150
  article-title: Monitoring winter wheat growth in North China by combining a crop model and remote sensing data
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
  doi: 10.1016/j.jag.2007.09.002
  contributor:
    fullname: Ma
– volume: 112
  start-page: 2592
  year: 2008
  ident: 10.1016/j.fcr.2016.04.014_bib0035
  article-title: Inversion of a radiative transfer model for estimating vegetation LAI and chlorophyll in a heterogeneous grassland
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2007.12.003
  contributor:
    fullname: Darvishzadeh
– volume: 78
  start-page: 131
  year: 2001
  ident: 10.1016/j.fcr.2016.04.014_bib0190
  article-title: Coupling a grassland ecosystem model with Landsat imagery for a 10-year simulation of carbon and water budgets
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(01)00255-3
  contributor:
    fullname: Nouvellon
– volume: 204
  start-page: 106
  year: 2015
  ident: 10.1016/j.fcr.2016.04.014_bib0095
  article-title: Improving winter wheat yield estimation by assimilation of the leaf area index from Landsat TM and MODIS data into the WOFOST model
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2015.02.001
  contributor:
    fullname: Huang
– volume: 34
  start-page: 75
  year: 1990
  ident: 10.1016/j.fcr.2016.04.014_bib0105
  article-title: PROSPECT: a model of leaf optical properties spectra
  publication-title: Remote Sens. Environ.
  doi: 10.1016/0034-4257(90)90100-Z
  contributor:
    fullname: Jacquemoud
– volume: 171–142
  start-page: 234
  year: 2013
  ident: 10.1016/j.fcr.2016.04.014_bib0145
  article-title: Climate change impacts on regional winter wheat production in main wheat production regions of China
  publication-title: Agric. Forest Meteorol.
  doi: 10.1016/j.agrformet.2012.12.008
  contributor:
    fullname: Lv
– volume: 18
  start-page: 141
  year: 2002
  ident: 10.1016/j.fcr.2016.04.014_bib0010
  article-title: Examples of strategies to analyze spatial and temporal yield variability using crop models
  publication-title: Eur. J. Agron.
  doi: 10.1016/S1161-0301(02)00101-6
  contributor:
    fullname: Batchelor
– volume: 152
  start-page: 654
  year: 2014
  ident: 10.1016/j.fcr.2016.04.014_bib0235
  article-title: Green area index from an unmanned aerial system over wheat andrapeseed crops
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2014.06.006
  contributor:
    fullname: Verger
– volume: 16
  start-page: 352
  year: 2013
  ident: 10.1016/j.fcr.2016.04.014_bib0090
  article-title: Assimilating remotely sensed information with the WheatGrow model based on the Ensemble Square Root Filter for improving regional wheat yield forecasts
  publication-title: Plant Prod. Sci.
  doi: 10.1626/pps.16.352
  contributor:
    fullname: Huang
– volume: 93
  start-page: 53
  year: 2004
  ident: 10.1016/j.fcr.2016.04.014_bib0005
  article-title: Object-based retrieval of biophysical canopy variables using artificial neural nets and radiative transfer models
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2004.06.016
  contributor:
    fullname: Atzberger
– year: 1996
  ident: 10.1016/j.fcr.2016.04.014_bib0115
  contributor:
    fullname: Jin
– volume: 164
  start-page: 178
  year: 2014
  ident: 10.1016/j.fcr.2016.04.014_bib0245
  article-title: Predicting grain yield and protein content in wheat by fusing multi-sensor and multi-temporal remote-sensing images
  publication-title: Field Crops Res.
  doi: 10.1016/j.fcr.2014.05.001
  contributor:
    fullname: Wang
– volume: 32
  start-page: 1039
  year: 2011
  ident: 10.1016/j.fcr.2016.04.014_bib0060
  article-title: Integration of MODIS LAI and vegetation index products with the CSM-CERES-maize model for corn yield estimation
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160903505310
  contributor:
    fullname: Fang
– volume: 5
  start-page: 248
  year: 2002
  ident: 10.1016/j.fcr.2016.04.014_bib0020
  article-title: Simulating organ growth in wheat based on the organ-weight fraction concept
  publication-title: Plant Prod. Sci.
  doi: 10.1626/pps.5.248
  contributor:
    fullname: Cao
– volume: 107
  start-page: 362
  year: 2007
  ident: 10.1016/j.fcr.2016.04.014_bib0125
  article-title: Application to MISR land products of an RPV model inversion package using adjoint and Hessian codes
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2006.05.021
  contributor:
    fullname: Lavergne
– volume: 87
  start-page: 55
  year: 2003
  ident: 10.1016/j.fcr.2016.04.014_bib0070
  article-title: An interpolation procedure for generalizing a look-up table inversion method
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(03)00146-9
  contributor:
    fullname: Gastellu-Etchegorry
– volume: 92
  start-page: 548
  year: 2004
  ident: 10.1016/j.fcr.2016.04.014_bib0050
  article-title: Crop condition and yield simulations using Landsat and MODIS
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2004.05.017
  contributor:
    fullname: Doraiswamy
– volume: VIII
  start-page: 1355
  issue: 1
  year: 1972
  ident: 10.1016/j.fcr.2016.04.014_bib0205
  article-title: Remote mapping of standing crop biomass for estimation of the productivity of the shortgrass prairie
  publication-title: Remote Sens. Environ.
  contributor:
    fullname: Pearson
– volume: 81
  start-page: 57
  year: 2000
  ident: 10.1016/j.fcr.2016.04.014_bib0075
  article-title: Adjustment procedures of a crop model to the site specific characteristics of soil and crop using remote sensing data assimilation
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/S0167-8809(00)00168-7
  contributor:
    fullname: Guerif
– volume: 27
  start-page: 157
  year: 1989
  ident: 10.1016/j.fcr.2016.04.014_bib0185
  article-title: A reflectance model for the homogeneous plant canopy and its inversion
  publication-title: Remote Sens. Environ. Geoinf.
  doi: 10.1016/0034-4257(89)90015-1
  contributor:
    fullname: Nilson
– volume: 124
  start-page: 224
  year: 2012
  ident: 10.1016/j.fcr.2016.04.014_bib0220
  article-title: Estimating crop biophysical properties from remote sensing data by inverting linked radiative transfer and ecophysiological models
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2012.05.013
  contributor:
    fullname: Thorp
– volume: 10
  start-page: 1595
  year: 2011
  ident: 10.1016/j.fcr.2016.04.014_bib0130
  article-title: Assimilation of remote sensing and crop model for LAI estimation based on ensemble kalman filter
  publication-title: Agric. Sci. China
  doi: 10.1016/S1671-2927(11)60156-9
  contributor:
    fullname: Li
– volume: 25
  start-page: 295
  year: 1988
  ident: 10.1016/j.fcr.2016.04.014_bib0100
  article-title: A soil-adjusted vegetation index (SAVI)
  publication-title: Remote Sens. Environ.
  doi: 10.1016/0034-4257(88)90106-X
  contributor:
    fullname: Huete
– volume: 5
  start-page: 108
  year: 2008
  ident: 10.1016/j.fcr.2016.04.014_bib0255
  article-title: Rice mapping and monitoring using ENVISAT ASAR data
  publication-title: Geosci. Remote Sens. Lett. IEEE
  doi: 10.1109/LGRS.2007.912089
  contributor:
    fullname: Yang
– volume: 58
  start-page: 634
  year: 2013
  ident: 10.1016/j.fcr.2016.04.014_bib0155
  article-title: Assimilation of MODIS-LAI into the WOFOST model for forecasting regional winter wheat yield
  publication-title: Math. Comput. Modell.
  doi: 10.1016/j.mcm.2011.10.038
  contributor:
    fullname: Ma
– volume: 44
  start-page: 2207
  year: 2006
  ident: 10.1016/j.fcr.2016.04.014_bib0065
  article-title: On the blending of the landsat and modis surface reflectance: predicting daily landsat surface reflectance
  publication-title: Geosci. Remote Sens. IEEE Trans.
  doi: 10.1109/TGRS.2006.872081
  contributor:
    fullname: Gao
– volume: 85
  start-page: 354
  year: 1993
  ident: 10.1016/j.fcr.2016.04.014_bib0165
  article-title: Parameterized model of gramineous crop growth: II. Within-season simulation calibration
  publication-title: Agron. J.
  doi: 10.2134/agronj1993.00021962008500020035x
  contributor:
    fullname: Maas
– volume: 20
  start-page: 213
  year: 1999
  ident: 10.1016/j.fcr.2016.04.014_bib0180
  article-title: Impacts of model parameter uncertainties on crop reflectance estimates: a regional case study on wheat
  publication-title: Int. J. Appl. Earth Obs.
  contributor:
    fullname: Moulin
– volume: 84
  start-page: 1
  year: 2003
  ident: 10.1016/j.fcr.2016.04.014_bib0030
  article-title: Retrieval of canopy biophysical variables from bidirectional reflectance: using prior information to solve the ill-posed inverse problem
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(02)00035-4
  contributor:
    fullname: Combal
– volume: 287
  start-page: 125
  year: 1988
  ident: 10.1016/j.fcr.2016.04.014_bib0040
  article-title: Introducing spectral data into a plant process model for improving its prediction ability
  publication-title: Spectral Signatures Objects Remote Sens.
  contributor:
    fullname: Delecolle
– volume: 120
  start-page: 299
  year: 2011
  ident: 10.1016/j.fcr.2016.04.014_bib0225
  article-title: Assessing newly developed and published vegetation indices for estimating rice leaf nitrogen concentration with ground- and space-based hyperspectral reflectance
  publication-title: Field Crops Res.
  doi: 10.1016/j.fcr.2010.11.002
  contributor:
    fullname: Tian
– volume: 24
  start-page: 297
  year: 2010
  ident: 10.1016/j.fcr.2016.04.014_bib0135
  article-title: Development and application of a model and GIS-based decision support system for rice production management
  publication-title: Chin. J. Rice Sci.
  contributor:
    fullname: Liu
– volume: 183
  start-page: 225
  year: 2015
  ident: 10.1016/j.fcr.2016.04.014_bib0140
  article-title: The dynamic simulation of rice growth parameters under cadmium stress with the assimilation of multi-period spectral indices and crop model
  publication-title: Field Crops Res.
  doi: 10.1016/j.fcr.2015.08.004
  contributor:
    fullname: Liu
– volume: 27
  start-page: 337
  year: 1991
  ident: 10.1016/j.fcr.2016.04.014_bib0110
  article-title: A test of the computer simulation model ARCWHEAT1 on wheat crops grown in New Zealand
  publication-title: Field Crops Res.
  doi: 10.1016/0378-4290(91)90040-3
  contributor:
    fullname: Jamieson
– volume: 80
  start-page: 655
  year: 1988
  ident: 10.1016/j.fcr.2016.04.014_bib0160
  article-title: Using satellite data to improve model estimates of crop yield
  publication-title: Agron. J.
  doi: 10.2134/agronj1988.00021962008000040021x
  contributor:
    fullname: Maas
– volume: 62
  start-page: 437
  year: 2014
  ident: 10.1016/j.fcr.2016.04.014_bib0170
  article-title: Enhanced biomass prediction by assimilating satellite data into a crop growth model
  publication-title: Environ. Modell. Software
  doi: 10.1016/j.envsoft.2014.08.010
  contributor:
    fullname: Machwitz
– volume: 18
  start-page: 462
  year: 2012
  ident: 10.1016/j.fcr.2016.04.014_bib0260
  article-title: Comparison of different methods for corn LAI estimation over northeastern China
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
  doi: 10.1016/j.jag.2011.09.004
  contributor:
    fullname: Yang
– volume: 9
  start-page: 323
  year: 2006
  ident: 10.1016/j.fcr.2016.04.014_bib0195
  article-title: Predicting the protein content of grain in winter wheat with meteorological and genotypic factors (Agronomy)
  publication-title: Plant Prod. Sci.
  doi: 10.1626/pps.9.323
  contributor:
    fullname: Pan
– start-page: 1226
  year: 2010
  ident: 10.1016/j.fcr.2016.04.014_bib0265
  article-title: Assimilation technique of remote sensing information and rice growth model based on particle swarm optimization
  publication-title: J. Remote Sens.
  contributor:
    fullname: Zhu
– volume: 47
  start-page: 145
  year: 1992
  ident: 10.1016/j.fcr.2016.04.014_bib0045
  article-title: Remote sensing and crop production models – present trends
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/0924-2716(92)90030-D
  contributor:
    fullname: Delecolle
– volume: 111
  start-page: 321
  year: 2005
  ident: 10.1016/j.fcr.2016.04.014_bib0120
  article-title: Assimilating remote sensing data into a crop model to improve predictive performance for spatial applications
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/j.agee.2005.06.005
  contributor:
    fullname: Launay
– volume: 9
  start-page: 165
  year: 2007
  ident: 10.1016/j.fcr.2016.04.014_bib0055
  article-title: A review on reflective remote sensing and data assimilation techniques for enhanced agroecosystem modeling
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
  doi: 10.1016/j.jag.2006.05.003
  contributor:
    fullname: Dorigo
– volume: 31
  start-page: 1073
  year: 2011
  ident: 10.1016/j.fcr.2016.04.014_bib0085
  article-title: Predicting winter wheat growth based on integrating remote sensing and crop growth modeling techniques
  publication-title: Acta Ecol. Sin.
  contributor:
    fullname: Huang
– volume: 15
  start-page: 41
  year: 2004
  ident: 10.1016/j.fcr.2016.04.014_bib0080
  article-title: A soil-water balance model under waterlogging condition in winter wheat
  publication-title: J. Appl. Meteorol. Sci.
  contributor:
    fullname: Hu
– volume: 22
  start-page: 205
  year: 2002
  ident: 10.1016/j.fcr.2016.04.014_bib0025
  article-title: Improving canopy variables estimation from remote sensing data by exploiting ancillary information. Case sudy sugar beet canopies
  publication-title: Agronomie
  doi: 10.1051/agro:2002008
  contributor:
    fullname: Combal
SSID ssj0006616
Score 2.380468
Snippet •PROSAIL model was integrated with the WheatGrow model, integrating RS and growth•We developed a look-up table between VIs and measured wheat...
Coupling remote sensing data with crop models is an important way to predict crop yield on a regional scale. Here, we developed a method for wheat yield...
SourceID proquest
crossref
fao
elsevier
SourceType Aggregation Database
Publisher
StartPage 55
SubjectTerms algorithms
crop models
crops
Data fusion
ecoregions
Grain yield
heading
leaf area index
LUT
monitoring
nitrogen
prediction
PROSAIL model
radiative transfer
remote sensing
sowing date
spatial data
Triticum aestivum
uncertainty
Wheat
WheatGrow model
winter wheat
Title Estimating wheat yield by integrating the WheatGrow and PROSAIL models
URI https://dx.doi.org/10.1016/j.fcr.2016.04.014
https://search.proquest.com/docview/1808654720
Volume 192
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSyQxEC4cvehB1hfOrisR9iT0TtJJv46DOI7PlZ0d8BaSdCLuoUecEfGyv92qfggi68FjdwjdfEm-qqIqXwH8QLNtCx67KJgyREqYENm0cBFulTjkqXLSUUb38iodT9XZTXKzBEfdXRgqq2y5v-H0mq3bN4MWzcH93d1gwmWWK0oDkmpUkcserFCSCCOwleHp-fjqlZDRBDUpSwyYaEKX3KzLvIIjVVCR1oKnQv3PPPWCmb2j69oGjb7Aeus8smHzfxuw5KtNWBvePrQCGn4LRsd4ZskLrW7ZExEte6YaNWafWacMQUPo9rGah08wDGemKtn171-T4ekFq1vjzLdhOjr-czSO2l4JkVMxXyC2SemUN3keuOVFsFy5oowTmxhuMh-MlWVILTpMsZFSYlTkSJZFeO9zyR2XO7BczSq_C0wJdLuy0lgXB5WXWeESkwYphbFlIpzpw2EHkb5vJDF0Vyv2VyOemvDUXGnEsw-qA1G_WVeNlP3RtF0EXBsEcK6nExqh9oEFhoN9OOhWQeNRoPyGqfzsca5FjvFZorKYf_3cV7_BKj01lWB7sLx4ePTf0edY2H3o_fwn9tud9QKRA9Kv
link.rule.ids 315,786,790,4516,24137,27946,27947,45609,45703
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwEB7xOCwcVsCCKMvDSJxWCnVi53WsEKVAeYhSiZtlOzaCQ4po0YrL_nZm8hBaIThwjRMl-mx_841m8hngAMO2yXlkA68LH8hQ-8AkuQ1wqUQ-S6QVliq6F5fJYCzP7uK7OThq_4WhtsqG-2tOr9i6udJt0Ow-PTx0R1ykmaQyILlG5ZmYh0VUA5yW9uG_9z4PDEB1wRLTJbq9LW1WTV7ekidomFR2p6H8LDjNez35QNZVBOqvwM9GOrJe_XWrMOfKNVju3T839hnuF_SPcceSBi3v2V-iWfZKHWrMvLLWF4KGUPSxioVPMAlnuizY9c3VqHc6ZNXBONN1GPePb48GQXNSQmBlxGeIbFxY6XSWeW547g2XNi-i2MSa69R5bUThE4NyKdJCCMyJLJmyhM65THDLxQYslJPSbQKTIYqutNDGRl5mRZrbWCdeiFCbIg6t7sCfFiL1VBtiqLZT7FEhnorwVFwqxLMDsgVR_TerCgn7q8c2EXClEcCpGo9ohA4PzDEZ7MB-OwsKNwJVN3TpJi9TFWaYncUyjfjW9966Bz8GtxdDNTy9PP8NSzRS94Rtw8Ls-cXtoPqYmd1qdb0BYdPTgg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimating+wheat+yield+by+integrating+the+WheatGrow+and+PROSAIL+models&rft.jtitle=Field+crops+research&rft.au=Zhang%2C+L&rft.au=Guo%2C+CL&rft.au=Zhao%2C+L+Y&rft.au=Zhu%2C+Y&rft.date=2016-06-01&rft.issn=0378-4290&rft.volume=192&rft.spage=55&rft.epage=66&rft_id=info:doi/10.1016%2Fj.fcr.2016.04.014&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-4290&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-4290&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-4290&client=summon