Estimating wheat yield by integrating the WheatGrow and PROSAIL models
•PROSAIL model was integrated with the WheatGrow model, integrating RS and growth•We developed a look-up table between VIs and measured wheat parameters.•Time-series VIs obtained by fusing high spatial- and temporal-resolution images.•Three-band Vi RNir/(RRed+RGreen) and two-band VI SAVI(RNir,RRed)...
Saved in:
Published in | Field crops research Vol. 192; pp. 55 - 66 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.06.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •PROSAIL model was integrated with the WheatGrow model, integrating RS and growth•We developed a look-up table between VIs and measured wheat parameters.•Time-series VIs obtained by fusing high spatial- and temporal-resolution images.•Three-band Vi RNir/(RRed+RGreen) and two-band VI SAVI(RNir,RRed) were optimal.•Accuracy is best using multiple RS data from late jointing to initial filling.
Coupling remote sensing data with crop models is an important way to predict crop yield on a regional scale. Here, we developed a method for wheat yield forecasting based on integrating a wheat growth model (WheatGrow) with a radiative transfer model (PROSAIL). Based on the assimilation algorithm, the PROSAIL model was joined to the coupling model, integrating the remote sensing (RS) and growth models. Wheat VIs (vegetation indices) from different growth periods, which were obtained by fusing high spatial resolution and high temporal resolution images, were used for coupling parameters. Moreover, a LUT (look-up table) was developed between VIs and the measured management parameters (sowing date, sowing rate and nitrogen rate) based on the coupling model. Management parameters including sowing date, sowing rate and nitrogen rate, which are difficult to accurately obtain, were then inverted at the regional scale. Reducing the uncertainty from the input parameters of the WheatGrow model, such as management parameters, improved the accuracy of regional-scale yield prediction. We also used measured data from different years and different ecological sites to determine the optimum coupling VI and coupling frequency based on the integration of RS and crop models. The results show that (1) the three-band VI RNir/(RRed+RGreen) and the two-band VI SAVI (RNir,RRed) are the best coupling VIs; (2) the heading or anthesis stage is the best coupling stage if only one RS image is available; (3) good prediction accuracy can be achieved if three to four high spatial and temporal resolution images from the late jointing to initial filling stages are assimilated. In the study areas, the spatial and temporal distribution of winter wheat growth and productivity parameters were well simulated. The RRMSE of leaf area index and leaf nitrogen accumulation between predicted and measured values were 17.8% and 20.3%, respectively, and the RRMSE of grain yield were less than 10%. The results of this study provide an important theoretical and technical foundation for monitoring and estimating winter wheat growth status on a regional scale and can be extended to other types of crops from varied ecological regions. |
---|---|
AbstractList | Coupling remote sensing data with crop models is an important way to predict crop yield on a regional scale. Here, we developed a method for wheat yield forecasting based on integrating a wheat growth model (WheatGrow) with a radiative transfer model (PROSAIL). Based on the assimilation algorithm, the PROSAIL model was joined to the coupling model, integrating the remote sensing (RS) and growth models. Wheat VIs (vegetation indices) from different growth periods, which were obtained by fusing high spatial resolution and high temporal resolution images, were used for coupling parameters. Moreover, a LUT (look-up table) was developed between VIs and the measured management parameters (sowing date, sowing rate and nitrogen rate) based on the coupling model. Management parameters including sowing date, sowing rate and nitrogen rate, which are difficult to accurately obtain, were then inverted at the regional scale. Reducing the uncertainty from the input parameters of the WheatGrow model, such as management parameters, improved the accuracy of regional-scale yield prediction. We also used measured data from different years and different ecological sites to determine the optimum coupling VI and coupling frequency based on the integration of RS and crop models. The results show that (1) the three-band VI R sub(Nir)/(R sub(Red) + R sub(Green)) and the two-band VI SAVI (R sub(Nir),R sub(Red)) are the best coupling VIs; (2) the heading or anthesis stage is the best coupling stage if only one RS image is available; (3) good prediction accuracy can be achieved if three to four high spatial and temporal resolution images from the late jointing to initial filling stages are assimilated. In the study areas, the spatial and temporal distribution of winter wheat growth and productivity parameters were well simulated. The RRMSE of leaf area index and leaf nitrogen accumulation between predicted and measured values were 17.8% and 20.3%, respectively, and the RRMSE of grain yield were less than 10%. The results of this study provide an important theoretical and technical foundation for monitoring and estimating winter wheat growth status on a regional scale and can be extended to other types of crops from varied ecological regions. Coupling remote sensing data with crop models is an important way to predict crop yield on a regional scale. Here, we developed a method for wheat yield forecasting based on integrating a wheat growth model (WheatGrow) with a radiative transfer model (PROSAIL). Based on the assimilation algorithm, the PROSAIL model was joined to the coupling model, integrating the remote sensing (RS) and growth models. Wheat VIs (vegetation indices) from different growth periods, which were obtained by fusing high spatial resolution and high temporal resolution images, were used for coupling parameters. Moreover, a LUT (look-up table) was developed between VIs and the measured management parameters (sowing date, sowing rate and nitrogen rate) based on the coupling model. Management parameters including sowing date, sowing rate and nitrogen rate, which are difficult to accurately obtain, were then inverted at the regional scale. Reducing the uncertainty from the input parameters of the WheatGrow model, such as management parameters, improved the accuracy of regional-scale yield prediction. We also used measured data from different years and different ecological sites to determine the optimum coupling VI and coupling frequency based on the integration of RS and crop models. The results show that (1) the three-band VI RNir/(RRed+RGreen) and the two-band VI SAVI (RNir,RRed) are the best coupling VIs; (2) the heading or anthesis stage is the best coupling stage if only one RS image is available; (3) good prediction accuracy can be achieved if three to four high spatial and temporal resolution images from the late jointing to initial filling stages are assimilated. In the study areas, the spatial and temporal distribution of winter wheat growth and productivity parameters were well simulated. The RRMSE of leaf area index and leaf nitrogen accumulation between predicted and measured values were 17.8% and 20.3%, respectively, and the RRMSE of grain yield were less than 10%. The results of this study provide an important theoretical and technical foundation for monitoring and estimating winter wheat growth status on a regional scale and can be extended to other types of crops from varied ecological regions. •PROSAIL model was integrated with the WheatGrow model, integrating RS and growth•We developed a look-up table between VIs and measured wheat parameters.•Time-series VIs obtained by fusing high spatial- and temporal-resolution images.•Three-band Vi RNir/(RRed+RGreen) and two-band VI SAVI(RNir,RRed) were optimal.•Accuracy is best using multiple RS data from late jointing to initial filling. Coupling remote sensing data with crop models is an important way to predict crop yield on a regional scale. Here, we developed a method for wheat yield forecasting based on integrating a wheat growth model (WheatGrow) with a radiative transfer model (PROSAIL). Based on the assimilation algorithm, the PROSAIL model was joined to the coupling model, integrating the remote sensing (RS) and growth models. Wheat VIs (vegetation indices) from different growth periods, which were obtained by fusing high spatial resolution and high temporal resolution images, were used for coupling parameters. Moreover, a LUT (look-up table) was developed between VIs and the measured management parameters (sowing date, sowing rate and nitrogen rate) based on the coupling model. Management parameters including sowing date, sowing rate and nitrogen rate, which are difficult to accurately obtain, were then inverted at the regional scale. Reducing the uncertainty from the input parameters of the WheatGrow model, such as management parameters, improved the accuracy of regional-scale yield prediction. We also used measured data from different years and different ecological sites to determine the optimum coupling VI and coupling frequency based on the integration of RS and crop models. The results show that (1) the three-band VI RNir/(RRed+RGreen) and the two-band VI SAVI (RNir,RRed) are the best coupling VIs; (2) the heading or anthesis stage is the best coupling stage if only one RS image is available; (3) good prediction accuracy can be achieved if three to four high spatial and temporal resolution images from the late jointing to initial filling stages are assimilated. In the study areas, the spatial and temporal distribution of winter wheat growth and productivity parameters were well simulated. The RRMSE of leaf area index and leaf nitrogen accumulation between predicted and measured values were 17.8% and 20.3%, respectively, and the RRMSE of grain yield were less than 10%. The results of this study provide an important theoretical and technical foundation for monitoring and estimating winter wheat growth status on a regional scale and can be extended to other types of crops from varied ecological regions. |
Author | Zhang, L. Zhao, L.Y. Cheng, T. Wang, X. Guo, C.L. Cao, W.X. Tian, Y.C. Zhu, Y. |
Author_xml | – sequence: 1 givenname: L. surname: Zhang fullname: Zhang, L. email: zl_1023@126.com – sequence: 2 givenname: C.L. surname: Guo fullname: Guo, C.L. email: sxgclxwh@163.com – sequence: 3 givenname: L.Y. surname: Zhao fullname: Zhao, L.Y. email: zhaoly27@163.com – sequence: 4 givenname: Y. surname: Zhu fullname: Zhu, Y. email: yanzhu@njau.edu.cn – sequence: 5 givenname: W.X. surname: Cao fullname: Cao, W.X. email: caow@njau.edu.cn – sequence: 6 givenname: Y.C. surname: Tian fullname: Tian, Y.C. email: yctian@njau.edu.cn – sequence: 7 givenname: T. surname: Cheng fullname: Cheng, T. email: tcheng@njau.edu.cn – sequence: 8 givenname: X. surname: Wang fullname: Wang, X. email: wangxue@njau.edu.cn |
BookMark | eNp9kEFrwkAUhJdioWr7A3pqjr0kfZtsNht6ElErCJZa6XHZbF50JSZ2N1b8901Izz29B_PNwMyIDKq6QkIeKQQUKH85BIW2Qdi-AbAAKLshQyqS0OciDgdkCFEifBamcEdGzh0AgHPKh2Q-c405qsZUO--yR9V4V4Nl7mVXz1QN7mwvNXv0vjp5YeuLp6rce_9YbybLlXescyzdPbktVOnw4e-OyXY--5y--av1YjmdrHzNQmh8IeJcM1RCFJBBWmTAdJqHcRYrUAkWKovygmc0ZqGKoiiNuU45MIqIIgIN0Zg897knW3-f0TXyaJzGslQV1mcnqQDBY5aEHUp7VNvaOYuFPNm2qb1KCrLbTB5ku5nsNpPAZLtZ63nqPYWqpdpZ4-R20wEAVKSUdamvPdGWxh-DVjptsNKYG4u6kXlt_sn_BVbQfnI |
CitedBy_id | crossref_primary_10_3390_rs10122026 crossref_primary_10_1016_j_jag_2021_102373 crossref_primary_10_1093_jxb_erw227 crossref_primary_10_3390_rs11202456 crossref_primary_10_1016_j_agrformet_2022_109178 crossref_primary_10_1016_j_eja_2022_126537 crossref_primary_10_1016_j_eja_2023_126837 crossref_primary_10_3390_rs16010121 crossref_primary_10_1016_j_jag_2021_102454 crossref_primary_10_1016_j_agsy_2021_103299 crossref_primary_10_3390_rs15164066 crossref_primary_10_1016_j_rse_2024_114277 crossref_primary_10_1016_j_agsy_2023_103711 crossref_primary_10_1016_j_agrformet_2024_110101 crossref_primary_10_1270_jsbbs_21069 crossref_primary_10_1016_j_agrformet_2019_01_023 crossref_primary_10_1016_j_compag_2019_05_044 crossref_primary_10_1016_j_eja_2018_10_008 crossref_primary_10_3390_rs10121968 crossref_primary_10_1016_j_agrformet_2018_03_014 crossref_primary_10_1016_j_agrformet_2023_109574 crossref_primary_10_1016_j_isprsjprs_2023_05_012 crossref_primary_10_1016_j_fcr_2022_108449 crossref_primary_10_3390_rs11161928 crossref_primary_10_1007_s11119_017_9498_5 crossref_primary_10_1016_j_compag_2023_108335 crossref_primary_10_1016_j_compag_2024_108731 crossref_primary_10_1016_j_fcr_2017_05_025 crossref_primary_10_3390_s20061577 |
Cites_doi | 10.1016/j.rse.2007.04.004 10.1016/0034-4257(79)90013-0 10.1117/1.JRS.8.083674 10.1016/j.fcr.2006.12.005 10.1016/j.jag.2007.09.002 10.1016/j.rse.2007.12.003 10.1016/S0034-4257(01)00255-3 10.1016/j.agrformet.2015.02.001 10.1016/0034-4257(90)90100-Z 10.1016/j.agrformet.2012.12.008 10.1016/S1161-0301(02)00101-6 10.1016/j.rse.2014.06.006 10.1626/pps.16.352 10.1016/j.rse.2004.06.016 10.1016/j.fcr.2014.05.001 10.1080/01431160903505310 10.1626/pps.5.248 10.1016/j.rse.2006.05.021 10.1016/S0034-4257(03)00146-9 10.1016/j.rse.2004.05.017 10.1016/S0167-8809(00)00168-7 10.1016/0034-4257(89)90015-1 10.1016/j.rse.2012.05.013 10.1016/S1671-2927(11)60156-9 10.1016/0034-4257(88)90106-X 10.1109/LGRS.2007.912089 10.1016/j.mcm.2011.10.038 10.1109/TGRS.2006.872081 10.2134/agronj1993.00021962008500020035x 10.1016/S0034-4257(02)00035-4 10.1016/j.fcr.2010.11.002 10.1016/j.fcr.2015.08.004 10.1016/0378-4290(91)90040-3 10.2134/agronj1988.00021962008000040021x 10.1016/j.envsoft.2014.08.010 10.1016/j.jag.2011.09.004 10.1626/pps.9.323 10.1016/0924-2716(92)90030-D 10.1016/j.agee.2005.06.005 10.1016/j.jag.2006.05.003 10.1051/agro:2002008 |
ContentType | Journal Article |
Copyright | 2016 Elsevier B.V. |
Copyright_xml | – notice: 2016 Elsevier B.V. |
DBID | FBQ AAYXX CITATION 7ST C1K SOI |
DOI | 10.1016/j.fcr.2016.04.014 |
DatabaseName | AGRIS CrossRef Environment Abstracts Environmental Sciences and Pollution Management Environment Abstracts |
DatabaseTitle | CrossRef Environment Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Environment Abstracts |
Database_xml | – sequence: 1 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 1872-6852 |
EndPage | 66 |
ExternalDocumentID | 10_1016_j_fcr_2016_04_014 US201600189140 S0378429016300983 |
GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 29H 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO ABFNM ABFRF ABGRD ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACIUM ACRLP ADBBV ADEZE ADMUD ADQTV AEBSH AEFWE AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CBWCG CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HMC HVGLF HZ~ IHE J1W KOM LW9 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAB SDF SDG SEN SES SEW SPCBC SSA SSZ T5K UNMZH WUQ Y6R ~G- ~KM ABPIF ABPTK FBQ AAHBH AAXKI AAYXX AFJKZ AKRWK CITATION 7ST C1K SOI |
ID | FETCH-LOGICAL-c420t-885dc4ea88f0b09fb04c9d25b5a0a7efab3df6b1542a333956c96041eee830c03 |
IEDL.DBID | AIKHN |
ISSN | 0378-4290 |
IngestDate | Fri Oct 25 05:13:40 EDT 2024 Thu Sep 26 17:44:03 EDT 2024 Wed Dec 27 19:02:44 EST 2023 Fri Feb 23 02:33:47 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Data fusion LUT Wheat PROSAIL model Grain yield WheatGrow model |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c420t-885dc4ea88f0b09fb04c9d25b5a0a7efab3df6b1542a333956c96041eee830c03 |
Notes | http://dx.doi.org/10.1016/j.fcr.2016.04.014 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1808654720 |
PQPubID | 23462 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_1808654720 crossref_primary_10_1016_j_fcr_2016_04_014 fao_agris_US201600189140 elsevier_sciencedirect_doi_10_1016_j_fcr_2016_04_014 |
PublicationCentury | 2000 |
PublicationDate | 2016-06-01 |
PublicationDateYYYYMMDD | 2016-06-01 |
PublicationDate_xml | – month: 06 year: 2016 text: 2016-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Field crops research |
PublicationYear | 2016 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Cao, Liu, Luo, Wang, Pan, Guo (bib0020) 2002; 5 Pan, Zhu, Cao, Dai, Jiang (bib0195) 2006; 9 Huang, Zhu, Wang, Yao, Cao, Hannaway, Tian (bib0085) 2011; 31 Pearson, Miller (bib0205) 1972; VIII Dorigo, Zurita-Milla, Witf, Braziled, Singhe, Schaepmanc (bib0055) 2007; 9 Hu, Cao, Luo (bib0080) 2004; 15 Huete (bib0100) 1988; 25 Delecolle, Maas, Guerif, Baret (bib0045) 1992; 47 Supit, Hooijer, Van Diepen (bib0215) 1994 Guerif, Duke (bib0075) 2000; 81 Shen, Niu, Chen, Wang (bib0210) 2007; 23 Yan, Cao, Luo, Jiang (bib0250) 2000; 11 Module (bib0175) 2009 Tian, Yao, Yang, Cao, Hannaway, Zhu (bib0225) 2011; 120 Lavergne, Kaminski, Pinty, Taberner, Gobron, Verstraete, Vossbeck, Widlowski, Giering (bib0125) 2007; 107 Batchelor, Basso, Paz (bib0010) 2002; 18 Combal, Baret, Weiss, Trubuil, Macé, Pragnère, Myneni, Knyazikhin, Wang (bib0030) 2003; 84 Atzberger (bib0005) 2004; 93 Huang, Zhu, Li, Cao, Tian (bib0090) 2013; 16 Maas (bib0160) 1988; 80 Nilson, Kuusk (bib0185) 1989; 27 Ma, Huang, Wu, Fan, Zou, Wu (bib0155) 2013; 58 Verger, Vigneau, Chéron, Gilliot, Comar, Baret (bib0235) 2014; 152 Yang, Sun, Fang, Yao, Zhang, Zhu, Song, Wang, Hu (bib0260) 2012; 18 Liu, Liu, Ding, Wu (bib0140) 2015; 183 Nouvellon, Moran, Seen, Bryant, Rambal, Ni, Bégué, Chehbouni, Emmerich, Heilman, Qi (bib0190) 2001; 78 Yang, Shen, Li, Le Toan, He (bib0255) 2008; 5 Doraiswamy, Hatfield, Jackson, Akhmedov, Prueger, Stern (bib0050) 2004; 92 Gastellu-Etchegorry, Gascon, Estève (bib0070) 2003; 87 Wang, Zhu, Li, Cao, Tian (bib0240) 2014; 8 Launay, Guerif (bib0120) 2005; 111 Wang, Tian, Yao, Zhu, Cao (bib0245) 2014; 164 Ma, Wang, Zhang, Hou, Zhuang, He, Wang (bib0150) 2008; 10 Fang, Liang, Hoogenboom (bib0060) 2011; 32 Tucker (bib0230) 1979; 8 Zhu, Zhu, Huang, Yao, Liu, Cao, Tian (bib0265) 2010 Huang, Tian, Liang, Ma, Becker-Reshef, Huang, Su, Zhang, Zhu, Wu (bib0095) 2015; 204 Lv, Liu, Cao, Zhu (bib0145) 2013; 171–142 Li, Li, Dong, Liu, Wang, Yang, Pan (bib0130) 2011; 10 Combal, Baret, Weiss (bib0025) 2002; 22 Machwitz, Giustarini, Bossung, Frantz, Schlerf, Lilienthal, Wandera, Matgen, Hoffmann, Udelhoven (bib0170) 2014; 62 Jamieson, Porter, Wilson (bib0110) 1991; 27 Pan, Zhu, Cao (bib0200) 2007; 101 Gao, Masek, Schwaller, Hall (bib0065) 2006; 44 Maas (bib0165) 1993; 85 Jacquemoud, Baret (bib0105) 1990; 34 Liu, Cao, Tang, Cao, Zhu (bib0135) 2010; 24 Moulin, Guerif (bib0180) 1999; 20 Thorp, Wang, West, Moran, Bronson, White, Mon (bib0220) 2012; 124 Darvishzadeh, Skidmore, Schlerf, Atzberger (bib0035) 2008; 112 Delecolle, Guerif (bib0040) 1988; 287 Jin (bib0115) 1996 Busetto, Meroni, Colombo (bib0015) 2008; 112 Maas (10.1016/j.fcr.2016.04.014_bib0160) 1988; 80 Supit (10.1016/j.fcr.2016.04.014_bib0215) 1994 Ma (10.1016/j.fcr.2016.04.014_bib0155) 2013; 58 Atzberger (10.1016/j.fcr.2016.04.014_bib0005) 2004; 93 Delecolle (10.1016/j.fcr.2016.04.014_bib0040) 1988; 287 Maas (10.1016/j.fcr.2016.04.014_bib0165) 1993; 85 Moulin (10.1016/j.fcr.2016.04.014_bib0180) 1999; 20 Ma (10.1016/j.fcr.2016.04.014_bib0150) 2008; 10 Thorp (10.1016/j.fcr.2016.04.014_bib0220) 2012; 124 Combal (10.1016/j.fcr.2016.04.014_bib0030) 2003; 84 Huang (10.1016/j.fcr.2016.04.014_bib0095) 2015; 204 Gastellu-Etchegorry (10.1016/j.fcr.2016.04.014_bib0070) 2003; 87 Tucker (10.1016/j.fcr.2016.04.014_bib0230) 1979; 8 Module (10.1016/j.fcr.2016.04.014_bib0175) 2009 Shen (10.1016/j.fcr.2016.04.014_bib0210) 2007; 23 Li (10.1016/j.fcr.2016.04.014_bib0130) 2011; 10 Jacquemoud (10.1016/j.fcr.2016.04.014_bib0105) 1990; 34 Combal (10.1016/j.fcr.2016.04.014_bib0025) 2002; 22 Zhu (10.1016/j.fcr.2016.04.014_bib0265) 2010 Batchelor (10.1016/j.fcr.2016.04.014_bib0010) 2002; 18 Huang (10.1016/j.fcr.2016.04.014_bib0085) 2011; 31 Yan (10.1016/j.fcr.2016.04.014_bib0250) 2000; 11 Pan (10.1016/j.fcr.2016.04.014_bib0200) 2007; 101 Yang (10.1016/j.fcr.2016.04.014_bib0255) 2008; 5 Busetto (10.1016/j.fcr.2016.04.014_bib0015) 2008; 112 Launay (10.1016/j.fcr.2016.04.014_bib0120) 2005; 111 Jamieson (10.1016/j.fcr.2016.04.014_bib0110) 1991; 27 Huang (10.1016/j.fcr.2016.04.014_bib0090) 2013; 16 Huete (10.1016/j.fcr.2016.04.014_bib0100) 1988; 25 Cao (10.1016/j.fcr.2016.04.014_bib0020) 2002; 5 Gao (10.1016/j.fcr.2016.04.014_bib0065) 2006; 44 Pearson (10.1016/j.fcr.2016.04.014_bib0205) 1972; VIII Wang (10.1016/j.fcr.2016.04.014_bib0240) 2014; 8 Jin (10.1016/j.fcr.2016.04.014_bib0115) 1996 Lavergne (10.1016/j.fcr.2016.04.014_bib0125) 2007; 107 Yang (10.1016/j.fcr.2016.04.014_bib0260) 2012; 18 Guerif (10.1016/j.fcr.2016.04.014_bib0075) 2000; 81 Liu (10.1016/j.fcr.2016.04.014_bib0135) 2010; 24 Dorigo (10.1016/j.fcr.2016.04.014_bib0055) 2007; 9 Lv (10.1016/j.fcr.2016.04.014_bib0145) 2013; 171–142 Fang (10.1016/j.fcr.2016.04.014_bib0060) 2011; 32 Tian (10.1016/j.fcr.2016.04.014_bib0225) 2011; 120 Darvishzadeh (10.1016/j.fcr.2016.04.014_bib0035) 2008; 112 Doraiswamy (10.1016/j.fcr.2016.04.014_bib0050) 2004; 92 Delecolle (10.1016/j.fcr.2016.04.014_bib0045) 1992; 47 Wang (10.1016/j.fcr.2016.04.014_bib0245) 2014; 164 Nouvellon (10.1016/j.fcr.2016.04.014_bib0190) 2001; 78 Pan (10.1016/j.fcr.2016.04.014_bib0195) 2006; 9 Liu (10.1016/j.fcr.2016.04.014_bib0140) 2015; 183 Nilson (10.1016/j.fcr.2016.04.014_bib0185) 1989; 27 Machwitz (10.1016/j.fcr.2016.04.014_bib0170) 2014; 62 Hu (10.1016/j.fcr.2016.04.014_bib0080) 2004; 15 Verger (10.1016/j.fcr.2016.04.014_bib0235) 2014; 152 |
References_xml | – volume: 204 start-page: 106 year: 2015 end-page: 121 ident: bib0095 article-title: Improving winter wheat yield estimation by assimilation of the leaf area index from Landsat TM and MODIS data into the WOFOST model publication-title: Agric. For. Meteorol. contributor: fullname: Wu – volume: 23 start-page: 27 year: 2007 end-page: 30 ident: bib0210 article-title: Rational consideration about construction land expansion of Changsha urban area in the last ten years publication-title: Geogr. Geo-Inf. Sci. contributor: fullname: Wang – year: 1994 ident: bib0215 article-title: System Description of the Wofost 6.0 Crop Simulation Model Implemented in CGMS contributor: fullname: Van Diepen – volume: 112 start-page: 118 year: 2008 end-page: 131 ident: bib0015 article-title: Combining medium and coarse spatial resolution satellite data to improve the estimation of sub-pixel NDVI time series publication-title: Remote Sens. Environ. contributor: fullname: Colombo – volume: 31 start-page: 1073 year: 2011 end-page: 1084 ident: bib0085 article-title: Predicting winter wheat growth based on integrating remote sensing and crop growth modeling techniques publication-title: Acta Ecol. Sin. contributor: fullname: Tian – volume: 112 start-page: 2592 year: 2008 end-page: 2604 ident: bib0035 article-title: Inversion of a radiative transfer model for estimating vegetation LAI and chlorophyll in a heterogeneous grassland publication-title: Remote Sens. Environ. contributor: fullname: Atzberger – volume: 34 start-page: 75 year: 1990 end-page: 91 ident: bib0105 article-title: PROSPECT: a model of leaf optical properties spectra publication-title: Remote Sens. Environ. contributor: fullname: Baret – year: 2009 ident: bib0175 article-title: QUAC and FLAASH User’s Guide contributor: fullname: Module – volume: 101 start-page: 276 year: 2007 end-page: 284 ident: bib0200 article-title: Modeling plant carbon flow and grain starch accumulation in wheat publication-title: Field Crops Res. contributor: fullname: Cao – volume: 80 start-page: 655 year: 1988 end-page: 662 ident: bib0160 article-title: Using satellite data to improve model estimates of crop yield publication-title: Agron. J. contributor: fullname: Maas – volume: 171–142 start-page: 234 year: 2013 end-page: 248 ident: bib0145 article-title: Climate change impacts on regional winter wheat production in main wheat production regions of China publication-title: Agric. Forest Meteorol. contributor: fullname: Zhu – volume: 27 start-page: 337 year: 1991 end-page: 350 ident: bib0110 article-title: A test of the computer simulation model ARCWHEAT1 on wheat crops grown in New Zealand publication-title: Field Crops Res. contributor: fullname: Wilson – volume: 5 start-page: 108 year: 2008 end-page: 112 ident: bib0255 article-title: Rice mapping and monitoring using ENVISAT ASAR data publication-title: Geosci. Remote Sens. Lett. IEEE contributor: fullname: He – volume: 16 start-page: 352 year: 2013 end-page: 364 ident: bib0090 article-title: Assimilating remotely sensed information with the WheatGrow model based on the Ensemble Square Root Filter for improving regional wheat yield forecasts publication-title: Plant Prod. Sci. contributor: fullname: Tian – volume: 18 start-page: 462 year: 2012 end-page: 471 ident: bib0260 article-title: Comparison of different methods for corn LAI estimation over northeastern China publication-title: Int. J. Appl. Earth Obs. Geoinf. contributor: fullname: Hu – volume: 10 start-page: 426 year: 2008 end-page: 437 ident: bib0150 article-title: Monitoring winter wheat growth in North China by combining a crop model and remote sensing data publication-title: Int. J. Appl. Earth Obs. Geoinf. contributor: fullname: Wang – volume: 78 start-page: 131 year: 2001 end-page: 149 ident: bib0190 article-title: Coupling a grassland ecosystem model with Landsat imagery for a 10-year simulation of carbon and water budgets publication-title: Remote Sens. Environ. contributor: fullname: Qi – volume: 93 start-page: 53 year: 2004 end-page: 67 ident: bib0005 article-title: Object-based retrieval of biophysical canopy variables using artificial neural nets and radiative transfer models publication-title: Remote Sens. Environ. contributor: fullname: Atzberger – volume: 287 start-page: 125 year: 1988 ident: bib0040 article-title: Introducing spectral data into a plant process model for improving its prediction ability publication-title: Spectral Signatures Objects Remote Sens. contributor: fullname: Guerif – volume: 84 start-page: 1 year: 2003 end-page: 15 ident: bib0030 article-title: Retrieval of canopy biophysical variables from bidirectional reflectance: using prior information to solve the ill-posed inverse problem publication-title: Remote Sens. Environ. contributor: fullname: Wang – volume: 10 start-page: 1595 year: 2011 end-page: 1602 ident: bib0130 article-title: Assimilation of remote sensing and crop model for LAI estimation based on ensemble kalman filter publication-title: Agric. Sci. China contributor: fullname: Pan – volume: 22 start-page: 205 year: 2002 end-page: 215 ident: bib0025 article-title: Improving canopy variables estimation from remote sensing data by exploiting ancillary information. Case sudy sugar beet canopies publication-title: Agronomie contributor: fullname: Weiss – volume: 8 start-page: 127 year: 1979 end-page: 150 ident: bib0230 article-title: Red and photographic infrared linear combinations for monitoring vegetation publication-title: Remote Sens. Environ. contributor: fullname: Tucker – volume: VIII start-page: 1355 year: 1972 ident: bib0205 article-title: Remote mapping of standing crop biomass for estimation of the productivity of the shortgrass prairie publication-title: Remote Sens. Environ. contributor: fullname: Miller – volume: 164 start-page: 178 year: 2014 end-page: 188 ident: bib0245 article-title: Predicting grain yield and protein content in wheat by fusing multi-sensor and multi-temporal remote-sensing images publication-title: Field Crops Res. contributor: fullname: Cao – volume: 18 start-page: 141 year: 2002 end-page: 158 ident: bib0010 article-title: Examples of strategies to analyze spatial and temporal yield variability using crop models publication-title: Eur. J. Agron. contributor: fullname: Paz – volume: 47 start-page: 145 year: 1992 end-page: 161 ident: bib0045 article-title: Remote sensing and crop production models – present trends publication-title: ISPRS J. Photogramm. Remote Sens. contributor: fullname: Baret – volume: 15 start-page: 41 year: 2004 end-page: 50 ident: bib0080 article-title: A soil-water balance model under waterlogging condition in winter wheat publication-title: J. Appl. Meteorol. Sci. contributor: fullname: Luo – volume: 120 start-page: 299 year: 2011 end-page: 310 ident: bib0225 article-title: Assessing newly developed and published vegetation indices for estimating rice leaf nitrogen concentration with ground- and space-based hyperspectral reflectance publication-title: Field Crops Res. contributor: fullname: Zhu – volume: 9 start-page: 165 year: 2007 end-page: 193 ident: bib0055 article-title: A review on reflective remote sensing and data assimilation techniques for enhanced agroecosystem modeling publication-title: Int. J. Appl. Earth Obs. Geoinf. contributor: fullname: Schaepmanc – year: 1996 ident: bib0115 article-title: Chinese Wheat contributor: fullname: Jin – volume: 124 start-page: 224 year: 2012 end-page: 233 ident: bib0220 article-title: Estimating crop biophysical properties from remote sensing data by inverting linked radiative transfer and ecophysiological models publication-title: Remote Sens. Environ. contributor: fullname: Mon – volume: 5 start-page: 248 year: 2002 end-page: 256 ident: bib0020 article-title: Simulating organ growth in wheat based on the organ-weight fraction concept publication-title: Plant Prod. Sci. contributor: fullname: Guo – volume: 81 start-page: 57 year: 2000 end-page: 69 ident: bib0075 article-title: Adjustment procedures of a crop model to the site specific characteristics of soil and crop using remote sensing data assimilation publication-title: Agric. Ecosyst. Environ. contributor: fullname: Duke – start-page: 1226 year: 2010 end-page: 1240 ident: bib0265 article-title: Assimilation technique of remote sensing information and rice growth model based on particle swarm optimization publication-title: J. Remote Sens. contributor: fullname: Tian – volume: 44 start-page: 2207 year: 2006 end-page: 2218 ident: bib0065 article-title: On the blending of the landsat and modis surface reflectance: predicting daily landsat surface reflectance publication-title: Geosci. Remote Sens. IEEE Trans. contributor: fullname: Hall – volume: 27 start-page: 157 year: 1989 end-page: 167 ident: bib0185 article-title: A reflectance model for the homogeneous plant canopy and its inversion publication-title: Remote Sens. Environ. Geoinf. contributor: fullname: Kuusk – volume: 24 start-page: 297 year: 2010 end-page: 302 ident: bib0135 article-title: Development and application of a model and GIS-based decision support system for rice production management publication-title: Chin. J. Rice Sci. contributor: fullname: Zhu – volume: 111 start-page: 321 year: 2005 end-page: 339 ident: bib0120 article-title: Assimilating remote sensing data into a crop model to improve predictive performance for spatial applications publication-title: Agric. Ecosyst. Environ. contributor: fullname: Guerif – volume: 11 start-page: 355 year: 2000 end-page: 359 ident: bib0250 article-title: A mechanistic model of phasic and phenological development of wheat I: assumption and description of the model publication-title: Chin. J. Appl. Ecol. contributor: fullname: Jiang – volume: 183 start-page: 225 year: 2015 end-page: 234 ident: bib0140 article-title: The dynamic simulation of rice growth parameters under cadmium stress with the assimilation of multi-period spectral indices and crop model publication-title: Field Crops Res. contributor: fullname: Wu – volume: 25 start-page: 295 year: 1988 end-page: 309 ident: bib0100 article-title: A soil-adjusted vegetation index (SAVI) publication-title: Remote Sens. Environ. contributor: fullname: Huete – volume: 152 start-page: 654 year: 2014 end-page: 664 ident: bib0235 article-title: Green area index from an unmanned aerial system over wheat andrapeseed crops publication-title: Remote Sens. Environ. contributor: fullname: Baret – volume: 20 start-page: 213 year: 1999 end-page: 218 ident: bib0180 article-title: Impacts of model parameter uncertainties on crop reflectance estimates: a regional case study on wheat publication-title: Int. J. Appl. Earth Obs. contributor: fullname: Guerif – volume: 32 start-page: 1039 year: 2011 end-page: 1065 ident: bib0060 article-title: Integration of MODIS LAI and vegetation index products with the CSM-CERES-maize model for corn yield estimation publication-title: Int. J. Remote Sens. contributor: fullname: Hoogenboom – volume: 58 start-page: 634 year: 2013 end-page: 643 ident: bib0155 article-title: Assimilation of MODIS-LAI into the WOFOST model for forecasting regional winter wheat yield publication-title: Math. Comput. Modell. contributor: fullname: Wu – volume: 87 start-page: 55 year: 2003 end-page: 71 ident: bib0070 article-title: An interpolation procedure for generalizing a look-up table inversion method publication-title: Remote Sens. Environ. contributor: fullname: Estève – volume: 85 start-page: 354 year: 1993 end-page: 358 ident: bib0165 article-title: Parameterized model of gramineous crop growth: II. Within-season simulation calibration publication-title: Agron. J. contributor: fullname: Maas – volume: 8 start-page: 083674 year: 2014 ident: bib0240 article-title: Integrating remotely sensed leaf area index and leaf nitrogen accumulation with RiceGrow model based on particle swarm optimization algorithm for rice grain yield assessment publication-title: J. Appl. Remote Sens. contributor: fullname: Tian – volume: 62 start-page: 437 year: 2014 end-page: 453 ident: bib0170 article-title: Enhanced biomass prediction by assimilating satellite data into a crop growth model publication-title: Environ. Modell. Software contributor: fullname: Udelhoven – volume: 107 start-page: 362 year: 2007 end-page: 375 ident: bib0125 article-title: Application to MISR land products of an RPV model inversion package using adjoint and Hessian codes publication-title: Remote Sens. Environ. contributor: fullname: Giering – volume: 9 start-page: 323 year: 2006 end-page: 333 ident: bib0195 article-title: Predicting the protein content of grain in winter wheat with meteorological and genotypic factors (Agronomy) publication-title: Plant Prod. Sci. contributor: fullname: Jiang – volume: 92 start-page: 548 year: 2004 end-page: 559 ident: bib0050 article-title: Crop condition and yield simulations using Landsat and MODIS publication-title: Remote Sens. Environ. contributor: fullname: Stern – year: 2009 ident: 10.1016/j.fcr.2016.04.014_bib0175 contributor: fullname: Module – volume: 23 start-page: 27 year: 2007 ident: 10.1016/j.fcr.2016.04.014_bib0210 article-title: Rational consideration about construction land expansion of Changsha urban area in the last ten years publication-title: Geogr. Geo-Inf. Sci. contributor: fullname: Shen – volume: 112 start-page: 118 year: 2008 ident: 10.1016/j.fcr.2016.04.014_bib0015 article-title: Combining medium and coarse spatial resolution satellite data to improve the estimation of sub-pixel NDVI time series publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2007.04.004 contributor: fullname: Busetto – volume: 8 start-page: 127 year: 1979 ident: 10.1016/j.fcr.2016.04.014_bib0230 article-title: Red and photographic infrared linear combinations for monitoring vegetation publication-title: Remote Sens. Environ. doi: 10.1016/0034-4257(79)90013-0 contributor: fullname: Tucker – year: 1994 ident: 10.1016/j.fcr.2016.04.014_bib0215 contributor: fullname: Supit – volume: 8 start-page: 083674 year: 2014 ident: 10.1016/j.fcr.2016.04.014_bib0240 article-title: Integrating remotely sensed leaf area index and leaf nitrogen accumulation with RiceGrow model based on particle swarm optimization algorithm for rice grain yield assessment publication-title: J. Appl. Remote Sens. doi: 10.1117/1.JRS.8.083674 contributor: fullname: Wang – volume: 11 start-page: 355 year: 2000 ident: 10.1016/j.fcr.2016.04.014_bib0250 article-title: A mechanistic model of phasic and phenological development of wheat I: assumption and description of the model publication-title: Chin. J. Appl. Ecol. contributor: fullname: Yan – volume: 101 start-page: 276 year: 2007 ident: 10.1016/j.fcr.2016.04.014_bib0200 article-title: Modeling plant carbon flow and grain starch accumulation in wheat publication-title: Field Crops Res. doi: 10.1016/j.fcr.2006.12.005 contributor: fullname: Pan – volume: 10 start-page: 426 year: 2008 ident: 10.1016/j.fcr.2016.04.014_bib0150 article-title: Monitoring winter wheat growth in North China by combining a crop model and remote sensing data publication-title: Int. J. Appl. Earth Obs. Geoinf. doi: 10.1016/j.jag.2007.09.002 contributor: fullname: Ma – volume: 112 start-page: 2592 year: 2008 ident: 10.1016/j.fcr.2016.04.014_bib0035 article-title: Inversion of a radiative transfer model for estimating vegetation LAI and chlorophyll in a heterogeneous grassland publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2007.12.003 contributor: fullname: Darvishzadeh – volume: 78 start-page: 131 year: 2001 ident: 10.1016/j.fcr.2016.04.014_bib0190 article-title: Coupling a grassland ecosystem model with Landsat imagery for a 10-year simulation of carbon and water budgets publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(01)00255-3 contributor: fullname: Nouvellon – volume: 204 start-page: 106 year: 2015 ident: 10.1016/j.fcr.2016.04.014_bib0095 article-title: Improving winter wheat yield estimation by assimilation of the leaf area index from Landsat TM and MODIS data into the WOFOST model publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2015.02.001 contributor: fullname: Huang – volume: 34 start-page: 75 year: 1990 ident: 10.1016/j.fcr.2016.04.014_bib0105 article-title: PROSPECT: a model of leaf optical properties spectra publication-title: Remote Sens. Environ. doi: 10.1016/0034-4257(90)90100-Z contributor: fullname: Jacquemoud – volume: 171–142 start-page: 234 year: 2013 ident: 10.1016/j.fcr.2016.04.014_bib0145 article-title: Climate change impacts on regional winter wheat production in main wheat production regions of China publication-title: Agric. Forest Meteorol. doi: 10.1016/j.agrformet.2012.12.008 contributor: fullname: Lv – volume: 18 start-page: 141 year: 2002 ident: 10.1016/j.fcr.2016.04.014_bib0010 article-title: Examples of strategies to analyze spatial and temporal yield variability using crop models publication-title: Eur. J. Agron. doi: 10.1016/S1161-0301(02)00101-6 contributor: fullname: Batchelor – volume: 152 start-page: 654 year: 2014 ident: 10.1016/j.fcr.2016.04.014_bib0235 article-title: Green area index from an unmanned aerial system over wheat andrapeseed crops publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2014.06.006 contributor: fullname: Verger – volume: 16 start-page: 352 year: 2013 ident: 10.1016/j.fcr.2016.04.014_bib0090 article-title: Assimilating remotely sensed information with the WheatGrow model based on the Ensemble Square Root Filter for improving regional wheat yield forecasts publication-title: Plant Prod. Sci. doi: 10.1626/pps.16.352 contributor: fullname: Huang – volume: 93 start-page: 53 year: 2004 ident: 10.1016/j.fcr.2016.04.014_bib0005 article-title: Object-based retrieval of biophysical canopy variables using artificial neural nets and radiative transfer models publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2004.06.016 contributor: fullname: Atzberger – year: 1996 ident: 10.1016/j.fcr.2016.04.014_bib0115 contributor: fullname: Jin – volume: 164 start-page: 178 year: 2014 ident: 10.1016/j.fcr.2016.04.014_bib0245 article-title: Predicting grain yield and protein content in wheat by fusing multi-sensor and multi-temporal remote-sensing images publication-title: Field Crops Res. doi: 10.1016/j.fcr.2014.05.001 contributor: fullname: Wang – volume: 32 start-page: 1039 year: 2011 ident: 10.1016/j.fcr.2016.04.014_bib0060 article-title: Integration of MODIS LAI and vegetation index products with the CSM-CERES-maize model for corn yield estimation publication-title: Int. J. Remote Sens. doi: 10.1080/01431160903505310 contributor: fullname: Fang – volume: 5 start-page: 248 year: 2002 ident: 10.1016/j.fcr.2016.04.014_bib0020 article-title: Simulating organ growth in wheat based on the organ-weight fraction concept publication-title: Plant Prod. Sci. doi: 10.1626/pps.5.248 contributor: fullname: Cao – volume: 107 start-page: 362 year: 2007 ident: 10.1016/j.fcr.2016.04.014_bib0125 article-title: Application to MISR land products of an RPV model inversion package using adjoint and Hessian codes publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2006.05.021 contributor: fullname: Lavergne – volume: 87 start-page: 55 year: 2003 ident: 10.1016/j.fcr.2016.04.014_bib0070 article-title: An interpolation procedure for generalizing a look-up table inversion method publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(03)00146-9 contributor: fullname: Gastellu-Etchegorry – volume: 92 start-page: 548 year: 2004 ident: 10.1016/j.fcr.2016.04.014_bib0050 article-title: Crop condition and yield simulations using Landsat and MODIS publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2004.05.017 contributor: fullname: Doraiswamy – volume: VIII start-page: 1355 issue: 1 year: 1972 ident: 10.1016/j.fcr.2016.04.014_bib0205 article-title: Remote mapping of standing crop biomass for estimation of the productivity of the shortgrass prairie publication-title: Remote Sens. Environ. contributor: fullname: Pearson – volume: 81 start-page: 57 year: 2000 ident: 10.1016/j.fcr.2016.04.014_bib0075 article-title: Adjustment procedures of a crop model to the site specific characteristics of soil and crop using remote sensing data assimilation publication-title: Agric. Ecosyst. Environ. doi: 10.1016/S0167-8809(00)00168-7 contributor: fullname: Guerif – volume: 27 start-page: 157 year: 1989 ident: 10.1016/j.fcr.2016.04.014_bib0185 article-title: A reflectance model for the homogeneous plant canopy and its inversion publication-title: Remote Sens. Environ. Geoinf. doi: 10.1016/0034-4257(89)90015-1 contributor: fullname: Nilson – volume: 124 start-page: 224 year: 2012 ident: 10.1016/j.fcr.2016.04.014_bib0220 article-title: Estimating crop biophysical properties from remote sensing data by inverting linked radiative transfer and ecophysiological models publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2012.05.013 contributor: fullname: Thorp – volume: 10 start-page: 1595 year: 2011 ident: 10.1016/j.fcr.2016.04.014_bib0130 article-title: Assimilation of remote sensing and crop model for LAI estimation based on ensemble kalman filter publication-title: Agric. Sci. China doi: 10.1016/S1671-2927(11)60156-9 contributor: fullname: Li – volume: 25 start-page: 295 year: 1988 ident: 10.1016/j.fcr.2016.04.014_bib0100 article-title: A soil-adjusted vegetation index (SAVI) publication-title: Remote Sens. Environ. doi: 10.1016/0034-4257(88)90106-X contributor: fullname: Huete – volume: 5 start-page: 108 year: 2008 ident: 10.1016/j.fcr.2016.04.014_bib0255 article-title: Rice mapping and monitoring using ENVISAT ASAR data publication-title: Geosci. Remote Sens. Lett. IEEE doi: 10.1109/LGRS.2007.912089 contributor: fullname: Yang – volume: 58 start-page: 634 year: 2013 ident: 10.1016/j.fcr.2016.04.014_bib0155 article-title: Assimilation of MODIS-LAI into the WOFOST model for forecasting regional winter wheat yield publication-title: Math. Comput. Modell. doi: 10.1016/j.mcm.2011.10.038 contributor: fullname: Ma – volume: 44 start-page: 2207 year: 2006 ident: 10.1016/j.fcr.2016.04.014_bib0065 article-title: On the blending of the landsat and modis surface reflectance: predicting daily landsat surface reflectance publication-title: Geosci. Remote Sens. IEEE Trans. doi: 10.1109/TGRS.2006.872081 contributor: fullname: Gao – volume: 85 start-page: 354 year: 1993 ident: 10.1016/j.fcr.2016.04.014_bib0165 article-title: Parameterized model of gramineous crop growth: II. Within-season simulation calibration publication-title: Agron. J. doi: 10.2134/agronj1993.00021962008500020035x contributor: fullname: Maas – volume: 20 start-page: 213 year: 1999 ident: 10.1016/j.fcr.2016.04.014_bib0180 article-title: Impacts of model parameter uncertainties on crop reflectance estimates: a regional case study on wheat publication-title: Int. J. Appl. Earth Obs. contributor: fullname: Moulin – volume: 84 start-page: 1 year: 2003 ident: 10.1016/j.fcr.2016.04.014_bib0030 article-title: Retrieval of canopy biophysical variables from bidirectional reflectance: using prior information to solve the ill-posed inverse problem publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(02)00035-4 contributor: fullname: Combal – volume: 287 start-page: 125 year: 1988 ident: 10.1016/j.fcr.2016.04.014_bib0040 article-title: Introducing spectral data into a plant process model for improving its prediction ability publication-title: Spectral Signatures Objects Remote Sens. contributor: fullname: Delecolle – volume: 120 start-page: 299 year: 2011 ident: 10.1016/j.fcr.2016.04.014_bib0225 article-title: Assessing newly developed and published vegetation indices for estimating rice leaf nitrogen concentration with ground- and space-based hyperspectral reflectance publication-title: Field Crops Res. doi: 10.1016/j.fcr.2010.11.002 contributor: fullname: Tian – volume: 24 start-page: 297 year: 2010 ident: 10.1016/j.fcr.2016.04.014_bib0135 article-title: Development and application of a model and GIS-based decision support system for rice production management publication-title: Chin. J. Rice Sci. contributor: fullname: Liu – volume: 183 start-page: 225 year: 2015 ident: 10.1016/j.fcr.2016.04.014_bib0140 article-title: The dynamic simulation of rice growth parameters under cadmium stress with the assimilation of multi-period spectral indices and crop model publication-title: Field Crops Res. doi: 10.1016/j.fcr.2015.08.004 contributor: fullname: Liu – volume: 27 start-page: 337 year: 1991 ident: 10.1016/j.fcr.2016.04.014_bib0110 article-title: A test of the computer simulation model ARCWHEAT1 on wheat crops grown in New Zealand publication-title: Field Crops Res. doi: 10.1016/0378-4290(91)90040-3 contributor: fullname: Jamieson – volume: 80 start-page: 655 year: 1988 ident: 10.1016/j.fcr.2016.04.014_bib0160 article-title: Using satellite data to improve model estimates of crop yield publication-title: Agron. J. doi: 10.2134/agronj1988.00021962008000040021x contributor: fullname: Maas – volume: 62 start-page: 437 year: 2014 ident: 10.1016/j.fcr.2016.04.014_bib0170 article-title: Enhanced biomass prediction by assimilating satellite data into a crop growth model publication-title: Environ. Modell. Software doi: 10.1016/j.envsoft.2014.08.010 contributor: fullname: Machwitz – volume: 18 start-page: 462 year: 2012 ident: 10.1016/j.fcr.2016.04.014_bib0260 article-title: Comparison of different methods for corn LAI estimation over northeastern China publication-title: Int. J. Appl. Earth Obs. Geoinf. doi: 10.1016/j.jag.2011.09.004 contributor: fullname: Yang – volume: 9 start-page: 323 year: 2006 ident: 10.1016/j.fcr.2016.04.014_bib0195 article-title: Predicting the protein content of grain in winter wheat with meteorological and genotypic factors (Agronomy) publication-title: Plant Prod. Sci. doi: 10.1626/pps.9.323 contributor: fullname: Pan – start-page: 1226 year: 2010 ident: 10.1016/j.fcr.2016.04.014_bib0265 article-title: Assimilation technique of remote sensing information and rice growth model based on particle swarm optimization publication-title: J. Remote Sens. contributor: fullname: Zhu – volume: 47 start-page: 145 year: 1992 ident: 10.1016/j.fcr.2016.04.014_bib0045 article-title: Remote sensing and crop production models – present trends publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/0924-2716(92)90030-D contributor: fullname: Delecolle – volume: 111 start-page: 321 year: 2005 ident: 10.1016/j.fcr.2016.04.014_bib0120 article-title: Assimilating remote sensing data into a crop model to improve predictive performance for spatial applications publication-title: Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2005.06.005 contributor: fullname: Launay – volume: 9 start-page: 165 year: 2007 ident: 10.1016/j.fcr.2016.04.014_bib0055 article-title: A review on reflective remote sensing and data assimilation techniques for enhanced agroecosystem modeling publication-title: Int. J. Appl. Earth Obs. Geoinf. doi: 10.1016/j.jag.2006.05.003 contributor: fullname: Dorigo – volume: 31 start-page: 1073 year: 2011 ident: 10.1016/j.fcr.2016.04.014_bib0085 article-title: Predicting winter wheat growth based on integrating remote sensing and crop growth modeling techniques publication-title: Acta Ecol. Sin. contributor: fullname: Huang – volume: 15 start-page: 41 year: 2004 ident: 10.1016/j.fcr.2016.04.014_bib0080 article-title: A soil-water balance model under waterlogging condition in winter wheat publication-title: J. Appl. Meteorol. Sci. contributor: fullname: Hu – volume: 22 start-page: 205 year: 2002 ident: 10.1016/j.fcr.2016.04.014_bib0025 article-title: Improving canopy variables estimation from remote sensing data by exploiting ancillary information. Case sudy sugar beet canopies publication-title: Agronomie doi: 10.1051/agro:2002008 contributor: fullname: Combal |
SSID | ssj0006616 |
Score | 2.380468 |
Snippet | •PROSAIL model was integrated with the WheatGrow model, integrating RS and growth•We developed a look-up table between VIs and measured wheat... Coupling remote sensing data with crop models is an important way to predict crop yield on a regional scale. Here, we developed a method for wheat yield... |
SourceID | proquest crossref fao elsevier |
SourceType | Aggregation Database Publisher |
StartPage | 55 |
SubjectTerms | algorithms crop models crops Data fusion ecoregions Grain yield heading leaf area index LUT monitoring nitrogen prediction PROSAIL model radiative transfer remote sensing sowing date spatial data Triticum aestivum uncertainty Wheat WheatGrow model winter wheat |
Title | Estimating wheat yield by integrating the WheatGrow and PROSAIL models |
URI | https://dx.doi.org/10.1016/j.fcr.2016.04.014 https://search.proquest.com/docview/1808654720 |
Volume | 192 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSyQxEC4cvehB1hfOrisR9iT0TtJJv46DOI7PlZ0d8BaSdCLuoUecEfGyv92qfggi68FjdwjdfEm-qqIqXwH8QLNtCx67KJgyREqYENm0cBFulTjkqXLSUUb38iodT9XZTXKzBEfdXRgqq2y5v-H0mq3bN4MWzcH93d1gwmWWK0oDkmpUkcserFCSCCOwleHp-fjqlZDRBDUpSwyYaEKX3KzLvIIjVVCR1oKnQv3PPPWCmb2j69oGjb7Aeus8smHzfxuw5KtNWBvePrQCGn4LRsd4ZskLrW7ZExEte6YaNWafWacMQUPo9rGah08wDGemKtn171-T4ekFq1vjzLdhOjr-czSO2l4JkVMxXyC2SemUN3keuOVFsFy5oowTmxhuMh-MlWVILTpMsZFSYlTkSJZFeO9zyR2XO7BczSq_C0wJdLuy0lgXB5WXWeESkwYphbFlIpzpw2EHkb5vJDF0Vyv2VyOemvDUXGnEsw-qA1G_WVeNlP3RtF0EXBsEcK6nExqh9oEFhoN9OOhWQeNRoPyGqfzsca5FjvFZorKYf_3cV7_BKj01lWB7sLx4ePTf0edY2H3o_fwn9tud9QKRA9Kv |
link.rule.ids | 315,786,790,4516,24137,27946,27947,45609,45703 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwEB7xOCwcVsCCKMvDSJxWCnVi53WsEKVAeYhSiZtlOzaCQ4po0YrL_nZm8hBaIThwjRMl-mx_841m8hngAMO2yXlkA68LH8hQ-8AkuQ1wqUQ-S6QVliq6F5fJYCzP7uK7OThq_4WhtsqG-2tOr9i6udJt0Ow-PTx0R1ykmaQyILlG5ZmYh0VUA5yW9uG_9z4PDEB1wRLTJbq9LW1WTV7ekidomFR2p6H8LDjNez35QNZVBOqvwM9GOrJe_XWrMOfKNVju3T839hnuF_SPcceSBi3v2V-iWfZKHWrMvLLWF4KGUPSxioVPMAlnuizY9c3VqHc6ZNXBONN1GPePb48GQXNSQmBlxGeIbFxY6XSWeW547g2XNi-i2MSa69R5bUThE4NyKdJCCMyJLJmyhM65THDLxQYslJPSbQKTIYqutNDGRl5mRZrbWCdeiFCbIg6t7sCfFiL1VBtiqLZT7FEhnorwVFwqxLMDsgVR_TerCgn7q8c2EXClEcCpGo9ohA4PzDEZ7MB-OwsKNwJVN3TpJi9TFWaYncUyjfjW9966Bz8GtxdDNTy9PP8NSzRS94Rtw8Ls-cXtoPqYmd1qdb0BYdPTgg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimating+wheat+yield+by+integrating+the+WheatGrow+and+PROSAIL+models&rft.jtitle=Field+crops+research&rft.au=Zhang%2C+L&rft.au=Guo%2C+CL&rft.au=Zhao%2C+L+Y&rft.au=Zhu%2C+Y&rft.date=2016-06-01&rft.issn=0378-4290&rft.volume=192&rft.spage=55&rft.epage=66&rft_id=info:doi/10.1016%2Fj.fcr.2016.04.014&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-4290&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-4290&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-4290&client=summon |