Numerical simulations of 2-D floating body driven by regular waves

An improved meshing method based on Fluent is used to update the computational meshes in solving the Navier-Stokes (N-S) equations for viscous and incompressible free surface flows with the volume of fluid (VOF) method. To maintain the mesh quality when updating meshes for a moving structure, the co...

Full description

Saved in:
Bibliographic Details
Published inJournal of hydrodynamics. Series B Vol. 28; no. 5; pp. 821 - 831
Main Author 陈学彬 詹杰民 Qin CHEN
Format Journal Article
LanguageEnglish
Published Singapore Elsevier Ltd 01.10.2016
Springer Singapore
Subjects
Online AccessGet full text
ISSN1001-6058
1878-0342
DOI10.1016/S1001-6058(16)60682-0

Cover

Loading…
Abstract An improved meshing method based on Fluent is used to update the computational meshes in solving the Navier-Stokes (N-S) equations for viscous and incompressible free surface flows with the volume of fluid (VOF) method. To maintain the mesh quality when updating meshes for a moving structure, the computational domain is separated into several parts and each part corresponds to a specific type of body motion. The numerical results of the interaction between the floating body and the regular waves agree well with the experimental data. A total of eight typical motion types are simulated separately to understand the correlation between the motion types and the wave transmission as well as the forces acting on the floating body. Numerical experiments show that the wave transmission increases in the case of sway and heave motions and decreases in the case of pitch motion as compared with the stationary case. It is also found that the sway motion reduces the horizontal wave force acting on the floating body, while the heave motion enhances the vertical wave force.
AbstractList An improved meshing method based on Fluent is used to update the computational meshes in solving the Navier-Stokes (N-S) equations for viscous and incompressible free surface flows with the volume of fluid (VOF) method. To maintain the mesh quality when updating meshes for a moving structure, the computational domain is separated into several parts and each part corre- sponds to a specific type of body motion. The numerical results of the interaction between the floating body and the regular waves agree well with the experimental data. A total of eight typical motion types are simulated separately to understand the correlation between the motion types and the wave transmission as well as the forces acting on the floating body. Numerical experiments show that the wave transmission increases in the case of sway and heave motions and decreases in the case of pitch motion as compared with the stationary case. It is also found that the sway motion reduces the horizontal wave force acting on the floating body, while the heave motion enhances the vertical wave force.
An improved meshing method based on Fluent is used to update the computational meshes in solving the Navier-Stokes (N-S) equations for viscous and incompressible free surface flows with the volume of fluid (VOF) method. To maintain the mesh quality when updating meshes for a moving structure, the computational domain is separated into several parts and each part corre- sponds to a specific type of body motion. The numerical results of the interaction between the floating body and the regular waves agree well with the experimental data. A total of eight typical motion types are simulated separately to understand the correlation between the motion types and the wave transmission as well as the forces acting on the floating body. Numerical experiments show that the wave transmission increases in the case of sway and heave motions and decreases in the case of pitch motion as compared with the stationary case. It is also found that the sway motion reduces the horizontal wave force acting on the floating body, while the heave motion enhances the vertical wave force.
An improved meshing method based on Fluent is used to update the computational meshes in solving the Navier-Stokes (N-S) equations for viscous and incompressible free surface flows with the volume of fluid (VOF) method. To maintain the mesh quality when updating meshes for a moving structure, the computational domain is separated into several parts and each part corresponds to a specific type of body motion. The numerical results of the interaction between the floating body and the regular waves agree well with the experimental data. A total of eight typical motion types are simulated separately to understand the correlation between the motion types and the wave transmission as well as the forces acting on the floating body. Numerical experiments show that the wave transmission increases in the case of sway and heave motions and decreases in the case of pitch motion as compared with the stationary case. It is also found that the sway motion reduces the horizontal wave force acting on the floating body, while the heave motion enhances the vertical wave force.
Author 陈学彬 詹杰民 Qin CHEN
AuthorAffiliation Department of Applied Mechanics and Engineering, Sun Yat-sen University, Guangzhou 510275, China Department of Civil and Environmental Engineering, Center for Computation and Technology, Louisiana StateUniversity, Baton Rouge, LA, USA
Author_xml – sequence: 1
  fullname: 陈学彬 詹杰民 Qin CHEN
BookMark eNqFkE1vEzEQhq2qSLSFn4BkcQKJLeO117sRB1T6AUhVeyh3y7HHW0cbG-xN2u2vx0kKSFxysj16n5nxc0wOQwxIyBsGpwyY_HjHAFgloeneMfleguzqCg7IEevargIu6sNy_xN5SY5zXgBwOQNxRL7crJaYvNEDzX65GvToY8g0OlpXF9QNsRRCT-fRTtQmv8ZA5xNN2Jdoog96jfkVeeH0kPH183lC7q4uf5x_q65vv34_P7uujKhhrFrumEMr9NxKY2qhje24sa7mM8Hbtu0apjuNpgGB1jqUzHGYo9WOCeH4Cfmw6_qgg9OhV4u4SqHMU9kOj9NiWjwprIsOaIBBiX_axU2KOSd0yvhx-7kxaT8oBmrjTm3dqY0YVV5bd2pDN__RP5Nf6jTt5eSOyyUfekz_ttwHft6BWASufQGz8RgMWp_QjMpGv7fD2-eV72Pof5Xpf3eWLXSzmeQN_w0bM6Vw
CitedBy_id crossref_primary_10_1016_j_coastaleng_2020_103687
crossref_primary_10_1016_j_marstruc_2016_12_007
crossref_primary_10_1016_j_oceaneng_2022_112374
crossref_primary_10_1088_1361_6501_ac04e2
crossref_primary_10_1038_s41598_020_75907_8
crossref_primary_10_1108_WJE_07_2021_0445
crossref_primary_10_1007_s42241_018_0116_4
crossref_primary_10_1016_j_apor_2022_103213
crossref_primary_10_1016_j_apor_2022_103455
crossref_primary_10_1016_j_renene_2020_03_140
crossref_primary_10_1016_j_apor_2023_103656
crossref_primary_10_1016_j_oceaneng_2023_115291
crossref_primary_10_1007_s42241_018_0025_6
crossref_primary_10_1016_j_oceaneng_2021_109012
crossref_primary_10_1016_j_oceaneng_2020_108494
Cites_doi 10.1016/j.enganabound.2012.02.005
10.1016/j.oceaneng.2008.11.003
10.1007/s00773-007-0260-y
10.1063/2.1404201
10.1016/j.apor.2012.01.001
10.1016/j.jcp.2006.06.046
10.1016/j.apor.2007.05.005
10.1080/00221686.2005.9641234
10.1017/S0022112001004396
10.1016/S1001-6058(14)60006-8
10.1016/j.oceaneng.2010.06.005
10.1006/jfls.2000.0376
10.1016/S1001-6058(14)60001-9
10.1142/S0578563404001026
10.1002/fld.506
10.1007/s00773-008-0031-4
10.1179/str.2006.53.2.004
10.1016/j.taml.2015.11.001
10.1016/j.oceaneng.2008.01.010
10.1007/s13344-014-0034-3
ContentType Journal Article
Copyright 2016 Publishing House for Journal of Hydrodynamics
China Ship Scientific Research Center 2016
Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: 2016 Publishing House for Journal of Hydrodynamics
– notice: China Ship Scientific Research Center 2016
– notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W92
~WA
AAYXX
CITATION
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.1016/S1001-6058(16)60682-0
DatabaseName 维普_期刊
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库-工程技术
中文科技期刊数据库- 镜像站点
CrossRef
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitle CrossRef
DatabaseTitleList



DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitleAlternate Numerical simulations of 2-D floating body driven by regular waves
EISSN 1878-0342
EndPage 831
ExternalDocumentID sdlxyjyjz_e201605010
10_1016_S1001_6058_16_60682_0
S1001605816606820
670899635
GrantInformation_xml – fundername: National Marine Public Welfare Research Project of China
  grantid: Grant No. 201005002
– fundername: the National Marine Public Welfare Research Project of China
  funderid: (Grant 201005002)
GroupedDBID --K
--M
-01
-0A
-EM
-SA
-S~
.~1
0R~
1B1
1~.
1~5
2B.
2C0
2RA
4.4
406
457
4G.
5GY
5VR
5VS
5XA
5XB
5XL
7-5
71M
8P~
92H
92I
92L
92M
9D9
9DA
AABNK
AACTN
AAEDT
AAEDW
AAFGU
AAHNG
AAIAL
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATNV
AAUYE
AAXUO
AAYFA
ABDZT
ABECU
ABFGW
ABFTV
ABJOX
ABKAS
ABKCH
ABMAC
ABMQK
ABTEG
ABTKH
ABXDB
ABXPI
ABYKQ
ACAOD
ACBMV
ACBRV
ACBYP
ACDAQ
ACGFS
ACHSB
ACIGE
ACIPQ
ACMLO
ACNNM
ACOKC
ACRLP
ACTTH
ACVWB
ACWMK
ACZOJ
ADEZE
ADHHG
ADKNI
ADMDM
ADMUD
ADOXG
ADRFC
ADTZH
ADURQ
ADYFF
AEBSH
AECPX
AEFTE
AEJRE
AEKER
AENEX
AEPYU
AESKC
AESTI
AEVTX
AFKWA
AFNRJ
AFQWF
AFUIB
AGDGC
AGGBP
AGHFR
AGJBK
AGMZJ
AGUBO
AGYEJ
AHJVU
AIAKS
AIEXJ
AIKHN
AILAN
AIMYW
AITGF
AITUG
AJBFU
AJDOV
AJOXV
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMKLP
AMRAJ
AMXSW
AMYLF
AXJTR
AXYYD
BGNMA
BJAXD
BKOJK
BLXMC
CAJEA
CAJUS
CCEZO
CCVFK
CHBEP
CQIGP
CS3
CW9
DPUIP
DU5
EBLON
EBS
EFJIC
EFLBG
EJD
EO9
EP2
EP3
FA0
FDB
FEDTE
FINBP
FIRID
FNLPD
FNPLU
FSGXE
FYGXN
GBLVA
GGCAI
GJIRD
HVGLF
HZ~
IHE
IKXTQ
IWAJR
J-C
J1W
JJJVA
JUIAU
JZLTJ
KOM
KOV
LLZTM
M41
M4Y
MO0
N9A
NPVJJ
NQJWS
NU0
O9-
OAUVE
OZT
P-8
P-9
PC.
PT4
Q--
Q-0
Q38
R-A
REI
RIG
RLLFE
ROL
RPZ
RSV
RT1
S..
SDC
SDF
SDG
SES
SNE
SNPRN
SOHCF
SOJ
SPC
SRMVM
SSLCW
SST
SSZ
STPWE
T5K
T8Q
TCJ
TGT
TSG
U1F
U1G
U5A
U5K
UOJIU
UTJUX
VEKWB
VFIZW
W92
Z5O
Z7R
ZMTXR
~LB
~WA
AGQEE
FIGPU
AACDK
AAJBT
AASML
AAXDM
AAXKI
ABAKF
ABJNI
ABWVN
ACDTI
ACPIV
ACRPL
ADMLS
ADNMO
AEFQL
AEIPS
AEMSY
AFBBN
AGRTI
AIGIU
AKRWK
ANKPU
SJYHP
AATTM
AAYWO
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ACVFH
ADCNI
AEUPX
AEZWR
AFDZB
AFHIU
AFOHR
AFPUW
AFXIZ
AGCQF
AGRNS
AHPBZ
AHWEU
AIGII
AIIUN
AIXLP
AKBMS
AKYEP
ATHPR
AYFIA
CITATION
SSH
4A8
93N
PSX
ID FETCH-LOGICAL-c420t-73f1fed4abd6cc24acd83cdf23943777851a8aec504eddfe61f30bedaf144f3
IEDL.DBID .~1
ISSN 1001-6058
IngestDate Thu May 29 04:08:10 EDT 2025
Thu Apr 24 23:05:15 EDT 2025
Tue Jul 01 02:16:49 EDT 2025
Fri Feb 21 02:30:57 EST 2025
Fri Feb 23 02:34:37 EST 2024
Wed Feb 14 10:07:29 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords wave-structure interaction
improved meshing method
sway motion
heave motion
pitch motion
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c420t-73f1fed4abd6cc24acd83cdf23943777851a8aec504eddfe61f30bedaf144f3
Notes improved meshing method; wave-structure interaction; sway motion; heave motion; pitch motion
31-1563/T
An improved meshing method based on Fluent is used to update the computational meshes in solving the Navier-Stokes (N-S) equations for viscous and incompressible free surface flows with the volume of fluid (VOF) method. To maintain the mesh quality when updating meshes for a moving structure, the computational domain is separated into several parts and each part corre- sponds to a specific type of body motion. The numerical results of the interaction between the floating body and the regular waves agree well with the experimental data. A total of eight typical motion types are simulated separately to understand the correlation between the motion types and the wave transmission as well as the forces acting on the floating body. Numerical experiments show that the wave transmission increases in the case of sway and heave motions and decreases in the case of pitch motion as compared with the stationary case. It is also found that the sway motion reduces the horizontal wave force acting on the floating body, while the heave motion enhances the vertical wave force.
Xue-bin CHEN 1, Jie-min ZHAN 1, Qin CHEN2( 1. Department of Applied Mechanics and Engineering, Sun Yat-sen University, Guangzhou 510275, China, 2. Department of Civil and Environmental Engineering, Center for Computation and Technology, Louisiana State University, Baton Rouge, LA, USA)
PageCount 11
ParticipantIDs wanfang_journals_sdlxyjyjz_e201605010
crossref_citationtrail_10_1016_S1001_6058_16_60682_0
crossref_primary_10_1016_S1001_6058_16_60682_0
springer_journals_10_1016_S1001_6058_16_60682_0
elsevier_sciencedirect_doi_10_1016_S1001_6058_16_60682_0
chongqing_primary_670899635
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-10-01
PublicationDateYYYYMMDD 2016-10-01
PublicationDate_xml – month: 10
  year: 2016
  text: 2016-10-01
  day: 01
PublicationDecade 2010
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
PublicationTitle Journal of hydrodynamics. Series B
PublicationTitleAbbrev J Hydrodyn
PublicationTitleAlternate Journal of Hydrodynamics
PublicationTitle_FL Journal of Hydrodynamics
PublicationYear 2016
Publisher Elsevier Ltd
Springer Singapore
Publisher_xml – name: Elsevier Ltd
– name: Springer Singapore
References XUE, XU, LIU (bib5) 2001; 438
ZHANG, ZHANG (bib7) 2014; 26
HU, ZDRAVKO, KASHIWAGI (bib6) 2006; 53
SUEYOSHI, KASHIWAGI, NAITO (bib10) 2008; 13
BAI, TAYLOR (bib19) 2009; 36
HU, KASHIWAGI (bib9) 2009; 14
WANG, ZOU (bib15) 2014; 26
YAN, MA (bib1) 2007; 221
SCHWIMMER (bib23) 2001; 17
KOUTANDOS, PRINOS, GIRONELLA (bib21) 2005; 43
BAI, TAYLOR (bib2) 2007; 29
ZHAO X., LU F. and ZHANG Y. et al. A CIP-based simulation of 2-D floating body response to regular waves[C]. 13th National Conference on Modern Mathematics and Mechanics. Shanghai, China, 2012, 1-6(in Chinese).
MO, HUANG, HUANG (bib16) 2014; 4
SHAO, GOTOH (bib20) 2004; 46
WANG, ZOU (bib14) 2014; 28
DONG, ZHENG, Li (bib22) 2008; 35
ZHAO, HU (bib11) 2012; 35
ZHAN, DONG, JIANG (bib8) 2010; 37
WU, WANG, HUANG (bib17) 2015; 5
GUERBER, BENOIT, GRILLI (bib4) 2012; 36
MITTAL, KUMAR (bib12) 2001; 15
HAN, ZHAN, SU (bib13) 2013; 31
FERRANT, TOUZE, PELLETIER (bib3) 2003; 43
Guerber, Benoit, Grilli (CR4) 2012; 36
Sueyoshi, Kashiwagi, Naito (CR10) 2008; 13
Wu, Wang, Huang (CR17) 2015; 5
Koutandos, Prinos, Gironella (CR21) 2005; 43
Yan, Ma (CR1) 2007; 221
Zhao, Hu (CR11) 2012; 35
Xue, Xu, Liu (CR5) 2001; 438
Hu, Zdravko, Kashiwagi (CR6) 2006; 53
Zhang, Zhang (CR7) 2014; 26
Shao, Gotoh (CR20) 2004; 46
Ferrant, Touze, Pelletier (CR3) 2003; 43
Wang, Zou (CR14) 2014; 28
Han, Zhan, Su (CR13) 2013; 31
Bai, Taylor (CR19) 2009; 36
Zhan, Dong, Jiang (CR8) 2010; 37
Hu, Kashiwagi (CR9) 2009; 14
Mo, Huang, Huang (CR16) 2014; 4
Zhao, Lu, Zhang (CR18) 2012
Bai, Taylor (CR2) 2007; 29
Wang, Zou (CR15) 2014; 26
Mittal, Kumar (CR12) 2001; 15
Dong, Zheng, Li (CR22) 2008; 35
Schwimmer (CR23) 2001; 17
X-c Wu (2805821_CR17) 2015; 5
S Shao (2805821_CR20) 2004; 46
S Mo (2805821_CR16) 2014; 4
S Yan (2805821_CR1) 2007; 221
N Zhang (2805821_CR7) 2014; 26
P Ferrant (2805821_CR3) 2003; 43
M Sueyoshi (2805821_CR10) 2008; 13
Y Han (2805821_CR13) 2013; 31
J M Zhan (2805821_CR8) 2010; 37
C Hu (2805821_CR6) 2006; 53
M Xue (2805821_CR5) 2001; 438
C Hu (2805821_CR9) 2009; 14
G H Dong (2805821_CR22) 2008; 35
E Koutandos (2805821_CR21) 2005; 43
W Bai (2805821_CR19) 2009; 36
H-z Wang (2805821_CR15) 2014; 26
X Zhao (2805821_CR11) 2012; 35
S Mittal (2805821_CR12) 2001; 15
H-z Wang (2805821_CR14) 2014; 28
W Bai (2805821_CR2) 2007; 29
X Zhao (2805821_CR18) 2012
E Guerber (2805821_CR4) 2012; 36
R A Schwimmer (2805821_CR23) 2001; 17
References_xml – volume: 15
  start-page: 717
  year: 2001
  end-page: 736
  ident: bib12
  article-title: Flow-induced oscillations of two cylinders in tandem and staggered arrangements [J]
  publication-title: Journal of Fluids and Structures
– volume: 438
  start-page: 11
  year: 2001
  end-page: 39
  ident: bib5
  article-title: Computations of fully nonlinear three-dimensional wave–wave and wave–body interactions. Part 1. Dynamics of steep three-dimensional waves [J]
  publication-title: Journal of Fluid Mechanics
– volume: 37
  start-page: 1261
  year: 2010
  end-page: 1272
  ident: bib8
  article-title: Numerical simulation of wave transformation and runup incorporating porous media wave absorber and turbulence models [J]
  publication-title: Ocean Engineering
– volume: 5
  start-page: 258
  year: 2015
  end-page: 261
  ident: bib17
  article-title: Experiment and numerical simulation on the characteristics of fluid–structure interactions of non-rigid airships [J]
  publication-title: Theoretical and Applied Mechanics Letters
– volume: 17
  start-page: 672
  year: 2001
  end-page: 683
  ident: bib23
  article-title: Rates and processes of marsh shoreline erosion in Rehoboth Bay, Delaware, USA [J]
  publication-title: Journal of Coastal Research
– volume: 221
  start-page: 666
  year: 2007
  end-page: 692
  ident: bib1
  article-title: Numerical simulation of fully nonlinear interaction between steep waves and 2D floating bodies using the QALE-FEM method [J]
  publication-title: Journal of Computational physics
– volume: 4
  start-page: 65
  year: 2014
  end-page: 69
  ident: bib16
  article-title: Numerical simulation of gap effect in supersonic flows [J]
  publication-title: Theoretical and Applied Mechanics Letters
– volume: 43
  start-page: 1257
  year: 2003
  end-page: 1277
  ident: bib3
  article-title: Nonlinear time-domain models for irregular wave diffraction about offshore structures [J]
  publication-title: International Journal for Numerical Methods in Fluids
– volume: 26
  start-page: 50
  year: 2014
  end-page: 56
  ident: bib7
  article-title: Numerical simulation of hull/propeller interaction of submarine in submergence and near surface conditions [J]
  publication-title: Journal of Hydrodynamics
– volume: 13
  start-page: 85
  year: 2008
  end-page: 94
  ident: bib10
  article-title: Numerical simulation of wave-induced nonlinear motions of a two-dimensional floating body by the moving particle semi-implicit method [J]
  publication-title: Journal of Marine Science and Technology
– volume: 36
  start-page: 223
  year: 2009
  end-page: 236
  ident: bib19
  article-title: Fully nonlinear simulation of wave interaction with fixed and floating flared structures [J]
  publication-title: Ocean engineering
– volume: 31
  start-page: 879
  year: 2013
  end-page: 891
  ident: bib13
  article-title: Numerical simulation of in-line response of a vertical cylinder in regular waves [J]
  publication-title: Journal of Coastal Research
– volume: 46
  start-page: 171
  year: 2004
  end-page: 202
  ident: bib20
  article-title: Simulating coupled motion of progressive wave and floating curtain wall by SPH-LES model [J]
  publication-title: Coastal Engineering Journal
– volume: 35
  start-page: 931
  year: 2008
  end-page: 938
  ident: bib22
  article-title: Experiments on wave transmission coefficients of floating breakwaters [J]
  publication-title: Ocean Engineering
– volume: 29
  start-page: 55
  year: 2007
  end-page: 71
  ident: bib2
  article-title: Numerical simulation of fully nonlinear regular and focused wave diffraction around a vertical cylinder using domain decomposition [J]
  publication-title: Applied Ocean Research
– volume: 36
  start-page: 1151
  year: 2012
  end-page: 1163
  ident: bib4
  article-title: A fully nonlinear implicit model for wave interactions with submerged structures in forced or free motion [J]
  publication-title: Engineering Analysis with Boundary Elements
– volume: 53
  start-page: 74
  year: 2006
  end-page: 87
  ident: bib6
  article-title: Application of CIP method for strongly nonlinear marine hydrodynamics [J]
  publication-title: Ship Technology Research
– reference: ZHAO X., LU F. and ZHANG Y. et al. A CIP-based simulation of 2-D floating body response to regular waves[C]. 13th National Conference on Modern Mathematics and Mechanics. Shanghai, China, 2012, 1-6(in Chinese).
– volume: 14
  start-page: 200
  year: 2009
  end-page: 213
  ident: bib9
  article-title: Two-dimensional numerical simulation and experiment on strongly nonlinear wave– body interactions [J]
  publication-title: Journal of Marine Science and Technology
– volume: 35
  start-page: 1
  year: 2012
  end-page: 13
  ident: bib11
  article-title: Numerical and experimental study on a 2-D floating body under extreme wave conditions [J]
  publication-title: Applied Ocean Research
– volume: 26
  start-page: 1
  year: 2014
  end-page: 9
  ident: bib15
  article-title: Numerical prediction of hydrodynamic forces on a ship passing through a lock with different configurations [J]
  publication-title: Journal of Hydrodynamics
– volume: 28
  start-page: 421
  year: 2014
  end-page: 432
  ident: bib14
  article-title: Numerical prediction of hydrodynamic forces on a ship passing through a lock [J]
  publication-title: China Ocean Engineering
– volume: 43
  start-page: 174
  year: 2005
  end-page: 188
  ident: bib21
  article-title: Floating breakwaters under regular and irregular wave forcing: Reflection and transmission characteristics [J]
  publication-title: Journal of Hydraulic Research
– volume: 36
  start-page: 1151
  issue: 7
  year: 2012
  end-page: 1163
  ident: CR4
  article-title: A fully nonlinear implicit model for wave interactions with submerged structures in forced or free motion[J]
  publication-title: Engineering Analysis with Boundary Elements
  doi: 10.1016/j.enganabound.2012.02.005
– volume: 36
  start-page: 223
  issue: 3
  year: 2009
  end-page: 236
  ident: CR19
  article-title: Fully nonlinear simulation of wave interaction with fixed and floating flared structures[J]
  publication-title: Ocean engineering
  doi: 10.1016/j.oceaneng.2008.11.003
– volume: 13
  start-page: 85
  issue: 2
  year: 2008
  end-page: 94
  ident: CR10
  article-title: Numerical simulation of wave-induced nonlinear motions of a two-dimensional floating body by the moving particle semi-implicit method[J]
  publication-title: Journal of Marine Science and Technology
  doi: 10.1007/s00773-007-0260-y
– volume: 31
  start-page: 879
  issue: 4
  year: 2013
  end-page: 891
  ident: CR13
  article-title: Numerical simulation of in-line response of a vertical cylinder in regular waves[J]
  publication-title: Journal of Coastal Research
– volume: 4
  start-page: 65
  issue: 4
  year: 2014
  end-page: 69
  ident: CR16
  article-title: Numerical simulation of gap effect in supersonic flows[J]
  publication-title: Theoretical and Applied Mechanics Letters
  doi: 10.1063/2.1404201
– volume: 35
  start-page: 1
  issue: 1
  year: 2012
  end-page: 13
  ident: CR11
  article-title: Numerical and experimental study on a 2-D floating body under extreme wave conditions[J]
  publication-title: Applied Ocean Research
  doi: 10.1016/j.apor.2012.01.001
– volume: 221
  start-page: 666
  issue: 2
  year: 2007
  end-page: 692
  ident: CR1
  article-title: Numerical simulation of fully nonlinear interaction between steep waves and 2D floating bodies using the QALE-FEM method[J]
  publication-title: Journal of Computational physics
  doi: 10.1016/j.jcp.2006.06.046
– volume: 29
  start-page: 55
  issue: 1
  year: 2007
  end-page: 71
  ident: CR2
  article-title: Numerical simulation of fully nonlinear regular and focused wave diffraction around a vertical cylinder using domain decomposition[J]
  publication-title: Applied Ocean Research
  doi: 10.1016/j.apor.2007.05.005
– start-page: 1
  year: 2012
  end-page: 6
  ident: CR18
  article-title: A CIP-based simulation of 2-D floating body response to regular waves[C]
  publication-title: 13th National Conference on Modern Mathematics and Mechanics
– volume: 43
  start-page: 174
  issue: 2
  year: 2005
  end-page: 188
  ident: CR21
  article-title: Floating breakwaters under regular and irregular wave forcing: Reflection and transmission characteristics[J]
  publication-title: Journal of Hydraulic Research
  doi: 10.1080/00221686.2005.9641234
– volume: 438
  start-page: 11
  year: 2001
  end-page: 39
  ident: CR5
  article-title: Computations of fully nonlinear three-dimensional wave-wave and wave-body interactions. Part 1. Dynamics of steep three-dimensional waves[J]
  publication-title: Journal of Fluid Mechanics
  doi: 10.1017/S0022112001004396
– volume: 26
  start-page: 50
  issue: 1
  year: 2014
  end-page: 56
  ident: CR7
  article-title: Numerical simulation of hull/propeller interaction of submarine in submergence and near surface conditions[J]
  publication-title: Journal of Hydrodynamics
  doi: 10.1016/S1001-6058(14)60006-8
– volume: 37
  start-page: 1261
  issue: 14
  year: 2010
  end-page: 1272
  ident: CR8
  article-title: Numerical simulation of wave transformation and runup incorporating porous media wave absorber and turbulence models[J]
  publication-title: Ocean Engineering
  doi: 10.1016/j.oceaneng.2010.06.005
– volume: 15
  start-page: 717
  issue: 5
  year: 2001
  end-page: 736
  ident: CR12
  article-title: Flow-induced oscillations of two cylinders in tandem and staggered arrangements[J]
  publication-title: Journal of Fluids and Structures
  doi: 10.1006/jfls.2000.0376
– volume: 17
  start-page: 672
  issue: 3
  year: 2001
  end-page: 683
  ident: CR23
  article-title: Rates and processes of marsh shoreline erosion in Rehoboth Bay, Delaware, USA[J]
  publication-title: Journal of Coastal Research
– volume: 26
  start-page: 1
  issue: 1
  year: 2014
  end-page: 9
  ident: CR15
  article-title: Numerical prediction of hydrodynamic forces on a ship passing through a lock with different configurations[J]
  publication-title: Journal of Hydrodynamics
  doi: 10.1016/S1001-6058(14)60001-9
– volume: 46
  start-page: 171
  issue: 2
  year: 2004
  end-page: 202
  ident: CR20
  article-title: Simulating coupled motion of progressive wave and floating curtain wall by SPH-LES model[J]
  publication-title: Coastal Engineering Journal
  doi: 10.1142/S0578563404001026
– volume: 43
  start-page: 1257
  issue: 10–11
  year: 2003
  end-page: 1277
  ident: CR3
  article-title: Nonlinear time-domain models for irregular wave diffraction about offshore structures[J]
  publication-title: International Journal for Numerical Methods in Fluids
  doi: 10.1002/fld.506
– volume: 14
  start-page: 200
  issue: 2
  year: 2009
  end-page: 213
  ident: CR9
  article-title: Two-dimensional numerical simulation and experiment on strongly nonlinear wave-body interactions[J]
  publication-title: Journal of Marine Science and Technology
  doi: 10.1007/s00773-008-0031-4
– volume: 53
  start-page: 74
  issue: 2
  year: 2006
  end-page: 87
  ident: CR6
  article-title: Application of CIP method for strongly nonlinear marine hydro-dynamics[J]
  publication-title: Ship Technology Research
  doi: 10.1179/str.2006.53.2.004
– volume: 5
  start-page: 258
  issue: 6
  year: 2015
  end-page: 261
  ident: CR17
  article-title: Experiment and numerical simulation on the characteristics of fluid-structure interactions of non-rigid airships[J]
  publication-title: Theoretical and Applied Mechanics Letters
  doi: 10.1016/j.taml.2015.11.001
– volume: 35
  start-page: 931
  issue: 8
  year: 2008
  end-page: 938
  ident: CR22
  article-title: Experiments on wave transmission coefficients of floating break-waters[J]
  publication-title: Ocean Engineering
  doi: 10.1016/j.oceaneng.2008.01.010
– volume: 28
  start-page: 421
  issue: 3
  year: 2014
  end-page: 432
  ident: CR14
  article-title: Numerical prediction of hydrodynamic forces on a ship passing through a lock[J]
  publication-title: China Ocean Engineering
  doi: 10.1007/s13344-014-0034-3
– volume: 26
  start-page: 1
  issue: 1
  year: 2014
  ident: 2805821_CR15
  publication-title: Journal of Hydrodynamics
  doi: 10.1016/S1001-6058(14)60001-9
– volume: 53
  start-page: 74
  issue: 2
  year: 2006
  ident: 2805821_CR6
  publication-title: Ship Technology Research
  doi: 10.1179/str.2006.53.2.004
– volume: 37
  start-page: 1261
  issue: 14
  year: 2010
  ident: 2805821_CR8
  publication-title: Ocean Engineering
  doi: 10.1016/j.oceaneng.2010.06.005
– volume: 26
  start-page: 50
  issue: 1
  year: 2014
  ident: 2805821_CR7
  publication-title: Journal of Hydrodynamics
  doi: 10.1016/S1001-6058(14)60006-8
– volume: 28
  start-page: 421
  issue: 3
  year: 2014
  ident: 2805821_CR14
  publication-title: China Ocean Engineering
  doi: 10.1007/s13344-014-0034-3
– volume: 14
  start-page: 200
  issue: 2
  year: 2009
  ident: 2805821_CR9
  publication-title: Journal of Marine Science and Technology
  doi: 10.1007/s00773-008-0031-4
– volume: 4
  start-page: 65
  issue: 4
  year: 2014
  ident: 2805821_CR16
  publication-title: Theoretical and Applied Mechanics Letters
  doi: 10.1063/2.1404201
– volume: 5
  start-page: 258
  issue: 6
  year: 2015
  ident: 2805821_CR17
  publication-title: Theoretical and Applied Mechanics Letters
  doi: 10.1016/j.taml.2015.11.001
– volume: 46
  start-page: 171
  issue: 2
  year: 2004
  ident: 2805821_CR20
  publication-title: Coastal Engineering Journal
  doi: 10.1142/S0578563404001026
– volume: 13
  start-page: 85
  issue: 2
  year: 2008
  ident: 2805821_CR10
  publication-title: Journal of Marine Science and Technology
  doi: 10.1007/s00773-007-0260-y
– volume: 43
  start-page: 1257
  issue: 10–11
  year: 2003
  ident: 2805821_CR3
  publication-title: International Journal for Numerical Methods in Fluids
  doi: 10.1002/fld.506
– volume: 36
  start-page: 1151
  issue: 7
  year: 2012
  ident: 2805821_CR4
  publication-title: Engineering Analysis with Boundary Elements
  doi: 10.1016/j.enganabound.2012.02.005
– volume: 31
  start-page: 879
  issue: 4
  year: 2013
  ident: 2805821_CR13
  publication-title: Journal of Coastal Research
– start-page: 1
  volume-title: 13th National Conference on Modern Mathematics and Mechanics
  year: 2012
  ident: 2805821_CR18
– volume: 221
  start-page: 666
  issue: 2
  year: 2007
  ident: 2805821_CR1
  publication-title: Journal of Computational physics
  doi: 10.1016/j.jcp.2006.06.046
– volume: 15
  start-page: 717
  issue: 5
  year: 2001
  ident: 2805821_CR12
  publication-title: Journal of Fluids and Structures
  doi: 10.1006/jfls.2000.0376
– volume: 35
  start-page: 931
  issue: 8
  year: 2008
  ident: 2805821_CR22
  publication-title: Ocean Engineering
  doi: 10.1016/j.oceaneng.2008.01.010
– volume: 17
  start-page: 672
  issue: 3
  year: 2001
  ident: 2805821_CR23
  publication-title: Journal of Coastal Research
– volume: 29
  start-page: 55
  issue: 1
  year: 2007
  ident: 2805821_CR2
  publication-title: Applied Ocean Research
  doi: 10.1016/j.apor.2007.05.005
– volume: 438
  start-page: 11
  year: 2001
  ident: 2805821_CR5
  publication-title: Journal of Fluid Mechanics
  doi: 10.1017/S0022112001004396
– volume: 43
  start-page: 174
  issue: 2
  year: 2005
  ident: 2805821_CR21
  publication-title: Journal of Hydraulic Research
  doi: 10.1080/00221686.2005.9641234
– volume: 36
  start-page: 223
  issue: 3
  year: 2009
  ident: 2805821_CR19
  publication-title: Ocean engineering
  doi: 10.1016/j.oceaneng.2008.11.003
– volume: 35
  start-page: 1
  issue: 1
  year: 2012
  ident: 2805821_CR11
  publication-title: Applied Ocean Research
  doi: 10.1016/j.apor.2012.01.001
SSID ssj0036904
Score 2.168974
Snippet An improved meshing method based on Fluent is used to update the computational meshes in solving the Navier-Stokes (N-S) equations for viscous and...
An improved meshing method based on Fluent is used to update the computational meshes in solving the Navier-Stokes (N-S) equations for viscous and...
SourceID wanfang
crossref
springer
elsevier
chongqing
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 821
SubjectTerms Engineering
Engineering Fluid Dynamics
FLUENT
heave motion
Hydrology/Water Resources
improved meshing method
Numerical and Computational Physics
pitch motion
Simulation
sway motion
wave-structure interaction
二维
数值模拟
浮体
网格划分
规则波
运动类型
驱动
Title Numerical simulations of 2-D floating body driven by regular waves
URI http://lib.cqvip.com/qk/86648X/201605/670899635.html
https://dx.doi.org/10.1016/S1001-6058(16)60682-0
https://link.springer.com/article/10.1016/S1001-6058(16)60682-0
https://d.wanfangdata.com.cn/periodical/sdlxyjyjz-e201605010
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI4QXOCAeIrxUg4gwaGsa9N2HHlqMLEDD8EtSptkDI0W1vEYB347dpoWOKBJ9FK1qq0odmNb_mwTshXGTIRRhDicwHcYmCAnTrTvBDEEE_uqKfYlZnQvOmHrhp3fBXcT5KishUFYpT37izPdnNb2Td3uZv2p16tfNcyM5AATX24Ihgwr2FmEWr73WcE8fIj-TGYZoUP49XcVT8HBvNxphLuGieNij4X7LO0-g-X4y1ZVOVNT6ZNqkXZ_GKXTOTJrvUl6UCx4nkyodIHM_OgxuEgOOy9FUqZP896jHdaV00xTzzmmup8JBD7TOJMjKgd49tF4RAdmRP2AvolXlS-Rq9OT66OWYwcnOAnz3KET-bqhlWQilgiLZiKRTT-RGseg-1EUgZclmkIlgcuUlFqFDe27sZJCQ3il_WUymWapWiFUep4CZoxhCxfwBCE8A5mCUwYXxBm6RtaqzeJPRXsMHkaYSgRHpkZYuX08sR3HcfBFn1fQMpQARwlweDIS4G6N7FVkJc8xBM1SNvyX7nAwC-NI66Usuf1583EU21bk3wS57L-PHkYPH1x5RichyF39_6LWyDSyKSCD62RyOHhRG-D6DONNo9ubZOrgrN3q4L19edv-AuS8-eM
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEB5BOACHirYgAoXugUrlYOLYazscQygKr1wAidtq7d2FoGBDHNqmv56Z9TrQQxWpvtnSjFb7reeh-XYGYC9OuYyThHg4UehxdEFempnQi1JMJg51Rx4qquheDuL-DT-7jW4XoFffhSFapbP9lU231tp9abndbD0Nh62rtp2RHFHhy4_RkS3CEnWnihqw1D097w9qgxxiAmiLy8QeIoG3izyVEvvxezvet3o8n9os3Bf53TM6j3-5q1nZ1F72yY3M7975pZM1-OACStat1vwRFnT-CVbftRn8DEeDl6ouM2Ll8NHN6ypZYVjgHTMzKiRxn1laqClTYzJ_LJ2ysZ1SP2a_5E9drsPVyY_rXt9zsxO8jAf-xEtC0zZacZkqYkZzmalOmClDk9DDJEkw0JIdqbPI51opo-O2Cf1UK2kwwzLhBjTyItebwFQQaFTGOXVxwWAQMzSEFeMyfDDVME3Ynm2WeKo6ZIg4oWoixjJN4PX2icw1HafZFyMxY5cRAoIQEPhmERB-Ew5mYrXOOQKdGhvx1_ER6BnmibZqLIX7f8t5Et8c5G8CpRr9nj5MH_4IHdhjiXnu1v8v6iss968vL8TF6eB8G1ZIZcUg_AKNyfhF72AkNEl33Ul_BbTR-vE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+simulations+of+2-D+floating+body+driven+by+regular+waves&rft.jtitle=Journal+of+hydrodynamics.+Series+B&rft.au=Chen%2C+Xue-bin&rft.au=Zhan%2C+Jie-min&rft.au=Chen%2C+Qin&rft.date=2016-10-01&rft.issn=1001-6058&rft.eissn=1878-0342&rft.volume=28&rft.issue=5&rft.spage=821&rft.epage=831&rft_id=info:doi/10.1016%2FS1001-6058%2816%2960682-0&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_S1001_6058_16_60682_0
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F86648X%2F86648X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fsdlxyjyjz-e%2Fsdlxyjyjz-e.jpg