Numerical simulations of 2-D floating body driven by regular waves
An improved meshing method based on Fluent is used to update the computational meshes in solving the Navier-Stokes (N-S) equations for viscous and incompressible free surface flows with the volume of fluid (VOF) method. To maintain the mesh quality when updating meshes for a moving structure, the co...
Saved in:
Published in | Journal of hydrodynamics. Series B Vol. 28; no. 5; pp. 821 - 831 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Singapore
Elsevier Ltd
01.10.2016
Springer Singapore |
Subjects | |
Online Access | Get full text |
ISSN | 1001-6058 1878-0342 |
DOI | 10.1016/S1001-6058(16)60682-0 |
Cover
Loading…
Abstract | An improved meshing method based on Fluent is used to update the computational meshes in solving the Navier-Stokes (N-S) equations for viscous and incompressible free surface flows with the volume of fluid (VOF) method. To maintain the mesh quality when updating meshes for a moving structure, the computational domain is separated into several parts and each part corresponds to a specific type of body motion. The numerical results of the interaction between the floating body and the regular waves agree well with the experimental data. A total of eight typical motion types are simulated separately to understand the correlation between the motion types and the wave transmission as well as the forces acting on the floating body. Numerical experiments show that the wave transmission increases in the case of sway and heave motions and decreases in the case of pitch motion as compared with the stationary case. It is also found that the sway motion reduces the horizontal wave force acting on the floating body, while the heave motion enhances the vertical wave force. |
---|---|
AbstractList | An improved meshing method based on Fluent is used to update the computational meshes in solving the Navier-Stokes (N-S) equations for viscous and incompressible free surface flows with the volume of fluid (VOF) method. To maintain the mesh quality when updating meshes for a moving structure, the computational domain is separated into several parts and each part corre- sponds to a specific type of body motion. The numerical results of the interaction between the floating body and the regular waves agree well with the experimental data. A total of eight typical motion types are simulated separately to understand the correlation between the motion types and the wave transmission as well as the forces acting on the floating body. Numerical experiments show that the wave transmission increases in the case of sway and heave motions and decreases in the case of pitch motion as compared with the stationary case. It is also found that the sway motion reduces the horizontal wave force acting on the floating body, while the heave motion enhances the vertical wave force. An improved meshing method based on Fluent is used to update the computational meshes in solving the Navier-Stokes (N-S) equations for viscous and incompressible free surface flows with the volume of fluid (VOF) method. To maintain the mesh quality when updating meshes for a moving structure, the computational domain is separated into several parts and each part corre- sponds to a specific type of body motion. The numerical results of the interaction between the floating body and the regular waves agree well with the experimental data. A total of eight typical motion types are simulated separately to understand the correlation between the motion types and the wave transmission as well as the forces acting on the floating body. Numerical experiments show that the wave transmission increases in the case of sway and heave motions and decreases in the case of pitch motion as compared with the stationary case. It is also found that the sway motion reduces the horizontal wave force acting on the floating body, while the heave motion enhances the vertical wave force. An improved meshing method based on Fluent is used to update the computational meshes in solving the Navier-Stokes (N-S) equations for viscous and incompressible free surface flows with the volume of fluid (VOF) method. To maintain the mesh quality when updating meshes for a moving structure, the computational domain is separated into several parts and each part corresponds to a specific type of body motion. The numerical results of the interaction between the floating body and the regular waves agree well with the experimental data. A total of eight typical motion types are simulated separately to understand the correlation between the motion types and the wave transmission as well as the forces acting on the floating body. Numerical experiments show that the wave transmission increases in the case of sway and heave motions and decreases in the case of pitch motion as compared with the stationary case. It is also found that the sway motion reduces the horizontal wave force acting on the floating body, while the heave motion enhances the vertical wave force. |
Author | 陈学彬 詹杰民 Qin CHEN |
AuthorAffiliation | Department of Applied Mechanics and Engineering, Sun Yat-sen University, Guangzhou 510275, China Department of Civil and Environmental Engineering, Center for Computation and Technology, Louisiana StateUniversity, Baton Rouge, LA, USA |
Author_xml | – sequence: 1 fullname: 陈学彬 詹杰民 Qin CHEN |
BookMark | eNqFkE1vEzEQhq2qSLSFn4BkcQKJLeO117sRB1T6AUhVeyh3y7HHW0cbG-xN2u2vx0kKSFxysj16n5nxc0wOQwxIyBsGpwyY_HjHAFgloeneMfleguzqCg7IEevargIu6sNy_xN5SY5zXgBwOQNxRL7crJaYvNEDzX65GvToY8g0OlpXF9QNsRRCT-fRTtQmv8ZA5xNN2Jdoog96jfkVeeH0kPH183lC7q4uf5x_q65vv34_P7uujKhhrFrumEMr9NxKY2qhje24sa7mM8Hbtu0apjuNpgGB1jqUzHGYo9WOCeH4Cfmw6_qgg9OhV4u4SqHMU9kOj9NiWjwprIsOaIBBiX_axU2KOSd0yvhx-7kxaT8oBmrjTm3dqY0YVV5bd2pDN__RP5Nf6jTt5eSOyyUfekz_ttwHft6BWASufQGz8RgMWp_QjMpGv7fD2-eV72Pof5Xpf3eWLXSzmeQN_w0bM6Vw |
CitedBy_id | crossref_primary_10_1016_j_coastaleng_2020_103687 crossref_primary_10_1016_j_marstruc_2016_12_007 crossref_primary_10_1016_j_oceaneng_2022_112374 crossref_primary_10_1088_1361_6501_ac04e2 crossref_primary_10_1038_s41598_020_75907_8 crossref_primary_10_1108_WJE_07_2021_0445 crossref_primary_10_1007_s42241_018_0116_4 crossref_primary_10_1016_j_apor_2022_103213 crossref_primary_10_1016_j_apor_2022_103455 crossref_primary_10_1016_j_renene_2020_03_140 crossref_primary_10_1016_j_apor_2023_103656 crossref_primary_10_1016_j_oceaneng_2023_115291 crossref_primary_10_1007_s42241_018_0025_6 crossref_primary_10_1016_j_oceaneng_2021_109012 crossref_primary_10_1016_j_oceaneng_2020_108494 |
Cites_doi | 10.1016/j.enganabound.2012.02.005 10.1016/j.oceaneng.2008.11.003 10.1007/s00773-007-0260-y 10.1063/2.1404201 10.1016/j.apor.2012.01.001 10.1016/j.jcp.2006.06.046 10.1016/j.apor.2007.05.005 10.1080/00221686.2005.9641234 10.1017/S0022112001004396 10.1016/S1001-6058(14)60006-8 10.1016/j.oceaneng.2010.06.005 10.1006/jfls.2000.0376 10.1016/S1001-6058(14)60001-9 10.1142/S0578563404001026 10.1002/fld.506 10.1007/s00773-008-0031-4 10.1179/str.2006.53.2.004 10.1016/j.taml.2015.11.001 10.1016/j.oceaneng.2008.01.010 10.1007/s13344-014-0034-3 |
ContentType | Journal Article |
Copyright | 2016 Publishing House for Journal of Hydrodynamics China Ship Scientific Research Center 2016 Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: 2016 Publishing House for Journal of Hydrodynamics – notice: China Ship Scientific Research Center 2016 – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | 2RA 92L CQIGP W92 ~WA AAYXX CITATION 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.1016/S1001-6058(16)60682-0 |
DatabaseName | 维普_期刊 中文科技期刊数据库-CALIS站点 维普中文期刊数据库 中文科技期刊数据库-工程技术 中文科技期刊数据库- 镜像站点 CrossRef Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
DocumentTitleAlternate | Numerical simulations of 2-D floating body driven by regular waves |
EISSN | 1878-0342 |
EndPage | 831 |
ExternalDocumentID | sdlxyjyjz_e201605010 10_1016_S1001_6058_16_60682_0 S1001605816606820 670899635 |
GrantInformation_xml | – fundername: National Marine Public Welfare Research Project of China grantid: Grant No. 201005002 – fundername: the National Marine Public Welfare Research Project of China funderid: (Grant 201005002) |
GroupedDBID | --K --M -01 -0A -EM -SA -S~ .~1 0R~ 1B1 1~. 1~5 2B. 2C0 2RA 4.4 406 457 4G. 5GY 5VR 5VS 5XA 5XB 5XL 7-5 71M 8P~ 92H 92I 92L 92M 9D9 9DA AABNK AACTN AAEDT AAEDW AAFGU AAHNG AAIAL AAIKJ AAKOC AALRI AAOAW AAQFI AATNV AAUYE AAXUO AAYFA ABDZT ABECU ABFGW ABFTV ABJOX ABKAS ABKCH ABMAC ABMQK ABTEG ABTKH ABXDB ABXPI ABYKQ ACAOD ACBMV ACBRV ACBYP ACDAQ ACGFS ACHSB ACIGE ACIPQ ACMLO ACNNM ACOKC ACRLP ACTTH ACVWB ACWMK ACZOJ ADEZE ADHHG ADKNI ADMDM ADMUD ADOXG ADRFC ADTZH ADURQ ADYFF AEBSH AECPX AEFTE AEJRE AEKER AENEX AEPYU AESKC AESTI AEVTX AFKWA AFNRJ AFQWF AFUIB AGDGC AGGBP AGHFR AGJBK AGMZJ AGUBO AGYEJ AHJVU AIAKS AIEXJ AIKHN AILAN AIMYW AITGF AITUG AJBFU AJDOV AJOXV AJZVZ AKQUC ALMA_UNASSIGNED_HOLDINGS AMFUW AMKLP AMRAJ AMXSW AMYLF AXJTR AXYYD BGNMA BJAXD BKOJK BLXMC CAJEA CAJUS CCEZO CCVFK CHBEP CQIGP CS3 CW9 DPUIP DU5 EBLON EBS EFJIC EFLBG EJD EO9 EP2 EP3 FA0 FDB FEDTE FINBP FIRID FNLPD FNPLU FSGXE FYGXN GBLVA GGCAI GJIRD HVGLF HZ~ IHE IKXTQ IWAJR J-C J1W JJJVA JUIAU JZLTJ KOM KOV LLZTM M41 M4Y MO0 N9A NPVJJ NQJWS NU0 O9- OAUVE OZT P-8 P-9 PC. PT4 Q-- Q-0 Q38 R-A REI RIG RLLFE ROL RPZ RSV RT1 S.. SDC SDF SDG SES SNE SNPRN SOHCF SOJ SPC SRMVM SSLCW SST SSZ STPWE T5K T8Q TCJ TGT TSG U1F U1G U5A U5K UOJIU UTJUX VEKWB VFIZW W92 Z5O Z7R ZMTXR ~LB ~WA AGQEE FIGPU AACDK AAJBT AASML AAXDM AAXKI ABAKF ABJNI ABWVN ACDTI ACPIV ACRPL ADMLS ADNMO AEFQL AEIPS AEMSY AFBBN AGRTI AIGIU AKRWK ANKPU SJYHP AATTM AAYWO AAYXX ABBRH ABDBE ABFSG ACSTC ACVFH ADCNI AEUPX AEZWR AFDZB AFHIU AFOHR AFPUW AFXIZ AGCQF AGRNS AHPBZ AHWEU AIGII AIIUN AIXLP AKBMS AKYEP ATHPR AYFIA CITATION SSH 4A8 93N PSX |
ID | FETCH-LOGICAL-c420t-73f1fed4abd6cc24acd83cdf23943777851a8aec504eddfe61f30bedaf144f3 |
IEDL.DBID | .~1 |
ISSN | 1001-6058 |
IngestDate | Thu May 29 04:08:10 EDT 2025 Thu Apr 24 23:05:15 EDT 2025 Tue Jul 01 02:16:49 EDT 2025 Fri Feb 21 02:30:57 EST 2025 Fri Feb 23 02:34:37 EST 2024 Wed Feb 14 10:07:29 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | wave-structure interaction improved meshing method sway motion heave motion pitch motion |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c420t-73f1fed4abd6cc24acd83cdf23943777851a8aec504eddfe61f30bedaf144f3 |
Notes | improved meshing method; wave-structure interaction; sway motion; heave motion; pitch motion 31-1563/T An improved meshing method based on Fluent is used to update the computational meshes in solving the Navier-Stokes (N-S) equations for viscous and incompressible free surface flows with the volume of fluid (VOF) method. To maintain the mesh quality when updating meshes for a moving structure, the computational domain is separated into several parts and each part corre- sponds to a specific type of body motion. The numerical results of the interaction between the floating body and the regular waves agree well with the experimental data. A total of eight typical motion types are simulated separately to understand the correlation between the motion types and the wave transmission as well as the forces acting on the floating body. Numerical experiments show that the wave transmission increases in the case of sway and heave motions and decreases in the case of pitch motion as compared with the stationary case. It is also found that the sway motion reduces the horizontal wave force acting on the floating body, while the heave motion enhances the vertical wave force. Xue-bin CHEN 1, Jie-min ZHAN 1, Qin CHEN2( 1. Department of Applied Mechanics and Engineering, Sun Yat-sen University, Guangzhou 510275, China, 2. Department of Civil and Environmental Engineering, Center for Computation and Technology, Louisiana State University, Baton Rouge, LA, USA) |
PageCount | 11 |
ParticipantIDs | wanfang_journals_sdlxyjyjz_e201605010 crossref_citationtrail_10_1016_S1001_6058_16_60682_0 crossref_primary_10_1016_S1001_6058_16_60682_0 springer_journals_10_1016_S1001_6058_16_60682_0 elsevier_sciencedirect_doi_10_1016_S1001_6058_16_60682_0 chongqing_primary_670899635 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-10-01 |
PublicationDateYYYYMMDD | 2016-10-01 |
PublicationDate_xml | – month: 10 year: 2016 text: 2016-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Singapore |
PublicationPlace_xml | – name: Singapore |
PublicationTitle | Journal of hydrodynamics. Series B |
PublicationTitleAbbrev | J Hydrodyn |
PublicationTitleAlternate | Journal of Hydrodynamics |
PublicationTitle_FL | Journal of Hydrodynamics |
PublicationYear | 2016 |
Publisher | Elsevier Ltd Springer Singapore |
Publisher_xml | – name: Elsevier Ltd – name: Springer Singapore |
References | XUE, XU, LIU (bib5) 2001; 438 ZHANG, ZHANG (bib7) 2014; 26 HU, ZDRAVKO, KASHIWAGI (bib6) 2006; 53 SUEYOSHI, KASHIWAGI, NAITO (bib10) 2008; 13 BAI, TAYLOR (bib19) 2009; 36 HU, KASHIWAGI (bib9) 2009; 14 WANG, ZOU (bib15) 2014; 26 YAN, MA (bib1) 2007; 221 SCHWIMMER (bib23) 2001; 17 KOUTANDOS, PRINOS, GIRONELLA (bib21) 2005; 43 BAI, TAYLOR (bib2) 2007; 29 ZHAO X., LU F. and ZHANG Y. et al. A CIP-based simulation of 2-D floating body response to regular waves[C]. 13th National Conference on Modern Mathematics and Mechanics. Shanghai, China, 2012, 1-6(in Chinese). MO, HUANG, HUANG (bib16) 2014; 4 SHAO, GOTOH (bib20) 2004; 46 WANG, ZOU (bib14) 2014; 28 DONG, ZHENG, Li (bib22) 2008; 35 ZHAO, HU (bib11) 2012; 35 ZHAN, DONG, JIANG (bib8) 2010; 37 WU, WANG, HUANG (bib17) 2015; 5 GUERBER, BENOIT, GRILLI (bib4) 2012; 36 MITTAL, KUMAR (bib12) 2001; 15 HAN, ZHAN, SU (bib13) 2013; 31 FERRANT, TOUZE, PELLETIER (bib3) 2003; 43 Guerber, Benoit, Grilli (CR4) 2012; 36 Sueyoshi, Kashiwagi, Naito (CR10) 2008; 13 Wu, Wang, Huang (CR17) 2015; 5 Koutandos, Prinos, Gironella (CR21) 2005; 43 Yan, Ma (CR1) 2007; 221 Zhao, Hu (CR11) 2012; 35 Xue, Xu, Liu (CR5) 2001; 438 Hu, Zdravko, Kashiwagi (CR6) 2006; 53 Zhang, Zhang (CR7) 2014; 26 Shao, Gotoh (CR20) 2004; 46 Ferrant, Touze, Pelletier (CR3) 2003; 43 Wang, Zou (CR14) 2014; 28 Han, Zhan, Su (CR13) 2013; 31 Bai, Taylor (CR19) 2009; 36 Zhan, Dong, Jiang (CR8) 2010; 37 Hu, Kashiwagi (CR9) 2009; 14 Mo, Huang, Huang (CR16) 2014; 4 Zhao, Lu, Zhang (CR18) 2012 Bai, Taylor (CR2) 2007; 29 Wang, Zou (CR15) 2014; 26 Mittal, Kumar (CR12) 2001; 15 Dong, Zheng, Li (CR22) 2008; 35 Schwimmer (CR23) 2001; 17 X-c Wu (2805821_CR17) 2015; 5 S Shao (2805821_CR20) 2004; 46 S Mo (2805821_CR16) 2014; 4 S Yan (2805821_CR1) 2007; 221 N Zhang (2805821_CR7) 2014; 26 P Ferrant (2805821_CR3) 2003; 43 M Sueyoshi (2805821_CR10) 2008; 13 Y Han (2805821_CR13) 2013; 31 J M Zhan (2805821_CR8) 2010; 37 C Hu (2805821_CR6) 2006; 53 M Xue (2805821_CR5) 2001; 438 C Hu (2805821_CR9) 2009; 14 G H Dong (2805821_CR22) 2008; 35 E Koutandos (2805821_CR21) 2005; 43 W Bai (2805821_CR19) 2009; 36 H-z Wang (2805821_CR15) 2014; 26 X Zhao (2805821_CR11) 2012; 35 S Mittal (2805821_CR12) 2001; 15 H-z Wang (2805821_CR14) 2014; 28 W Bai (2805821_CR2) 2007; 29 X Zhao (2805821_CR18) 2012 E Guerber (2805821_CR4) 2012; 36 R A Schwimmer (2805821_CR23) 2001; 17 |
References_xml | – volume: 15 start-page: 717 year: 2001 end-page: 736 ident: bib12 article-title: Flow-induced oscillations of two cylinders in tandem and staggered arrangements [J] publication-title: Journal of Fluids and Structures – volume: 438 start-page: 11 year: 2001 end-page: 39 ident: bib5 article-title: Computations of fully nonlinear three-dimensional wave–wave and wave–body interactions. Part 1. Dynamics of steep three-dimensional waves [J] publication-title: Journal of Fluid Mechanics – volume: 37 start-page: 1261 year: 2010 end-page: 1272 ident: bib8 article-title: Numerical simulation of wave transformation and runup incorporating porous media wave absorber and turbulence models [J] publication-title: Ocean Engineering – volume: 5 start-page: 258 year: 2015 end-page: 261 ident: bib17 article-title: Experiment and numerical simulation on the characteristics of fluid–structure interactions of non-rigid airships [J] publication-title: Theoretical and Applied Mechanics Letters – volume: 17 start-page: 672 year: 2001 end-page: 683 ident: bib23 article-title: Rates and processes of marsh shoreline erosion in Rehoboth Bay, Delaware, USA [J] publication-title: Journal of Coastal Research – volume: 221 start-page: 666 year: 2007 end-page: 692 ident: bib1 article-title: Numerical simulation of fully nonlinear interaction between steep waves and 2D floating bodies using the QALE-FEM method [J] publication-title: Journal of Computational physics – volume: 4 start-page: 65 year: 2014 end-page: 69 ident: bib16 article-title: Numerical simulation of gap effect in supersonic flows [J] publication-title: Theoretical and Applied Mechanics Letters – volume: 43 start-page: 1257 year: 2003 end-page: 1277 ident: bib3 article-title: Nonlinear time-domain models for irregular wave diffraction about offshore structures [J] publication-title: International Journal for Numerical Methods in Fluids – volume: 26 start-page: 50 year: 2014 end-page: 56 ident: bib7 article-title: Numerical simulation of hull/propeller interaction of submarine in submergence and near surface conditions [J] publication-title: Journal of Hydrodynamics – volume: 13 start-page: 85 year: 2008 end-page: 94 ident: bib10 article-title: Numerical simulation of wave-induced nonlinear motions of a two-dimensional floating body by the moving particle semi-implicit method [J] publication-title: Journal of Marine Science and Technology – volume: 36 start-page: 223 year: 2009 end-page: 236 ident: bib19 article-title: Fully nonlinear simulation of wave interaction with fixed and floating flared structures [J] publication-title: Ocean engineering – volume: 31 start-page: 879 year: 2013 end-page: 891 ident: bib13 article-title: Numerical simulation of in-line response of a vertical cylinder in regular waves [J] publication-title: Journal of Coastal Research – volume: 46 start-page: 171 year: 2004 end-page: 202 ident: bib20 article-title: Simulating coupled motion of progressive wave and floating curtain wall by SPH-LES model [J] publication-title: Coastal Engineering Journal – volume: 35 start-page: 931 year: 2008 end-page: 938 ident: bib22 article-title: Experiments on wave transmission coefficients of floating breakwaters [J] publication-title: Ocean Engineering – volume: 29 start-page: 55 year: 2007 end-page: 71 ident: bib2 article-title: Numerical simulation of fully nonlinear regular and focused wave diffraction around a vertical cylinder using domain decomposition [J] publication-title: Applied Ocean Research – volume: 36 start-page: 1151 year: 2012 end-page: 1163 ident: bib4 article-title: A fully nonlinear implicit model for wave interactions with submerged structures in forced or free motion [J] publication-title: Engineering Analysis with Boundary Elements – volume: 53 start-page: 74 year: 2006 end-page: 87 ident: bib6 article-title: Application of CIP method for strongly nonlinear marine hydrodynamics [J] publication-title: Ship Technology Research – reference: ZHAO X., LU F. and ZHANG Y. et al. A CIP-based simulation of 2-D floating body response to regular waves[C]. 13th National Conference on Modern Mathematics and Mechanics. Shanghai, China, 2012, 1-6(in Chinese). – volume: 14 start-page: 200 year: 2009 end-page: 213 ident: bib9 article-title: Two-dimensional numerical simulation and experiment on strongly nonlinear wave– body interactions [J] publication-title: Journal of Marine Science and Technology – volume: 35 start-page: 1 year: 2012 end-page: 13 ident: bib11 article-title: Numerical and experimental study on a 2-D floating body under extreme wave conditions [J] publication-title: Applied Ocean Research – volume: 26 start-page: 1 year: 2014 end-page: 9 ident: bib15 article-title: Numerical prediction of hydrodynamic forces on a ship passing through a lock with different configurations [J] publication-title: Journal of Hydrodynamics – volume: 28 start-page: 421 year: 2014 end-page: 432 ident: bib14 article-title: Numerical prediction of hydrodynamic forces on a ship passing through a lock [J] publication-title: China Ocean Engineering – volume: 43 start-page: 174 year: 2005 end-page: 188 ident: bib21 article-title: Floating breakwaters under regular and irregular wave forcing: Reflection and transmission characteristics [J] publication-title: Journal of Hydraulic Research – volume: 36 start-page: 1151 issue: 7 year: 2012 end-page: 1163 ident: CR4 article-title: A fully nonlinear implicit model for wave interactions with submerged structures in forced or free motion[J] publication-title: Engineering Analysis with Boundary Elements doi: 10.1016/j.enganabound.2012.02.005 – volume: 36 start-page: 223 issue: 3 year: 2009 end-page: 236 ident: CR19 article-title: Fully nonlinear simulation of wave interaction with fixed and floating flared structures[J] publication-title: Ocean engineering doi: 10.1016/j.oceaneng.2008.11.003 – volume: 13 start-page: 85 issue: 2 year: 2008 end-page: 94 ident: CR10 article-title: Numerical simulation of wave-induced nonlinear motions of a two-dimensional floating body by the moving particle semi-implicit method[J] publication-title: Journal of Marine Science and Technology doi: 10.1007/s00773-007-0260-y – volume: 31 start-page: 879 issue: 4 year: 2013 end-page: 891 ident: CR13 article-title: Numerical simulation of in-line response of a vertical cylinder in regular waves[J] publication-title: Journal of Coastal Research – volume: 4 start-page: 65 issue: 4 year: 2014 end-page: 69 ident: CR16 article-title: Numerical simulation of gap effect in supersonic flows[J] publication-title: Theoretical and Applied Mechanics Letters doi: 10.1063/2.1404201 – volume: 35 start-page: 1 issue: 1 year: 2012 end-page: 13 ident: CR11 article-title: Numerical and experimental study on a 2-D floating body under extreme wave conditions[J] publication-title: Applied Ocean Research doi: 10.1016/j.apor.2012.01.001 – volume: 221 start-page: 666 issue: 2 year: 2007 end-page: 692 ident: CR1 article-title: Numerical simulation of fully nonlinear interaction between steep waves and 2D floating bodies using the QALE-FEM method[J] publication-title: Journal of Computational physics doi: 10.1016/j.jcp.2006.06.046 – volume: 29 start-page: 55 issue: 1 year: 2007 end-page: 71 ident: CR2 article-title: Numerical simulation of fully nonlinear regular and focused wave diffraction around a vertical cylinder using domain decomposition[J] publication-title: Applied Ocean Research doi: 10.1016/j.apor.2007.05.005 – start-page: 1 year: 2012 end-page: 6 ident: CR18 article-title: A CIP-based simulation of 2-D floating body response to regular waves[C] publication-title: 13th National Conference on Modern Mathematics and Mechanics – volume: 43 start-page: 174 issue: 2 year: 2005 end-page: 188 ident: CR21 article-title: Floating breakwaters under regular and irregular wave forcing: Reflection and transmission characteristics[J] publication-title: Journal of Hydraulic Research doi: 10.1080/00221686.2005.9641234 – volume: 438 start-page: 11 year: 2001 end-page: 39 ident: CR5 article-title: Computations of fully nonlinear three-dimensional wave-wave and wave-body interactions. Part 1. Dynamics of steep three-dimensional waves[J] publication-title: Journal of Fluid Mechanics doi: 10.1017/S0022112001004396 – volume: 26 start-page: 50 issue: 1 year: 2014 end-page: 56 ident: CR7 article-title: Numerical simulation of hull/propeller interaction of submarine in submergence and near surface conditions[J] publication-title: Journal of Hydrodynamics doi: 10.1016/S1001-6058(14)60006-8 – volume: 37 start-page: 1261 issue: 14 year: 2010 end-page: 1272 ident: CR8 article-title: Numerical simulation of wave transformation and runup incorporating porous media wave absorber and turbulence models[J] publication-title: Ocean Engineering doi: 10.1016/j.oceaneng.2010.06.005 – volume: 15 start-page: 717 issue: 5 year: 2001 end-page: 736 ident: CR12 article-title: Flow-induced oscillations of two cylinders in tandem and staggered arrangements[J] publication-title: Journal of Fluids and Structures doi: 10.1006/jfls.2000.0376 – volume: 17 start-page: 672 issue: 3 year: 2001 end-page: 683 ident: CR23 article-title: Rates and processes of marsh shoreline erosion in Rehoboth Bay, Delaware, USA[J] publication-title: Journal of Coastal Research – volume: 26 start-page: 1 issue: 1 year: 2014 end-page: 9 ident: CR15 article-title: Numerical prediction of hydrodynamic forces on a ship passing through a lock with different configurations[J] publication-title: Journal of Hydrodynamics doi: 10.1016/S1001-6058(14)60001-9 – volume: 46 start-page: 171 issue: 2 year: 2004 end-page: 202 ident: CR20 article-title: Simulating coupled motion of progressive wave and floating curtain wall by SPH-LES model[J] publication-title: Coastal Engineering Journal doi: 10.1142/S0578563404001026 – volume: 43 start-page: 1257 issue: 10–11 year: 2003 end-page: 1277 ident: CR3 article-title: Nonlinear time-domain models for irregular wave diffraction about offshore structures[J] publication-title: International Journal for Numerical Methods in Fluids doi: 10.1002/fld.506 – volume: 14 start-page: 200 issue: 2 year: 2009 end-page: 213 ident: CR9 article-title: Two-dimensional numerical simulation and experiment on strongly nonlinear wave-body interactions[J] publication-title: Journal of Marine Science and Technology doi: 10.1007/s00773-008-0031-4 – volume: 53 start-page: 74 issue: 2 year: 2006 end-page: 87 ident: CR6 article-title: Application of CIP method for strongly nonlinear marine hydro-dynamics[J] publication-title: Ship Technology Research doi: 10.1179/str.2006.53.2.004 – volume: 5 start-page: 258 issue: 6 year: 2015 end-page: 261 ident: CR17 article-title: Experiment and numerical simulation on the characteristics of fluid-structure interactions of non-rigid airships[J] publication-title: Theoretical and Applied Mechanics Letters doi: 10.1016/j.taml.2015.11.001 – volume: 35 start-page: 931 issue: 8 year: 2008 end-page: 938 ident: CR22 article-title: Experiments on wave transmission coefficients of floating break-waters[J] publication-title: Ocean Engineering doi: 10.1016/j.oceaneng.2008.01.010 – volume: 28 start-page: 421 issue: 3 year: 2014 end-page: 432 ident: CR14 article-title: Numerical prediction of hydrodynamic forces on a ship passing through a lock[J] publication-title: China Ocean Engineering doi: 10.1007/s13344-014-0034-3 – volume: 26 start-page: 1 issue: 1 year: 2014 ident: 2805821_CR15 publication-title: Journal of Hydrodynamics doi: 10.1016/S1001-6058(14)60001-9 – volume: 53 start-page: 74 issue: 2 year: 2006 ident: 2805821_CR6 publication-title: Ship Technology Research doi: 10.1179/str.2006.53.2.004 – volume: 37 start-page: 1261 issue: 14 year: 2010 ident: 2805821_CR8 publication-title: Ocean Engineering doi: 10.1016/j.oceaneng.2010.06.005 – volume: 26 start-page: 50 issue: 1 year: 2014 ident: 2805821_CR7 publication-title: Journal of Hydrodynamics doi: 10.1016/S1001-6058(14)60006-8 – volume: 28 start-page: 421 issue: 3 year: 2014 ident: 2805821_CR14 publication-title: China Ocean Engineering doi: 10.1007/s13344-014-0034-3 – volume: 14 start-page: 200 issue: 2 year: 2009 ident: 2805821_CR9 publication-title: Journal of Marine Science and Technology doi: 10.1007/s00773-008-0031-4 – volume: 4 start-page: 65 issue: 4 year: 2014 ident: 2805821_CR16 publication-title: Theoretical and Applied Mechanics Letters doi: 10.1063/2.1404201 – volume: 5 start-page: 258 issue: 6 year: 2015 ident: 2805821_CR17 publication-title: Theoretical and Applied Mechanics Letters doi: 10.1016/j.taml.2015.11.001 – volume: 46 start-page: 171 issue: 2 year: 2004 ident: 2805821_CR20 publication-title: Coastal Engineering Journal doi: 10.1142/S0578563404001026 – volume: 13 start-page: 85 issue: 2 year: 2008 ident: 2805821_CR10 publication-title: Journal of Marine Science and Technology doi: 10.1007/s00773-007-0260-y – volume: 43 start-page: 1257 issue: 10–11 year: 2003 ident: 2805821_CR3 publication-title: International Journal for Numerical Methods in Fluids doi: 10.1002/fld.506 – volume: 36 start-page: 1151 issue: 7 year: 2012 ident: 2805821_CR4 publication-title: Engineering Analysis with Boundary Elements doi: 10.1016/j.enganabound.2012.02.005 – volume: 31 start-page: 879 issue: 4 year: 2013 ident: 2805821_CR13 publication-title: Journal of Coastal Research – start-page: 1 volume-title: 13th National Conference on Modern Mathematics and Mechanics year: 2012 ident: 2805821_CR18 – volume: 221 start-page: 666 issue: 2 year: 2007 ident: 2805821_CR1 publication-title: Journal of Computational physics doi: 10.1016/j.jcp.2006.06.046 – volume: 15 start-page: 717 issue: 5 year: 2001 ident: 2805821_CR12 publication-title: Journal of Fluids and Structures doi: 10.1006/jfls.2000.0376 – volume: 35 start-page: 931 issue: 8 year: 2008 ident: 2805821_CR22 publication-title: Ocean Engineering doi: 10.1016/j.oceaneng.2008.01.010 – volume: 17 start-page: 672 issue: 3 year: 2001 ident: 2805821_CR23 publication-title: Journal of Coastal Research – volume: 29 start-page: 55 issue: 1 year: 2007 ident: 2805821_CR2 publication-title: Applied Ocean Research doi: 10.1016/j.apor.2007.05.005 – volume: 438 start-page: 11 year: 2001 ident: 2805821_CR5 publication-title: Journal of Fluid Mechanics doi: 10.1017/S0022112001004396 – volume: 43 start-page: 174 issue: 2 year: 2005 ident: 2805821_CR21 publication-title: Journal of Hydraulic Research doi: 10.1080/00221686.2005.9641234 – volume: 36 start-page: 223 issue: 3 year: 2009 ident: 2805821_CR19 publication-title: Ocean engineering doi: 10.1016/j.oceaneng.2008.11.003 – volume: 35 start-page: 1 issue: 1 year: 2012 ident: 2805821_CR11 publication-title: Applied Ocean Research doi: 10.1016/j.apor.2012.01.001 |
SSID | ssj0036904 |
Score | 2.168974 |
Snippet | An improved meshing method based on Fluent is used to update the computational meshes in solving the Navier-Stokes (N-S) equations for viscous and... An improved meshing method based on Fluent is used to update the computational meshes in solving the Navier-Stokes (N-S) equations for viscous and... |
SourceID | wanfang crossref springer elsevier chongqing |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 821 |
SubjectTerms | Engineering Engineering Fluid Dynamics FLUENT heave motion Hydrology/Water Resources improved meshing method Numerical and Computational Physics pitch motion Simulation sway motion wave-structure interaction 二维 数值模拟 浮体 网格划分 规则波 运动类型 驱动 |
Title | Numerical simulations of 2-D floating body driven by regular waves |
URI | http://lib.cqvip.com/qk/86648X/201605/670899635.html https://dx.doi.org/10.1016/S1001-6058(16)60682-0 https://link.springer.com/article/10.1016/S1001-6058(16)60682-0 https://d.wanfangdata.com.cn/periodical/sdlxyjyjz-e201605010 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI4QXOCAeIrxUg4gwaGsa9N2HHlqMLEDD8EtSptkDI0W1vEYB347dpoWOKBJ9FK1qq0odmNb_mwTshXGTIRRhDicwHcYmCAnTrTvBDEEE_uqKfYlZnQvOmHrhp3fBXcT5KishUFYpT37izPdnNb2Td3uZv2p16tfNcyM5AATX24Ihgwr2FmEWr73WcE8fIj-TGYZoUP49XcVT8HBvNxphLuGieNij4X7LO0-g-X4y1ZVOVNT6ZNqkXZ_GKXTOTJrvUl6UCx4nkyodIHM_OgxuEgOOy9FUqZP896jHdaV00xTzzmmup8JBD7TOJMjKgd49tF4RAdmRP2AvolXlS-Rq9OT66OWYwcnOAnz3KET-bqhlWQilgiLZiKRTT-RGseg-1EUgZclmkIlgcuUlFqFDe27sZJCQ3il_WUymWapWiFUep4CZoxhCxfwBCE8A5mCUwYXxBm6RtaqzeJPRXsMHkaYSgRHpkZYuX08sR3HcfBFn1fQMpQARwlweDIS4G6N7FVkJc8xBM1SNvyX7nAwC-NI66Usuf1583EU21bk3wS57L-PHkYPH1x5RichyF39_6LWyDSyKSCD62RyOHhRG-D6DONNo9ubZOrgrN3q4L19edv-AuS8-eM |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEB5BOACHirYgAoXugUrlYOLYazscQygKr1wAidtq7d2FoGBDHNqmv56Z9TrQQxWpvtnSjFb7reeh-XYGYC9OuYyThHg4UehxdEFempnQi1JMJg51Rx4qquheDuL-DT-7jW4XoFffhSFapbP9lU231tp9abndbD0Nh62rtp2RHFHhy4_RkS3CEnWnihqw1D097w9qgxxiAmiLy8QeIoG3izyVEvvxezvet3o8n9os3Bf53TM6j3-5q1nZ1F72yY3M7975pZM1-OACStat1vwRFnT-CVbftRn8DEeDl6ouM2Ll8NHN6ypZYVjgHTMzKiRxn1laqClTYzJ_LJ2ysZ1SP2a_5E9drsPVyY_rXt9zsxO8jAf-xEtC0zZacZkqYkZzmalOmClDk9DDJEkw0JIdqbPI51opo-O2Cf1UK2kwwzLhBjTyItebwFQQaFTGOXVxwWAQMzSEFeMyfDDVME3Ynm2WeKo6ZIg4oWoixjJN4PX2icw1HafZFyMxY5cRAoIQEPhmERB-Ew5mYrXOOQKdGhvx1_ER6BnmibZqLIX7f8t5Et8c5G8CpRr9nj5MH_4IHdhjiXnu1v8v6iss968vL8TF6eB8G1ZIZcUg_AKNyfhF72AkNEl33Ul_BbTR-vE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+simulations+of+2-D+floating+body+driven+by+regular+waves&rft.jtitle=Journal+of+hydrodynamics.+Series+B&rft.au=Chen%2C+Xue-bin&rft.au=Zhan%2C+Jie-min&rft.au=Chen%2C+Qin&rft.date=2016-10-01&rft.issn=1001-6058&rft.eissn=1878-0342&rft.volume=28&rft.issue=5&rft.spage=821&rft.epage=831&rft_id=info:doi/10.1016%2FS1001-6058%2816%2960682-0&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_S1001_6058_16_60682_0 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F86648X%2F86648X.jpg http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fsdlxyjyjz-e%2Fsdlxyjyjz-e.jpg |