Roll-to-roll prelithiation of Sn foil anode suppresses gassing and enables stable full-cell cycling of lithium ion batteries

Tin foil should have outstanding volumetric capacity as a Li-ion battery anode; however, it suffers from an unacceptable initial coulombic efficiency (ICE) of 10-20%, which is much poorer than that of Si or SnO 2 nanoparticles. Herein, we demonstrate that bare Sn catalyzes liquid electrolyte decompo...

Full description

Saved in:
Bibliographic Details
Published inEnergy & environmental science Vol. 12; no. 1; pp. 2991 - 3
Main Authors Xu, Hui, Li, Sa, Zhang, Can, Chen, Xinlong, Liu, Wenjian, Zheng, Yuheng, Xie, Yong, Huang, Yunhui, Li, Ju
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 01.01.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Tin foil should have outstanding volumetric capacity as a Li-ion battery anode; however, it suffers from an unacceptable initial coulombic efficiency (ICE) of 10-20%, which is much poorer than that of Si or SnO 2 nanoparticles. Herein, we demonstrate that bare Sn catalyzes liquid electrolyte decomposition at intermediate voltages to generate gas bubbles and Leidenfrost gas films, which hinder lithium-ion transport and erode the solid-electrolyte interphase (SEI) layer. By metallurgically pre-alloying Li to make Li x Sn foil, the lower initial anode potential simultaneously suppresses gassing and promotes the formation of an adherent passivating SEI. We developed a universally applicable roll-to-roll mechanical prelithiation method and successfully prelithiated Sn foil, Al foil and Si/C anodes. The as-prepared Li x Sn foil exhibited an increased ICE from 20% to 94% and achieved 200 stable cycles in LiFePO 4 //Li x Sn full cells at ∼2.65 mA h cm −2 . Surprisingly, the Li x Sn foil also exhibited excellent air-stability, and its cycling performance sustained slight loss after 12 h exposure to moist air. In addition to LiFePO 4 , the Li x Sn foil cycled well against a lithium nickel cobalt manganese oxide (NMC) cathode (4.3 V and ∼4-5 mA h cm −2 ). The volumetric capacity of the Li x Sn alloy in the LFP//Li x Sn pouch cell was up to ∼650 mA h cm −3 , which is significantly better than that of the graphite anode on a copper collector, with a rate capability as high as 3C. Li x Sn foil anode prepared by mechanical prelithiation suppresses gassing and achieves stable full-cell cycling in lithium ion batteries.
AbstractList Tin foil should have outstanding volumetric capacity as a Li-ion battery anode; however, it suffers from an unacceptable initial coulombic efficiency (ICE) of 10-20%, which is much poorer than that of Si or SnO 2 nanoparticles. Herein, we demonstrate that bare Sn catalyzes liquid electrolyte decomposition at intermediate voltages to generate gas bubbles and Leidenfrost gas films, which hinder lithium-ion transport and erode the solid-electrolyte interphase (SEI) layer. By metallurgically pre-alloying Li to make Li x Sn foil, the lower initial anode potential simultaneously suppresses gassing and promotes the formation of an adherent passivating SEI. We developed a universally applicable roll-to-roll mechanical prelithiation method and successfully prelithiated Sn foil, Al foil and Si/C anodes. The as-prepared Li x Sn foil exhibited an increased ICE from 20% to 94% and achieved 200 stable cycles in LiFePO 4 //Li x Sn full cells at ∼2.65 mA h cm −2 . Surprisingly, the Li x Sn foil also exhibited excellent air-stability, and its cycling performance sustained slight loss after 12 h exposure to moist air. In addition to LiFePO 4 , the Li x Sn foil cycled well against a lithium nickel cobalt manganese oxide (NMC) cathode (4.3 V and ∼4-5 mA h cm −2 ). The volumetric capacity of the Li x Sn alloy in the LFP//Li x Sn pouch cell was up to ∼650 mA h cm −3 , which is significantly better than that of the graphite anode on a copper collector, with a rate capability as high as 3C. Li x Sn foil anode prepared by mechanical prelithiation suppresses gassing and achieves stable full-cell cycling in lithium ion batteries.
Tin foil should have outstanding volumetric capacity as a Li-ion battery anode; however, it suffers from an unacceptable initial coulombic efficiency (ICE) of 10–20%, which is much poorer than that of Si or SnO2 nanoparticles. Herein, we demonstrate that bare Sn catalyzes liquid electrolyte decomposition at intermediate voltages to generate gas bubbles and Leidenfrost gas films, which hinder lithium-ion transport and erode the solid–electrolyte interphase (SEI) layer. By metallurgically pre-alloying Li to make LixSn foil, the lower initial anode potential simultaneously suppresses gassing and promotes the formation of an adherent passivating SEI. We developed a universally applicable roll-to-roll mechanical prelithiation method and successfully prelithiated Sn foil, Al foil and Si/C anodes. The as-prepared LixSn foil exhibited an increased ICE from 20% to 94% and achieved 200 stable cycles in LiFePO4//LixSn full cells at ∼2.65 mA h cm−2. Surprisingly, the LixSn foil also exhibited excellent air-stability, and its cycling performance sustained slight loss after 12 h exposure to moist air. In addition to LiFePO4, the LixSn foil cycled well against a lithium nickel cobalt manganese oxide (NMC) cathode (4.3 V and ∼4–5 mA h cm−2). The volumetric capacity of the LixSn alloy in the LFP//LixSn pouch cell was up to ∼650 mA h cm−3, which is significantly better than that of the graphite anode on a copper collector, with a rate capability as high as 3C.
Tin foil should have outstanding volumetric capacity as a Li-ion battery anode; however, it suffers from an unacceptable initial coulombic efficiency (ICE) of 10–20%, which is much poorer than that of Si or SnO 2 nanoparticles. Herein, we demonstrate that bare Sn catalyzes liquid electrolyte decomposition at intermediate voltages to generate gas bubbles and Leidenfrost gas films, which hinder lithium-ion transport and erode the solid–electrolyte interphase (SEI) layer. By metallurgically pre-alloying Li to make Li x Sn foil, the lower initial anode potential simultaneously suppresses gassing and promotes the formation of an adherent passivating SEI. We developed a universally applicable roll-to-roll mechanical prelithiation method and successfully prelithiated Sn foil, Al foil and Si/C anodes. The as-prepared Li x Sn foil exhibited an increased ICE from 20% to 94% and achieved 200 stable cycles in LiFePO 4 //Li x Sn full cells at ∼2.65 mA h cm −2 . Surprisingly, the Li x Sn foil also exhibited excellent air-stability, and its cycling performance sustained slight loss after 12 h exposure to moist air. In addition to LiFePO 4 , the Li x Sn foil cycled well against a lithium nickel cobalt manganese oxide (NMC) cathode (4.3 V and ∼4–5 mA h cm −2 ). The volumetric capacity of the Li x Sn alloy in the LFP//Li x Sn pouch cell was up to ∼650 mA h cm −3 , which is significantly better than that of the graphite anode on a copper collector, with a rate capability as high as 3C.
Author Li, Ju
Li, Sa
Huang, Yunhui
Liu, Wenjian
Xu, Hui
Zhang, Can
Chen, Xinlong
Xie, Yong
Zheng, Yuheng
AuthorAffiliation Department of Nuclear Science and Engineering and Department of Materials Science and Engineering
Massachusetts Institute of Technology
Institute of New Energy for Vehicles
School of Materials Science and Engineering
Tongji University
AuthorAffiliation_xml – sequence: 0
  name: Institute of New Energy for Vehicles
– sequence: 0
  name: School of Materials Science and Engineering
– sequence: 0
  name: Department of Nuclear Science and Engineering and Department of Materials Science and Engineering
– sequence: 0
  name: Massachusetts Institute of Technology
– sequence: 0
  name: Tongji University
Author_xml – sequence: 1
  givenname: Hui
  surname: Xu
  fullname: Xu, Hui
– sequence: 2
  givenname: Sa
  surname: Li
  fullname: Li, Sa
– sequence: 3
  givenname: Can
  surname: Zhang
  fullname: Zhang, Can
– sequence: 4
  givenname: Xinlong
  surname: Chen
  fullname: Chen, Xinlong
– sequence: 5
  givenname: Wenjian
  surname: Liu
  fullname: Liu, Wenjian
– sequence: 6
  givenname: Yuheng
  surname: Zheng
  fullname: Zheng, Yuheng
– sequence: 7
  givenname: Yong
  surname: Xie
  fullname: Xie, Yong
– sequence: 8
  givenname: Yunhui
  surname: Huang
  fullname: Huang, Yunhui
– sequence: 9
  givenname: Ju
  surname: Li
  fullname: Li, Ju
BookMark eNptkUtLAzEURoNUsK1u3AsBd8LozWReWUqpVSgIPtZDJpPUlHRSk8yi4I830_oAcfWF5Nxz4csEjTrbSYTOCVwToOxGMCmBZJCtjtCYlHmW5CUUo-9zwdITNPF-DVCkULIx-niyxiTBJi4m3jppdHjTPGjbYavwc4eV1QbzzrYS-34bCe-lxyvuve5W8aHFsuONiXc-DIlVH41CRp3YCTNAUbTX9hs8eBsegnRa-lN0rLjx8uwrp-j1bv4yu0-Wj4uH2e0yEVkKISlyyjnjtCqrKkspo0UlCqGoBGhLJpRMqSBCVaXKCaMtKzkT0DRtkRGpUsrpFF0evFtn33vpQ722veviyjqlQIFVUNFIXR0o4az3Tqp66_SGu11NoB7arWdsPt-3u4gw_IGFDvvaguPa_D9ycRhxXvyofz-MfgJeBonr
CitedBy_id crossref_primary_10_1016_j_jpowsour_2021_229868
crossref_primary_10_1002_aenm_202300240
crossref_primary_10_1039_D3MH01565C
crossref_primary_10_1016_j_ensm_2020_05_009
crossref_primary_10_1016_j_inoche_2024_113783
crossref_primary_10_1016_j_electacta_2023_142437
crossref_primary_10_1021_acsenergylett_0c00148
crossref_primary_10_1002_adma_202410857
crossref_primary_10_1016_j_cej_2024_159156
crossref_primary_10_1016_j_est_2024_112399
crossref_primary_10_1016_j_ensm_2020_07_009
crossref_primary_10_1021_acsomega_2c03819
crossref_primary_10_1038_s41560_021_00883_w
crossref_primary_10_1002_anie_202206770
crossref_primary_10_1021_acsami_0c22880
crossref_primary_10_1016_j_jallcom_2023_171381
crossref_primary_10_1557_s43578_020_00047_8
crossref_primary_10_3390_coatings14050608
crossref_primary_10_1002_advs_202005031
crossref_primary_10_1002_smtd_202201177
crossref_primary_10_1039_C9CC02006C
crossref_primary_10_1039_D4RA08234F
crossref_primary_10_1016_j_ensm_2024_103204
crossref_primary_10_1016_j_tsf_2024_140332
crossref_primary_10_1002_adfm_202307860
crossref_primary_10_1002_aenm_202200922
crossref_primary_10_1016_j_jmapro_2025_02_069
crossref_primary_10_3390_app10072220
crossref_primary_10_1002_smtd_202200411
crossref_primary_10_1039_D2CS00606E
crossref_primary_10_1002_aenm_202101565
crossref_primary_10_1016_j_jallcom_2024_174120
crossref_primary_10_3390_catal14040254
crossref_primary_10_1021_acs_nanolett_9b03626
crossref_primary_10_1016_j_jechem_2021_03_032
crossref_primary_10_1149_1945_7111_ac42f0
crossref_primary_10_1002_aenm_202300466
crossref_primary_10_1002_smll_202306262
crossref_primary_10_1016_j_matchemphys_2024_130349
crossref_primary_10_1002_smll_202103532
crossref_primary_10_1088_2515_7639_abb440
crossref_primary_10_1002_cey2_256
crossref_primary_10_1016_j_inoche_2021_108446
crossref_primary_10_1021_acsami_1c06703
crossref_primary_10_1002_aenm_202100925
crossref_primary_10_1039_D1SE01681D
crossref_primary_10_1016_j_mattod_2022_07_008
crossref_primary_10_1016_j_electacta_2021_139315
crossref_primary_10_1039_D0EE02241A
crossref_primary_10_1126_sciadv_adf1550
crossref_primary_10_1039_D2SE00455K
crossref_primary_10_1038_s41560_023_01333_5
crossref_primary_10_1002_aenm_202300172
crossref_primary_10_1016_j_supflu_2022_105720
crossref_primary_10_1016_j_ensm_2022_03_004
crossref_primary_10_1002_adfm_202100978
crossref_primary_10_1149_1945_7111_ad92e2
crossref_primary_10_1002_smtd_202100339
crossref_primary_10_1002_batt_202400115
crossref_primary_10_1021_acsanm_2c04326
crossref_primary_10_1149_1945_7111_aceb36
crossref_primary_10_1039_D4EE02522A
crossref_primary_10_1021_acsami_9b21417
crossref_primary_10_1016_j_electacta_2023_142901
crossref_primary_10_1016_j_jcis_2023_12_141
crossref_primary_10_1002_ange_202206770
crossref_primary_10_1002_anie_202002411
crossref_primary_10_1002_ange_202103569
crossref_primary_10_1002_eem2_12501
crossref_primary_10_1021_acsnano_2c09679
crossref_primary_10_1016_j_jpowsour_2022_231439
crossref_primary_10_1016_j_electacta_2021_139787
crossref_primary_10_1007_s11581_022_04550_2
crossref_primary_10_1016_j_matt_2025_101996
crossref_primary_10_1021_acsami_2c22220
crossref_primary_10_1002_eem2_12267
crossref_primary_10_1016_j_jcis_2020_07_009
crossref_primary_10_3989_tp_2023_12321
crossref_primary_10_1021_acsnano_3c07869
crossref_primary_10_1002_smll_201907602
crossref_primary_10_1016_j_ensm_2022_04_009
crossref_primary_10_1039_D1CC04217C
crossref_primary_10_1016_j_jallcom_2020_155774
crossref_primary_10_1002_ange_202002411
crossref_primary_10_1016_j_cej_2024_152444
crossref_primary_10_1002_aenm_202304097
crossref_primary_10_1016_j_nanoen_2022_107026
crossref_primary_10_1002_advs_202414892
crossref_primary_10_1002_aenm_202001120
crossref_primary_10_1002_aenm_202304533
crossref_primary_10_1039_D2QM00888B
crossref_primary_10_1002_anie_202103569
crossref_primary_10_1039_D3TA03687A
crossref_primary_10_1002_adfm_202208586
crossref_primary_10_1002_adma_202004577
crossref_primary_10_1002_celc_202200983
crossref_primary_10_3390_batteries8080099
crossref_primary_10_1002_smll_202205653
crossref_primary_10_1016_j_cej_2023_143436
crossref_primary_10_1038_s41560_023_01272_1
crossref_primary_10_1016_j_nanoen_2020_104815
crossref_primary_10_1021_acsami_9b02813
crossref_primary_10_1016_j_etran_2023_100277
crossref_primary_10_1002_aenm_202403946
crossref_primary_10_1016_j_apsusc_2021_149312
crossref_primary_10_1016_j_ensm_2023_103018
crossref_primary_10_1088_2752_5724_ac3257
crossref_primary_10_1016_j_actamat_2022_118113
crossref_primary_10_1039_D3MH01434G
crossref_primary_10_1007_s12274_022_5146_0
crossref_primary_10_1021_acs_nanolett_3c04885
crossref_primary_10_1016_j_renene_2023_119163
crossref_primary_10_1039_D3EE03740A
crossref_primary_10_1016_j_jechem_2023_07_010
crossref_primary_10_1021_jacs_2c04124
crossref_primary_10_1007_s12274_021_3464_2
crossref_primary_10_1021_acs_energyfuels_1c01904
crossref_primary_10_1016_j_electacta_2020_136115
crossref_primary_10_1016_j_nanoen_2019_104399
crossref_primary_10_1002_ente_202200804
crossref_primary_10_1002_adfm_202213648
crossref_primary_10_1021_acsami_4c20201
crossref_primary_10_1002_smll_202102126
crossref_primary_10_1016_j_surfin_2022_102610
crossref_primary_10_1039_D3EE00441D
crossref_primary_10_1002_adfm_202102546
crossref_primary_10_1002_admt_202302055
crossref_primary_10_1021_acsenergylett_1c01145
crossref_primary_10_1002_celc_202300501
crossref_primary_10_1016_j_jechem_2024_11_026
crossref_primary_10_1002_aenm_202003082
crossref_primary_10_1016_j_cej_2024_152542
crossref_primary_10_1016_j_ensm_2022_11_010
crossref_primary_10_1039_C9TA09464D
crossref_primary_10_1016_j_carbon_2022_05_024
crossref_primary_10_1016_j_electacta_2020_137257
crossref_primary_10_1021_acsami_1c14935
crossref_primary_10_1002_ente_201901287
crossref_primary_10_1007_s12274_020_2756_2
crossref_primary_10_1016_j_materresbull_2023_112407
crossref_primary_10_1016_j_jechem_2021_04_013
crossref_primary_10_1021_acscatal_3c02455
crossref_primary_10_1007_s11426_023_1581_2
crossref_primary_10_1007_s12274_023_6201_1
crossref_primary_10_1039_D2TA02162E
crossref_primary_10_1016_j_ensm_2022_02_005
crossref_primary_10_1021_acs_chemmater_0c00308
crossref_primary_10_1016_j_carbon_2020_09_058
crossref_primary_10_1016_j_ensm_2024_103181
crossref_primary_10_1002_adfm_202005581
crossref_primary_10_1016_j_esci_2022_10_006
crossref_primary_10_1039_D0MH01030H
crossref_primary_10_1016_j_ensm_2020_10_028
crossref_primary_10_1002_smll_202406274
crossref_primary_10_1016_j_electacta_2024_143814
crossref_primary_10_1016_j_jpowsour_2020_229244
crossref_primary_10_1002_aenm_202300648
crossref_primary_10_1016_j_ensm_2020_08_012
crossref_primary_10_1016_j_jallcom_2025_178962
crossref_primary_10_1021_acsaem_9b01763
crossref_primary_10_2139_ssrn_3994260
crossref_primary_10_1021_acsenergylett_3c01357
Cites_doi 10.1016/j.jpowsour.2004.05.026
10.1149/1.1556595
10.1039/C6EE02685K
10.1021/acsanm.8b00664
10.1016/j.electacta.2004.01.016
10.1038/ncomms5526
10.1149/1.1569477
10.1149/2.1151605jes
10.1016/j.apcatb.2017.09.049
10.1016/j.pmatsci.2017.04.014
10.1038/224266a0
10.1016/j.nanoen.2014.12.041
10.1016/j.ijheatmasstransfer.2016.02.049
10.1002/adma.201706375
10.1016/S0167-2738(02)00067-X
10.1021/acs.nanolett.7b01674
10.1039/c0ee00699h
10.1038/s41565-018-0284-y
10.1021/jacs.7b10688
10.1016/0017-9310(66)90112-8
10.1016/j.jpowsour.2005.03.052
10.1016/S0378-7753(01)00979-X
10.1021/cm8006099
10.1016/j.jpowsour.2009.10.038
10.1016/j.jorganchem.2017.07.024
10.1021/acs.jpcc.5b06817
10.1016/j.nanoen.2016.08.060
10.1002/cssc.201801962
10.1007/PL00010801
10.1021/cm021279g
10.1016/j.ijheatmasstransfer.2018.09.091
10.1021/acsenergylett.7b00619
10.1002/adma.200700748
10.1039/c0jm01671c
10.1039/C7TA00303J
10.1073/pnas.1712895115
10.1016/j.cattod.2017.10.009
10.1016/j.jpowsour.2014.11.008
10.1007/s00216-004-2522-4
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2019
Copyright_xml – notice: Copyright Royal Society of Chemistry 2019
DBID AAYXX
CITATION
7SP
7ST
7TB
8FD
C1K
FR3
L7M
SOI
DOI 10.1039/c9ee01404g
DatabaseName CrossRef
Electronics & Communications Abstracts
Environment Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Advanced Technologies Database with Aerospace
Environment Abstracts
DatabaseTitle CrossRef
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
Environmental Sciences and Pollution Management
DatabaseTitleList
Technology Research Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1754-5706
EndPage 3
ExternalDocumentID 10_1039_C9EE01404G
c9ee01404g
GroupedDBID -JG
0-7
0R~
29G
4.4
5GY
705
70~
7~J
AAEMU
AAIWI
AAJAE
AANOJ
AARTK
AAWGC
AAXHV
AAXPP
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFO
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRAH
AFVBQ
AGEGJ
AGRSR
AGSTE
AHGCF
AKBGW
ALMA_UNASSIGNED_HOLDINGS
ANUXI
APEMP
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
CS3
EBS
ECGLT
EE0
EF-
EJD
GGIMP
GNO
H13
HZ~
H~N
J3I
M4U
N9A
O-G
O9-
P2P
RAOCF
RCNCU
RPMJG
RRC
RSCEA
RVUXY
SKA
SLH
TOV
UCJ
AAYXX
AFRZK
AKMSF
CITATION
7SP
7ST
7TB
8FD
C1K
FR3
L7M
SOI
ID FETCH-LOGICAL-c420t-653aa9a387884239368c6cf3e00d79cfe23c1cf87f5193d97a9c0bbd641ef23a3
ISSN 1754-5692
IngestDate Mon Jun 30 12:08:58 EDT 2025
Tue Jul 01 01:45:43 EDT 2025
Thu Apr 24 22:58:43 EDT 2025
Tue Dec 17 20:59:23 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c420t-653aa9a387884239368c6cf3e00d79cfe23c1cf87f5193d97a9c0bbd641ef23a3
Notes 10.1039/c9ee01404g
Electronic supplementary information (ESI) available. See DOI
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7841-8058
OpenAccessLink https://pubs.rsc.org/en/content/articlepdf/2019/ee/c9ee01404g
PQID 2303098083
PQPubID 2047494
PageCount 1
ParticipantIDs crossref_primary_10_1039_C9EE01404G
rsc_primary_c9ee01404g
crossref_citationtrail_10_1039_C9EE01404G
proquest_journals_2303098083
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20190101
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – month: 01
  year: 2019
  text: 20190101
  day: 01
PublicationDecade 2010
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Energy & environmental science
PublicationYear 2019
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Levasseur (C9EE01404G-(cit28)/*[position()=1]) 2003; 15
Jin (C9EE01404G-(cit32)/*[position()=1]) 2017; 10
Santner (C9EE01404G-(cit35)/*[position()=1]) 2004; 379
Han (C9EE01404G-(cit37)/*[position()=1]) 2017; 5
Manjunathan (C9EE01404G-(cit17)/*[position()=1]) 2018; 309
Suo (C9EE01404G-(cit21)/*[position()=1]) 2018; 115
Etezadi (C9EE01404G-(cit15)/*[position()=1]) 2017; 848
Li (C9EE01404G-(cit26)/*[position()=1]) 2018; 30
Ji (C9EE01404G-(cit6)/*[position()=1]) 2011; 4
Hou (C9EE01404G-(cit16)/*[position()=1]) 2018; 224
De Juan (C9EE01404G-(cit33)/*[position()=1]) 2018; 1
Bridel (C9EE01404G-(cit18)/*[position()=1]) 2010; 195
Beaulieu (C9EE01404G-(cit27)/*[position()=1]) 2003; 150
Liu (C9EE01404G-(cit19)/*[position()=1]) 2019; 14
Hall (C9EE01404G-(cit22)/*[position()=1]) 1969; 224
Gottfried (C9EE01404G-(cit23)/*[position()=1]) 1966; 9
Metzger (C9EE01404G-(cit38)/*[position()=1]) 2016; 163
Saravanan (C9EE01404G-(cit10)/*[position()=1]) 2010; 20
Baba (C9EE01404G-(cit29)/*[position()=1]) 2002; 148
Ma (C9EE01404G-(cit4)/*[position()=1]) 2017; 17
Suo (C9EE01404G-(cit20)/*[position()=1]) 2017; 139
Patra (C9EE01404G-(cit13)/*[position()=1]) 2018; 11
Mohan Rao (C9EE01404G-(cit30)/*[position()=1]) 2001; 5
Yang (C9EE01404G-(cit12)/*[position()=1]) 2016; 30
Wang (C9EE01404G-(cit25)/*[position()=1]) 2019; 128
Eom (C9EE01404G-(cit2)/*[position()=1]) 2015; 12
Choi (C9EE01404G-(cit1)/*[position()=1]) 2004; 136
Inaba (C9EE01404G-(cit7)/*[position()=1]) 2005; 146
Yagov (C9EE01404G-(cit24)/*[position()=1]) 2016; 100
Herstedt (C9EE01404G-(cit34)/*[position()=1]) 2004; 49
Sun (C9EE01404G-(cit11)/*[position()=1]) 2014; 5
Ehinon (C9EE01404G-(cit39)/*[position()=1]) 2008; 20
Derrien (C9EE01404G-(cit14)/*[position()=1]) 2007; 19
Schiele (C9EE01404G-(cit36)/*[position()=1]) 2017; 2
Zhang (C9EE01404G-(cit9)/*[position()=1]) 2017; 89
Beattie (C9EE01404G-(cit31)/*[position()=1]) 2003; 150
Jeong (C9EE01404G-(cit8)/*[position()=1]) 2015; 275
Tamura (C9EE01404G-(cit5)/*[position()=1]) 2002; 107
Veith (C9EE01404G-(cit3)/*[position()=1]) 2015; 119
References_xml – volume: 136
  start-page: 154
  year: 2004
  ident: C9EE01404G-(cit1)/*[position()=1]
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2004.05.026
– volume: 150
  start-page: A419
  year: 2003
  ident: C9EE01404G-(cit27)/*[position()=1]
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1556595
– volume: 10
  start-page: 580
  year: 2017
  ident: C9EE01404G-(cit32)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C6EE02685K
– volume: 1
  start-page: 3509
  year: 2018
  ident: C9EE01404G-(cit33)/*[position()=1]
  publication-title: ACS Appl. Nano Mater.
  doi: 10.1021/acsanm.8b00664
– volume: 49
  start-page: 2351
  year: 2004
  ident: C9EE01404G-(cit34)/*[position()=1]
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2004.01.016
– volume: 5
  start-page: 4526
  year: 2014
  ident: C9EE01404G-(cit11)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms5526
– volume: 150
  start-page: A701
  year: 2003
  ident: C9EE01404G-(cit31)/*[position()=1]
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1569477
– volume: 163
  start-page: A798
  year: 2016
  ident: C9EE01404G-(cit38)/*[position()=1]
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.1151605jes
– volume: 224
  start-page: 183
  year: 2018
  ident: C9EE01404G-(cit16)/*[position()=1]
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2017.09.049
– volume: 89
  start-page: 479
  year: 2017
  ident: C9EE01404G-(cit9)/*[position()=1]
  publication-title: Prog. Mater. Sci.
  doi: 10.1016/j.pmatsci.2017.04.014
– volume: 224
  start-page: 266
  year: 1969
  ident: C9EE01404G-(cit22)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/224266a0
– volume: 12
  start-page: 314
  year: 2015
  ident: C9EE01404G-(cit2)/*[position()=1]
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2014.12.041
– volume: 100
  start-page: 908
  year: 2016
  ident: C9EE01404G-(cit24)/*[position()=1]
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2016.02.049
– volume: 30
  start-page: 1706375
  year: 2018
  ident: C9EE01404G-(cit26)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201706375
– volume: 148
  start-page: 311
  year: 2002
  ident: C9EE01404G-(cit29)/*[position()=1]
  publication-title: Solid State Ionics
  doi: 10.1016/S0167-2738(02)00067-X
– volume: 17
  start-page: 3959
  year: 2017
  ident: C9EE01404G-(cit4)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.7b01674
– volume: 4
  start-page: 2682
  year: 2011
  ident: C9EE01404G-(cit6)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c0ee00699h
– volume: 14
  start-page: 50
  year: 2019
  ident: C9EE01404G-(cit19)/*[position()=1]
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-018-0284-y
– volume: 139
  start-page: 18670
  year: 2017
  ident: C9EE01404G-(cit20)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b10688
– volume: 9
  start-page: 1167
  year: 1966
  ident: C9EE01404G-(cit23)/*[position()=1]
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/0017-9310(66)90112-8
– volume: 146
  start-page: 473
  year: 2005
  ident: C9EE01404G-(cit7)/*[position()=1]
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2005.03.052
– volume: 107
  start-page: 48
  year: 2002
  ident: C9EE01404G-(cit5)/*[position()=1]
  publication-title: J. Power Sources
  doi: 10.1016/S0378-7753(01)00979-X
– volume: 20
  start-page: 5388
  year: 2008
  ident: C9EE01404G-(cit39)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/cm8006099
– volume: 195
  start-page: 2036
  year: 2010
  ident: C9EE01404G-(cit18)/*[position()=1]
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2009.10.038
– volume: 848
  start-page: 122
  year: 2017
  ident: C9EE01404G-(cit15)/*[position()=1]
  publication-title: J. Organomet. Chem.
  doi: 10.1016/j.jorganchem.2017.07.024
– volume: 119
  start-page: 20339
  year: 2015
  ident: C9EE01404G-(cit3)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.5b06817
– volume: 30
  start-page: 885
  year: 2016
  ident: C9EE01404G-(cit12)/*[position()=1]
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.08.060
– volume: 11
  start-page: 3923
  year: 2018
  ident: C9EE01404G-(cit13)/*[position()=1]
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201801962
– volume: 5
  start-page: 50
  year: 2001
  ident: C9EE01404G-(cit30)/*[position()=1]
  publication-title: J. Solid State Electrochem.
  doi: 10.1007/PL00010801
– volume: 15
  start-page: 348
  year: 2003
  ident: C9EE01404G-(cit28)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/cm021279g
– volume: 128
  start-page: 1206
  year: 2019
  ident: C9EE01404G-(cit25)/*[position()=1]
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2018.09.091
– volume: 2
  start-page: 2228
  year: 2017
  ident: C9EE01404G-(cit36)/*[position()=1]
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.7b00619
– volume: 19
  start-page: 2336
  year: 2007
  ident: C9EE01404G-(cit14)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200700748
– volume: 20
  start-page: 8329
  year: 2010
  ident: C9EE01404G-(cit10)/*[position()=1]
  publication-title: J. Mater. Chem.
  doi: 10.1039/c0jm01671c
– volume: 5
  start-page: 6368
  year: 2017
  ident: C9EE01404G-(cit37)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA00303J
– volume: 115
  start-page: 1156
  year: 2018
  ident: C9EE01404G-(cit21)/*[position()=1]
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1712895115
– volume: 309
  start-page: 61
  year: 2018
  ident: C9EE01404G-(cit17)/*[position()=1]
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2017.10.009
– volume: 275
  start-page: 525
  year: 2015
  ident: C9EE01404G-(cit8)/*[position()=1]
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2014.11.008
– volume: 379
  start-page: 266
  year: 2004
  ident: C9EE01404G-(cit35)/*[position()=1]
  publication-title: Anal. Bioanal. Chem.
  doi: 10.1007/s00216-004-2522-4
SSID ssj0062079
Score 2.623899
Snippet Tin foil should have outstanding volumetric capacity as a Li-ion battery anode; however, it suffers from an unacceptable initial coulombic efficiency (ICE) of...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2991
SubjectTerms Aluminum
Anodes
Cobalt
Cobalt compounds
Electrolytes
Electrolytic cells
Ion transport
Lithium
Lithium-ion batteries
Manganese
Manganese oxides
Metal foils
Nanoparticles
Nickel
Rechargeable batteries
Silicon
Tin dioxide
Title Roll-to-roll prelithiation of Sn foil anode suppresses gassing and enables stable full-cell cycling of lithium ion batteries
URI https://www.proquest.com/docview/2303098083
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6l7QUOiFdFoKCV4IKiLRtvYnuPJUpbQSmHJsI3y17vlkghrpL4AOKv8F-ZWe_ajloh4OJEa3sUeT7vPDLzDSFv8tgUYyMli4I8ZmDxOZO8iFkohBmCB6yFJXH9dBmez0cfknHS6_3qVC1V2_xY_bizr-R_tAproFfskv0HzTZCYQG-g37hCBqG41_pGBm12bZka_jEbn9wqb8uGh_wCmsIF0gFUBZ6sKlubM2r3gyuwWH2vYna9k5tMKWAPVSYjWeYzB-o72rpKqKt2OrbAOXmlo_TVx76lH7dQIgo6jTO-XbLFjtJZS1dtWjKgBZ1VvpW-nrSgnbi-keSxWpZOjvr0hTYGbWTpqiTIb4S1VaauHl2nc03Go_YOKxn4x3rzlrEw50dO-gik3f3X1nP_nK2XHBLg3rbTnCBNKtKam35ha5ba-grAC4_p6fzi4t0Nk1me-QggCgEttGDk4_vz754Ux8G3JI5Nj_c898K-a6VvevxtGHM3trPmLG-zOwheeCCEHpSI-oR6enVY3K_Q035hPzsYovuYIuWhl6tKGKLWmzRFlvUYQtOFNRhi9bYog22qMMWCnLYoii3wdZTMj-dzibnzE3qYGoU8C0LxyLLZCbiKI6RUVKEsQqVEZrzIpLK6ECooTJxZDBgKGSUScXzvAhHQ20CkYlDsr8qV_oZoVxrML86i_EfcTifo8OpjY5yCF2GBe-Tt_5ppsrR2OM0lWVqyymETCdyOrVP_qxPXjfX3tTkLXdedeSVkrqXe5NCZC64jCFA6ZNDUFRzf6vX53--7wW5174HR2R_u670S3Bgt_krB6PfFtqfuA
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Roll-to-roll+prelithiation+of+Sn+foil+anode+suppresses+gassing+and+enables+stable+full-cell+cycling+of+lithium+ion+batteries&rft.jtitle=Energy+%26+environmental+science&rft.au=Xu%2C+Hui&rft.au=Li%2C+Sa&rft.au=Zhang%2C+Can&rft.au=Chen%2C+Xinlong&rft.date=2019-01-01&rft.pub=Royal+Society+of+Chemistry&rft.issn=1754-5692&rft.eissn=1754-5706&rft.volume=12&rft.issue=10&rft.spage=2991&rft.epage=3000&rft_id=info:doi/10.1039%2Fc9ee01404g&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1754-5692&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1754-5692&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1754-5692&client=summon