Roll-to-roll prelithiation of Sn foil anode suppresses gassing and enables stable full-cell cycling of lithium ion batteries
Tin foil should have outstanding volumetric capacity as a Li-ion battery anode; however, it suffers from an unacceptable initial coulombic efficiency (ICE) of 10-20%, which is much poorer than that of Si or SnO 2 nanoparticles. Herein, we demonstrate that bare Sn catalyzes liquid electrolyte decompo...
Saved in:
Published in | Energy & environmental science Vol. 12; no. 1; pp. 2991 - 3 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
01.01.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Tin foil should have outstanding volumetric capacity as a Li-ion battery anode; however, it suffers from an unacceptable initial coulombic efficiency (ICE) of 10-20%, which is much poorer than that of Si or SnO
2
nanoparticles. Herein, we demonstrate that bare Sn catalyzes liquid electrolyte decomposition at intermediate voltages to generate gas bubbles and Leidenfrost gas films, which hinder lithium-ion transport and erode the solid-electrolyte interphase (SEI) layer. By metallurgically pre-alloying Li to make Li
x
Sn foil, the lower initial anode potential simultaneously suppresses gassing and promotes the formation of an adherent passivating SEI. We developed a universally applicable roll-to-roll mechanical prelithiation method and successfully prelithiated Sn foil, Al foil and Si/C anodes. The as-prepared Li
x
Sn foil exhibited an increased ICE from 20% to 94% and achieved 200 stable cycles in LiFePO
4
//Li
x
Sn full cells at ∼2.65 mA h cm
−2
. Surprisingly, the Li
x
Sn foil also exhibited excellent air-stability, and its cycling performance sustained slight loss after 12 h exposure to moist air. In addition to LiFePO
4
, the Li
x
Sn foil cycled well against a lithium nickel cobalt manganese oxide (NMC) cathode (4.3 V and ∼4-5 mA h cm
−2
). The volumetric capacity of the Li
x
Sn alloy in the LFP//Li
x
Sn pouch cell was up to ∼650 mA h cm
−3
, which is significantly better than that of the graphite anode on a copper collector, with a rate capability as high as 3C.
Li
x
Sn foil anode prepared by mechanical prelithiation suppresses gassing and achieves stable full-cell cycling in lithium ion batteries. |
---|---|
AbstractList | Tin foil should have outstanding volumetric capacity as a Li-ion battery anode; however, it suffers from an unacceptable initial coulombic efficiency (ICE) of 10-20%, which is much poorer than that of Si or SnO
2
nanoparticles. Herein, we demonstrate that bare Sn catalyzes liquid electrolyte decomposition at intermediate voltages to generate gas bubbles and Leidenfrost gas films, which hinder lithium-ion transport and erode the solid-electrolyte interphase (SEI) layer. By metallurgically pre-alloying Li to make Li
x
Sn foil, the lower initial anode potential simultaneously suppresses gassing and promotes the formation of an adherent passivating SEI. We developed a universally applicable roll-to-roll mechanical prelithiation method and successfully prelithiated Sn foil, Al foil and Si/C anodes. The as-prepared Li
x
Sn foil exhibited an increased ICE from 20% to 94% and achieved 200 stable cycles in LiFePO
4
//Li
x
Sn full cells at ∼2.65 mA h cm
−2
. Surprisingly, the Li
x
Sn foil also exhibited excellent air-stability, and its cycling performance sustained slight loss after 12 h exposure to moist air. In addition to LiFePO
4
, the Li
x
Sn foil cycled well against a lithium nickel cobalt manganese oxide (NMC) cathode (4.3 V and ∼4-5 mA h cm
−2
). The volumetric capacity of the Li
x
Sn alloy in the LFP//Li
x
Sn pouch cell was up to ∼650 mA h cm
−3
, which is significantly better than that of the graphite anode on a copper collector, with a rate capability as high as 3C.
Li
x
Sn foil anode prepared by mechanical prelithiation suppresses gassing and achieves stable full-cell cycling in lithium ion batteries. Tin foil should have outstanding volumetric capacity as a Li-ion battery anode; however, it suffers from an unacceptable initial coulombic efficiency (ICE) of 10–20%, which is much poorer than that of Si or SnO2 nanoparticles. Herein, we demonstrate that bare Sn catalyzes liquid electrolyte decomposition at intermediate voltages to generate gas bubbles and Leidenfrost gas films, which hinder lithium-ion transport and erode the solid–electrolyte interphase (SEI) layer. By metallurgically pre-alloying Li to make LixSn foil, the lower initial anode potential simultaneously suppresses gassing and promotes the formation of an adherent passivating SEI. We developed a universally applicable roll-to-roll mechanical prelithiation method and successfully prelithiated Sn foil, Al foil and Si/C anodes. The as-prepared LixSn foil exhibited an increased ICE from 20% to 94% and achieved 200 stable cycles in LiFePO4//LixSn full cells at ∼2.65 mA h cm−2. Surprisingly, the LixSn foil also exhibited excellent air-stability, and its cycling performance sustained slight loss after 12 h exposure to moist air. In addition to LiFePO4, the LixSn foil cycled well against a lithium nickel cobalt manganese oxide (NMC) cathode (4.3 V and ∼4–5 mA h cm−2). The volumetric capacity of the LixSn alloy in the LFP//LixSn pouch cell was up to ∼650 mA h cm−3, which is significantly better than that of the graphite anode on a copper collector, with a rate capability as high as 3C. Tin foil should have outstanding volumetric capacity as a Li-ion battery anode; however, it suffers from an unacceptable initial coulombic efficiency (ICE) of 10–20%, which is much poorer than that of Si or SnO 2 nanoparticles. Herein, we demonstrate that bare Sn catalyzes liquid electrolyte decomposition at intermediate voltages to generate gas bubbles and Leidenfrost gas films, which hinder lithium-ion transport and erode the solid–electrolyte interphase (SEI) layer. By metallurgically pre-alloying Li to make Li x Sn foil, the lower initial anode potential simultaneously suppresses gassing and promotes the formation of an adherent passivating SEI. We developed a universally applicable roll-to-roll mechanical prelithiation method and successfully prelithiated Sn foil, Al foil and Si/C anodes. The as-prepared Li x Sn foil exhibited an increased ICE from 20% to 94% and achieved 200 stable cycles in LiFePO 4 //Li x Sn full cells at ∼2.65 mA h cm −2 . Surprisingly, the Li x Sn foil also exhibited excellent air-stability, and its cycling performance sustained slight loss after 12 h exposure to moist air. In addition to LiFePO 4 , the Li x Sn foil cycled well against a lithium nickel cobalt manganese oxide (NMC) cathode (4.3 V and ∼4–5 mA h cm −2 ). The volumetric capacity of the Li x Sn alloy in the LFP//Li x Sn pouch cell was up to ∼650 mA h cm −3 , which is significantly better than that of the graphite anode on a copper collector, with a rate capability as high as 3C. |
Author | Li, Ju Li, Sa Huang, Yunhui Liu, Wenjian Xu, Hui Zhang, Can Chen, Xinlong Xie, Yong Zheng, Yuheng |
AuthorAffiliation | Department of Nuclear Science and Engineering and Department of Materials Science and Engineering Massachusetts Institute of Technology Institute of New Energy for Vehicles School of Materials Science and Engineering Tongji University |
AuthorAffiliation_xml | – sequence: 0 name: Institute of New Energy for Vehicles – sequence: 0 name: School of Materials Science and Engineering – sequence: 0 name: Department of Nuclear Science and Engineering and Department of Materials Science and Engineering – sequence: 0 name: Massachusetts Institute of Technology – sequence: 0 name: Tongji University |
Author_xml | – sequence: 1 givenname: Hui surname: Xu fullname: Xu, Hui – sequence: 2 givenname: Sa surname: Li fullname: Li, Sa – sequence: 3 givenname: Can surname: Zhang fullname: Zhang, Can – sequence: 4 givenname: Xinlong surname: Chen fullname: Chen, Xinlong – sequence: 5 givenname: Wenjian surname: Liu fullname: Liu, Wenjian – sequence: 6 givenname: Yuheng surname: Zheng fullname: Zheng, Yuheng – sequence: 7 givenname: Yong surname: Xie fullname: Xie, Yong – sequence: 8 givenname: Yunhui surname: Huang fullname: Huang, Yunhui – sequence: 9 givenname: Ju surname: Li fullname: Li, Ju |
BookMark | eNptkUtLAzEURoNUsK1u3AsBd8LozWReWUqpVSgIPtZDJpPUlHRSk8yi4I830_oAcfWF5Nxz4csEjTrbSYTOCVwToOxGMCmBZJCtjtCYlHmW5CUUo-9zwdITNPF-DVCkULIx-niyxiTBJi4m3jppdHjTPGjbYavwc4eV1QbzzrYS-34bCe-lxyvuve5W8aHFsuONiXc-DIlVH41CRp3YCTNAUbTX9hs8eBsegnRa-lN0rLjx8uwrp-j1bv4yu0-Wj4uH2e0yEVkKISlyyjnjtCqrKkspo0UlCqGoBGhLJpRMqSBCVaXKCaMtKzkT0DRtkRGpUsrpFF0evFtn33vpQ722veviyjqlQIFVUNFIXR0o4az3Tqp66_SGu11NoB7arWdsPt-3u4gw_IGFDvvaguPa_D9ycRhxXvyofz-MfgJeBonr |
CitedBy_id | crossref_primary_10_1016_j_jpowsour_2021_229868 crossref_primary_10_1002_aenm_202300240 crossref_primary_10_1039_D3MH01565C crossref_primary_10_1016_j_ensm_2020_05_009 crossref_primary_10_1016_j_inoche_2024_113783 crossref_primary_10_1016_j_electacta_2023_142437 crossref_primary_10_1021_acsenergylett_0c00148 crossref_primary_10_1002_adma_202410857 crossref_primary_10_1016_j_cej_2024_159156 crossref_primary_10_1016_j_est_2024_112399 crossref_primary_10_1016_j_ensm_2020_07_009 crossref_primary_10_1021_acsomega_2c03819 crossref_primary_10_1038_s41560_021_00883_w crossref_primary_10_1002_anie_202206770 crossref_primary_10_1021_acsami_0c22880 crossref_primary_10_1016_j_jallcom_2023_171381 crossref_primary_10_1557_s43578_020_00047_8 crossref_primary_10_3390_coatings14050608 crossref_primary_10_1002_advs_202005031 crossref_primary_10_1002_smtd_202201177 crossref_primary_10_1039_C9CC02006C crossref_primary_10_1039_D4RA08234F crossref_primary_10_1016_j_ensm_2024_103204 crossref_primary_10_1016_j_tsf_2024_140332 crossref_primary_10_1002_adfm_202307860 crossref_primary_10_1002_aenm_202200922 crossref_primary_10_1016_j_jmapro_2025_02_069 crossref_primary_10_3390_app10072220 crossref_primary_10_1002_smtd_202200411 crossref_primary_10_1039_D2CS00606E crossref_primary_10_1002_aenm_202101565 crossref_primary_10_1016_j_jallcom_2024_174120 crossref_primary_10_3390_catal14040254 crossref_primary_10_1021_acs_nanolett_9b03626 crossref_primary_10_1016_j_jechem_2021_03_032 crossref_primary_10_1149_1945_7111_ac42f0 crossref_primary_10_1002_aenm_202300466 crossref_primary_10_1002_smll_202306262 crossref_primary_10_1016_j_matchemphys_2024_130349 crossref_primary_10_1002_smll_202103532 crossref_primary_10_1088_2515_7639_abb440 crossref_primary_10_1002_cey2_256 crossref_primary_10_1016_j_inoche_2021_108446 crossref_primary_10_1021_acsami_1c06703 crossref_primary_10_1002_aenm_202100925 crossref_primary_10_1039_D1SE01681D crossref_primary_10_1016_j_mattod_2022_07_008 crossref_primary_10_1016_j_electacta_2021_139315 crossref_primary_10_1039_D0EE02241A crossref_primary_10_1126_sciadv_adf1550 crossref_primary_10_1039_D2SE00455K crossref_primary_10_1038_s41560_023_01333_5 crossref_primary_10_1002_aenm_202300172 crossref_primary_10_1016_j_supflu_2022_105720 crossref_primary_10_1016_j_ensm_2022_03_004 crossref_primary_10_1002_adfm_202100978 crossref_primary_10_1149_1945_7111_ad92e2 crossref_primary_10_1002_smtd_202100339 crossref_primary_10_1002_batt_202400115 crossref_primary_10_1021_acsanm_2c04326 crossref_primary_10_1149_1945_7111_aceb36 crossref_primary_10_1039_D4EE02522A crossref_primary_10_1021_acsami_9b21417 crossref_primary_10_1016_j_electacta_2023_142901 crossref_primary_10_1016_j_jcis_2023_12_141 crossref_primary_10_1002_ange_202206770 crossref_primary_10_1002_anie_202002411 crossref_primary_10_1002_ange_202103569 crossref_primary_10_1002_eem2_12501 crossref_primary_10_1021_acsnano_2c09679 crossref_primary_10_1016_j_jpowsour_2022_231439 crossref_primary_10_1016_j_electacta_2021_139787 crossref_primary_10_1007_s11581_022_04550_2 crossref_primary_10_1016_j_matt_2025_101996 crossref_primary_10_1021_acsami_2c22220 crossref_primary_10_1002_eem2_12267 crossref_primary_10_1016_j_jcis_2020_07_009 crossref_primary_10_3989_tp_2023_12321 crossref_primary_10_1021_acsnano_3c07869 crossref_primary_10_1002_smll_201907602 crossref_primary_10_1016_j_ensm_2022_04_009 crossref_primary_10_1039_D1CC04217C crossref_primary_10_1016_j_jallcom_2020_155774 crossref_primary_10_1002_ange_202002411 crossref_primary_10_1016_j_cej_2024_152444 crossref_primary_10_1002_aenm_202304097 crossref_primary_10_1016_j_nanoen_2022_107026 crossref_primary_10_1002_advs_202414892 crossref_primary_10_1002_aenm_202001120 crossref_primary_10_1002_aenm_202304533 crossref_primary_10_1039_D2QM00888B crossref_primary_10_1002_anie_202103569 crossref_primary_10_1039_D3TA03687A crossref_primary_10_1002_adfm_202208586 crossref_primary_10_1002_adma_202004577 crossref_primary_10_1002_celc_202200983 crossref_primary_10_3390_batteries8080099 crossref_primary_10_1002_smll_202205653 crossref_primary_10_1016_j_cej_2023_143436 crossref_primary_10_1038_s41560_023_01272_1 crossref_primary_10_1016_j_nanoen_2020_104815 crossref_primary_10_1021_acsami_9b02813 crossref_primary_10_1016_j_etran_2023_100277 crossref_primary_10_1002_aenm_202403946 crossref_primary_10_1016_j_apsusc_2021_149312 crossref_primary_10_1016_j_ensm_2023_103018 crossref_primary_10_1088_2752_5724_ac3257 crossref_primary_10_1016_j_actamat_2022_118113 crossref_primary_10_1039_D3MH01434G crossref_primary_10_1007_s12274_022_5146_0 crossref_primary_10_1021_acs_nanolett_3c04885 crossref_primary_10_1016_j_renene_2023_119163 crossref_primary_10_1039_D3EE03740A crossref_primary_10_1016_j_jechem_2023_07_010 crossref_primary_10_1021_jacs_2c04124 crossref_primary_10_1007_s12274_021_3464_2 crossref_primary_10_1021_acs_energyfuels_1c01904 crossref_primary_10_1016_j_electacta_2020_136115 crossref_primary_10_1016_j_nanoen_2019_104399 crossref_primary_10_1002_ente_202200804 crossref_primary_10_1002_adfm_202213648 crossref_primary_10_1021_acsami_4c20201 crossref_primary_10_1002_smll_202102126 crossref_primary_10_1016_j_surfin_2022_102610 crossref_primary_10_1039_D3EE00441D crossref_primary_10_1002_adfm_202102546 crossref_primary_10_1002_admt_202302055 crossref_primary_10_1021_acsenergylett_1c01145 crossref_primary_10_1002_celc_202300501 crossref_primary_10_1016_j_jechem_2024_11_026 crossref_primary_10_1002_aenm_202003082 crossref_primary_10_1016_j_cej_2024_152542 crossref_primary_10_1016_j_ensm_2022_11_010 crossref_primary_10_1039_C9TA09464D crossref_primary_10_1016_j_carbon_2022_05_024 crossref_primary_10_1016_j_electacta_2020_137257 crossref_primary_10_1021_acsami_1c14935 crossref_primary_10_1002_ente_201901287 crossref_primary_10_1007_s12274_020_2756_2 crossref_primary_10_1016_j_materresbull_2023_112407 crossref_primary_10_1016_j_jechem_2021_04_013 crossref_primary_10_1021_acscatal_3c02455 crossref_primary_10_1007_s11426_023_1581_2 crossref_primary_10_1007_s12274_023_6201_1 crossref_primary_10_1039_D2TA02162E crossref_primary_10_1016_j_ensm_2022_02_005 crossref_primary_10_1021_acs_chemmater_0c00308 crossref_primary_10_1016_j_carbon_2020_09_058 crossref_primary_10_1016_j_ensm_2024_103181 crossref_primary_10_1002_adfm_202005581 crossref_primary_10_1016_j_esci_2022_10_006 crossref_primary_10_1039_D0MH01030H crossref_primary_10_1016_j_ensm_2020_10_028 crossref_primary_10_1002_smll_202406274 crossref_primary_10_1016_j_electacta_2024_143814 crossref_primary_10_1016_j_jpowsour_2020_229244 crossref_primary_10_1002_aenm_202300648 crossref_primary_10_1016_j_ensm_2020_08_012 crossref_primary_10_1016_j_jallcom_2025_178962 crossref_primary_10_1021_acsaem_9b01763 crossref_primary_10_2139_ssrn_3994260 crossref_primary_10_1021_acsenergylett_3c01357 |
Cites_doi | 10.1016/j.jpowsour.2004.05.026 10.1149/1.1556595 10.1039/C6EE02685K 10.1021/acsanm.8b00664 10.1016/j.electacta.2004.01.016 10.1038/ncomms5526 10.1149/1.1569477 10.1149/2.1151605jes 10.1016/j.apcatb.2017.09.049 10.1016/j.pmatsci.2017.04.014 10.1038/224266a0 10.1016/j.nanoen.2014.12.041 10.1016/j.ijheatmasstransfer.2016.02.049 10.1002/adma.201706375 10.1016/S0167-2738(02)00067-X 10.1021/acs.nanolett.7b01674 10.1039/c0ee00699h 10.1038/s41565-018-0284-y 10.1021/jacs.7b10688 10.1016/0017-9310(66)90112-8 10.1016/j.jpowsour.2005.03.052 10.1016/S0378-7753(01)00979-X 10.1021/cm8006099 10.1016/j.jpowsour.2009.10.038 10.1016/j.jorganchem.2017.07.024 10.1021/acs.jpcc.5b06817 10.1016/j.nanoen.2016.08.060 10.1002/cssc.201801962 10.1007/PL00010801 10.1021/cm021279g 10.1016/j.ijheatmasstransfer.2018.09.091 10.1021/acsenergylett.7b00619 10.1002/adma.200700748 10.1039/c0jm01671c 10.1039/C7TA00303J 10.1073/pnas.1712895115 10.1016/j.cattod.2017.10.009 10.1016/j.jpowsour.2014.11.008 10.1007/s00216-004-2522-4 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2019 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2019 |
DBID | AAYXX CITATION 7SP 7ST 7TB 8FD C1K FR3 L7M SOI |
DOI | 10.1039/c9ee01404g |
DatabaseName | CrossRef Electronics & Communications Abstracts Environment Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Advanced Technologies Database with Aerospace Environment Abstracts |
DatabaseTitle | CrossRef Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Environment Abstracts Advanced Technologies Database with Aerospace Environmental Sciences and Pollution Management |
DatabaseTitleList | Technology Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1754-5706 |
EndPage | 3 |
ExternalDocumentID | 10_1039_C9EE01404G c9ee01404g |
GroupedDBID | -JG 0-7 0R~ 29G 4.4 5GY 705 70~ 7~J AAEMU AAIWI AAJAE AANOJ AARTK AAWGC AAXHV AAXPP ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFO ACGFS ACIWK ACLDK ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRAH AFVBQ AGEGJ AGRSR AGSTE AHGCF AKBGW ALMA_UNASSIGNED_HOLDINGS ANUXI APEMP ASKNT AUDPV AZFZN BLAPV BSQNT C6K CS3 EBS ECGLT EE0 EF- EJD GGIMP GNO H13 HZ~ H~N J3I M4U N9A O-G O9- P2P RAOCF RCNCU RPMJG RRC RSCEA RVUXY SKA SLH TOV UCJ AAYXX AFRZK AKMSF CITATION 7SP 7ST 7TB 8FD C1K FR3 L7M SOI |
ID | FETCH-LOGICAL-c420t-653aa9a387884239368c6cf3e00d79cfe23c1cf87f5193d97a9c0bbd641ef23a3 |
ISSN | 1754-5692 |
IngestDate | Mon Jun 30 12:08:58 EDT 2025 Tue Jul 01 01:45:43 EDT 2025 Thu Apr 24 22:58:43 EDT 2025 Tue Dec 17 20:59:23 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c420t-653aa9a387884239368c6cf3e00d79cfe23c1cf87f5193d97a9c0bbd641ef23a3 |
Notes | 10.1039/c9ee01404g Electronic supplementary information (ESI) available. See DOI ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-7841-8058 |
OpenAccessLink | https://pubs.rsc.org/en/content/articlepdf/2019/ee/c9ee01404g |
PQID | 2303098083 |
PQPubID | 2047494 |
PageCount | 1 |
ParticipantIDs | crossref_primary_10_1039_C9EE01404G rsc_primary_c9ee01404g crossref_citationtrail_10_1039_C9EE01404G proquest_journals_2303098083 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20190101 |
PublicationDateYYYYMMDD | 2019-01-01 |
PublicationDate_xml | – month: 01 year: 2019 text: 20190101 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Energy & environmental science |
PublicationYear | 2019 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Levasseur (C9EE01404G-(cit28)/*[position()=1]) 2003; 15 Jin (C9EE01404G-(cit32)/*[position()=1]) 2017; 10 Santner (C9EE01404G-(cit35)/*[position()=1]) 2004; 379 Han (C9EE01404G-(cit37)/*[position()=1]) 2017; 5 Manjunathan (C9EE01404G-(cit17)/*[position()=1]) 2018; 309 Suo (C9EE01404G-(cit21)/*[position()=1]) 2018; 115 Etezadi (C9EE01404G-(cit15)/*[position()=1]) 2017; 848 Li (C9EE01404G-(cit26)/*[position()=1]) 2018; 30 Ji (C9EE01404G-(cit6)/*[position()=1]) 2011; 4 Hou (C9EE01404G-(cit16)/*[position()=1]) 2018; 224 De Juan (C9EE01404G-(cit33)/*[position()=1]) 2018; 1 Bridel (C9EE01404G-(cit18)/*[position()=1]) 2010; 195 Beaulieu (C9EE01404G-(cit27)/*[position()=1]) 2003; 150 Liu (C9EE01404G-(cit19)/*[position()=1]) 2019; 14 Hall (C9EE01404G-(cit22)/*[position()=1]) 1969; 224 Gottfried (C9EE01404G-(cit23)/*[position()=1]) 1966; 9 Metzger (C9EE01404G-(cit38)/*[position()=1]) 2016; 163 Saravanan (C9EE01404G-(cit10)/*[position()=1]) 2010; 20 Baba (C9EE01404G-(cit29)/*[position()=1]) 2002; 148 Ma (C9EE01404G-(cit4)/*[position()=1]) 2017; 17 Suo (C9EE01404G-(cit20)/*[position()=1]) 2017; 139 Patra (C9EE01404G-(cit13)/*[position()=1]) 2018; 11 Mohan Rao (C9EE01404G-(cit30)/*[position()=1]) 2001; 5 Yang (C9EE01404G-(cit12)/*[position()=1]) 2016; 30 Wang (C9EE01404G-(cit25)/*[position()=1]) 2019; 128 Eom (C9EE01404G-(cit2)/*[position()=1]) 2015; 12 Choi (C9EE01404G-(cit1)/*[position()=1]) 2004; 136 Inaba (C9EE01404G-(cit7)/*[position()=1]) 2005; 146 Yagov (C9EE01404G-(cit24)/*[position()=1]) 2016; 100 Herstedt (C9EE01404G-(cit34)/*[position()=1]) 2004; 49 Sun (C9EE01404G-(cit11)/*[position()=1]) 2014; 5 Ehinon (C9EE01404G-(cit39)/*[position()=1]) 2008; 20 Derrien (C9EE01404G-(cit14)/*[position()=1]) 2007; 19 Schiele (C9EE01404G-(cit36)/*[position()=1]) 2017; 2 Zhang (C9EE01404G-(cit9)/*[position()=1]) 2017; 89 Beattie (C9EE01404G-(cit31)/*[position()=1]) 2003; 150 Jeong (C9EE01404G-(cit8)/*[position()=1]) 2015; 275 Tamura (C9EE01404G-(cit5)/*[position()=1]) 2002; 107 Veith (C9EE01404G-(cit3)/*[position()=1]) 2015; 119 |
References_xml | – volume: 136 start-page: 154 year: 2004 ident: C9EE01404G-(cit1)/*[position()=1] publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2004.05.026 – volume: 150 start-page: A419 year: 2003 ident: C9EE01404G-(cit27)/*[position()=1] publication-title: J. Electrochem. Soc. doi: 10.1149/1.1556595 – volume: 10 start-page: 580 year: 2017 ident: C9EE01404G-(cit32)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/C6EE02685K – volume: 1 start-page: 3509 year: 2018 ident: C9EE01404G-(cit33)/*[position()=1] publication-title: ACS Appl. Nano Mater. doi: 10.1021/acsanm.8b00664 – volume: 49 start-page: 2351 year: 2004 ident: C9EE01404G-(cit34)/*[position()=1] publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2004.01.016 – volume: 5 start-page: 4526 year: 2014 ident: C9EE01404G-(cit11)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms5526 – volume: 150 start-page: A701 year: 2003 ident: C9EE01404G-(cit31)/*[position()=1] publication-title: J. Electrochem. Soc. doi: 10.1149/1.1569477 – volume: 163 start-page: A798 year: 2016 ident: C9EE01404G-(cit38)/*[position()=1] publication-title: J. Electrochem. Soc. doi: 10.1149/2.1151605jes – volume: 224 start-page: 183 year: 2018 ident: C9EE01404G-(cit16)/*[position()=1] publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2017.09.049 – volume: 89 start-page: 479 year: 2017 ident: C9EE01404G-(cit9)/*[position()=1] publication-title: Prog. Mater. Sci. doi: 10.1016/j.pmatsci.2017.04.014 – volume: 224 start-page: 266 year: 1969 ident: C9EE01404G-(cit22)/*[position()=1] publication-title: Nature doi: 10.1038/224266a0 – volume: 12 start-page: 314 year: 2015 ident: C9EE01404G-(cit2)/*[position()=1] publication-title: Nano Energy doi: 10.1016/j.nanoen.2014.12.041 – volume: 100 start-page: 908 year: 2016 ident: C9EE01404G-(cit24)/*[position()=1] publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2016.02.049 – volume: 30 start-page: 1706375 year: 2018 ident: C9EE01404G-(cit26)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201706375 – volume: 148 start-page: 311 year: 2002 ident: C9EE01404G-(cit29)/*[position()=1] publication-title: Solid State Ionics doi: 10.1016/S0167-2738(02)00067-X – volume: 17 start-page: 3959 year: 2017 ident: C9EE01404G-(cit4)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/acs.nanolett.7b01674 – volume: 4 start-page: 2682 year: 2011 ident: C9EE01404G-(cit6)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/c0ee00699h – volume: 14 start-page: 50 year: 2019 ident: C9EE01404G-(cit19)/*[position()=1] publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-018-0284-y – volume: 139 start-page: 18670 year: 2017 ident: C9EE01404G-(cit20)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b10688 – volume: 9 start-page: 1167 year: 1966 ident: C9EE01404G-(cit23)/*[position()=1] publication-title: Int. J. Heat Mass Transfer doi: 10.1016/0017-9310(66)90112-8 – volume: 146 start-page: 473 year: 2005 ident: C9EE01404G-(cit7)/*[position()=1] publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2005.03.052 – volume: 107 start-page: 48 year: 2002 ident: C9EE01404G-(cit5)/*[position()=1] publication-title: J. Power Sources doi: 10.1016/S0378-7753(01)00979-X – volume: 20 start-page: 5388 year: 2008 ident: C9EE01404G-(cit39)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/cm8006099 – volume: 195 start-page: 2036 year: 2010 ident: C9EE01404G-(cit18)/*[position()=1] publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2009.10.038 – volume: 848 start-page: 122 year: 2017 ident: C9EE01404G-(cit15)/*[position()=1] publication-title: J. Organomet. Chem. doi: 10.1016/j.jorganchem.2017.07.024 – volume: 119 start-page: 20339 year: 2015 ident: C9EE01404G-(cit3)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.5b06817 – volume: 30 start-page: 885 year: 2016 ident: C9EE01404G-(cit12)/*[position()=1] publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.08.060 – volume: 11 start-page: 3923 year: 2018 ident: C9EE01404G-(cit13)/*[position()=1] publication-title: ChemSusChem doi: 10.1002/cssc.201801962 – volume: 5 start-page: 50 year: 2001 ident: C9EE01404G-(cit30)/*[position()=1] publication-title: J. Solid State Electrochem. doi: 10.1007/PL00010801 – volume: 15 start-page: 348 year: 2003 ident: C9EE01404G-(cit28)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/cm021279g – volume: 128 start-page: 1206 year: 2019 ident: C9EE01404G-(cit25)/*[position()=1] publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2018.09.091 – volume: 2 start-page: 2228 year: 2017 ident: C9EE01404G-(cit36)/*[position()=1] publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.7b00619 – volume: 19 start-page: 2336 year: 2007 ident: C9EE01404G-(cit14)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.200700748 – volume: 20 start-page: 8329 year: 2010 ident: C9EE01404G-(cit10)/*[position()=1] publication-title: J. Mater. Chem. doi: 10.1039/c0jm01671c – volume: 5 start-page: 6368 year: 2017 ident: C9EE01404G-(cit37)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C7TA00303J – volume: 115 start-page: 1156 year: 2018 ident: C9EE01404G-(cit21)/*[position()=1] publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1712895115 – volume: 309 start-page: 61 year: 2018 ident: C9EE01404G-(cit17)/*[position()=1] publication-title: Catal. Today doi: 10.1016/j.cattod.2017.10.009 – volume: 275 start-page: 525 year: 2015 ident: C9EE01404G-(cit8)/*[position()=1] publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2014.11.008 – volume: 379 start-page: 266 year: 2004 ident: C9EE01404G-(cit35)/*[position()=1] publication-title: Anal. Bioanal. Chem. doi: 10.1007/s00216-004-2522-4 |
SSID | ssj0062079 |
Score | 2.623899 |
Snippet | Tin foil should have outstanding volumetric capacity as a Li-ion battery anode; however, it suffers from an unacceptable initial coulombic efficiency (ICE) of... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2991 |
SubjectTerms | Aluminum Anodes Cobalt Cobalt compounds Electrolytes Electrolytic cells Ion transport Lithium Lithium-ion batteries Manganese Manganese oxides Metal foils Nanoparticles Nickel Rechargeable batteries Silicon Tin dioxide |
Title | Roll-to-roll prelithiation of Sn foil anode suppresses gassing and enables stable full-cell cycling of lithium ion batteries |
URI | https://www.proquest.com/docview/2303098083 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6l7QUOiFdFoKCV4IKiLRtvYnuPJUpbQSmHJsI3y17vlkghrpL4AOKv8F-ZWe_ajloh4OJEa3sUeT7vPDLzDSFv8tgUYyMli4I8ZmDxOZO8iFkohBmCB6yFJXH9dBmez0cfknHS6_3qVC1V2_xY_bizr-R_tAproFfskv0HzTZCYQG-g37hCBqG41_pGBm12bZka_jEbn9wqb8uGh_wCmsIF0gFUBZ6sKlubM2r3gyuwWH2vYna9k5tMKWAPVSYjWeYzB-o72rpKqKt2OrbAOXmlo_TVx76lH7dQIgo6jTO-XbLFjtJZS1dtWjKgBZ1VvpW-nrSgnbi-keSxWpZOjvr0hTYGbWTpqiTIb4S1VaauHl2nc03Go_YOKxn4x3rzlrEw50dO-gik3f3X1nP_nK2XHBLg3rbTnCBNKtKam35ha5ba-grAC4_p6fzi4t0Nk1me-QggCgEttGDk4_vz754Ux8G3JI5Nj_c898K-a6VvevxtGHM3trPmLG-zOwheeCCEHpSI-oR6enVY3K_Q035hPzsYovuYIuWhl6tKGKLWmzRFlvUYQtOFNRhi9bYog22qMMWCnLYoii3wdZTMj-dzibnzE3qYGoU8C0LxyLLZCbiKI6RUVKEsQqVEZrzIpLK6ECooTJxZDBgKGSUScXzvAhHQ20CkYlDsr8qV_oZoVxrML86i_EfcTifo8OpjY5yCF2GBe-Tt_5ppsrR2OM0lWVqyymETCdyOrVP_qxPXjfX3tTkLXdedeSVkrqXe5NCZC64jCFA6ZNDUFRzf6vX53--7wW5174HR2R_u670S3Bgt_krB6PfFtqfuA |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Roll-to-roll+prelithiation+of+Sn+foil+anode+suppresses+gassing+and+enables+stable+full-cell+cycling+of+lithium+ion+batteries&rft.jtitle=Energy+%26+environmental+science&rft.au=Xu%2C+Hui&rft.au=Li%2C+Sa&rft.au=Zhang%2C+Can&rft.au=Chen%2C+Xinlong&rft.date=2019-01-01&rft.pub=Royal+Society+of+Chemistry&rft.issn=1754-5692&rft.eissn=1754-5706&rft.volume=12&rft.issue=10&rft.spage=2991&rft.epage=3000&rft_id=info:doi/10.1039%2Fc9ee01404g&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1754-5692&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1754-5692&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1754-5692&client=summon |