Most parsimonious reconciliation in the presence of gene duplication, loss, and deep coalescence using labeled coalescent trees

Accurate gene tree-species tree reconciliation is fundamental to inferring the evolutionary history of a gene family. However, although it has long been appreciated that population-related effects such as incomplete lineage sorting (ILS) can dramatically affect the gene tree, many of the most popula...

Full description

Saved in:
Bibliographic Details
Published inGenome research Vol. 24; no. 3; pp. 475 - 486
Main Authors Wu, Yi-Chieh, Rasmussen, Matthew D, Bansal, Mukul S, Kellis, Manolis
Format Journal Article
LanguageEnglish
Published United States Cold Spring Harbor Laboratory Press 01.03.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Accurate gene tree-species tree reconciliation is fundamental to inferring the evolutionary history of a gene family. However, although it has long been appreciated that population-related effects such as incomplete lineage sorting (ILS) can dramatically affect the gene tree, many of the most popular reconciliation methods consider discordance only due to gene duplication and loss (and sometimes horizontal gene transfer). Methods that do model ILS are either highly parameterized or consider a restricted set of histories, thus limiting their applicability and accuracy. To address these challenges, we present a novel algorithm DLCpar for inferring a most parsimonious (MP) history of a gene family in the presence of duplications, losses, and ILS. Our algorithm relies on a new reconciliation structure, the labeled coalescent tree (LCT), that simultaneously describes coalescent and duplication-loss history. We show that the LCT representation enables an exhaustive and efficient search over the space of reconciliations, and, for most gene families, the least common ancestor (LCA) mapping is an optimal solution for the species mapping between the gene tree and species tree in an MP LCT. Applying our algorithm to a variety of clades, including flies, fungi, and primates, as well as to simulated phylogenies, we achieve high accuracy, comparable to sophisticated probabilistic reconciliation methods, at reduced run time and with far fewer parameters. These properties enable inferences of the complex evolution of gene families across a broad range of species and large data sets.
AbstractList Accurate gene tree-species tree reconciliation is fundamental to inferring the evolutionary history of a gene family. However, although it has long been appreciated that population-related effects such as incomplete lineage sorting (ILS) can dramatically affect the gene tree, many of the most popular reconciliation methods consider discordance only due to gene duplication and loss (and sometimes horizontal gene transfer). Methods that do model ILS are either highly parameterized or consider a restricted set of histories, thus limiting their applicability and accuracy. To address these challenges, we present a novel algorithm DLCpar for inferring a most parsimonious (MP) history of a gene family in the presence of duplications, losses, and ILS. Our algorithm relies on a new reconciliation structure, the labeled coalescent tree (LCT), that simultaneously describes coalescent and duplication-loss history. We show that the LCT representation enables an exhaustive and efficient search over the space of reconciliations, and, for most gene families, the least common ancestor (LCA) mapping is an optimal solution for the species mapping between the gene tree and species tree in an MP LCT. Applying our algorithm to a variety of clades, including flies, fungi, and primates, as well as to simulated phylogenies, we achieve high accuracy, comparable to sophisticated probabilistic reconciliation methods, at reduced run time and with far fewer parameters. These properties enable inferences of the complex evolution of gene families across a broad range of species and large data sets.
Accurate gene tree-species tree reconciliation is fundamental to inferring the evolutionary history of a gene family. However, although it has long been appreciated that population-related effects such as incomplete lineage sorting (ILS) can dramatically affect the gene tree, many of the most popular reconciliation methods consider discordance only due to gene duplication and loss (and sometimes horizontal gene transfer). Methods that do model ILS are either highly parameterized or consider a restricted set of histories, thus limiting their applicability and accuracy. To address these challenges, we present a novel algorithm DLCpar for inferring a most parsimonious (MP) history of a gene family in the presence of duplications, losses, and ILS. Our algorithm relies on a new reconciliation structure, the labeled coalescent tree (LCT), that simultaneously describes coalescent and duplication-loss history. We show that the LCT representation enables an exhaustive and efficient search over the space of reconciliations, and, for most gene families, the least common ancestor (LCA) mapping is an optimal solution for the species mapping between the gene tree and species tree in an MP LCT. Applying our algorithm to a variety of clades, including flies, fungi, and primates, as well as to simulated phytogenies, we achieve high accuracy, comparable to sophisticated probabilistic reconciliation methods, at reduced run time and with far fewer parameters. These properties enable inferences of the complex evolution of gene families across a broad range of species and large data sets.
Author Wu, Yi-Chieh
Bansal, Mukul S
Kellis, Manolis
Rasmussen, Matthew D
Author_xml – sequence: 1
  givenname: Yi-Chieh
  surname: Wu
  fullname: Wu, Yi-Chieh
  organization: Department of Electrical Engineering and Computer Science, Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
– sequence: 2
  givenname: Matthew D
  surname: Rasmussen
  fullname: Rasmussen, Matthew D
– sequence: 3
  givenname: Mukul S
  surname: Bansal
  fullname: Bansal, Mukul S
– sequence: 4
  givenname: Manolis
  surname: Kellis
  fullname: Kellis, Manolis
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24310000$$D View this record in MEDLINE/PubMed
BookMark eNpVkc1PHSEUxUmjqfraZbcNSxeO8jXzYNPEGG2baNzYNWHgzkjDgynMmLjyX5fns7au4OT8crjcc4T2YoqA0BdKTikl9GzMp7SjqpNV8g_okLZCNa3o1F69EykbRVp6gI5K-U0I4ULKj-iACU6rIofo6SaVGU8mF79J0ael4Aw2ReuDN7NPEfuI53vAU4YC0QJOAx4hAnbLFLx9YU5wSKWcYBMddgATtskEKPaFX4qPIw6mhwDunzPjOQOUT2h_MKHA59dzhX5dXd5d_Giub7__vDi_bqxgZG7a9cCkGobBDa2hnLWmN6CAAevX0rVrwZzouHGqN0I5obpqV0AwaVlnSMtX6Nsud1r6DbjtANkEPWW_MflRJ-P1eyf6ez2mB82VoJSyGnD8GpDTnwXKrDe-_iMEE6FuTde9E8ZktxYVbXaozXUtGYa3ZyjR29L0mPWutCp55b_-P9sb_bcl_gwv2phg
CitedBy_id crossref_primary_10_1109_TCBB_2019_2922337
crossref_primary_10_1186_s13015_022_00218_8
crossref_primary_10_1186_s13015_020_00171_4
crossref_primary_10_1093_sysbio_syae007
crossref_primary_10_1038_s41598_023_33751_6
crossref_primary_10_1007_s00284_022_02857_x
crossref_primary_10_1093_aob_mcac048
crossref_primary_10_1093_molbev_msab234
crossref_primary_10_1093_sysbio_syu082
crossref_primary_10_1093_bioadv_vbad015
crossref_primary_10_1186_s12864_019_6424_4
crossref_primary_10_1016_j_isci_2023_108579
crossref_primary_10_1093_sysbio_syaa084
crossref_primary_10_1109_TCBB_2015_2430336
crossref_primary_10_1007_s00285_019_01465_x
crossref_primary_10_1186_s12859_019_3206_6
crossref_primary_10_1016_j_jtbi_2019_04_001
crossref_primary_10_1016_j_tig_2020_08_012
crossref_primary_10_1186_s12859_017_1701_1
crossref_primary_10_1186_s13015_018_0128_1
crossref_primary_10_1016_j_jtbi_2017_08_008
crossref_primary_10_1093_sysbio_syx094
crossref_primary_10_1093_bioinformatics_btu728
crossref_primary_10_1146_annurev_genet_120213_092532
crossref_primary_10_1093_molbev_msy179
crossref_primary_10_3390_life12030443
crossref_primary_10_1093_sysbio_syv044
crossref_primary_10_1093_aob_mcac113
crossref_primary_10_1142_S0219720018400218
crossref_primary_10_1089_cmb_2021_0011
crossref_primary_10_1093_sysbio_syu050
crossref_primary_10_1093_sysbio_syx063
crossref_primary_10_1186_s13059_019_1832_y
crossref_primary_10_1186_s13059_015_0721_2
crossref_primary_10_1186_s12862_016_0793_y
crossref_primary_10_3390_toxins15110650
crossref_primary_10_1093_molbev_msx259
crossref_primary_10_1093_sysbio_syab081
crossref_primary_10_1186_s13015_017_0098_8
crossref_primary_10_1016_j_ympev_2020_106904
crossref_primary_10_3390_life6030039
crossref_primary_10_1038_s41598_018_36529_3
crossref_primary_10_1016_j_xgen_2023_100467
Cites_doi 10.1007/978-3-540-87989-3_1
10.1038/nature09649
10.1093/bioinformatics/btl446
10.1089/106652700750050871
10.1142/S0219720012500254
10.1101/gr.073585.107
10.1093/genetics/105.2.437
10.1016/j.tree.2009.01.009
10.1093/sysbio/syp008
10.1093/oxfordjournals.molbev.a025808
10.1101/gr.3567505
10.1002/pro.143
10.1007/978-3-642-86659-3
10.1101/gr.7105007
10.1007/978-3-642-33122-0_9
10.1080/10635150701429982
10.1007/978-3-642-16181-0_9
10.1146/annurev.genet.39.073003.114725
10.1093/nar/gks1118
10.1109/TCBB.2011.83
10.1093/sysbio/syp047
10.1093/molbev/msq189
10.1093/sysbio/46.3.523
10.1186/gb-2007-8-7-r141
10.1093/nar/gkj118
10.1093/sysbio/28.2.132
10.1186/gb-2007-8-8-109
10.1126/science.290.5494.1151
10.1093/sysbio/sys076
10.1145/974614.974657
10.1093/bioinformatics/bts225
10.1186/1471-2148-7-214
10.1186/1471-2105-12-S9-S7
10.1093/sysbio/syt023
10.1006/tpbi.2001.1568
10.1371/journal.pgen.0020068
10.1038/nature08064
10.1089/cmb.2009.0095
10.1007/11809678_26
10.1073/pnas.0806251106
10.1109/TCBB.2010.14
10.1101/gr.123901.111
10.1007/978-3-642-21260-4_17
10.1109/TCBB.2012.110
10.1101/gr.141978.112
10.1093/nar/gkp373
10.1093/genetics/164.4.1645
10.1093/sysbio/syp034
10.1126/science.1171243
10.1109/TCBB.2011.64
10.2307/2413581
10.1080/10635150802164587
10.1016/j.tcs.2006.05.019
10.1080/10635150601146041
10.1093/bioinformatics/btg180
10.1038/nature06107
10.1080/10635150390235520
10.1089/cmb.2010.0102
10.1007/978-3-642-38036-5_26
10.1089/cmb.2006.13.320
10.1186/1471-2105-3-14
ContentType Journal Article
Copyright 2014
Copyright_xml – notice: 2014
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7TM
8FD
FR3
P64
RC3
5PM
DOI 10.1101/gr.161968.113
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Nucleic Acids Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Genetics Abstracts
Engineering Research Database
Technology Research Database
Nucleic Acids Abstracts
Biotechnology and BioEngineering Abstracts
DatabaseTitleList CrossRef

MEDLINE
Genetics Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
Biology
DocumentTitleAlternate Wu et al
EISSN 1549-5469
EndPage 486
ExternalDocumentID 10_1101_gr_161968_113
24310000
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
Research Support, N.I.H., Extramural
GroupedDBID ---
.GJ
18M
29H
2WC
39C
4.4
53G
5GY
5RE
5VS
AAYOK
AAZTW
ABDIX
ABDNZ
ACGFO
ACYGS
ADBBV
ADNWM
AEILP
AENEX
AI.
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BTFSW
C1A
CGR
CS3
CUY
CVF
DIK
DU5
E3Z
EBS
ECM
EIF
EJD
F5P
FRP
GX1
H13
HYE
IH2
K-O
KQ8
MV1
NPM
R.V
RCX
RHF
RHI
RNS
RPM
RXW
SJN
TAE
TR2
VH1
W8F
WOQ
YKV
ZCG
ZGI
ZXP
AAYXX
ABRJW
CITATION
7TM
8FD
FR3
P64
RC3
5PM
ID FETCH-LOGICAL-c420t-57f289fffdf5a1325abae9e2e2b78d5742d463ad9ba49d496baeae9428c26a053
IEDL.DBID RPM
ISSN 1088-9051
IngestDate Tue Sep 17 21:01:57 EDT 2024
Sat Oct 26 00:08:53 EDT 2024
Thu Sep 12 16:29:41 EDT 2024
Tue Oct 15 23:46:35 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License This article, published in Genome Research, is available under a Creative Commons License (Attribution-NonCommercial 3.0 Unported), as described at http://creativecommons.org/licenses/by-nc/3.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c420t-57f289fffdf5a1325abae9e2e2b78d5742d463ad9ba49d496baeae9428c26a053
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
These authors contributed equally to this work.
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3941112/
PMID 24310000
PQID 1540228674
PQPubID 23462
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3941112
proquest_miscellaneous_1540228674
crossref_primary_10_1101_gr_161968_113
pubmed_primary_24310000
PublicationCentury 2000
PublicationDate 2014-03-01
PublicationDateYYYYMMDD 2014-03-01
PublicationDate_xml – month: 03
  year: 2014
  text: 2014-03-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Genome research
PublicationTitleAlternate Genome Res
PublicationYear 2014
Publisher Cold Spring Harbor Laboratory Press
Publisher_xml – name: Cold Spring Harbor Laboratory Press
References 9254330 - Mol Biol Evol. 1997 Jul;14(7):685-95
23576318 - Syst Biol. 2013 Jul;62(4):574-90
12912839 - Bioinformatics. 2003 Aug 12;19(12):1572-4
21464510 - IEEE/ACM Trans Comput Biol Bioinform. 2012 Jan-Feb;9(1):26-39
18808330 - J Comput Biol. 2008 Oct;15(8):981-1006
21170026 - Nature. 2011 Jan 6;469(7328):93-6
21576759 - IEEE/ACM Trans Comput Biol Bioinform. 2011 Nov-Dec;8(6):1685-91
23132911 - Genome Res. 2013 Feb;23(2):323-30
21233529 - IEEE/ACM Trans Comput Biol Bioinform. 2011 Mar-Apr;8(2):517-35
19472362 - Protein Sci. 2009 Jun;18(6):1306-15
22689773 - Bioinformatics. 2012 Jun 15;28(12):i283-91
16285863 - Annu Rev Genet. 2005;39:309-38
20660489 - Mol Biol Evol. 2011 Jan;28(1):273-90
23600816 - J Bioinform Comput Biol. 2013 Apr;11(2):1250025
17996036 - BMC Evol Biol. 2007;7:214
16928733 - Bioinformatics. 2006 Nov 1;22(21):2688-90
20525599 - Syst Biol. 2009 Aug;58(4):452-60
22868677 - IEEE/ACM Trans Comput Biol Bioinform. 2012 Nov-Dec;9(6):1558-68
17562474 - Syst Biol. 2007 Jun;56(3):504-14
6628982 - Genetics. 1983 Oct;105(2):437-60
16381935 - Nucleic Acids Res. 2006 Jan 1;34(Database issue):D572-80
14530136 - Syst Biol. 2003 Oct;52(5):696-704
19435885 - Nucleic Acids Res. 2009 Jul;37(Web Server issue):W84-9
16733550 - PLoS Genet. 2006 May;2(5):e68
20525606 - Syst Biol. 2009 Oct;58(5):527-36
21210728 - J Comput Biol. 2011 Jan;18(1):1-15
19299507 - Proc Natl Acad Sci U S A. 2009 Apr 7;106(14):5714-9
11969392 - Theor Popul Biol. 2002 Mar;61(2):225-47
19307040 - Trends Ecol Evol. 2009 Jun;24(6):332-40
26356016 - IEEE/ACM Trans Comput Biol Bioinform. 2014 May-Jun;11(3):477-85
22151151 - BMC Bioinformatics. 2011;12 Suppl 9:S7
16597243 - J Comput Biol. 2006 Mar;13(2):320-35
17989260 - Genome Res. 2007 Dec;17(12):1932-42
22949484 - Syst Biol. 2013 Jan 1;62(1):110-20
19029536 - Genome Res. 2009 Feb;19(2):327-35
19754270 - J Comput Biol. 2009 Oct;16(10):1399-418
12028595 - BMC Bioinformatics. 2002 May 16;3:14
18570042 - Syst Biol. 2008 Jun;57(3):503-7
16077014 - Genome Res. 2005 Aug;15(8):1153-60
17805289 - Nature. 2007 Sep 6;449(7158):54-61
11108472 - J Comput Biol. 2000;7(3-4):429-47
19541996 - Science. 2009 Jun 19;324(5934):1561-4
17567924 - Genome Biol. 2007;8(6):R109
22271778 - Genome Res. 2012 Apr;22(4):755-65
19465905 - Nature. 2009 Jun 4;459(7247):657-62
20525567 - Syst Biol. 2009 Feb;58(1):35-54
17366134 - Syst Biol. 2007 Feb;56(1):17-24
3193878 - Mol Biol Evol. 1988 Sep;5(5):568-83
23193289 - Nucleic Acids Res. 2013 Jan;41(Database issue):D377-86
17634151 - Genome Biol. 2007;8(7):R141
12930768 - Genetics. 2003 Aug;164(4):1645-56
11073452 - Science. 2000 Nov 10;290(5494):1151-5
2021111811114741000_24.3.475.21
2021111811114741000_24.3.475.65
2021111811114741000_24.3.475.20
2021111811114741000_24.3.475.64
2021111811114741000_24.3.475.63
2021111811114741000_24.3.475.62
2021111811114741000_24.3.475.60
(2021111811114741000_24.3.475.54) 1983; 105
2021111811114741000_24.3.475.29
2021111811114741000_24.3.475.28
2021111811114741000_24.3.475.27
2021111811114741000_24.3.475.26
2021111811114741000_24.3.475.25
2021111811114741000_24.3.475.24
2021111811114741000_24.3.475.23
2021111811114741000_24.3.475.22
2021111811114741000_24.3.475.32
2021111811114741000_24.3.475.31
2021111811114741000_24.3.475.30
2021111811114741000_24.3.475.39
2021111811114741000_24.3.475.38
2021111811114741000_24.3.475.37
2021111811114741000_24.3.475.36
2021111811114741000_24.3.475.35
2021111811114741000_24.3.475.34
2021111811114741000_24.3.475.33
2021111811114741000_24.3.475.43
2021111811114741000_24.3.475.42
2021111811114741000_24.3.475.41
2021111811114741000_24.3.475.40
2021111811114741000_24.3.475.49
2021111811114741000_24.3.475.48
(2021111811114741000_24.3.475.57) 2007; 15
2021111811114741000_24.3.475.47
2021111811114741000_24.3.475.45
2021111811114741000_24.3.475.10
2021111811114741000_24.3.475.53
(2021111811114741000_24.3.475.46) 2003; 164
2021111811114741000_24.3.475.52
2021111811114741000_24.3.475.51
2021111811114741000_24.3.475.50
2021111811114741000_24.3.475.9
2021111811114741000_24.3.475.8
2021111811114741000_24.3.475.19
(2021111811114741000_24.3.475.44) 1988; 5
(2021111811114741000_24.3.475.61) 2011; 12
2021111811114741000_24.3.475.5
2021111811114741000_24.3.475.18
2021111811114741000_24.3.475.4
2021111811114741000_24.3.475.17
2021111811114741000_24.3.475.7
2021111811114741000_24.3.475.16
2021111811114741000_24.3.475.6
2021111811114741000_24.3.475.15
2021111811114741000_24.3.475.59
2021111811114741000_24.3.475.1
2021111811114741000_24.3.475.14
2021111811114741000_24.3.475.58
2021111811114741000_24.3.475.13
2021111811114741000_24.3.475.3
2021111811114741000_24.3.475.12
2021111811114741000_24.3.475.56
2021111811114741000_24.3.475.2
2021111811114741000_24.3.475.11
2021111811114741000_24.3.475.55
References_xml – ident: 2021111811114741000_24.3.475.16
  doi: 10.1007/978-3-540-87989-3_1
– ident: 2021111811114741000_24.3.475.10
  doi: 10.1038/nature09649
– ident: 2021111811114741000_24.3.475.53
  doi: 10.1093/bioinformatics/btl446
– ident: 2021111811114741000_24.3.475.59
– ident: 2021111811114741000_24.3.475.8
  doi: 10.1089/106652700750050871
– ident: 2021111811114741000_24.3.475.52
  doi: 10.1142/S0219720012500254
– ident: 2021111811114741000_24.3.475.58
  doi: 10.1101/gr.073585.107
– volume: 105
  start-page: 437
  year: 1983
  ident: 2021111811114741000_24.3.475.54
  article-title: Evolutionary relationship of DNA sequences in finite populations
  publication-title: Genetics
  doi: 10.1093/genetics/105.2.437
– ident: 2021111811114741000_24.3.475.13
  doi: 10.1016/j.tree.2009.01.009
– ident: 2021111811114741000_24.3.475.14
  doi: 10.1093/sysbio/syp008
– ident: 2021111811114741000_24.3.475.23
  doi: 10.1093/oxfordjournals.molbev.a025808
– ident: 2021111811114741000_24.3.475.29
  doi: 10.1101/gr.3567505
– ident: 2021111811114741000_24.3.475.45
  doi: 10.1002/pro.143
– ident: 2021111811114741000_24.3.475.42
  doi: 10.1007/978-3-642-86659-3
– ident: 2021111811114741000_24.3.475.47
  doi: 10.1101/gr.7105007
– ident: 2021111811114741000_24.3.475.34
  doi: 10.1007/978-3-642-33122-0_9
– ident: 2021111811114741000_24.3.475.37
  doi: 10.1080/10635150701429982
– ident: 2021111811114741000_24.3.475.18
  doi: 10.1007/978-3-642-16181-0_9
– ident: 2021111811114741000_24.3.475.32
  doi: 10.1146/annurev.genet.39.073003.114725
– ident: 2021111811114741000_24.3.475.41
  doi: 10.1093/nar/gks1118
– ident: 2021111811114741000_24.3.475.63
  doi: 10.1109/TCBB.2011.83
– ident: 2021111811114741000_24.3.475.30
  doi: 10.1093/sysbio/syp047
– volume: 5
  start-page: 568
  year: 1988
  ident: 2021111811114741000_24.3.475.44
  article-title: Relationships between gene trees and species trees
  publication-title: Mol Biol Evol
– ident: 2021111811114741000_24.3.475.48
  doi: 10.1093/molbev/msq189
– ident: 2021111811114741000_24.3.475.40
  doi: 10.1093/sysbio/46.3.523
– ident: 2021111811114741000_24.3.475.28
  doi: 10.1186/gb-2007-8-7-r141
– ident: 2021111811114741000_24.3.475.35
  doi: 10.1093/nar/gkj118
– ident: 2021111811114741000_24.3.475.24
  doi: 10.1093/sysbio/28.2.132
– ident: 2021111811114741000_24.3.475.31
  doi: 10.1186/gb-2007-8-8-109
– ident: 2021111811114741000_24.3.475.39
  doi: 10.1126/science.290.5494.1151
– ident: 2021111811114741000_24.3.475.62
  doi: 10.1093/sysbio/sys076
– ident: 2021111811114741000_24.3.475.2
  doi: 10.1145/974614.974657
– ident: 2021111811114741000_24.3.475.4
  doi: 10.1093/bioinformatics/bts225
– ident: 2021111811114741000_24.3.475.20
  doi: 10.1186/1471-2148-7-214
– volume: 12
  start-page: S7
  year: 2011
  ident: 2021111811114741000_24.3.475.61
  article-title: Structural properties of the reconciliation space and their applications in enumerating nearly-optimal reconciliations between a gene tree and a species tree
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-12-S9-S7
– ident: 2021111811114741000_24.3.475.11
  doi: 10.1093/sysbio/syt023
– ident: 2021111811114741000_24.3.475.51
  doi: 10.1006/tpbi.2001.1568
– ident: 2021111811114741000_24.3.475.12
  doi: 10.1371/journal.pgen.0020068
– ident: 2021111811114741000_24.3.475.6
  doi: 10.1038/nature08064
– ident: 2021111811114741000_24.3.475.17
  doi: 10.1089/cmb.2009.0095
– ident: 2021111811114741000_24.3.475.7
  doi: 10.1007/11809678_26
– ident: 2021111811114741000_24.3.475.1
  doi: 10.1073/pnas.0806251106
– ident: 2021111811114741000_24.3.475.56
  doi: 10.1109/TCBB.2010.14
– volume: 15
  start-page: 981
  year: 2007
  ident: 2021111811114741000_24.3.475.57
  article-title: Reconciliation with non-binary species trees
  publication-title: J Comput Biol
– ident: 2021111811114741000_24.3.475.49
  doi: 10.1101/gr.123901.111
– ident: 2021111811114741000_24.3.475.21
– ident: 2021111811114741000_24.3.475.25
  doi: 10.1007/978-3-642-21260-4_17
– ident: 2021111811114741000_24.3.475.15
  doi: 10.1109/TCBB.2012.110
– ident: 2021111811114741000_24.3.475.5
  doi: 10.1101/gr.141978.112
– ident: 2021111811114741000_24.3.475.9
  doi: 10.1093/nar/gkp373
– volume: 164
  start-page: 1645
  year: 2003
  ident: 2021111811114741000_24.3.475.46
  article-title: Bayes estimation of species divergence times and ancestral population sizes using DNA sequences from multiple loci
  publication-title: Genetics
  doi: 10.1093/genetics/164.4.1645
– ident: 2021111811114741000_24.3.475.36
  doi: 10.1093/sysbio/syp034
– ident: 2021111811114741000_24.3.475.38
  doi: 10.1126/science.1171243
– ident: 2021111811114741000_24.3.475.19
  doi: 10.1109/TCBB.2011.64
– ident: 2021111811114741000_24.3.475.43
  doi: 10.2307/2413581
– ident: 2021111811114741000_24.3.475.3
  doi: 10.1080/10635150802164587
– ident: 2021111811114741000_24.3.475.26
  doi: 10.1016/j.tcs.2006.05.019
– ident: 2021111811114741000_24.3.475.33
  doi: 10.1080/10635150601146041
– ident: 2021111811114741000_24.3.475.50
  doi: 10.1093/bioinformatics/btg180
– ident: 2021111811114741000_24.3.475.60
  doi: 10.1038/nature06107
– ident: 2021111811114741000_24.3.475.27
  doi: 10.1080/10635150390235520
– ident: 2021111811114741000_24.3.475.55
  doi: 10.1089/cmb.2010.0102
– ident: 2021111811114741000_24.3.475.64
  doi: 10.1007/978-3-642-38036-5_26
– ident: 2021111811114741000_24.3.475.22
  doi: 10.1089/cmb.2006.13.320
– ident: 2021111811114741000_24.3.475.65
  doi: 10.1186/1471-2105-3-14
SSID ssj0003488
Score 2.4141939
Snippet Accurate gene tree-species tree reconciliation is fundamental to inferring the evolutionary history of a gene family. However, although it has long been...
SourceID pubmedcentral
proquest
crossref
pubmed
SourceType Open Access Repository
Aggregation Database
Index Database
StartPage 475
SubjectTerms Algorithms
Animals
Diptera - genetics
Evolution, Molecular
Fungi - genetics
Gene Deletion
Gene Duplication
Gene Transfer, Horizontal
Genes
Genome
Method
Models, Genetic
Multigene Family
Phylogeny
Primates
Primates - genetics
Species Specificity
Title Most parsimonious reconciliation in the presence of gene duplication, loss, and deep coalescence using labeled coalescent trees
URI https://www.ncbi.nlm.nih.gov/pubmed/24310000
https://search.proquest.com/docview/1540228674
https://pubmed.ncbi.nlm.nih.gov/PMC3941112
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFH5aJyG4INj4UX5MDwnttLRpYjvJcVRME6gIJCbtFtmx3VVq3ajLDpz2r-_ZbgqFG7dEdqLE30ve9_k9PwN8zLXKyfHwRPCJIIGSmoRkhEgs1yq15JQa4xc4z76Jyyv25ZpfHwDv18KEpP1GLUZuuRq5xU3IrWxXzbjPExt_n03zitEnmo0HMCAD7SX69vebszKufyMT8MWndoU1J-P5ZkQEpxKl38nElwFmcXp73yf9QzT_zpf8wwFdPIOnW-aI5_EJn8OBcUdwfO5INa9-4SmGXM4wSX4Ejz71R4-n_Y5ux3A_W9922JKUJYCcT37FoIebxTIChAuHRAixDWuSGoNri2RgBvXdLsx9hkt6hzOUTqM2psVmLWNNKOrvs-jnSIZFzkz_bunQx75vX8DVxeef08tkuwFD0rAs7RJeWNJj1lptuSTZyqWSpjKZyVRRak6qWjORS10pySrNKkHN1IEUTZMJSZ_3Szh0a2deA6aWeInRVhWVD8UyyXNmcitLmU94oeQQTnsI6jbW2aiDPkkn9XxTR9joNB_Chx6gmobPhzekMzRiNZFBX8xHFGwIryJgu1v1SA-h2INy18FX2d5vIeML1ba3xvbmv698C0-IZbGYuPYODrvNnXlPTKZTJzD4-qM8Cfb7AAn69g8
link.rule.ids 230,315,730,783,787,888,27938,27939,53806,53808
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFH4aQ2i7MNiAlfHDSGinJU0T22mOo2IqsE4cNrRb5J-lonWjLj2wy_51nuOm0HGCWyI7UeL37Pc--_NngPeZlhkGHhZx1uMIUBITIYzgkWVaJhaDkjJ-g_Pogg-v6Odrdr0FrN0L05D2lZzEbjqL3eR7w62sZqrb8sS6X0eDrKDYRdPuA3iI_TXhLUhfDcAZ7YcdcOgEXn5qLa3Z644XMaY4Be_7s0y8EDANE9ybUemvVPM-Y_KPEHS2B9_ajw_Mkx_xspaxur2n6_jPf_cEHq-SUnIaip_ClnH7cHDqEJDPfpJj0tBEm_n3fXj0ob3aGbSHxR3A3Wh-U5MKUTLa3nleLWmgtppMg-3JxBHMNUnVbHdShswtQd81RC_XK-gnZIqNc0KE00QbUxE1F0FuCut7gv6YoM9inNS_S2ril9VvnsHV2cfLwTBane0QKZomdcRyi1DPWqstE4iImZDCFCY1qcz7miFg15RnQhdS0ELTgmMxVkCwpFIucOR4Dttu7swhkMRiymO0lXnhV3mpYBk1mRV9kfVYLkUHjlvbllWQ8Cgb6JP0yvGiDP6At1kH3rWWL7H5_MqJcAZbrMQ80-sE8Zx24EXwhPWrWhfqQL7hI-sKXsB7swQt3wh5ryz98r-ffAs7w8vReXn-6eLLEexiMkcDP-4VbNeLpXmNCVMt3zTd4xcFChcW
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9MwGH4FQzAuAzY2Or6MhHZaPprYTnIchWp8dNqBSROXyI7tUq11oy49wIW_zuu4Keu47ZbITqTYj_O-j_34McD7VMkUAw8LOOtzJCixDpBG8MAwJWODQanSboPz6IyfXtAvl-zyxlFfrWi_kpPQTmehnfxstZX1rIo6nVh0PhqkBcUhmkS1MtF9eIBjNs47or76Cac097vgEAjOgmptr9mPxosQ05yC5-48E2cGTP0k92Zk-i_dvK2avBGGhk_gR_cBXn1yFS4bGVa_b3k73ukLn8LOKjklJ77KM7in7S7snVgk5rNf5Ii0ctF2Hn4XHn7orrYH3aFxe_BnNL9uSI1sGTFgnb6WtJS7mkw9BsjEEsw5Sd1ue6o0mRuCGNZELdcr6cdkig10TIRVRGldk2ouvO0U1ndC_TFB7GK8VP9KGuKW16-fw8Xw0_fBabA64yGoaBI3AcsMUj5jjDJMIDNmQgpd6EQnMssVQ-KuKE-FKqSghaIFx2KsgKSpSrjAP8g-bNm51S-AxAZTH62MzAq32ksFS6lOjchF2meZFD046vq3rL2VR9lSoLhfjhelxwTepj141_V-ic3nVlCE1dhiJeabzi-IZ7QHBx4N61d1MOpBtoGTdQVn5L1Zgr3fGnqvevvwzk--hUfnH4flt89nX1_CY8zpqJfJvYKtZrHUrzFvauSbdoT8Ba2EGZY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Most+parsimonious+reconciliation+in+the+presence+of+gene+duplication%2C+loss%2C+and+deep+coalescence+using+labeled+coalescent+trees&rft.jtitle=Genome+research&rft.au=Wu%2C+Yi-Chieh&rft.au=Rasmussen%2C+Matthew+D&rft.au=Bansal%2C+Mukul+S&rft.au=Kellis%2C+Manolis&rft.date=2014-03-01&rft.issn=1088-9051&rft.eissn=1549-5469&rft.volume=24&rft.issue=3&rft.spage=475&rft.epage=486&rft_id=info:doi/10.1101%2Fgr.161968.113&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1088-9051&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1088-9051&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1088-9051&client=summon