Degradation of ZIF-8 in phosphate buffered saline media
Understanding the stability of zeolitic imidazolate framework-8 (ZIF-8) under physiological conditions is critical in biotechnology and biomedicine for biosensing, biocatalysis, and drug delivery. The use of ZIF-8 has shown that this metal organic framework (MOF) and its derived bio-composites can d...
Saved in:
Published in | CrystEngComm Vol. 21; no. 31; pp. 4538 - 4544 |
---|---|
Main Authors | , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Understanding the stability of zeolitic imidazolate framework-8 (ZIF-8) under physiological conditions is critical in biotechnology and biomedicine for biosensing, biocatalysis, and drug delivery. The use of ZIF-8 has shown that this metal organic framework (MOF) and its derived bio-composites can degrade in presence of buffer solutions. Here we present an in-depth analysis of the structural and chemical changes of pure ZIF-8 particles exposed to phosphate buffered saline (PBS) media. Two different particle sizes (2 m and 250 nm) were selected and the decomposition operated by 10 mM PBS (aka 1X) was studied using powder X-ray diffraction (PXRD), Fourier transformed infrared spectroscopy (FTIR), time resolved atomic force microscopy (AFM),
in situ
small angle X-ray scattering (SAXS), and
31
P NMR.
Understanding the stability of zeolitic imidazolate framework-8 (ZIF-8) under physiological conditions is critical in biotechnology and biomedicine for biosensing, biocatalysis, and drug delivery. |
---|---|
AbstractList | Understanding the stability of zeolitic imidazolate framework-8 (ZIF-8) under physiological conditions is critical in biotechnology and biomedicine for biosensing, biocatalysis, and drug delivery. The use of ZIF-8 has shown that this metal organic framework (MOF) and its derived bio-composites can degrade in presence of buffer solutions. Here we present an in-depth analysis of the structural and chemical changes of pure ZIF-8 particles exposed to phosphate buffered saline (PBS) media. Two different particle sizes (2 m and 250 nm) were selected and the decomposition operated by 10 mM PBS (aka 1X) was studied using powder X-ray diffraction (PXRD), Fourier transformed infrared spectroscopy (FTIR), time resolved atomic force microscopy (AFM),
in situ
small angle X-ray scattering (SAXS), and
31
P NMR.
Understanding the stability of zeolitic imidazolate framework-8 (ZIF-8) under physiological conditions is critical in biotechnology and biomedicine for biosensing, biocatalysis, and drug delivery. Understanding the stability of zeolitic imidazolate framework-8 (ZIF-8) under physiological conditions is critical in biotechnology and biomedicine for biosensing, biocatalysis, and drug delivery. The use of ZIF-8 has shown that this metal organic framework (MOF) and its derived bio-composites can degrade in presence of buffer solutions. Here we present an in-depth analysis of the structural and chemical changes of pure ZIF-8 particles exposed to phosphate buffered saline (PBS) media. Two different particle sizes (2 μm and 250 nm) were selected and the decomposition operated by 10 mM PBS (aka 1X) was studied using powder X-ray diffraction (PXRD), Fourier transformed infrared spectroscopy (FTIR), time resolved atomic force microscopy (AFM), in situ small angle X-ray scattering (SAXS), and 31 P NMR. Understanding the stability of zeolitic imidazolate framework-8 (ZIF-8) under physiological conditions is critical in biotechnology and biomedicine for biosensing, biocatalysis, and drug delivery. The use of ZIF-8 has shown that this metal organic framework (MOF) and its derived bio-composites can degrade in presence of buffer solutions. Here we present an in-depth analysis of the structural and chemical changes of pure ZIF-8 particles exposed to phosphate buffered saline (PBS) media. Two different particle sizes (2 μm and 250 nm) were selected and the decomposition operated by 10 mM PBS (aka 1X) was studied using powder X-ray diffraction (PXRD), Fourier transformed infrared spectroscopy (FTIR), time resolved atomic force microscopy (AFM), in situ small angle X-ray scattering (SAXS), and 31P NMR. |
Author | Doonan, Christian J Velsquez-Hernndez, Miriam de J Gescheidt, Georg Wiltsche, Helmar Frhwirt, Philipp Limpoco, F. Ted Linares-Moreau, Mercedes Schrttner, Hartmuth Amenitsch, Heinz Ricco, Raffaele Stadler, Eduard M Rattenberger, Johannes Carraro, Francesco Leitner, Erich Falcaro, Paolo |
AuthorAffiliation | Institute of Physical and Theoretical Chemistry Department of Chemistry Graz University of Technology Institute of Analytical Chemistry and Food Chemistry Institute of Inorganic Chemistry The University of Adelaide Oxford Instruments GmbH Asylum Research Graz Centre for Electron Microscopy (ZFE) |
AuthorAffiliation_xml | – sequence: 0 name: Graz University of Technology – sequence: 0 name: Department of Chemistry – sequence: 0 name: The University of Adelaide – sequence: 0 name: Institute of Analytical Chemistry and Food Chemistry – sequence: 0 name: Institute of Inorganic Chemistry – sequence: 0 name: Oxford Instruments GmbH Asylum Research – sequence: 0 name: Graz Centre for Electron Microscopy (ZFE) – sequence: 0 name: Institute of Physical and Theoretical Chemistry |
Author_xml | – sequence: 1 givenname: Miriam de J surname: Velsquez-Hernndez fullname: Velsquez-Hernndez, Miriam de J – sequence: 2 givenname: Raffaele surname: Ricco fullname: Ricco, Raffaele – sequence: 3 givenname: Francesco surname: Carraro fullname: Carraro, Francesco – sequence: 4 givenname: F. Ted surname: Limpoco fullname: Limpoco, F. Ted – sequence: 5 givenname: Mercedes surname: Linares-Moreau fullname: Linares-Moreau, Mercedes – sequence: 6 givenname: Erich surname: Leitner fullname: Leitner, Erich – sequence: 7 givenname: Helmar surname: Wiltsche fullname: Wiltsche, Helmar – sequence: 8 givenname: Johannes surname: Rattenberger fullname: Rattenberger, Johannes – sequence: 9 givenname: Hartmuth surname: Schrttner fullname: Schrttner, Hartmuth – sequence: 10 givenname: Philipp surname: Frhwirt fullname: Frhwirt, Philipp – sequence: 11 givenname: Eduard M surname: Stadler fullname: Stadler, Eduard M – sequence: 12 givenname: Georg surname: Gescheidt fullname: Gescheidt, Georg – sequence: 13 givenname: Heinz surname: Amenitsch fullname: Amenitsch, Heinz – sequence: 14 givenname: Christian J surname: Doonan fullname: Doonan, Christian J – sequence: 15 givenname: Paolo surname: Falcaro fullname: Falcaro, Paolo |
BookMark | eNptkD1PwzAQhi1UJFpgYUeyxIYU8Fdie6xCC5UqscDCEjnOmbpq42CnA_-e0CJAiOlueN73dM8EjdrQAkIXlNxQwvWt1RYIkbk0R2hMRVFkinA--rWfoElKa0KooJSMkbyD12ga0_vQ4uDwy2KeKexb3K1C6lamB1zvnIMIDU5m41vAW2i8OUPHzmwSnH_NU_Q8nz2VD9ny8X5RTpeZFYz0WS5rRmsmidJWUictOO2EtppaLkwOoHMncsqV0YQpy5vCOJW7mg_PFKI2_BRdHXq7GN52kPpqHXaxHU5WjBVKcymYHqjrA2VjSCmCq7rotya-V5RUn2KqUpezvZjpAJM_sPX9XkAfjd_8H7k8RGKy39U_rvkHB8pu1A |
CitedBy_id | crossref_primary_10_3390_polym13224051 crossref_primary_10_1016_j_nanoso_2024_101315 crossref_primary_10_1002_cben_202300061 crossref_primary_10_1016_j_xcrp_2020_100254 crossref_primary_10_1039_D2CC03072A crossref_primary_10_1039_D2TB00419D crossref_primary_10_1039_D4MA00377B crossref_primary_10_1016_j_cej_2022_138215 crossref_primary_10_3390_nano11030722 crossref_primary_10_1016_j_btre_2024_e00837 crossref_primary_10_1039_D0CS01030H crossref_primary_10_1002_smsc_202200061 crossref_primary_10_3390_jfb14090472 crossref_primary_10_1016_j_mtchem_2021_100688 crossref_primary_10_1016_j_jcis_2021_06_017 crossref_primary_10_1016_j_talanta_2023_124733 crossref_primary_10_1039_D1TB01044A crossref_primary_10_1039_D3MA00391D crossref_primary_10_1111_jcpe_13855 crossref_primary_10_1016_j_cej_2023_141694 crossref_primary_10_1016_j_molliq_2021_116670 crossref_primary_10_1021_acsnano_4c16480 crossref_primary_10_1039_D0RA07950B crossref_primary_10_3390_pharmaceutics15010274 crossref_primary_10_1016_j_tice_2021_101588 crossref_primary_10_1126_sciadv_adh1736 crossref_primary_10_1021_acssensors_3c02250 crossref_primary_10_1002_admi_202201753 crossref_primary_10_1016_j_jconrel_2023_11_049 crossref_primary_10_1016_j_aca_2022_339434 crossref_primary_10_1016_j_cej_2023_143622 crossref_primary_10_1007_s10904_021_02181_0 crossref_primary_10_1016_j_compositesb_2025_112303 crossref_primary_10_3390_molecules28124875 crossref_primary_10_1038_s43246_024_00624_y crossref_primary_10_1039_D2NR04246K crossref_primary_10_1039_D3NR06685A crossref_primary_10_1016_j_ccr_2021_214109 crossref_primary_10_1016_j_isci_2020_101156 crossref_primary_10_1021_acsmaterialslett_0c00522 crossref_primary_10_1039_D1CS00918D crossref_primary_10_1016_j_cej_2023_147655 crossref_primary_10_1002_cnma_202100226 crossref_primary_10_1039_D3SC00500C crossref_primary_10_1021_acsomega_3c04973 crossref_primary_10_1016_j_nantod_2020_100985 crossref_primary_10_1016_j_ccr_2020_213651 crossref_primary_10_1016_j_mtcomm_2023_107938 crossref_primary_10_1039_D1NJ00461A crossref_primary_10_1021_jacs_9b06589 crossref_primary_10_1002_admi_202201532 crossref_primary_10_1016_j_cej_2023_141302 crossref_primary_10_1007_s12274_023_6172_2 crossref_primary_10_1002_ange_202314025 crossref_primary_10_1016_j_ccr_2019_213149 crossref_primary_10_1021_acsami_4c10146 crossref_primary_10_1016_j_bioadv_2024_214118 crossref_primary_10_1039_D2GC04682B crossref_primary_10_3390_s23010160 crossref_primary_10_1039_D1TC00407G crossref_primary_10_1016_j_ijbiomac_2021_05_007 crossref_primary_10_1016_j_cej_2022_137054 crossref_primary_10_1016_j_mtchem_2019_100231 crossref_primary_10_1016_j_scitotenv_2022_159091 crossref_primary_10_1002_wnan_1877 crossref_primary_10_1007_s12195_021_00686_9 crossref_primary_10_1039_C9TB01377F crossref_primary_10_1016_j_ijbiomac_2025_139921 crossref_primary_10_1039_D2NA00767C crossref_primary_10_1016_j_talanta_2024_127475 crossref_primary_10_1016_j_ijhydene_2020_04_046 crossref_primary_10_1002_jssc_202001159 crossref_primary_10_1021_acsami_4c09969 crossref_primary_10_1021_acssensors_2c02741 crossref_primary_10_1016_j_cej_2020_125873 crossref_primary_10_1002_mame_202300141 crossref_primary_10_1039_D3TB00427A crossref_primary_10_1002_app_55003 crossref_primary_10_1039_D3TA04707E crossref_primary_10_3390_chemistry5030137 crossref_primary_10_1016_j_mtbio_2022_100360 crossref_primary_10_1039_D4GC03991B crossref_primary_10_1016_j_cej_2021_129036 crossref_primary_10_1021_acsami_4c08609 crossref_primary_10_1039_D3SC04135B crossref_primary_10_1039_D4TC01099J crossref_primary_10_1016_j_snb_2023_135234 crossref_primary_10_1002_nano_202100258 crossref_primary_10_1016_j_micromeso_2024_113186 crossref_primary_10_1039_D1RA07089D crossref_primary_10_1093_rb_rbac019 crossref_primary_10_1002_anie_202314025 crossref_primary_10_1016_j_ijbiomac_2024_131562 crossref_primary_10_1021_acs_chemrev_0c01029 crossref_primary_10_3390_molecules27103240 crossref_primary_10_1038_s41467_022_34718_3 crossref_primary_10_1016_j_ajps_2024_100951 crossref_primary_10_1039_D2NR00040G crossref_primary_10_1021_acsami_2c10272 crossref_primary_10_1016_j_colsurfb_2021_112147 crossref_primary_10_1039_D1GC00241D crossref_primary_10_1002_cbic_202300114 crossref_primary_10_1063_5_0144695 crossref_primary_10_1016_j_colsurfa_2023_131877 crossref_primary_10_3390_gels9120923 crossref_primary_10_1002_slct_202003449 crossref_primary_10_1039_D1QM00784J crossref_primary_10_1021_acsami_2c04671 crossref_primary_10_1002_adhm_202404334 crossref_primary_10_1016_j_cej_2023_141869 crossref_primary_10_1039_D4SC05935B crossref_primary_10_1002_ange_202000678 crossref_primary_10_1021_acsami_2c12065 crossref_primary_10_1021_acs_nanolett_0c04053 crossref_primary_10_1039_D3NR05776C crossref_primary_10_1039_D3TB02620E crossref_primary_10_1016_j_seppur_2022_121225 crossref_primary_10_1016_j_addr_2021_02_005 crossref_primary_10_1002_adma_202203915 crossref_primary_10_1002_smll_202005064 crossref_primary_10_1002_adfm_202210406 crossref_primary_10_1016_j_actbio_2023_08_025 crossref_primary_10_1016_j_bios_2020_112604 crossref_primary_10_1039_D3TB02471G crossref_primary_10_1039_D0TB02709J crossref_primary_10_1007_s12598_021_01802_4 crossref_primary_10_1039_D1CC04782E crossref_primary_10_1016_j_cej_2024_149630 crossref_primary_10_1016_j_jhazmat_2022_129594 crossref_primary_10_1021_acs_langmuir_2c01630 crossref_primary_10_1021_acs_jpcc_1c03876 crossref_primary_10_1016_j_ijpharm_2020_119735 crossref_primary_10_1021_jacs_4c01483 crossref_primary_10_3390_polym13213773 crossref_primary_10_1002_ejic_202400511 crossref_primary_10_1021_acsbiomaterials_0c00564 crossref_primary_10_1002_jssc_202100849 crossref_primary_10_1039_C9CS00472F crossref_primary_10_1039_D4TB00768A crossref_primary_10_1039_D4TB01680G crossref_primary_10_1016_j_colsurfb_2021_111920 crossref_primary_10_1021_acsami_3c16971 crossref_primary_10_1002_smll_202307981 crossref_primary_10_1016_j_snb_2019_127110 crossref_primary_10_1039_C9CE01426H crossref_primary_10_1002_wnan_1735 crossref_primary_10_1021_acsami_3c14301 crossref_primary_10_1016_j_biomaterials_2019_119619 crossref_primary_10_3390_membranes13050480 crossref_primary_10_1002_smll_202007586 crossref_primary_10_1016_j_cej_2020_127511 crossref_primary_10_1039_D4GC05154H crossref_primary_10_1002_VIW_20210008 crossref_primary_10_1016_j_mtchem_2022_101298 crossref_primary_10_1039_C9SM01907C crossref_primary_10_1021_acsomega_3c09135 crossref_primary_10_1039_D2CE00073C crossref_primary_10_1186_s12951_025_03252_x crossref_primary_10_3390_nano13050842 crossref_primary_10_1002_adfm_202415854 crossref_primary_10_1039_D0NR06605B crossref_primary_10_1016_j_bioadv_2022_213269 crossref_primary_10_1039_D3NH00363A crossref_primary_10_1021_acsami_1c04785 crossref_primary_10_1039_D2TB00742H crossref_primary_10_1002_aesr_202400087 crossref_primary_10_1016_j_resconrec_2024_107890 crossref_primary_10_1016_j_mtsust_2023_100332 crossref_primary_10_1039_C9CC09358C crossref_primary_10_1039_D3TB03047D crossref_primary_10_1021_acsami_3c08818 crossref_primary_10_1002_admi_202300324 crossref_primary_10_1007_s10853_023_09214_8 crossref_primary_10_1016_j_jiec_2020_08_021 crossref_primary_10_1002_smll_202407051 crossref_primary_10_1016_j_xcrp_2022_101153 crossref_primary_10_1021_acsami_0c12985 crossref_primary_10_1002_advs_202406198 crossref_primary_10_1038_s41467_022_31651_3 crossref_primary_10_1039_D3NR03415A crossref_primary_10_1002_anie_202421192 crossref_primary_10_1021_acs_chemmater_0c04201 crossref_primary_10_1016_j_apsusc_2022_152815 crossref_primary_10_1016_j_catcom_2023_106810 crossref_primary_10_1039_C9SC05433B crossref_primary_10_1016_j_snb_2023_133479 crossref_primary_10_1039_D1QI01128F crossref_primary_10_1021_acs_chemmater_4c02489 crossref_primary_10_1016_j_colsurfa_2022_128447 crossref_primary_10_1021_acs_chemrev_3c00409 crossref_primary_10_1021_acsabm_4c01185 crossref_primary_10_1016_j_inoche_2022_110058 crossref_primary_10_1016_j_jddst_2022_103604 crossref_primary_10_1002_ange_202421192 crossref_primary_10_1016_j_msec_2020_111738 crossref_primary_10_1021_acsami_1c05657 crossref_primary_10_1021_acssensors_0c00853 crossref_primary_10_1021_acs_biomac_0c00920 crossref_primary_10_1016_j_colsurfa_2024_133955 crossref_primary_10_1002_adfm_202001648 crossref_primary_10_1093_nsr_nwaa268 crossref_primary_10_1039_D3SM01100C crossref_primary_10_1021_acs_chemmater_0c01518 crossref_primary_10_1039_D0TC00908C crossref_primary_10_3390_polym14224834 crossref_primary_10_1039_D3MA00389B crossref_primary_10_1002_smll_202404018 crossref_primary_10_1016_j_dyepig_2023_111419 crossref_primary_10_1016_j_ccr_2023_215572 crossref_primary_10_1002_anie_202000678 crossref_primary_10_1002_ppsc_202400039 crossref_primary_10_1016_j_colsurfb_2023_113311 crossref_primary_10_1039_D1CE01593A crossref_primary_10_1002_mabi_202400382 crossref_primary_10_1016_j_seppur_2024_129928 |
Cites_doi | 10.1002/anie.201710418 10.1002/chem.201405380 10.1039/C5MT00320B 10.1002/adhm.201800950 10.1039/C9NR01093A 10.1002/anie.201000048 10.1016/j.ccr.2015.08.008 10.1021/jacs.8b02089 10.1021/acsami.8b01369 10.1039/C7RA12969F 10.1038/s41598-017-13323-1 10.1002/adma.201707365 10.1002/adhm.201400755 10.1021/jacs.7b01451 10.1038/nmat2608 10.1038/s41563-018-0033-5 10.1039/c2ce26847g 10.1007/s00604-019-3416-7 10.1038/natrevmats.2017.45 10.1021/nl5026419 10.1039/C6CP03319A 10.1038/nature01650 10.1021/acscentsci.8b00677 10.1039/c0cc03288c 10.1021/acsnano.7b08056 10.1021/acsnano.8b03417 10.1007/978-1-59259-170-1 10.1007/978-3-0348-8127-2 10.1126/science.1230444 10.1038/ncomms8240 10.1039/C8RA03616K 10.1039/C5SC04368A 10.1073/pnas.0602439103 10.1021/jacs.5b11720 10.1039/C7DT04116K 10.1021/acssuschemeng.5b00290 10.1021/acsami.7b02803 10.1021/jacs.8b10302 10.1002/cctc.201701984 10.1039/C8MH01611A 10.1039/C5CC05136C 10.5012/bkcs.2009.30.10.2280 10.1021/jacs.7b01794 10.1021/acsami.6b09893 10.1021/la5012555 10.1021/acs.chemmater.7b04977 10.1016/j.apmt.2017.12.014 10.1039/c3cy00268c 10.1038/s41929-018-0117-2 10.1021/acsami.8b20504 10.1080/10610278.2019.1616089 10.1016/j.biomaterials.2006.01.017 10.1021/acs.accounts.7b00090 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2019 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2019 |
DBID | AAYXX CITATION 7U5 8FD L7M |
DOI | 10.1039/c9ce00757a |
DatabaseName | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Solid State and Superconductivity Abstracts |
DatabaseTitleList | CrossRef Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1466-8033 |
EndPage | 4544 |
ExternalDocumentID | 10_1039_C9CE00757A c9ce00757a |
GroupedDBID | -JG 0-7 0R~ 29F 5GY 6J9 705 70~ 7~J AAEMU AAIWI AAJAE AAMEH AANOJ AAWGC AAXHV AAXPP ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFO ACGFS ACLDK ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFVBQ AGEGJ AGKEF AGRSR AGSTE AHGCF ALMA_UNASSIGNED_HOLDINGS ANUXI APEMP ASKNT AUDPV AZFZN BLAPV BSQNT C6K CS3 E3Z EBS ECGLT EE0 EF- EJD GGIMP GNO H13 HZ~ H~N IDZ J3I N9A O9- OK1 P2P R7B RAOCF RCNCU RNS RPMJG RRA RRC RSCEA SKA SLH VH6 AAYXX AFRZK AKMSF CITATION R56 7U5 8FD L7M |
ID | FETCH-LOGICAL-c420t-57b21b27089c71f7cef9f49c91c34a5ee95f45138a9028c3d6af85fb303964ba3 |
ISSN | 1466-8033 |
IngestDate | Sun Jun 29 16:42:49 EDT 2025 Thu Apr 24 23:08:03 EDT 2025 Tue Jul 01 02:21:05 EDT 2025 Tue Dec 17 20:59:31 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 31 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c420t-57b21b27089c71f7cef9f49c91c34a5ee95f45138a9028c3d6af85fb303964ba3 |
Notes | Electronic supplementary information (ESI) available: Experimental details, additional figures and real-time AFM movie. See DOI 10.1039/c9ce00757a in situ ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-5935-0409 0000-0003-3027-6238 0000-0002-1338-4459 0000-0003-2520-2111 0000-0003-2822-0956 0000-0002-6827-4337 0000-0003-0672-3165 0000-0002-0296-9398 |
OpenAccessLink | https://pubs.rsc.org/en/content/articlepdf/2019/ce/c9ce00757a |
PQID | 2268937429 |
PQPubID | 2047491 |
PageCount | 7 |
ParticipantIDs | proquest_journals_2268937429 crossref_citationtrail_10_1039_C9CE00757A crossref_primary_10_1039_C9CE00757A rsc_primary_c9ce00757a |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-00-00 |
PublicationDateYYYYMMDD | 2019-01-01 |
PublicationDate_xml | – year: 2019 text: 2019-00-00 |
PublicationDecade | 2010 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | CrystEngComm |
PublicationYear | 2019 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Giménez-Marqués (C9CE00757A-(cit13)/*[position()=1]) 2016; 307 Park (C9CE00757A-(cit21)/*[position()=1]) 2006; 103 Astria (C9CE00757A-(cit20)/*[position()=1]) 2019; 6 Kida (C9CE00757A-(cit55)/*[position()=1]) 2013; 15 Furukawa (C9CE00757A-(cit3)/*[position()=1]) 2013; 341 McKinlay (C9CE00757A-(cit6)/*[position()=1]) 2010; 49 Li (C9CE00757A-(cit24)/*[position()=1]) 2018; 10 Jung (C9CE00757A-(cit53)/*[position()=1]) 2009; 30 Ruyra (C9CE00757A-(cit31)/*[position()=1]) 2015; 21 Freitas (C9CE00757A-(cit51)/*[position()=1]) 2016; 18 Luzuriaga (C9CE00757A-(cit33)/*[position()=1]) 2019; 0 Diercks (C9CE00757A-(cit2)/*[position()=1]) 2018; 4 Shu (C9CE00757A-(cit41)/*[position()=1]) 2018; 8 Zhao (C9CE00757A-(cit8)/*[position()=1]) 2019; 186 Liang (C9CE00757A-(cit28)/*[position()=1]) 2018; 30 Chen (C9CE00757A-(cit7)/*[position()=1]) 2018; 47 Liang (C9CE00757A-(cit16)/*[position()=1]) 2015; 6 Lyu (C9CE00757A-(cit18)/*[position()=1]) 2014; 14 Bellido (C9CE00757A-(cit30)/*[position()=1]) 2014; 30 Pitzalis (C9CE00757A-(cit27)/*[position()=1]) 2018; 10 Zheng (C9CE00757A-(cit22)/*[position()=1]) 2016; 138 Riccò (C9CE00757A-(cit25)/*[position()=1]) 2018; 12 Kokubo (C9CE00757A-(cit57)/*[position()=1]) 2007 Qin (C9CE00757A-(cit43)/*[position()=1]) 2013; 3 Trickett (C9CE00757A-(cit4)/*[position()=1]) 2017; 2 Chen (C9CE00757A-(cit23)/*[position()=1]) 2018; 12 Liang (C9CE00757A-(cit9)/*[position()=1]) 2019; 141 Nies (C9CE00757A-(cit54)/*[position()=1]) 2016; 8 Fasman (C9CE00757A-(cit34)/*[position()=1]) 1975; vol. 1 Chen (C9CE00757A-(cit49)/*[position()=1]) 2019; 11 Liang (C9CE00757A-(cit38)/*[position()=1]) 2018; 30 Jung (C9CE00757A-(cit42)/*[position()=1]) 2011; 47 Simon-Yarza (C9CE00757A-(cit10)/*[position()=1]) 2018; 30 Teplensky (C9CE00757A-(cit15)/*[position()=1]) 2017; 139 Wu (C9CE00757A-(cit45)/*[position()=1]) 2015; 51 Diercks (C9CE00757A-(cit5)/*[position()=1]) 2018; 17 Yin (C9CE00757A-(cit46)/*[position()=1]) 2016; 8 Kokubo (C9CE00757A-(cit56)/*[position()=1]) 2006; 27 Horcajada (C9CE00757A-(cit14)/*[position()=1]) 2010; 9 DeCoste (C9CE00757A-(cit52)/*[position()=1]) 2016; 7 Li (C9CE00757A-(cit32)/*[position()=1]) 2017; 7 Hoop (C9CE00757A-(cit50)/*[position()=1]) 2018; 11 Luzuriaga (C9CE00757A-(cit29)/*[position()=1]) 2019; 11 Chen (C9CE00757A-(cit11)/*[position()=1]) 2018; 140 Li (C9CE00757A-(cit40)/*[position()=1]) 2018; 8 Wang (C9CE00757A-(cit17)/*[position()=1]) 2018; 7 White (C9CE00757A-(cit37)/*[position()=1]) 2002 Yaghi (C9CE00757A-(cit1)/*[position()=1]) 2003; 423 Doonan (C9CE00757A-(cit12)/*[position()=1]) 2017; 50 Liao (C9CE00757A-(cit19)/*[position()=1]) 2017; 139 (C9CE00757A-(cit35)/*[position()=1]) 1998 Zhang (C9CE00757A-(cit47)/*[position()=1]) 2017; 9 Gupta (C9CE00757A-(cit36)/*[position()=1]) 2002 Cao (C9CE00757A-(cit44)/*[position()=1]) 2015; 3 Wang (C9CE00757A-(cit26)/*[position()=1]) 2017; 56 Chen (C9CE00757A-(cit48)/*[position()=1]) 2018; 1 Bellido (C9CE00757A-(cit39)/*[position()=1]) 2015; 4 |
References_xml | – issn: 1998 publication-title: Cell biology: a laboratory handbook – issn: 2002 publication-title: Methods for affinity-based separations of enzymes and proteins doi: Gupta – issn: 2002 publication-title: Proteins, Peptides, and Amino Acids SourceBook doi: White – issn: 1975 issue: vol. 1 publication-title: Handbook of biochemistry and molecular biology. Physical and Chemical Data doi: Fasman – issn: 2007 end-page: p 97109 publication-title: Handbook of Biomineralization doi: Kokubo Takadama – volume: 56 start-page: 16082 year: 2017 ident: C9CE00757A-(cit26)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201710418 – volume: 21 start-page: 2508 year: 2015 ident: C9CE00757A-(cit31)/*[position()=1] publication-title: Chem. – Eur. J. doi: 10.1002/chem.201405380 – volume: 8 start-page: 481 year: 2016 ident: C9CE00757A-(cit54)/*[position()=1] publication-title: Metallomics doi: 10.1039/C5MT00320B – volume-title: Cell biology: a laboratory handbook year: 1998 ident: C9CE00757A-(cit35)/*[position()=1] – volume: 7 start-page: 1800950 year: 2018 ident: C9CE00757A-(cit17)/*[position()=1] publication-title: Adv. Healthcare Mater. doi: 10.1002/adhm.201800950 – volume: 11 start-page: 5960 year: 2019 ident: C9CE00757A-(cit49)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C9NR01093A – volume-title: Handbook of Biomineralization year: 2007 ident: C9CE00757A-(cit57)/*[position()=1] – volume: 49 start-page: 6260 year: 2010 ident: C9CE00757A-(cit6)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201000048 – volume: 307 start-page: 342 year: 2016 ident: C9CE00757A-(cit13)/*[position()=1] publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2015.08.008 – volume: 140 start-page: 5678 year: 2018 ident: C9CE00757A-(cit11)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b02089 – volume: 10 start-page: 18161 year: 2018 ident: C9CE00757A-(cit24)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b01369 – volume: 8 start-page: 6581 year: 2018 ident: C9CE00757A-(cit41)/*[position()=1] publication-title: RSC Adv. doi: 10.1039/C7RA12969F – volume: 7 start-page: 13142 year: 2017 ident: C9CE00757A-(cit32)/*[position()=1] publication-title: Sci. Rep. doi: 10.1038/s41598-017-13323-1 – volume: 30 start-page: 1707365 year: 2018 ident: C9CE00757A-(cit10)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201707365 – volume: 4 start-page: 1246 year: 2015 ident: C9CE00757A-(cit39)/*[position()=1] publication-title: Adv. Healthcare Mater. doi: 10.1002/adhm.201400755 – volume: 139 start-page: 7522 year: 2017 ident: C9CE00757A-(cit15)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b01451 – volume: vol. 1 volume-title: Handbook of biochemistry and molecular biology. Physical and Chemical Data year: 1975 ident: C9CE00757A-(cit34)/*[position()=1] – volume: 9 start-page: 172 year: 2010 ident: C9CE00757A-(cit14)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/nmat2608 – volume: 17 start-page: 301 year: 2018 ident: C9CE00757A-(cit5)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/s41563-018-0033-5 – volume: 15 start-page: 1794 year: 2013 ident: C9CE00757A-(cit55)/*[position()=1] publication-title: CrystEngComm doi: 10.1039/c2ce26847g – volume: 186 start-page: 295 year: 2019 ident: C9CE00757A-(cit8)/*[position()=1] publication-title: Microchim. Acta doi: 10.1007/s00604-019-3416-7 – volume: 2 start-page: 17045 year: 2017 ident: C9CE00757A-(cit4)/*[position()=1] publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2017.45 – volume: 14 start-page: 5761 year: 2014 ident: C9CE00757A-(cit18)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl5026419 – volume: 18 start-page: 26885 year: 2016 ident: C9CE00757A-(cit51)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C6CP03319A – volume: 423 start-page: 705 year: 2003 ident: C9CE00757A-(cit1)/*[position()=1] publication-title: Nature doi: 10.1038/nature01650 – volume: 4 start-page: 1457 year: 2018 ident: C9CE00757A-(cit2)/*[position()=1] publication-title: ACS Cent. Sci. doi: 10.1021/acscentsci.8b00677 – volume: 47 start-page: 2904 year: 2011 ident: C9CE00757A-(cit42)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/c0cc03288c – volume: 12 start-page: 13 year: 2018 ident: C9CE00757A-(cit25)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.7b08056 – volume: 12 start-page: 7538 year: 2018 ident: C9CE00757A-(cit23)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.8b03417 – volume-title: Proteins, Peptides, and Amino Acids SourceBook year: 2002 ident: C9CE00757A-(cit37)/*[position()=1] doi: 10.1007/978-1-59259-170-1 – volume-title: Methods for affinity-based separations of enzymes and proteins year: 2002 ident: C9CE00757A-(cit36)/*[position()=1] doi: 10.1007/978-3-0348-8127-2 – volume: 341 start-page: 1230444 year: 2013 ident: C9CE00757A-(cit3)/*[position()=1] publication-title: Science doi: 10.1126/science.1230444 – volume: 6 start-page: 7240 year: 2015 ident: C9CE00757A-(cit16)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms8240 – volume: 8 start-page: 23623 year: 2018 ident: C9CE00757A-(cit40)/*[position()=1] publication-title: RSC Adv. doi: 10.1039/C8RA03616K – volume: 7 start-page: 2711 year: 2016 ident: C9CE00757A-(cit52)/*[position()=1] publication-title: Chem. Sci. doi: 10.1039/C5SC04368A – volume: 103 start-page: 10186 year: 2006 ident: C9CE00757A-(cit21)/*[position()=1] publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0602439103 – volume: 138 start-page: 962 year: 2016 ident: C9CE00757A-(cit22)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b11720 – volume: 47 start-page: 2114 year: 2018 ident: C9CE00757A-(cit7)/*[position()=1] publication-title: Dalton Trans. doi: 10.1039/C7DT04116K – volume: 3 start-page: 1589 year: 2015 ident: C9CE00757A-(cit44)/*[position()=1] publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.5b00290 – volume: 9 start-page: 13831 year: 2017 ident: C9CE00757A-(cit47)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b02803 – volume: 141 start-page: 2348 year: 2019 ident: C9CE00757A-(cit9)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b10302 – volume: 10 start-page: 1578 year: 2018 ident: C9CE00757A-(cit27)/*[position()=1] publication-title: ChemCatChem doi: 10.1002/cctc.201701984 – volume: 6 start-page: 969 year: 2019 ident: C9CE00757A-(cit20)/*[position()=1] publication-title: Mater. Horiz. doi: 10.1039/C8MH01611A – volume: 51 start-page: 13408 year: 2015 ident: C9CE00757A-(cit45)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C5CC05136C – volume: 30 start-page: 2280 year: 2009 ident: C9CE00757A-(cit53)/*[position()=1] publication-title: Bull. Korean Chem. Soc. doi: 10.5012/bkcs.2009.30.10.2280 – volume: 139 start-page: 6530 year: 2017 ident: C9CE00757A-(cit19)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b01794 – volume: 8 start-page: 29052 year: 2016 ident: C9CE00757A-(cit46)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b09893 – volume: 30 start-page: 5911 year: 2014 ident: C9CE00757A-(cit30)/*[position()=1] publication-title: Langmuir doi: 10.1021/la5012555 – volume: 30 start-page: 1069 year: 2018 ident: C9CE00757A-(cit28)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.7b04977 – volume: 11 start-page: 13 year: 2018 ident: C9CE00757A-(cit50)/*[position()=1] publication-title: Appl. Mater. Today doi: 10.1016/j.apmt.2017.12.014 – volume: 3 start-page: 2761 year: 2013 ident: C9CE00757A-(cit43)/*[position()=1] publication-title: Catal. Sci. Technol. doi: 10.1039/c3cy00268c – volume: 1 start-page: 689 year: 2018 ident: C9CE00757A-(cit48)/*[position()=1] publication-title: Nat. Catal. doi: 10.1038/s41929-018-0117-2 – volume: 11 start-page: 9740 year: 2019 ident: C9CE00757A-(cit29)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b20504 – volume: 30 start-page: 1069 year: 2018 ident: C9CE00757A-(cit38)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.7b04977 – volume: 0 start-page: 1 year: 2019 ident: C9CE00757A-(cit33)/*[position()=1] publication-title: Supramol. Chem. doi: 10.1080/10610278.2019.1616089 – volume: 27 start-page: 2907 year: 2006 ident: C9CE00757A-(cit56)/*[position()=1] publication-title: Biomaterials doi: 10.1016/j.biomaterials.2006.01.017 – volume: 50 start-page: 1423 year: 2017 ident: C9CE00757A-(cit12)/*[position()=1] publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.7b00090 |
SSID | ssj0014110 |
Score | 2.6242785 |
Snippet | Understanding the stability of zeolitic imidazolate framework-8 (ZIF-8) under physiological conditions is critical in biotechnology and biomedicine for... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 4538 |
SubjectTerms | Atomic force microscopy Buffer solutions Drug delivery systems Metal-organic frameworks NMR Nuclear magnetic resonance Organic chemistry Small angle X ray scattering X ray powder diffraction Zeolites |
Title | Degradation of ZIF-8 in phosphate buffered saline media |
URI | https://www.proquest.com/docview/2268937429 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb5swFLbS9LIdpv2qlq2bkLbLhMgA24CPFUuVVu0OUzpVu0Rg7DZSClEgh_Wv3_MPnGzNodsFgYNR8Pt4_p7t9xmhT6zEuBIZDkRK04CITMInpUbEYomVPB0Licp3vvyWTK_I-TW9HgxWO6uWNl055vd780r-x6pQBnZVWbL_YFn3UCiAc7AvHMHCcHyUjb8qpYfKkb6fZ_Cn9LLw26Zd3QKL9MuN3v-k8ttC80mdKLJLSPP1r7ab1DcqUaRv_B9iqefPoxY6jftgKta1ue7Hmy8X8HJ3fiX887GbsVlwroddvxdSFmLpAJMXaif5pmfJ4Jd40_92sbhbNaba6dif2UQrOwhhnZzxmCRRisZGzWIs9pRZN2sSoS2crOc3TpNQI_BiO2BCjSLkA-ceYqWNmrN8oohO6uRRtwraf_Vsbr2hnmnHbL6te4AOYwgs4iE6PJnMzi7czBOJjIJF_wq9pC1mX7a1_yQx28jkYN1vG6Ppyew5embjCu_EgOQFGoj6JXq6ozb5CqU7cPEa6Wm4eIvac3Dxerh4Bi6ehstrdHU6meXTwO6bEXASh11A0zKOyjgNM8bTSKZcSCYJ4yzimBRUCEYloRHOCiXdw3GVFDKjsgQ2wxJSFvgIDeumFm-QJ6skFIRA2FlQIoiE6JNVIk3CTCQSqM0Ife4bYs6tqLza22Q5f9jkI_TR3bsyUip77zru23NuP7V2DjGC4tXAnUboCNrY1eeMC12vePuop79DTxR8zRjaMRp26414D6yyKz9YIPwGk2VwHg |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Degradation+of+ZIF-8+in+phosphate+buffered+saline+media&rft.jtitle=CrystEngComm&rft.au=Vel%C3%A1squez-Hern%C3%A1ndez%2C+Miriam+de+J.&rft.au=Ricco%2C+Raffaele&rft.au=Carraro%2C+Francesco&rft.au=Limpoco%2C+F.+Ted&rft.date=2019&rft.issn=1466-8033&rft.eissn=1466-8033&rft.volume=21&rft.issue=31&rft.spage=4538&rft.epage=4544&rft_id=info:doi/10.1039%2FC9CE00757A&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_C9CE00757A |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1466-8033&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1466-8033&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1466-8033&client=summon |