A Systematic Approach for MRI Brain Tumor Localization and Segmentation Using Deep Learning and Active Contouring
One of the main requirements of tumor extraction is the annotation and segmentation of tumor boundaries correctly. For this purpose, we present a threefold deep learning architecture. First, classifiers are implemented with a deep convolutional neural network (CNN) and second a region-based convolut...
Saved in:
Published in | Journal of healthcare engineering Vol. 2021; pp. 1 - 13 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
Hindawi
2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | One of the main requirements of tumor extraction is the annotation and segmentation of tumor boundaries correctly. For this purpose, we present a threefold deep learning architecture. First, classifiers are implemented with a deep convolutional neural network (CNN) and second a region-based convolutional neural network (R-CNN) is performed on the classified images to localize the tumor regions of interest. As the third and final stage, the concentrated tumor boundary is contoured for the segmentation process by using the Chan–Vese segmentation algorithm. As the typical edge detection algorithms based on gradients of pixel intensity tend to fail in the medical image segmentation process, an active contour algorithm defined with the level set function is proposed. Specifically, the Chan–Vese algorithm was applied to detect the tumor boundaries for the segmentation process. To evaluate the performance of the overall system, Dice Score, Rand Index (RI), Variation of Information (VOI), Global Consistency Error (GCE), Boundary Displacement Error (BDE), Mean Absolute Error (MAE), and Peak Signal to Noise Ratio (PSNR) were calculated by comparing the segmented boundary area which is the final output of the proposed, against the demarcations of the subject specialists which is the gold standard. Overall performance of the proposed architecture for both glioma and meningioma segmentation is with an average Dice Score of 0.92 (also, with RI of 0.9936, VOI of 0.0301, GCE of 0.004, BDE of 2.099, PSNR of 77.076, and MAE of 52.946), pointing to the high reliability of the proposed architecture. |
---|---|
AbstractList | One of the main requirements of tumor extraction is the annotation and segmentation of tumor boundaries correctly. For this purpose, we present a threefold deep learning architecture. First, classifiers are implemented with a deep convolutional neural network (CNN) and second a region-based convolutional neural network (R-CNN) is performed on the classified images to localize the tumor regions of interest. As the third and final stage, the concentrated tumor boundary is contoured for the segmentation process by using the Chan-Vese segmentation algorithm. As the typical edge detection algorithms based on gradients of pixel intensity tend to fail in the medical image segmentation process, an active contour algorithm defined with the level set function is proposed. Specifically, the Chan-Vese algorithm was applied to detect the tumor boundaries for the segmentation process. To evaluate the performance of the overall system, Dice Score, Rand Index (RI), Variation of Information (VOI), Global Consistency Error (GCE), Boundary Displacement Error (BDE), Mean Absolute Error (MAE), and Peak Signal to Noise Ratio (PSNR) were calculated by comparing the segmented boundary area which is the final output of the proposed, against the demarcations of the subject specialists which is the gold standard. Overall performance of the proposed architecture for both glioma and meningioma segmentation is with an average Dice Score of 0.92 (also, with RI of 0.9936, VOI of 0.0301, GCE of 0.004, BDE of 2.099, PSNR of 77.076, and MAE of 52.946), pointing to the high reliability of the proposed architecture. One of the main requirements of tumor extraction is the annotation and segmentation of tumor boundaries correctly. For this purpose, we present a threefold deep learning architecture. First, classifiers are implemented with a deep convolutional neural network (CNN) and second a region-based convolutional neural network (R-CNN) is performed on the classified images to localize the tumor regions of interest. As the third and final stage, the concentrated tumor boundary is contoured for the segmentation process by using the Chan-Vese segmentation algorithm. As the typical edge detection algorithms based on gradients of pixel intensity tend to fail in the medical image segmentation process, an active contour algorithm defined with the level set function is proposed. Specifically, the Chan-Vese algorithm was applied to detect the tumor boundaries for the segmentation process. To evaluate the performance of the overall system, Dice Score, Rand Index (RI), Variation of Information (VOI), Global Consistency Error (GCE), Boundary Displacement Error (BDE), Mean Absolute Error (MAE), and Peak Signal to Noise Ratio (PSNR) were calculated by comparing the segmented boundary area which is the final output of the proposed, against the demarcations of the subject specialists which is the gold standard. Overall performance of the proposed architecture for both glioma and meningioma segmentation is with an average Dice Score of 0.92 (also, with RI of 0.9936, VOI of 0.0301, GCE of 0.004, BDE of 2.099, PSNR of 77.076, and MAE of 52.946), pointing to the high reliability of the proposed architecture.One of the main requirements of tumor extraction is the annotation and segmentation of tumor boundaries correctly. For this purpose, we present a threefold deep learning architecture. First, classifiers are implemented with a deep convolutional neural network (CNN) and second a region-based convolutional neural network (R-CNN) is performed on the classified images to localize the tumor regions of interest. As the third and final stage, the concentrated tumor boundary is contoured for the segmentation process by using the Chan-Vese segmentation algorithm. As the typical edge detection algorithms based on gradients of pixel intensity tend to fail in the medical image segmentation process, an active contour algorithm defined with the level set function is proposed. Specifically, the Chan-Vese algorithm was applied to detect the tumor boundaries for the segmentation process. To evaluate the performance of the overall system, Dice Score, Rand Index (RI), Variation of Information (VOI), Global Consistency Error (GCE), Boundary Displacement Error (BDE), Mean Absolute Error (MAE), and Peak Signal to Noise Ratio (PSNR) were calculated by comparing the segmented boundary area which is the final output of the proposed, against the demarcations of the subject specialists which is the gold standard. Overall performance of the proposed architecture for both glioma and meningioma segmentation is with an average Dice Score of 0.92 (also, with RI of 0.9936, VOI of 0.0301, GCE of 0.004, BDE of 2.099, PSNR of 77.076, and MAE of 52.946), pointing to the high reliability of the proposed architecture. |
Author | Dissanayake, Maheshi B. Kaldera, H. N. T. K. Gunasekara, Shanaka Ramesh |
AuthorAffiliation | Department of Electrical and Electronic Engineering, Faculty of Engineering, University of Peradeniya, Kandy 20400, Sri Lanka |
AuthorAffiliation_xml | – name: Department of Electrical and Electronic Engineering, Faculty of Engineering, University of Peradeniya, Kandy 20400, Sri Lanka |
Author_xml | – sequence: 1 givenname: Shanaka Ramesh orcidid: 0000-0002-5827-4878 surname: Gunasekara fullname: Gunasekara, Shanaka Ramesh organization: Department of Electrical and Electronic EngineeringFaculty of EngineeringUniversity of PeradeniyaKandy 20400Sri Lankapdn.ac.lk – sequence: 2 givenname: H. N. T. K. orcidid: 0000-0003-3404-8427 surname: Kaldera fullname: Kaldera, H. N. T. K. organization: Department of Electrical and Electronic EngineeringFaculty of EngineeringUniversity of PeradeniyaKandy 20400Sri Lankapdn.ac.lk – sequence: 3 givenname: Maheshi B. orcidid: 0000-0001-5209-5441 surname: Dissanayake fullname: Dissanayake, Maheshi B. organization: Department of Electrical and Electronic EngineeringFaculty of EngineeringUniversity of PeradeniyaKandy 20400Sri Lankapdn.ac.lk |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33777346$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU1P3DAQhi0EAkq5cUY-IrUL_ozjC9J2y5e0qFKBs-V1nF2jxA52QkV_fb3KgtpK4Is942fmfTXzCWz74C0ARxidYsz5GUEEnxWF5BiVW2CfIIYmhCK5_fomku-Bw5QeUT5UUobpLtijVAhBWbEPnqbw7iX1ttW9M3DadTFos4J1iPD25w38FrXz8H5oczwPRjfudwaDh9pX8M4uW-v7MfGQnF_C79Z2cG519OtoDU1N754tnAXfhyHm7GewU-sm2cPNfQAeLi_uZ9eT-Y-rm9l0PjGMoH7CETfCllxgwhjBtaW6whUlhaQLWmpaGs61xEIUlNFaS8QJKxeCy4wagTk9AOdj325YtLYy2WnUjeqia3V8UUE79e-Pdyu1DM9KSFZySnKDk02DGJ4Gm3rVumRs02hvw5AU4ajILlnBMnr8t9abyOucM_B1BEwMKUVbvyEYqfUm1XqTarPJjJP_cOPGOWenrnmv6MtYtHK-0r_cxxJ_AJe0rFA |
CitedBy_id | crossref_primary_10_3390_app14052210 crossref_primary_10_1109_JBHI_2024_3440171 crossref_primary_10_1007_s11682_021_00598_2 crossref_primary_10_1080_0954898X_2023_2275720 crossref_primary_10_3390_jmmp9030102 crossref_primary_10_1016_j_compbiomed_2024_109418 crossref_primary_10_3390_diagnostics11050744 crossref_primary_10_1007_s11760_023_02849_9 crossref_primary_10_1007_s11082_023_05760_2 crossref_primary_10_1007_s00521_022_07934_7 crossref_primary_10_1117_1_JEI_32_6_062502 crossref_primary_10_1016_j_eswa_2021_116105 crossref_primary_10_3390_diagnostics12112791 crossref_primary_10_1016_j_csbj_2022_08_039 crossref_primary_10_1016_j_eij_2024_100577 crossref_primary_10_1007_s00521_023_08281_x crossref_primary_10_1016_j_mlwa_2021_100212 crossref_primary_10_1007_s11042_023_15781_4 crossref_primary_10_1186_s12859_022_04794_9 crossref_primary_10_1142_S0218126622502450 crossref_primary_10_1016_j_comnet_2022_109041 crossref_primary_10_1016_j_ibmed_2024_100168 crossref_primary_10_1080_13682199_2023_2166805 crossref_primary_10_1007_s11760_023_02565_4 crossref_primary_10_1109_ACCESS_2023_3294562 crossref_primary_10_1038_s41598_024_81648_9 crossref_primary_10_1002_ima_23056 crossref_primary_10_4018_IJSWIS_365910 crossref_primary_10_1016_j_ijscr_2023_108818 crossref_primary_10_1007_s11042_025_20706_4 crossref_primary_10_3390_cancers15164172 crossref_primary_10_1002_mp_15854 crossref_primary_10_1166_jmihi_2022_3942 crossref_primary_10_1016_j_bspc_2023_104834 crossref_primary_10_1155_2021_1822776 crossref_primary_10_1016_j_neucom_2024_128058 crossref_primary_10_1109_JBHI_2024_3353272 crossref_primary_10_1109_ACCESS_2023_3240443 crossref_primary_10_3390_brainsci11081055 crossref_primary_10_1177_11795972251321684 crossref_primary_10_1007_s12021_024_09704_3 |
Cites_doi | 10.1016/j.phpro.2012.05.143 10.2307/2529310 10.1006/jvci.1999.0442 10.1016/j.patcog.2009.08.002 10.3390/app10061999 10.1007/bf00133570 10.1007/s11548-016-1483-3 10.1007/978-3-319-60964-5_44 10.1109/access.2020.2978629 10.1016/j.bbe.2018.10.004 10.3390/brainsci10020118 10.1109/83.902291 10.1016/j.procs.2016.09.407 10.1117/1.jmi.6.3.034002 10.17485/ijst/2014/v7i1.5 10.1007/s00062-020-00884-4 10.1109/access.2019.2892455 10.3390/app8122393 10.5201/ipol.2012.g-cv 10.1080/21681163.2020.1818628 10.30534/ijatcse/2019/155862019 10.1002/cpa.3160420503 10.1155/2020/9258649 10.12746/swrccc.v5i19.391 10.1007/s00330-018-5595-8 10.1109/access.2017.2788044 10.1186/s12880-015-0068-x 10.1016/j.cmpb.2018.01.003 10.1371/journal.pone.0140381 10.1155/2018/4940593 10.1016/j.neucom.2017.12.032 |
ContentType | Journal Article |
Copyright | Copyright © 2021 Shanaka Ramesh Gunasekara et al. Copyright © 2021 Shanaka Ramesh Gunasekara et al. 2021 |
Copyright_xml | – notice: Copyright © 2021 Shanaka Ramesh Gunasekara et al. – notice: Copyright © 2021 Shanaka Ramesh Gunasekara et al. 2021 |
DBID | RHU RHW RHX AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1155/2021/6695108 |
DatabaseName | Hindawi Publishing Complete Hindawi Publishing Subscription Journals Hindawi Publishing Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: RHX name: Hindawi Publishing Open Access url: http://www.hindawi.com/journals/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2040-2309 |
Editor | Yao, Y.-h. |
Editor_xml | – sequence: 1 givenname: Y.-h. surname: Yao fullname: Yao, Y.-h. |
EndPage | 13 |
ExternalDocumentID | PMC7948532 33777346 10_1155_2021_6695108 |
Genre | Journal Article |
GroupedDBID | 4.4 53G 5VS AAFWJ AAJEY ADBBV ADRAZ AENEX ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV EBD EBS EMOBN GROUPED_DOAJ HYE IAO IEA IHR INH INR ITC KQ8 M48 MET MV1 OK1 P2P RHU RHW RHX RPM SV3 0R~ 24P AAYXX ACCMX CITATION H13 PGMZT CGR CUY CVF ECM EIF EJD IPNFZ NPM RIG 7X8 AAMMB AEFGJ AGXDD AIDQK AIDYY 5PM |
ID | FETCH-LOGICAL-c420t-505c7e857124421fe3ad1d32693b38a38c55a91776343fa905248b7591fec7153 |
IEDL.DBID | M48 |
ISSN | 2040-2295 2040-2309 |
IngestDate | Thu Aug 21 13:33:18 EDT 2025 Fri Jul 11 15:39:04 EDT 2025 Wed Feb 19 02:26:39 EST 2025 Tue Jul 01 03:10:19 EDT 2025 Thu Apr 24 23:12:13 EDT 2025 Sun Jun 02 19:17:45 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. https://creativecommons.org/licenses/by/4.0 Copyright © 2021 Shanaka Ramesh Gunasekara et al. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c420t-505c7e857124421fe3ad1d32693b38a38c55a91776343fa905248b7591fec7153 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Academic Editor: Y.-h. Yao |
ORCID | 0000-0003-3404-8427 0000-0001-5209-5441 0000-0002-5827-4878 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1155/2021/6695108 |
PMID | 33777346 |
PQID | 2506505464 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7948532 proquest_miscellaneous_2506505464 pubmed_primary_33777346 crossref_primary_10_1155_2021_6695108 crossref_citationtrail_10_1155_2021_6695108 hindawi_primary_10_1155_2021_6695108 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-00-00 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – year: 2021 text: 2021-00-00 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Journal of healthcare engineering |
PublicationTitleAlternate | J Healthc Eng |
PublicationYear | 2021 |
Publisher | Hindawi |
Publisher_xml | – name: Hindawi |
References | 44 46 25 S. Khan (3) 26 Z. Sobhaninia (37) V. G. Narendra (28) 2011; 4 29 L. Lhotska (36) 2018 Z. Sobhaninia (45) 2018 H. N. T. K. Kaldera (21) T. R. Shultz (24) 2017 R. C. Gonzalez (23) 2001 30 31 10 32 11 33 12 34 13 35 14 15 16 38 17 39 18 19 H. N. T. K. Kaldera (22) C. G. Madamombe (9) 2018; 7 1 2 4 5 6 7 8 S. Ren (27) 2015 40 41 20 42 43 |
References_xml | – year: 2015 ident: 27 article-title: Faster R-CNN: towards real-time object detection with region proposal networks – ident: 32 doi: 10.1016/j.phpro.2012.05.143 – ident: 40 doi: 10.2307/2529310 – start-page: 11 ident: 37 article-title: Brain tumor segmentation by cascaded deep neural networks using multiple image scales – volume-title: Digital Image Processing year: 2001 ident: 23 – ident: 26 doi: 10.1006/jvci.1999.0442 – ident: 30 doi: 10.1016/j.patcog.2009.08.002 – volume-title: World Congress on Medical Physics and Biomedical Engineering 2018 year: 2018 ident: 36 – ident: 16 doi: 10.3390/app10061999 – ident: 29 doi: 10.1007/bf00133570 – volume: 7 start-page: 109 issue: 4 year: 2018 ident: 9 article-title: Deep learning techniques to classify and analyze medical imaging data publication-title: International Journal of Computational Science and Engineering – ident: 12 doi: 10.1007/s11548-016-1483-3 – ident: 11 doi: 10.1007/978-3-319-60964-5_44 – ident: 17 doi: 10.1109/access.2020.2978629 – ident: 1 doi: 10.1016/j.bbe.2018.10.004 – ident: 4 doi: 10.3390/brainsci10020118 – ident: 34 doi: 10.1109/83.902291 – start-page: 51 ident: 22 article-title: MRI based Glioma segmentation using Deep Learning algorithms – ident: 7 doi: 10.1016/j.procs.2016.09.407 – ident: 8 doi: 10.1117/1.jmi.6.3.034002 – ident: 38 doi: 10.17485/ijst/2014/v7i1.5 – ident: 44 doi: 10.1007/s00062-020-00884-4 – ident: 15 doi: 10.1109/access.2019.2892455 – ident: 31 doi: 10.3390/app8122393 – ident: 5 – ident: 33 doi: 10.5201/ipol.2012.g-cv – ident: 18 doi: 10.1080/21681163.2020.1818628 – ident: 19 doi: 10.30534/ijatcse/2019/155862019 – volume: 4 issue: 2 year: 2011 ident: 28 article-title: Study and comparison of various image edge detection techniques used in quality inspection and evaluation of agricultural and food products by computer vision publication-title: International Journal of Agricultural and Biological Engineering – ident: 35 doi: 10.1002/cpa.3160420503 – ident: 13 – ident: 20 doi: 10.1155/2020/9258649 – ident: 25 doi: 10.12746/swrccc.v5i19.391 – ident: 43 doi: 10.1007/s00330-018-5595-8 – ident: 2 doi: 10.1109/access.2017.2788044 – ident: 39 doi: 10.1186/s12880-015-0068-x – ident: 10 doi: 10.1016/j.cmpb.2018.01.003 – year: 2018 ident: 45 article-title: Brain Tumor segmentation using deep learning by type specific sorting of images – ident: 14 doi: 10.1371/journal.pone.0140381 – ident: 21 article-title: Brain tumor classification and segmentation using faster R-CNN – volume-title: Encyclopedia of Machine Learning and Data Mining year: 2017 ident: 24 article-title: Clustering – ident: 42 doi: 10.1155/2018/4940593 – ident: 6 – ident: 46 – start-page: 1661 ident: 3 article-title: A deep learning architecture for classifying medical images of anatomy object – ident: 41 doi: 10.1016/j.neucom.2017.12.032 |
SSID | ssj0000393413 |
Score | 2.4645853 |
Snippet | One of the main requirements of tumor extraction is the annotation and segmentation of tumor boundaries correctly. For this purpose, we present a threefold... |
SourceID | pubmedcentral proquest pubmed crossref hindawi |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1 |
SubjectTerms | Algorithms Brain Neoplasms - diagnostic imaging Deep Learning Humans Image Processing, Computer-Assisted - methods Magnetic Resonance Imaging - methods Reproducibility of Results |
SummonAdditionalLinks | – databaseName: Hindawi Publishing Open Access dbid: RHX link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwEA86EPRB_HZ-EWE-SdE2SdM-1o8xxfngNthbSdtUB66bbsN_37ssK24q-hh6LaW_9O53Se53hNTcPM18P_cdBlzU4WmWOIErmZOFKnGZArdphOebj36jw--7omtFkkbft_Ah2mF67l74PlKBYJkswwTDpLzRLZdSsLyUm0bIHp6PwwbVsyPuC7fPBZ-VF8x6P3o_ccvFI5JfYk59g6xbskijKbqbZEkXW2Tti4TgNnmLaKsUY6aRVQinQEVp8-mOXmEHCNqe9GH8gGHLll1SVWS0pZ_7tvSooObsAL3Rekit5uqzMYqMQ6SoYjUwJY07pFO_bV83HNtGwUm5dzl2gOOkUgdCYij33FwzlbkZ0LaQJSxQLEiFUJC1gafhLFfhpfB4kEgRgmkqwSPukkoxKPQ-oYmbhDwPwblmOfAorpRGfbHAzTMv1JxVyfns-8ap1RjHVhevsck1hIgRjdiiUSVnpfVwqq3xi13NQvWH2ekMxxj-Edz4UIUeTEYx0DwgooL7vEr2priWT2JMSsm4XyVyDvHSAPW3568UvRejwy1RWYd5B_97vUOyisPp8s0RqYzfJ_oYCM04OTHT-RPK7Ouq priority: 102 providerName: Hindawi Publishing |
Title | A Systematic Approach for MRI Brain Tumor Localization and Segmentation Using Deep Learning and Active Contouring |
URI | https://dx.doi.org/10.1155/2021/6695108 https://www.ncbi.nlm.nih.gov/pubmed/33777346 https://www.proquest.com/docview/2506505464 https://pubmed.ncbi.nlm.nih.gov/PMC7948532 |
Volume | 2021 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS-RAEC58sDJ7EN87vmjBPS1Rk-5OJweR8cUozh7UgbmFTtJRYcz4mGHXf29VT2cYRRG8BEIqgXR1V32VVH8fwLZfZHkYFqHHEYt6IstTL_IV9_JYpz7XGDYt8Xzrb9hsi_OO7ExApTbqBvD5w9KO9KTaT92d_48vB7jg9-2Cl5Lqd383DAkrRJMwjTlJkZZBywF9G5N5TOGalOaohY40rKsu-HcPqMEM50opTpB4LFX9uKUa-d_dR0j0fUPlWIY6nYNZBy1ZYzgX5mHClAvwc4xwcBEeG-xqRN3MGo5PnCFwZa3LM3ZIehHsenCP5xeU5NwmTabLnF2Zm3u3UalkttOAHRvzwBxD6401atjwyYjzqmc3QC5B-_Tk-qjpOdEFLxPBXt9DRJQpE0lFiT_wC8N17ucI8mKe8kjzKJNSY42HcUnwQsd7MhBRqmSMppnC-LkMU2WvNL-ApX4aiyLGUJwXiLqE1obYyCK_yIPYCF6HP9X4JpljJCdhjG5iKxMpE3JM4hxTh98j64chE8cndtvOVV-YbVV-THBF0W8SXZre4DlBUIiwVYpQ1GFl6NfRk6qpUQf1xuMjA2LrfnulvLu1rN2KeHh4sPrtO9egRi8w_P6zDlP9p4HZQETUTzftZMfjZbPzCo-PBiw |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Systematic+Approach+for+MRI+Brain+Tumor+Localization+and+Segmentation+Using+Deep+Learning+and+Active+Contouring&rft.jtitle=Journal+of+healthcare+engineering&rft.au=Gunasekara%2C+Shanaka+Ramesh&rft.au=Kaldera%2C+H.+N.+T.+K.&rft.au=Dissanayake%2C+Maheshi+B.&rft.date=2021&rft.pub=Hindawi&rft.issn=2040-2295&rft.eissn=2040-2309&rft.volume=2021&rft_id=info:doi/10.1155%2F2021%2F6695108&rft_id=info%3Apmid%2F33777346&rft.externalDocID=PMC7948532 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2040-2295&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2040-2295&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2040-2295&client=summon |