A Systematic Approach for MRI Brain Tumor Localization and Segmentation Using Deep Learning and Active Contouring

One of the main requirements of tumor extraction is the annotation and segmentation of tumor boundaries correctly. For this purpose, we present a threefold deep learning architecture. First, classifiers are implemented with a deep convolutional neural network (CNN) and second a region-based convolut...

Full description

Saved in:
Bibliographic Details
Published inJournal of healthcare engineering Vol. 2021; pp. 1 - 13
Main Authors Gunasekara, Shanaka Ramesh, Kaldera, H. N. T. K., Dissanayake, Maheshi B.
Format Journal Article
LanguageEnglish
Published England Hindawi 2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract One of the main requirements of tumor extraction is the annotation and segmentation of tumor boundaries correctly. For this purpose, we present a threefold deep learning architecture. First, classifiers are implemented with a deep convolutional neural network (CNN) and second a region-based convolutional neural network (R-CNN) is performed on the classified images to localize the tumor regions of interest. As the third and final stage, the concentrated tumor boundary is contoured for the segmentation process by using the Chan–Vese segmentation algorithm. As the typical edge detection algorithms based on gradients of pixel intensity tend to fail in the medical image segmentation process, an active contour algorithm defined with the level set function is proposed. Specifically, the Chan–Vese algorithm was applied to detect the tumor boundaries for the segmentation process. To evaluate the performance of the overall system, Dice Score, Rand Index (RI), Variation of Information (VOI), Global Consistency Error (GCE), Boundary Displacement Error (BDE), Mean Absolute Error (MAE), and Peak Signal to Noise Ratio (PSNR) were calculated by comparing the segmented boundary area which is the final output of the proposed, against the demarcations of the subject specialists which is the gold standard. Overall performance of the proposed architecture for both glioma and meningioma segmentation is with an average Dice Score of 0.92 (also, with RI of 0.9936, VOI of 0.0301, GCE of 0.004, BDE of 2.099, PSNR of 77.076, and MAE of 52.946), pointing to the high reliability of the proposed architecture.
AbstractList One of the main requirements of tumor extraction is the annotation and segmentation of tumor boundaries correctly. For this purpose, we present a threefold deep learning architecture. First, classifiers are implemented with a deep convolutional neural network (CNN) and second a region-based convolutional neural network (R-CNN) is performed on the classified images to localize the tumor regions of interest. As the third and final stage, the concentrated tumor boundary is contoured for the segmentation process by using the Chan-Vese segmentation algorithm. As the typical edge detection algorithms based on gradients of pixel intensity tend to fail in the medical image segmentation process, an active contour algorithm defined with the level set function is proposed. Specifically, the Chan-Vese algorithm was applied to detect the tumor boundaries for the segmentation process. To evaluate the performance of the overall system, Dice Score, Rand Index (RI), Variation of Information (VOI), Global Consistency Error (GCE), Boundary Displacement Error (BDE), Mean Absolute Error (MAE), and Peak Signal to Noise Ratio (PSNR) were calculated by comparing the segmented boundary area which is the final output of the proposed, against the demarcations of the subject specialists which is the gold standard. Overall performance of the proposed architecture for both glioma and meningioma segmentation is with an average Dice Score of 0.92 (also, with RI of 0.9936, VOI of 0.0301, GCE of 0.004, BDE of 2.099, PSNR of 77.076, and MAE of 52.946), pointing to the high reliability of the proposed architecture.
One of the main requirements of tumor extraction is the annotation and segmentation of tumor boundaries correctly. For this purpose, we present a threefold deep learning architecture. First, classifiers are implemented with a deep convolutional neural network (CNN) and second a region-based convolutional neural network (R-CNN) is performed on the classified images to localize the tumor regions of interest. As the third and final stage, the concentrated tumor boundary is contoured for the segmentation process by using the Chan-Vese segmentation algorithm. As the typical edge detection algorithms based on gradients of pixel intensity tend to fail in the medical image segmentation process, an active contour algorithm defined with the level set function is proposed. Specifically, the Chan-Vese algorithm was applied to detect the tumor boundaries for the segmentation process. To evaluate the performance of the overall system, Dice Score, Rand Index (RI), Variation of Information (VOI), Global Consistency Error (GCE), Boundary Displacement Error (BDE), Mean Absolute Error (MAE), and Peak Signal to Noise Ratio (PSNR) were calculated by comparing the segmented boundary area which is the final output of the proposed, against the demarcations of the subject specialists which is the gold standard. Overall performance of the proposed architecture for both glioma and meningioma segmentation is with an average Dice Score of 0.92 (also, with RI of 0.9936, VOI of 0.0301, GCE of 0.004, BDE of 2.099, PSNR of 77.076, and MAE of 52.946), pointing to the high reliability of the proposed architecture.One of the main requirements of tumor extraction is the annotation and segmentation of tumor boundaries correctly. For this purpose, we present a threefold deep learning architecture. First, classifiers are implemented with a deep convolutional neural network (CNN) and second a region-based convolutional neural network (R-CNN) is performed on the classified images to localize the tumor regions of interest. As the third and final stage, the concentrated tumor boundary is contoured for the segmentation process by using the Chan-Vese segmentation algorithm. As the typical edge detection algorithms based on gradients of pixel intensity tend to fail in the medical image segmentation process, an active contour algorithm defined with the level set function is proposed. Specifically, the Chan-Vese algorithm was applied to detect the tumor boundaries for the segmentation process. To evaluate the performance of the overall system, Dice Score, Rand Index (RI), Variation of Information (VOI), Global Consistency Error (GCE), Boundary Displacement Error (BDE), Mean Absolute Error (MAE), and Peak Signal to Noise Ratio (PSNR) were calculated by comparing the segmented boundary area which is the final output of the proposed, against the demarcations of the subject specialists which is the gold standard. Overall performance of the proposed architecture for both glioma and meningioma segmentation is with an average Dice Score of 0.92 (also, with RI of 0.9936, VOI of 0.0301, GCE of 0.004, BDE of 2.099, PSNR of 77.076, and MAE of 52.946), pointing to the high reliability of the proposed architecture.
Author Dissanayake, Maheshi B.
Kaldera, H. N. T. K.
Gunasekara, Shanaka Ramesh
AuthorAffiliation Department of Electrical and Electronic Engineering, Faculty of Engineering, University of Peradeniya, Kandy 20400, Sri Lanka
AuthorAffiliation_xml – name: Department of Electrical and Electronic Engineering, Faculty of Engineering, University of Peradeniya, Kandy 20400, Sri Lanka
Author_xml – sequence: 1
  givenname: Shanaka Ramesh
  orcidid: 0000-0002-5827-4878
  surname: Gunasekara
  fullname: Gunasekara, Shanaka Ramesh
  organization: Department of Electrical and Electronic EngineeringFaculty of EngineeringUniversity of PeradeniyaKandy 20400Sri Lankapdn.ac.lk
– sequence: 2
  givenname: H. N. T. K.
  orcidid: 0000-0003-3404-8427
  surname: Kaldera
  fullname: Kaldera, H. N. T. K.
  organization: Department of Electrical and Electronic EngineeringFaculty of EngineeringUniversity of PeradeniyaKandy 20400Sri Lankapdn.ac.lk
– sequence: 3
  givenname: Maheshi B.
  orcidid: 0000-0001-5209-5441
  surname: Dissanayake
  fullname: Dissanayake, Maheshi B.
  organization: Department of Electrical and Electronic EngineeringFaculty of EngineeringUniversity of PeradeniyaKandy 20400Sri Lankapdn.ac.lk
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33777346$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1P3DAQhi0EAkq5cUY-IrUL_ozjC9J2y5e0qFKBs-V1nF2jxA52QkV_fb3KgtpK4Is942fmfTXzCWz74C0ARxidYsz5GUEEnxWF5BiVW2CfIIYmhCK5_fomku-Bw5QeUT5UUobpLtijVAhBWbEPnqbw7iX1ttW9M3DadTFos4J1iPD25w38FrXz8H5oczwPRjfudwaDh9pX8M4uW-v7MfGQnF_C79Z2cG519OtoDU1N754tnAXfhyHm7GewU-sm2cPNfQAeLi_uZ9eT-Y-rm9l0PjGMoH7CETfCllxgwhjBtaW6whUlhaQLWmpaGs61xEIUlNFaS8QJKxeCy4wagTk9AOdj325YtLYy2WnUjeqia3V8UUE79e-Pdyu1DM9KSFZySnKDk02DGJ4Gm3rVumRs02hvw5AU4ajILlnBMnr8t9abyOucM_B1BEwMKUVbvyEYqfUm1XqTarPJjJP_cOPGOWenrnmv6MtYtHK-0r_cxxJ_AJe0rFA
CitedBy_id crossref_primary_10_3390_app14052210
crossref_primary_10_1109_JBHI_2024_3440171
crossref_primary_10_1007_s11682_021_00598_2
crossref_primary_10_1080_0954898X_2023_2275720
crossref_primary_10_3390_jmmp9030102
crossref_primary_10_1016_j_compbiomed_2024_109418
crossref_primary_10_3390_diagnostics11050744
crossref_primary_10_1007_s11760_023_02849_9
crossref_primary_10_1007_s11082_023_05760_2
crossref_primary_10_1007_s00521_022_07934_7
crossref_primary_10_1117_1_JEI_32_6_062502
crossref_primary_10_1016_j_eswa_2021_116105
crossref_primary_10_3390_diagnostics12112791
crossref_primary_10_1016_j_csbj_2022_08_039
crossref_primary_10_1016_j_eij_2024_100577
crossref_primary_10_1007_s00521_023_08281_x
crossref_primary_10_1016_j_mlwa_2021_100212
crossref_primary_10_1007_s11042_023_15781_4
crossref_primary_10_1186_s12859_022_04794_9
crossref_primary_10_1142_S0218126622502450
crossref_primary_10_1016_j_comnet_2022_109041
crossref_primary_10_1016_j_ibmed_2024_100168
crossref_primary_10_1080_13682199_2023_2166805
crossref_primary_10_1007_s11760_023_02565_4
crossref_primary_10_1109_ACCESS_2023_3294562
crossref_primary_10_1038_s41598_024_81648_9
crossref_primary_10_1002_ima_23056
crossref_primary_10_4018_IJSWIS_365910
crossref_primary_10_1016_j_ijscr_2023_108818
crossref_primary_10_1007_s11042_025_20706_4
crossref_primary_10_3390_cancers15164172
crossref_primary_10_1002_mp_15854
crossref_primary_10_1166_jmihi_2022_3942
crossref_primary_10_1016_j_bspc_2023_104834
crossref_primary_10_1155_2021_1822776
crossref_primary_10_1016_j_neucom_2024_128058
crossref_primary_10_1109_JBHI_2024_3353272
crossref_primary_10_1109_ACCESS_2023_3240443
crossref_primary_10_3390_brainsci11081055
crossref_primary_10_1177_11795972251321684
crossref_primary_10_1007_s12021_024_09704_3
Cites_doi 10.1016/j.phpro.2012.05.143
10.2307/2529310
10.1006/jvci.1999.0442
10.1016/j.patcog.2009.08.002
10.3390/app10061999
10.1007/bf00133570
10.1007/s11548-016-1483-3
10.1007/978-3-319-60964-5_44
10.1109/access.2020.2978629
10.1016/j.bbe.2018.10.004
10.3390/brainsci10020118
10.1109/83.902291
10.1016/j.procs.2016.09.407
10.1117/1.jmi.6.3.034002
10.17485/ijst/2014/v7i1.5
10.1007/s00062-020-00884-4
10.1109/access.2019.2892455
10.3390/app8122393
10.5201/ipol.2012.g-cv
10.1080/21681163.2020.1818628
10.30534/ijatcse/2019/155862019
10.1002/cpa.3160420503
10.1155/2020/9258649
10.12746/swrccc.v5i19.391
10.1007/s00330-018-5595-8
10.1109/access.2017.2788044
10.1186/s12880-015-0068-x
10.1016/j.cmpb.2018.01.003
10.1371/journal.pone.0140381
10.1155/2018/4940593
10.1016/j.neucom.2017.12.032
ContentType Journal Article
Copyright Copyright © 2021 Shanaka Ramesh Gunasekara et al.
Copyright © 2021 Shanaka Ramesh Gunasekara et al. 2021
Copyright_xml – notice: Copyright © 2021 Shanaka Ramesh Gunasekara et al.
– notice: Copyright © 2021 Shanaka Ramesh Gunasekara et al. 2021
DBID RHU
RHW
RHX
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1155/2021/6695108
DatabaseName Hindawi Publishing Complete
Hindawi Publishing Subscription Journals
Hindawi Publishing Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

CrossRef

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: RHX
  name: Hindawi Publishing Open Access
  url: http://www.hindawi.com/journals/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2040-2309
Editor Yao, Y.-h.
Editor_xml – sequence: 1
  givenname: Y.-h.
  surname: Yao
  fullname: Yao, Y.-h.
EndPage 13
ExternalDocumentID PMC7948532
33777346
10_1155_2021_6695108
Genre Journal Article
GroupedDBID 4.4
53G
5VS
AAFWJ
AAJEY
ADBBV
ADRAZ
AENEX
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
EBD
EBS
EMOBN
GROUPED_DOAJ
HYE
IAO
IEA
IHR
INH
INR
ITC
KQ8
M48
MET
MV1
OK1
P2P
RHU
RHW
RHX
RPM
SV3
0R~
24P
AAYXX
ACCMX
CITATION
H13
PGMZT
CGR
CUY
CVF
ECM
EIF
EJD
IPNFZ
NPM
RIG
7X8
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
5PM
ID FETCH-LOGICAL-c420t-505c7e857124421fe3ad1d32693b38a38c55a91776343fa905248b7591fec7153
IEDL.DBID M48
ISSN 2040-2295
2040-2309
IngestDate Thu Aug 21 13:33:18 EDT 2025
Fri Jul 11 15:39:04 EDT 2025
Wed Feb 19 02:26:39 EST 2025
Tue Jul 01 03:10:19 EDT 2025
Thu Apr 24 23:12:13 EDT 2025
Sun Jun 02 19:17:45 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
https://creativecommons.org/licenses/by/4.0
Copyright © 2021 Shanaka Ramesh Gunasekara et al.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c420t-505c7e857124421fe3ad1d32693b38a38c55a91776343fa905248b7591fec7153
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Academic Editor: Y.-h. Yao
ORCID 0000-0003-3404-8427
0000-0001-5209-5441
0000-0002-5827-4878
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1155/2021/6695108
PMID 33777346
PQID 2506505464
PQPubID 23479
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7948532
proquest_miscellaneous_2506505464
pubmed_primary_33777346
crossref_primary_10_1155_2021_6695108
crossref_citationtrail_10_1155_2021_6695108
hindawi_primary_10_1155_2021_6695108
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-00-00
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 2021-00-00
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Journal of healthcare engineering
PublicationTitleAlternate J Healthc Eng
PublicationYear 2021
Publisher Hindawi
Publisher_xml – name: Hindawi
References 44
46
25
S. Khan (3)
26
Z. Sobhaninia (37)
V. G. Narendra (28) 2011; 4
29
L. Lhotska (36) 2018
Z. Sobhaninia (45) 2018
H. N. T. K. Kaldera (21)
T. R. Shultz (24) 2017
R. C. Gonzalez (23) 2001
30
31
10
32
11
33
12
34
13
35
14
15
16
38
17
39
18
19
H. N. T. K. Kaldera (22)
C. G. Madamombe (9) 2018; 7
1
2
4
5
6
7
8
S. Ren (27) 2015
40
41
20
42
43
References_xml – year: 2015
  ident: 27
  article-title: Faster R-CNN: towards real-time object detection with region proposal networks
– ident: 32
  doi: 10.1016/j.phpro.2012.05.143
– ident: 40
  doi: 10.2307/2529310
– start-page: 11
  ident: 37
  article-title: Brain tumor segmentation by cascaded deep neural networks using multiple image scales
– volume-title: Digital Image Processing
  year: 2001
  ident: 23
– ident: 26
  doi: 10.1006/jvci.1999.0442
– ident: 30
  doi: 10.1016/j.patcog.2009.08.002
– volume-title: World Congress on Medical Physics and Biomedical Engineering 2018
  year: 2018
  ident: 36
– ident: 16
  doi: 10.3390/app10061999
– ident: 29
  doi: 10.1007/bf00133570
– volume: 7
  start-page: 109
  issue: 4
  year: 2018
  ident: 9
  article-title: Deep learning techniques to classify and analyze medical imaging data
  publication-title: International Journal of Computational Science and Engineering
– ident: 12
  doi: 10.1007/s11548-016-1483-3
– ident: 11
  doi: 10.1007/978-3-319-60964-5_44
– ident: 17
  doi: 10.1109/access.2020.2978629
– ident: 1
  doi: 10.1016/j.bbe.2018.10.004
– ident: 4
  doi: 10.3390/brainsci10020118
– ident: 34
  doi: 10.1109/83.902291
– start-page: 51
  ident: 22
  article-title: MRI based Glioma segmentation using Deep Learning algorithms
– ident: 7
  doi: 10.1016/j.procs.2016.09.407
– ident: 8
  doi: 10.1117/1.jmi.6.3.034002
– ident: 38
  doi: 10.17485/ijst/2014/v7i1.5
– ident: 44
  doi: 10.1007/s00062-020-00884-4
– ident: 15
  doi: 10.1109/access.2019.2892455
– ident: 31
  doi: 10.3390/app8122393
– ident: 5
– ident: 33
  doi: 10.5201/ipol.2012.g-cv
– ident: 18
  doi: 10.1080/21681163.2020.1818628
– ident: 19
  doi: 10.30534/ijatcse/2019/155862019
– volume: 4
  issue: 2
  year: 2011
  ident: 28
  article-title: Study and comparison of various image edge detection techniques used in quality inspection and evaluation of agricultural and food products by computer vision
  publication-title: International Journal of Agricultural and Biological Engineering
– ident: 35
  doi: 10.1002/cpa.3160420503
– ident: 13
– ident: 20
  doi: 10.1155/2020/9258649
– ident: 25
  doi: 10.12746/swrccc.v5i19.391
– ident: 43
  doi: 10.1007/s00330-018-5595-8
– ident: 2
  doi: 10.1109/access.2017.2788044
– ident: 39
  doi: 10.1186/s12880-015-0068-x
– ident: 10
  doi: 10.1016/j.cmpb.2018.01.003
– year: 2018
  ident: 45
  article-title: Brain Tumor segmentation using deep learning by type specific sorting of images
– ident: 14
  doi: 10.1371/journal.pone.0140381
– ident: 21
  article-title: Brain tumor classification and segmentation using faster R-CNN
– volume-title: Encyclopedia of Machine Learning and Data Mining
  year: 2017
  ident: 24
  article-title: Clustering
– ident: 42
  doi: 10.1155/2018/4940593
– ident: 6
– ident: 46
– start-page: 1661
  ident: 3
  article-title: A deep learning architecture for classifying medical images of anatomy object
– ident: 41
  doi: 10.1016/j.neucom.2017.12.032
SSID ssj0000393413
Score 2.4645853
Snippet One of the main requirements of tumor extraction is the annotation and segmentation of tumor boundaries correctly. For this purpose, we present a threefold...
SourceID pubmedcentral
proquest
pubmed
crossref
hindawi
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1
SubjectTerms Algorithms
Brain Neoplasms - diagnostic imaging
Deep Learning
Humans
Image Processing, Computer-Assisted - methods
Magnetic Resonance Imaging - methods
Reproducibility of Results
SummonAdditionalLinks – databaseName: Hindawi Publishing Open Access
  dbid: RHX
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwEA86EPRB_HZ-EWE-SdE2SdM-1o8xxfngNthbSdtUB66bbsN_37ssK24q-hh6LaW_9O53Se53hNTcPM18P_cdBlzU4WmWOIErmZOFKnGZArdphOebj36jw--7omtFkkbft_Ah2mF67l74PlKBYJkswwTDpLzRLZdSsLyUm0bIHp6PwwbVsyPuC7fPBZ-VF8x6P3o_ccvFI5JfYk59g6xbskijKbqbZEkXW2Tti4TgNnmLaKsUY6aRVQinQEVp8-mOXmEHCNqe9GH8gGHLll1SVWS0pZ_7tvSooObsAL3Rekit5uqzMYqMQ6SoYjUwJY07pFO_bV83HNtGwUm5dzl2gOOkUgdCYij33FwzlbkZ0LaQJSxQLEiFUJC1gafhLFfhpfB4kEgRgmkqwSPukkoxKPQ-oYmbhDwPwblmOfAorpRGfbHAzTMv1JxVyfns-8ap1RjHVhevsck1hIgRjdiiUSVnpfVwqq3xi13NQvWH2ekMxxj-Edz4UIUeTEYx0DwgooL7vEr2priWT2JMSsm4XyVyDvHSAPW3568UvRejwy1RWYd5B_97vUOyisPp8s0RqYzfJ_oYCM04OTHT-RPK7Ouq
  priority: 102
  providerName: Hindawi Publishing
Title A Systematic Approach for MRI Brain Tumor Localization and Segmentation Using Deep Learning and Active Contouring
URI https://dx.doi.org/10.1155/2021/6695108
https://www.ncbi.nlm.nih.gov/pubmed/33777346
https://www.proquest.com/docview/2506505464
https://pubmed.ncbi.nlm.nih.gov/PMC7948532
Volume 2021
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS-RAEC58sDJ7EN87vmjBPS1Rk-5OJweR8cUozh7UgbmFTtJRYcz4mGHXf29VT2cYRRG8BEIqgXR1V32VVH8fwLZfZHkYFqHHEYt6IstTL_IV9_JYpz7XGDYt8Xzrb9hsi_OO7ExApTbqBvD5w9KO9KTaT92d_48vB7jg9-2Cl5Lqd383DAkrRJMwjTlJkZZBywF9G5N5TOGalOaohY40rKsu-HcPqMEM50opTpB4LFX9uKUa-d_dR0j0fUPlWIY6nYNZBy1ZYzgX5mHClAvwc4xwcBEeG-xqRN3MGo5PnCFwZa3LM3ZIehHsenCP5xeU5NwmTabLnF2Zm3u3UalkttOAHRvzwBxD6401atjwyYjzqmc3QC5B-_Tk-qjpOdEFLxPBXt9DRJQpE0lFiT_wC8N17ucI8mKe8kjzKJNSY42HcUnwQsd7MhBRqmSMppnC-LkMU2WvNL-ApX4aiyLGUJwXiLqE1obYyCK_yIPYCF6HP9X4JpljJCdhjG5iKxMpE3JM4hxTh98j64chE8cndtvOVV-YbVV-THBF0W8SXZre4DlBUIiwVYpQ1GFl6NfRk6qpUQf1xuMjA2LrfnulvLu1rN2KeHh4sPrtO9egRi8w_P6zDlP9p4HZQETUTzftZMfjZbPzCo-PBiw
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Systematic+Approach+for+MRI+Brain+Tumor+Localization+and+Segmentation+Using+Deep+Learning+and+Active+Contouring&rft.jtitle=Journal+of+healthcare+engineering&rft.au=Gunasekara%2C+Shanaka+Ramesh&rft.au=Kaldera%2C+H.+N.+T.+K.&rft.au=Dissanayake%2C+Maheshi+B.&rft.date=2021&rft.pub=Hindawi&rft.issn=2040-2295&rft.eissn=2040-2309&rft.volume=2021&rft_id=info:doi/10.1155%2F2021%2F6695108&rft_id=info%3Apmid%2F33777346&rft.externalDocID=PMC7948532
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2040-2295&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2040-2295&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2040-2295&client=summon