Applicability of XRD/Rietveld Analysis with an External Standard Method for the Quantification of Mineral Components in Carbonated Hardened Cement Paste

For the quantification of mineralogical components in cementitious materials using XRD, the external standard method, where the standard material is measured separately from the samples, has several advantages in avoiding artifacts arising from internally mixing the standard material. This method ha...

Full description

Saved in:
Bibliographic Details
Published inJournal of Advanced Concrete Technology Vol. 22; no. 10; pp. 602 - 619
Main Authors Saeki, Naohiko, Kurihara, Ryo, Maruyama, Ippei
Format Journal Article
LanguageEnglish
Published Tokyo Japan Concrete Institute 19.10.2024
Japan Science and Technology Agency
Subjects
Online AccessGet full text

Cover

Loading…
Abstract For the quantification of mineralogical components in cementitious materials using XRD, the external standard method, where the standard material is measured separately from the samples, has several advantages in avoiding artifacts arising from internally mixing the standard material. This method has been applied to the quantification of cement clinker and its hydration process, but rarely to its carbonation progress. In this study, we examined its applicability to carbonated cement pastes. By determining the H2O and CO2 amount contained in each sample, the mass attenuation coefficient was calculated, which enabled quantification using the external standard method. Four different standard materials were examined, among which α-corundum was regarded as the most crystalline, and hence, most suitable. Comparing the obtained quantitative amounts of portlandite and calcium carbonate with those in the TG results and the calcium aluminate phases with those in 27Al NMR results, we demonstrated that the external standard method can accurately quantify the crystalline amount. Additionally, it was shown that the choice of the crystal structure of vaterite for Rietveld refinement has a significant influence on the quantification in Rietveld refinement.
AbstractList For the quantification of mineralogical components in cementitious materials using XRD, the external standard method, where the standard material is measured separately from the samples, has several advantages in avoiding artifacts arising from internally mixing the standard material. This method has been applied to the quantification of cement clinker and its hydration process, but rarely to its carbonation progress. In this study, we examined its applicability to carbonated cement pastes. By determining the H2O and CO2 amount contained in each sample, the mass attenuation coefficient was calculated, which enabled quantification using the external standard method. Four different standard materials were examined, among which α-corundum was regarded as the most crystalline, and hence, most suitable. Comparing the obtained quantitative amounts of portlandite and calcium carbonate with those in the TG results and the calcium aluminate phases with those in 27Al NMR results, we demonstrated that the external standard method can accurately quantify the crystalline amount. Additionally, it was shown that the choice of the crystal structure of vaterite for Rietveld refinement has a significant influence on the quantification in Rietveld refinement.
Author Saeki, Naohiko
Maruyama, Ippei
Kurihara, Ryo
Author_xml – sequence: 1
  fullname: Saeki, Naohiko
  organization: The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, Japan
– sequence: 2
  fullname: Kurihara, Ryo
  organization: The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, Japan
– sequence: 3
  fullname: Maruyama, Ippei
  organization: The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, Japan
BookMark eNp1kc1uEzEUhUeoSLSFFS9giSWa1H8znq5QNJQWqRVtAYndyLGviaOJPdg3tHkTHrdOg7JAYuUr3-8c3aNzUh2FGKCq3jI6E6xhZyttcMb5rKX8RXXMhFS1OGfi6Hlu644y-ao6yXlFqVBCqePqz3yaRm_0wo8etyQ68uP-49m9B_wNoyXzoMdt9pk8eFwSHcjFI0Iqn-Qr6mB1suQGcBktcTERXAK52-iA3hVL9DHsDG98gFQUfVxP5dyAmfhAep0WMWgES66KDYQy9LAua3KrM8Lr6qXTY4Y3f9_T6vuni2_9VX395fJzP7-ujeQUa2matrWt45I2EoyUIM2CLhw1nZTCOXGuNW9ZiW-loly1jVWddNYp0xlhlTit3u19pxR_bSDjsIqbXcI8CMa7hlIuRaHYnjIp5pzADcbjc0JM2o8Do8OugGFXwMD5UAoomvf_aKbk1zpt_0N_2NOrjPonHFid0JsRDmzR7hWHjVnqNEAQT-wkopI
CitedBy_id crossref_primary_10_1016_j_cemconres_2024_107777
crossref_primary_10_3151_jact_22_706
Cites_doi 10.1107/S0108270198004223
10.1016/S0008-8846(02)01026-8
10.1016/j.cemconcomp.2023.105400
10.1016/j.jcou.2022.102111
10.1016/j.cemconres.2020.106113
10.1016/j.cemconres.2014.01.007
10.2183/pjab.55.43
10.1111/jace.13401
10.1021/jacs.0c02988
10.1016/j.cemconres.2003.10.027
10.1007/s002690050020
10.1073/pnas.1009959107
10.1107/S1600576719013955
10.1016/j.cemconres.2020.106080
10.1016/j.cemconres.2020.106116
10.1107/S0108768193002575
10.1017/S0885715600013026
10.1179/000844301794388362
10.1680/adcr.14.00104
10.1021/ic00058a043
10.1016/j.cemconres.2005.04.010
10.1016/j.cemconres.2020.105990
10.1016/j.cemconres.2010.10.003
10.1021/ic9800076
10.1007/s11595-018-1941-6
10.1016/j.cemconres.2011.03.004
10.1016/j.cemconres.2006.10.013
10.1016/j.cemconres.2020.106209
10.1016/j.cemconcomp.2022.104655
10.1002/anie.201203125
10.1016/j.cemconres.2019.02.004
10.1016/j.cemconres.2011.06.003
10.1111/j.1151-2916.1995.tb09057.x
10.1107/S0108768111041759
10.1039/C1CE05976A
10.14250/cement.68.46
10.1107/S002188988708659X
10.1524/zkri.1974.139.1-2.129
10.1680/cc.25929
10.1016/j.cemconres.2015.02.011
10.1154/1.3549186
10.3151/jact.22.383
10.1016/j.cemconres.2022.106805
10.1007/BF00775655
10.1107/S056774087100579X
10.1201/b19074
10.1107/S0567740875003639
10.1016/j.cemconres.2016.03.003
10.3151/jact.21.934
10.1002/mrc.984
10.1107/S0021889801002485
10.1016/j.cemconcomp.2017.03.003
10.1524/zkri.1985.172.14.297
10.1107/S0567740870002443
10.1021/cg4002972
10.1016/0008-8846(92)90130-N
10.1107/S0567740882004993
10.1016/S0008-8846(01)00558-0
10.6028/jres.109.002
10.1346/CCMN.2001.0490604
10.1016/j.jmr.2008.03.001
10.1107/S0021889869006558
10.1107/S1600576718000183
10.1107/S0567740869003876
10.1016/j.cemconres.2004.04.014
10.1016/j.cemconres.2014.06.011
10.1080/14786444508520918
10.1017/S0885715600009647
10.6028/jres.081A.011
10.1016/S0016-7061(97)00056-6
10.1107/S0021889886089458
10.1107/S0021889887086199
10.3151/jact.12.200
10.1016/j.cemconres.2024.107428
10.1002/anie.201200845
10.1154/1.2362855
10.1107/S0365110X63002000
10.1016/j.cemconres.2016.06.006
10.3151/jact.21.789
10.3151/jact.21.166
ContentType Journal Article
Copyright 2024 by Japan Concrete Institute
Copyright Japan Science and Technology Agency 2024
Copyright_xml – notice: 2024 by Japan Concrete Institute
– notice: Copyright Japan Science and Technology Agency 2024
DBID AAYXX
CITATION
7QQ
7SR
8BQ
8FD
FR3
JG9
KR7
DOI 10.3151/jact.22.602
DatabaseName CrossRef
Ceramic Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Engineering Research Database
Materials Research Database
Civil Engineering Abstracts
DatabaseTitle CrossRef
Materials Research Database
Civil Engineering Abstracts
Engineered Materials Abstracts
Technology Research Database
Ceramic Abstracts
Engineering Research Database
METADEX
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1347-3913
EndPage 619
ExternalDocumentID 10_3151_jact_22_602
article_jact_22_10_22_602_article_char_en
GroupedDBID 5GY
ACIWK
ADDVE
AENEX
ALMA_UNASSIGNED_HOLDINGS
CS3
DU5
EBS
EJD
JSF
JSH
KQ8
OK1
P2P
RJT
RZJ
AAYXX
CITATION
7QQ
7SR
8BQ
8FD
FR3
JG9
KR7
ID FETCH-LOGICAL-c420t-4c566d6f24054ec44e4cb0bf0c8443ff39aa261134d4702765d784fdf7c8c3d73
ISSN 1346-8014
IngestDate Mon Jun 30 10:10:52 EDT 2025
Thu Apr 24 22:54:48 EDT 2025
Tue Jul 01 01:31:06 EDT 2025
Thu Nov 07 14:37:23 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c420t-4c566d6f24054ec44e4cb0bf0c8443ff39aa261134d4702765d784fdf7c8c3d73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.jstage.jst.go.jp/article/jact/22/10/22_602/_article/-char/en
PQID 3128500243
PQPubID 1996343
PageCount 18
ParticipantIDs proquest_journals_3128500243
crossref_citationtrail_10_3151_jact_22_602
crossref_primary_10_3151_jact_22_602
jstage_primary_article_jact_22_10_22_602_article_char_en
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024/10/19
PublicationDateYYYYMMDD 2024-10-19
PublicationDate_xml – month: 10
  year: 2024
  text: 2024/10/19
  day: 19
PublicationDecade 2020
PublicationPlace Tokyo
PublicationPlace_xml – name: Tokyo
PublicationTitle Journal of Advanced Concrete Technology
PublicationTitleAlternate ACT
PublicationYear 2024
Publisher Japan Concrete Institute
Japan Science and Technology Agency
Publisher_xml – name: Japan Concrete Institute
– name: Japan Science and Technology Agency
References 47) Matschei, T., Lothenbach, B. and Glasser, F. P., (2007b). “Thermodynamic properties of Portland cement hydrates in the system CaO-Al2O3-SiO2-CaSO4-CaCO3-H2O.” Cement and Concrete Research, 37(10), 1379-1410.
66) Santacruz, I., La Torre, Á. G. D., Álvarez-Pinazo, G., Cabeza, A., Cuesta, A., Sanz, J. and Aranda, M. A. G., (2016). “Structure of stratlingite and effect of hydration methodology on microstructure.” Advances in Cement Research, 28(1), 13-22.
33) Kangni-Foli, E., (2019). “Study of the kinetics rates of low alkalinity cementitious materials carbonation: impact on the microstructure, the gas transport and the mechanical properties.” Thesis (PhD). Paris Sciences et Lettres University.
34) Kentgens, A. P. M., (1997). “A practical guide to solid-state NMR of half-integer quadrupolar nuclei with some applications to disordered systems.” Geoderma, 80(3), 271-306.
56) Payá, J., Monzó, J., Borrachero, M. V. and Velázquez, S., (2003). “Evaluation of the pozzolanic activity of fluid catalytic cracking catalyst residue (FC3R). Thermogravimetric analysis studies on FC3R-Portland cement pastes.” Cement and Concrete Research, 33(4), 603-609.
73) Skibsted, J., Henderson, E. and Jakobsen, H. J., (1993). “Characterization of calcium aluminate phases in cements by aluminum-27 MAS NMR spectroscopy.” Inorganic Chemistry, 32(6), 1013-1027.
81) Wang, Z., Aili, A., Minami, M. and Maruyama, I., (2023). “Verification method of direct air capture by cementitious material using carbon isotopes.” Journal of Advanced Concrete Technology, 21(11), 934-940.
22) Galan, I., Beltagui, H., Garcia-Mate, M., Glasser, F. P. and Imbabi, M. S., (2016). “Impact of drying on pore structures in ettringite-rich cements.” Cement and Concrete Research, 84, 85-94.
39) Li, X., Snellings, R. and Scrivener, K. L., (2019). “Quantification of amorphous siliceous fly ash in hydrated blended cement pastes by X-ray powder diffraction.” Journal of Applied Crystallography, 52(6), 1358-1370.
11) Colville, A. A. and Geller, S., (1971). “The crystal structure of brownmillerite, Ca2FeAlO5.” Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry.” 27(12), 2311-2315.
7) Cartwright, J. H. E., Checa, A. G., Gale, J. D., Gebauer, D. and Sainz-Díaz, C. I., (2012). “Calcium carbonate polyamorphism and its role in biomineralization: How many amorphous calcium carbonates are there?” Angewandte Chemie International Edition, 51(48), 11960-11970.
2) Andersen, M. D., Jakobsen, H. J. and Skibsted, J., (2006). “A new aluminium-hydrate species in hydrated Portland cements characterized by 27Al and 29Si MAS NMR spectroscopy.” Cement and Concrete Research, 36(1), 3-17.
49) Moore, A. E. and Taylor, H. F. W., (1970). “Crystal structure of ettringite.” Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry, 26(4), 386-393.
76) Środoń, J., Drits, V. A., McCarty, D. K., Hsieh, J. C. C. and Eberl, D. D., (2001). “Quantitative X-ray diffraction analysis of clay-bearing rocks from random preparations.” Clays and Clay Minerals, 49(6), 514-528.
55) Pavese, A., Catti, M., Ferraris, G. and Hull, S., (1997). “P-V equation of state of portlandite, Ca(OH)2, from powder neutron diffraction data.” Physics and Chemistry of Minerals, 24(2), 85-89.
14) De La Torre, A. G., Bruque, S. and Aranda, M. A. G., (2001). “Rietveld quantitative amorphous content analysis.” Journal of Applied Crystallography, 34(2), 196-202.
48) Mondal, P. and Jeffery, J. W., (1975). “The crystal structure of tricalcium aluminate, Ca3Al2O6.” Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry, 31(3), 689-697.
32) Kamhi, S. R., (1963). “On the structure of vaterite CaCO3.” Acta Crystallographica, 16(8), 770-772.
25) Greenspan, L., (1977). “Humidity fixed points of binary saturated aqueous solutions.” Journal of Research of the National Bureau of Standards Section A: Physics and Chemistry, 81A(1), 89-96.
31) Jiang, Y., Li, L., Lu, J., Shen, P., Ling, T.-C. and Poon, C. S., (2022). “Mechanism of carbonating recycled concrete fines in aqueous environment: The particle size effect.” Cement and Concrete Composites, 133, 104655.
60) Riello, P., Canton, P. and Fagherazzi, G., (1997). “Calibration of the monochromator bandpass function for the X-ray Rietveld analysis.” Powder Diffraction, 12(3), 160-166.
23) Georget, F., Soja, W. and Scrivener, K. L., (2020). “Characteristic lengths of the carbonation front in naturally carbonated cement pastes: Implications for reactive transport models.” Cement and Concrete Research, 134, 106080.
83) Zajac, M., Skibsted, J., Skocek, J., Durdzinski, P., Bullerjahn, F. and Ben Haha, M., (2020). “Phase assemblage and microstructure of cement paste subjected to enforced, wet carbonation.” Cement and Concrete Research, 130, 105990.
21) François, M., Renaudin, G. and Evrard, O., (1998). “A cementitious compound with composition 3CaO·Al2O3·CaCO3·11H2O.” Acta Crystallographica Section C: Crystal Structure Communications, 54(9), 1214-1217.
79) Taylor, H. F. W., (1997). “Cement chemistry.” 2nd ed. London: Thomas Telford Publishing Services Ltd.
54) O’Connor, B. H. and Raven, M. D., (1988). “Application of the Rietveld refinement procedure in assaying powdered mixtures.” Powder Diffraction, 3(1), 2-6.
74) Smrčok, Ľ., (1987). “Rietveld refinement of 3CaO·Al2O3·6H2O.” Journal of Applied Crystallography, 20(4), 320-322.
72) Shi, Z., Lothenbach, B., Geiker, M. R., Kaufmann, J., Leemann, A., Ferreiro, S. and Skibsted, J., (2016). “Experimental studies and thermodynamic modeling of the carbonation of Portland cement, metakaolin and limestone mortars.” Cement and Concrete Research, 88, 60-72.
40) Maia Neto, F., Snellings, R. and Skibsted, J., (2024). “Aqueous carbonation of aged blended Portland cement pastes: Impact of the Al/Si ratio on the structure of the alumina-silica gel.” Cement and Concrete Research, 177, 107428.
28) Hill, R. J. and Howard, C. J., (1987). “Quantitative phase analysis from neutron powder diffraction data using the Rietveld method.” Journal of Applied Crystallography, 20(6), 467-474.
77) Steiner, S., Lothenbach, B., Proske, T., Borgschulte, A. and Winnefeld, F., (2020). “Effect of relative humidity on the carbonation rate of portlandite, calcium silicate hydrates and ettringite.” Cement and Concrete Research, 135, 106116.
27) He, Z. and Li, Y., (2018). “Synthesis mechanism and material characterization of C4AF obtained by the self-propagating combustion reaction method.” Journal of Wuhan University of Technology - Materials Science Edition, 33(5), 1099-1107.
17) Demichelis, R., Raiteri, P., Gale, J. D. and Dovesi, R., (2011). “A new structural model for disorder in vaterite from first-principles calculations.” CrystEngComm, 14(1), 44-47.
45) Massiot, D., Fayon, F., Capron, M., King, I., Le Calvé, S., Alonso, B., Durand, J.-O., Bujoli, B., Gan, Z. and Hoatson, G., (2002). “Modelling one- and two-dimensional solid-state NMR spectra.” Magnetic Resonance in Chemistry, 40(1), 70-76.
86) Zhou, Q., Lachowski, E. E. and Glasser, F. P., (2004). “Metaettringite, a decomposition product of ettringite.” Cement and Concrete Research, 34(4), 703-710.
50) Mugnaioli, E., Andrusenko, I., Schüler, T., Loges, N., Dinnebier, R. E., Panthöfer, M., Tremel, W. and Kolb, U., (2012). “Ab initio structure determination of vaterite by automated electron diffraction.” Angewandte Chemie International Edition, 51(28), 7041-7045.
8) Cheary, R. W., Coelho, A. A. and Cline, J. P., (2004). “Fundamental parameters line profile fitting in laboratory diffractometers.” Journal of Research of the National Institute of Standards and Technology, 109(1), 1-25.
3) Baquerizo, L. G., Matschei, T., Scrivener, K. L., Saeidpour, M. and Wadsö, L., (2015). “Hydration states of AFm cement phases.” Cement and Concrete Research, 73, 143-157.
82) Zajac, M., Skibsted, J., Bullerjahn, F. and Skocek, J., (2022). “Semi-dry carbonation of recycled concrete paste.” Journal of CO2 Utilization, 63, 102111.
52) Nishi, F., Takeuchi, Y. and Maki, I., (1985). “Tricalcium silicate Ca3O[SiO4]: The monoclinic superstructure.” Zeitschrift für Kristallographie, 172(1-4), 297-314.
87) Zhuravlev, N. N., Manelis, R. M., Gramm, N. V. and Stepanova, A. A., (1967). “X-ray analysis of the lanthanum borides.” Soviet Powder Metallurgy and Metal Ceramics, 6(2), 158-162.
4) Boumaaza, M., Huet, B., Turcry, P. and Aït-Mokhtar, A., (2020). “The CO2-binding capacity of synthetic anhydrous and hydrates: Validation of a test method based on the instantaneous reaction rate.” Cement and Concrete Research, 135, 106113.
64) Saeki, N., Cheng, L., Kurihara, R., Ohkubo, T., Teramoto, A., Suda, Y., Kitagaki, R. and Maruyama, I., (2024). “Natural carbonation process in cement paste particles in different relative humidities.” Cement and Concrete Composites, 146, 105400.
38) Le Saoût, G., Kocaba, V. and Scrivener, K. L., (2011). “Application of the Rietveld method to the analysis of anhydrous cement.” Cement and Concrete Research, 41(2), 133-148.
13) d’Espinose de Lacaillerie, J.-B., Fretigny, C. and Massiot, D., (2008). “MAS NMR spectra of quadrupolar nuclei in disordered solids: The Czjzek model.” Journal of Magnetic Resonance, 192(2), 244-251.
30) Jansen, D., Stabler, C. B., Goetz-Neunhoeffer, F., Dittrich, S. and Neubauer, J., (2011a). “Does ordinary Portland cement contain amorphous phase? A quantitative study using an external standard method.” Powder Diffraction, 26(1), 31-38.
53) Nishikawa, T., Suzuki, K., Ito, S., Sato, K. and Takebe, T., (1992). “Decomposition of synthesized ettringite by carbonation.” Cement and Concrete Research, 22(1), 6-14.
43) Maruyama, I., Noritake, K., Hosoi, Y. and Takahashi, H., (2024). “Development of a large-scale thermogravimetry and gas analyzer for determining carbon in concrete.” Journal of Advanced Concrete Technology, 22(6), 383-390.
78) Takahashi, H., Maruyama, I., Ohkubo, T., Kitagaki, R., Suda, Y., Teramoto, A., Haga, K. and Nagase, T., (2023). “Error factors in quantifying inorganic carbonate CO2 in c
44
45
46
47
48
49
50
51
52
53
10
54
11
55
12
56
13
57
14
58
15
59
16
17
18
19
1
2
3
4
5
6
7
8
9
60
61
62
63
20
64
21
65
22
66
23
67
24
68
25
69
26
27
28
29
70
71
72
73
30
74
31
75
32
76
33
77
34
78
35
79
36
37
38
39
80
81
82
83
40
84
41
85
42
86
43
87
References_xml – reference: 82) Zajac, M., Skibsted, J., Bullerjahn, F. and Skocek, J., (2022). “Semi-dry carbonation of recycled concrete paste.” Journal of CO2 Utilization, 63, 102111.
– reference: 67) Sasaki, S., Fujino, K. and Takéuchi, Y., (1979). “X-ray determination of electron-density distributions in oxides, MgO, MnO, CoO, and NiO, and atomic scattering factors of their constituent atoms.” Proceedings of the Japan Academy, Series B, 55(2), 43-48.
– reference: 2) Andersen, M. D., Jakobsen, H. J. and Skibsted, J., (2006). “A new aluminium-hydrate species in hydrated Portland cements characterized by 27Al and 29Si MAS NMR spectroscopy.” Cement and Concrete Research, 36(1), 3-17.
– reference: 75) Snellings, R., Salze, A. and Scrivener, K. L., (2014). “Use of X-ray diffraction to quantify amorphous supplementary cementitious materials in anhydrous and hydrated blended cements.” Cement and Concrete Research, 64, 89-98.
– reference: 42) Maruyama, I., Nishioka, Y., Igarashi, G. and Matsui, K., (2014). “Microstructural and bulk property changes in hardened cement paste during the first drying process.” Cement and Concrete Research, 58, 20-34.
– reference: 69) Schmidt, H., Paschke, I., Freyer, D. and Voigt, W., (2011). “Water channel structure of bassanite at high air humidity: crystal structure of CaSO4·0.625H2O.” Acta Crystallographica Section B: Structural Science, 67(6), 467-475.
– reference: 78) Takahashi, H., Maruyama, I., Ohkubo, T., Kitagaki, R., Suda, Y., Teramoto, A., Haga, K. and Nagase, T., (2023). “Error factors in quantifying inorganic carbonate CO2 in concrete materials.” Journal of Advanced Concrete Technology, 21(10), 789-802.
– reference: 84) Zhang, J. and Scherer, G. W., (2011). “Comparison of methods for arresting hydration of cement.” Cement and Concrete Research, 41(10), 1024-1036.
– reference: 9) Chen, B., Horgnies, M., Huet, B., Morin, V., Johannes, K. and Kuznik, F., (2020). “Comparative kinetics study on carbonation of ettringite and meta-ettringite based materials.” Cement and Concrete Research, 137, 106209.
– reference: 40) Maia Neto, F., Snellings, R. and Skibsted, J., (2024). “Aqueous carbonation of aged blended Portland cement pastes: Impact of the Al/Si ratio on the structure of the alumina-silica gel.” Cement and Concrete Research, 177, 107428.
– reference: 11) Colville, A. A. and Geller, S., (1971). “The crystal structure of brownmillerite, Ca2FeAlO5.” Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry.” 27(12), 2311-2315.
– reference: 49) Moore, A. E. and Taylor, H. F. W., (1970). “Crystal structure of ettringite.” Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry, 26(4), 386-393.
– reference: 60) Riello, P., Canton, P. and Fagherazzi, G., (1997). “Calibration of the monochromator bandpass function for the X-ray Rietveld analysis.” Powder Diffraction, 12(3), 160-166.
– reference: 56) Payá, J., Monzó, J., Borrachero, M. V. and Velázquez, S., (2003). “Evaluation of the pozzolanic activity of fluid catalytic cracking catalyst residue (FC3R). Thermogravimetric analysis studies on FC3R-Portland cement pastes.” Cement and Concrete Research, 33(4), 603-609.
– reference: 18) Demichelis, R., Raiteri, P., Gale, J. D. and Dovesi, R., (2013). “The multiple structures of vaterite.” Crystal Growth & Design, 13(6), 2247-2251.
– reference: 37) Kurihara, R. and Maruyama, I., (2022). “Surface area development of Portland cement paste during hydration: Direct comparison with 1H NMR relaxometry and water vapor/nitrogen sorption.” Cement and Concrete Research, 157, 106805.
– reference: 57) Pedersen, B. F. and Semmingsen, D., (1982). “Neutron diffraction refinement of the structure of gypsum, CaSO4·2H2O.” Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry, 38(4), 1074-1077.
– reference: 59) Radha, A. V., Forbes, T. Z., Killian, C. E., Gilbert, P. U. P. A. and Navrotsky, A., (2010). “Transformation and crystallization energetics of synthetic and biogenic amorphous calcium carbonate.” Proceedings of the National Academy of Sciences, 107(38), 16438-16443.
– reference: 64) Saeki, N., Cheng, L., Kurihara, R., Ohkubo, T., Teramoto, A., Suda, Y., Kitagaki, R. and Maruyama, I., (2024). “Natural carbonation process in cement paste particles in different relative humidities.” Cement and Concrete Composites, 146, 105400.
– reference: 28) Hill, R. J. and Howard, C. J., (1987). “Quantitative phase analysis from neutron powder diffraction data using the Rietveld method.” Journal of Applied Crystallography, 20(6), 467-474.
– reference: 4) Boumaaza, M., Huet, B., Turcry, P. and Aït-Mokhtar, A., (2020). “The CO2-binding capacity of synthetic anhydrous and hydrates: Validation of a test method based on the instantaneous reaction rate.” Cement and Concrete Research, 135, 106113.
– reference: 71) Scrivener, K. L., Snellings, R. and Lothenbach, B., (2017). “A practical guide to microstructural analysis of cementitious materials.” Boca Raton, Florida: CRC Press.
– reference: 87) Zhuravlev, N. N., Manelis, R. M., Gramm, N. V. and Stepanova, A. A., (1967). “X-ray analysis of the lanthanum borides.” Soviet Powder Metallurgy and Metal Ceramics, 6(2), 158-162.
– reference: 62) Saalfeld, H., (1974). “Refinement of the crystal structure of gibbsite, Al(OH)3.” Zeitschrift für Kristallographie, 139, 129-135.
– reference: 63) Saeki, N., Cheng, L., Kurihara, R. and Maruyama, I., (2023). “Change in phases and water content of hardened cement paste during vacuum drying.” Proceedings of the Japan Concrete Institute, 45(1), 10-15. (in Japanese)
– reference: 53) Nishikawa, T., Suzuki, K., Ito, S., Sato, K. and Takebe, T., (1992). “Decomposition of synthesized ettringite by carbonation.” Cement and Concrete Research, 22(1), 6-14.
– reference: 32) Kamhi, S. R., (1963). “On the structure of vaterite CaCO3.” Acta Crystallographica, 16(8), 770-772.
– reference: 74) Smrčok, Ľ., (1987). “Rietveld refinement of 3CaO·Al2O3·6H2O.” Journal of Applied Crystallography, 20(4), 320-322.
– reference: 80) Telford, T., Valentini, L., Dalconi, M. C., Favero, M., Artioli, G. and Ferrari, G., (2015). “In-situ XRD measurement and quantitative analysis of hydrating cement: implications for sulfate incorporation in C-S-H.” Journal of the American Ceramic Society, 98(4), 1259-1264.
– reference: 77) Steiner, S., Lothenbach, B., Proske, T., Borgschulte, A. and Winnefeld, F., (2020). “Effect of relative humidity on the carbonation rate of portlandite, calcium silicate hydrates and ettringite.” Cement and Concrete Research, 135, 106116.
– reference: 66) Santacruz, I., La Torre, Á. G. D., Álvarez-Pinazo, G., Cabeza, A., Cuesta, A., Sanz, J. and Aranda, M. A. G., (2016). “Structure of stratlingite and effect of hydration methodology on microstructure.” Advances in Cement Research, 28(1), 13-22.
– reference: 17) Demichelis, R., Raiteri, P., Gale, J. D. and Dovesi, R., (2011). “A new structural model for disorder in vaterite from first-principles calculations.” CrystEngComm, 14(1), 44-47.
– reference: 48) Mondal, P. and Jeffery, J. W., (1975). “The crystal structure of tricalcium aluminate, Ca3Al2O6.” Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry, 31(3), 689-697.
– reference: 47) Matschei, T., Lothenbach, B. and Glasser, F. P., (2007b). “Thermodynamic properties of Portland cement hydrates in the system CaO-Al2O3-SiO2-CaSO4-CaCO3-H2O.” Cement and Concrete Research, 37(10), 1379-1410.
– reference: 70) Scrivener, K. L., Füllmann, T., Gallucci, E., Walenta, G. and Bermejo, E., (2004). “Quantitative study of Portland cement hydration by X-ray diffraction/Rietveld analysis and independent methods.” Cement and Concrete Research, 34(9), 1541-1547.
– reference: 83) Zajac, M., Skibsted, J., Skocek, J., Durdzinski, P., Bullerjahn, F. and Ben Haha, M., (2020). “Phase assemblage and microstructure of cement paste subjected to enforced, wet carbonation.” Cement and Concrete Research, 130, 105990.
– reference: 79) Taylor, H. F. W., (1997). “Cement chemistry.” 2nd ed. London: Thomas Telford Publishing Services Ltd.
– reference: 61) Rietveld, H. M., (1969). “A profile refinement method for nuclear and magnetic structures.” Journal of Applied Crystallography, 2(2), 65-71.
– reference: 46) Matschei, T., Lothenbach, B. and Glasser, F. P., (2007a). “The role of calcium carbonate in cement hydration.” Cement and Concrete Research, 37(4), 551-558.
– reference: 3) Baquerizo, L. G., Matschei, T., Scrivener, K. L., Saeidpour, M. and Wadsö, L., (2015). “Hydration states of AFm cement phases.” Cement and Concrete Research, 73, 143-157.
– reference: 14) De La Torre, A. G., Bruque, S. and Aranda, M. A. G., (2001). “Rietveld quantitative amorphous content analysis.” Journal of Applied Crystallography, 34(2), 196-202.
– reference: 55) Pavese, A., Catti, M., Ferraris, G. and Hull, S., (1997). “P-V equation of state of portlandite, Ca(OH)2, from powder neutron diffraction data.” Physics and Chemistry of Minerals, 24(2), 85-89.
– reference: 44) Maslen, E. N., Streltsov, V. A. and Streltsova, N. R., (1993). “X-ray study of the electron density in calcite, CaCO3.” Acta Crystallographica Section B: Structural Science, 49(4), 636-641.
– reference: 31) Jiang, Y., Li, L., Lu, J., Shen, P., Ling, T.-C. and Poon, C. S., (2022). “Mechanism of carbonating recycled concrete fines in aqueous environment: The particle size effect.” Cement and Concrete Composites, 133, 104655.
– reference: 27) He, Z. and Li, Y., (2018). “Synthesis mechanism and material characterization of C4AF obtained by the self-propagating combustion reaction method.” Journal of Wuhan University of Technology - Materials Science Edition, 33(5), 1099-1107.
– reference: 29) Jansen, D., Goetz-Neunhoeffer, F., Stabler, C. and Neubauer, J., (2011b). “A remastered external standard method applied to the quantification of early OPC hydration.” Cement and Concrete Research, 41(6), 602-608.
– reference: 6) Bui, N. K., Kurihara, R., Wang, W., Kanematsu, M., Hyodo, H., Takano, M., Hirao, H., Noguchi, T. and Maruyama, I., (2023). “Wet-carbonation-based mineral extraction and CO2 sequestration using concrete waste fines at a low temperature.” Journal of Advanced Concrete Technology, 21(3), 166-188.
– reference: 50) Mugnaioli, E., Andrusenko, I., Schüler, T., Loges, N., Dinnebier, R. E., Panthöfer, M., Tremel, W. and Kolb, U., (2012). “Ab initio structure determination of vaterite by automated electron diffraction.” Angewandte Chemie International Edition, 51(28), 7041-7045.
– reference: 34) Kentgens, A. P. M., (1997). “A practical guide to solid-state NMR of half-integer quadrupolar nuclei with some applications to disordered systems.” Geoderma, 80(3), 271-306.
– reference: 54) O’Connor, B. H. and Raven, M. D., (1988). “Application of the Rietveld refinement procedure in assaying powdered mixtures.” Powder Diffraction, 3(1), 2-6.
– reference: 22) Galan, I., Beltagui, H., Garcia-Mate, M., Glasser, F. P. and Imbabi, M. S., (2016). “Impact of drying on pore structures in ettringite-rich cements.” Cement and Concrete Research, 84, 85-94.
– reference: 38) Le Saoût, G., Kocaba, V. and Scrivener, K. L., (2011). “Application of the Rietveld method to the analysis of anhydrous cement.” Cement and Concrete Research, 41(2), 133-148.
– reference: 35) King, H. W. and Payzant, E. A., (2001). “Error corrections for X-ray powder diffractometry.” Canadian Metallurgical Quarterly, 40(3), 385-394.
– reference: 43) Maruyama, I., Noritake, K., Hosoi, Y. and Takahashi, H., (2024). “Development of a large-scale thermogravimetry and gas analyzer for determining carbon in concrete.” Journal of Advanced Concrete Technology, 22(6), 383-390.
– reference: 72) Shi, Z., Lothenbach, B., Geiker, M. R., Kaufmann, J., Leemann, A., Ferreiro, S. and Skibsted, J., (2016). “Experimental studies and thermodynamic modeling of the carbonation of Portland cement, metakaolin and limestone mortars.” Cement and Concrete Research, 88, 60-72.
– reference: 15) De Villiers, J. P. R., (1971). “Crystal structures of aragonite, strontianite, and witherite.” American Mineralogist, 56(5-6), 758-767.
– reference: 13) d’Espinose de Lacaillerie, J.-B., Fretigny, C. and Massiot, D., (2008). “MAS NMR spectra of quadrupolar nuclei in disordered solids: The Czjzek model.” Journal of Magnetic Resonance, 192(2), 244-251.
– reference: 16) De Weerdt, K., Plusquellec, G., Belda Revert, A., Geiker, M. R. and Lothenbach, B., (2019). “Effect of carbonation on the pore solution of mortar.” Cement and Concrete Research, 118, 38-56.
– reference: 39) Li, X., Snellings, R. and Scrivener, K. L., (2019). “Quantification of amorphous siliceous fly ash in hydrated blended cement pastes by X-ray powder diffraction.” Journal of Applied Crystallography, 52(6), 1358-1370.
– reference: 58) Prince, E., (2004). “International tables for crystallography, Volume C: Mathematical, physical and chemical tables.” 3rd ed. Hoboken, New Jersey: John Wiley & Sons Inc.
– reference: 85) Zhou, Q. and Glasser, F. P., (2001). “Thermal stability and decomposition mechanisms of ettringite at <120°C.” Cement and Concrete Research, 31(9), 1333-1339.
– reference: 30) Jansen, D., Stabler, C. B., Goetz-Neunhoeffer, F., Dittrich, S. and Neubauer, J., (2011a). “Does ordinary Portland cement contain amorphous phase? A quantitative study using an external standard method.” Powder Diffraction, 26(1), 31-38.
– reference: 25) Greenspan, L., (1977). “Humidity fixed points of binary saturated aqueous solutions.” Journal of Research of the National Bureau of Standards Section A: Physics and Chemistry, 81A(1), 89-96.
– reference: 20) Faucon, P., Charpentier, T., Bertrandie, D., Nonat, A., Virlet, J. and Petit, J. C., (1998). “Characterization of calcium aluminate hydrates and related hydrates of cement pastes by 27Al MQ-MAS NMR.” Inorganic Chemistry, 37(15), 3726-3733.
– reference: 36) Kunhi Mohamed, A., Moutzouri, P., Berruyer, P., Walder, B. J., Siramanont, J., Harris, M., Negroni, M., Galmarini, S. C., Parker, S. C., Scrivener, K. L., Emsley, L. and Bowen, P., (2020). “The atomic-level structure of cementitious calcium aluminate silicate hydrate.” Journal of the American Chemical Society, 142(25), 11060-11071.
– reference: 8) Cheary, R. W., Coelho, A. A. and Cline, J. P., (2004). “Fundamental parameters line profile fitting in laboratory diffractometers.” Journal of Research of the National Institute of Standards and Technology, 109(1), 1-25.
– reference: 41) Maruyama, I. and Igarashi, G., (2014). “Cement reaction and resultant physical properties of cement paste.” Journal of Advanced Concrete Technology, 12(6), 200-213.
– reference: 24) Goto, S., Suenaga, K., Kado, T. and Fukuhara, M., (1995). “Calcium silicate carbonation products.” Journal of the American Ceramic Society, 78(11), 2867-2872.
– reference: 23) Georget, F., Soja, W. and Scrivener, K. L., (2020). “Characteristic lengths of the carbonation front in naturally carbonated cement pastes: Implications for reactive transport models.” Cement and Concrete Research, 134, 106080.
– reference: 76) Środoń, J., Drits, V. A., McCarty, D. K., Hsieh, J. C. C. and Eberl, D. D., (2001). “Quantitative X-ray diffraction analysis of clay-bearing rocks from random preparations.” Clays and Clay Minerals, 49(6), 514-528.
– reference: 5) Brindley, G. W., (1945). “XLV. The effect of grain or particle size on X-ray reflections from mixed powders and alloys, considered in relation to the quantitative determination of crystalline substances by X-ray methods.” The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 36(256), 347-369.
– reference: 10) Coelho, A. A., (2018). “TOPAS and TOPAS-Academic: An optimization program integrating computer algebra and crystallographic objects written in C++.” Journal of Applied Crystallography, 51(1), 210-218.
– reference: 33) Kangni-Foli, E., (2019). “Study of the kinetics rates of low alkalinity cementitious materials carbonation: impact on the microstructure, the gas transport and the mechanical properties.” Thesis (PhD). Paris Sciences et Lettres University.
– reference: 1) Abrahams, S. C. and Bernstein, J. L., (1969). “Remeasurement of the structure of hexagonal ZnO.” Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry, 25(7), 1233-1236.
– reference: 52) Nishi, F., Takeuchi, Y. and Maki, I., (1985). “Tricalcium silicate Ca3O[SiO4]: The monoclinic superstructure.” Zeitschrift für Kristallographie, 172(1-4), 297-314.
– reference: 26) Hargis, C. W., Lothenbach, B., Müller, C. J. and Winnefeld, F., (2017). “Carbonation of calcium sulfoaluminate mortars.” Cement and Concrete Composites, 80, 123-134.
– reference: 51) Mumme, W., Hill, R. J., Bushnell-wye, G. and Segnit, E., (1995). “Rietveld crystal structure refinements, crystal chemistry and calculated powder diffraction data for the polymorphs of dicalcium silicate and related phases.” Neues Jahrbuch für Mineralogie, 169, 35-68.
– reference: 19) Dollase, W. A., (1986). “Correction of intensities for preferred orientation in powder diffractometry: Application of the March model.” Journal of Applied Crystallography, 19(4), 267-272.
– reference: 65) Sagawa, T. and Nawa, T., (2014). “Hydration analysis and phase composition of cement-based materials by X-ray diffraction/Rietveld method using an external standard.” Cement Science and Concrete Technology, 68(1), 46-52. (in Japanese)
– reference: 45) Massiot, D., Fayon, F., Capron, M., King, I., Le Calvé, S., Alonso, B., Durand, J.-O., Bujoli, B., Gan, Z. and Hoatson, G., (2002). “Modelling one- and two-dimensional solid-state NMR spectra.” Magnetic Resonance in Chemistry, 40(1), 70-76.
– reference: 81) Wang, Z., Aili, A., Minami, M. and Maruyama, I., (2023). “Verification method of direct air capture by cementitious material using carbon isotopes.” Journal of Advanced Concrete Technology, 21(11), 934-940.
– reference: 68) Scarlett, N. V. Y. and Madsen, I. C., (2006). “Quantification of phases with partial or no known crystal structures.” Powder Diffraction, 21(4), 278-284.
– reference: 12) Cullity, B. D., (1978). “Elements of X-ray diffraction.” Boston, Massachusetts: Addison-Wesley Publishing Company.
– reference: 73) Skibsted, J., Henderson, E. and Jakobsen, H. J., (1993). “Characterization of calcium aluminate phases in cements by aluminum-27 MAS NMR spectroscopy.” Inorganic Chemistry, 32(6), 1013-1027.
– reference: 86) Zhou, Q., Lachowski, E. E. and Glasser, F. P., (2004). “Metaettringite, a decomposition product of ettringite.” Cement and Concrete Research, 34(4), 703-710.
– reference: 7) Cartwright, J. H. E., Checa, A. G., Gale, J. D., Gebauer, D. and Sainz-Díaz, C. I., (2012). “Calcium carbonate polyamorphism and its role in biomineralization: How many amorphous calcium carbonates are there?” Angewandte Chemie International Edition, 51(48), 11960-11970.
– reference: 21) François, M., Renaudin, G. and Evrard, O., (1998). “A cementitious compound with composition 3CaO·Al2O3·CaCO3·11H2O.” Acta Crystallographica Section C: Crystal Structure Communications, 54(9), 1214-1217.
– ident: 21
  doi: 10.1107/S0108270198004223
– ident: 56
  doi: 10.1016/S0008-8846(02)01026-8
– ident: 64
  doi: 10.1016/j.cemconcomp.2023.105400
– ident: 82
  doi: 10.1016/j.jcou.2022.102111
– ident: 4
  doi: 10.1016/j.cemconres.2020.106113
– ident: 42
  doi: 10.1016/j.cemconres.2014.01.007
– ident: 67
  doi: 10.2183/pjab.55.43
– ident: 12
– ident: 80
  doi: 10.1111/jace.13401
– ident: 36
  doi: 10.1021/jacs.0c02988
– ident: 51
– ident: 86
  doi: 10.1016/j.cemconres.2003.10.027
– ident: 55
  doi: 10.1007/s002690050020
– ident: 59
  doi: 10.1073/pnas.1009959107
– ident: 39
  doi: 10.1107/S1600576719013955
– ident: 23
  doi: 10.1016/j.cemconres.2020.106080
– ident: 77
  doi: 10.1016/j.cemconres.2020.106116
– ident: 44
  doi: 10.1107/S0108768193002575
– ident: 54
  doi: 10.1017/S0885715600013026
– ident: 35
  doi: 10.1179/000844301794388362
– ident: 66
  doi: 10.1680/adcr.14.00104
– ident: 73
  doi: 10.1021/ic00058a043
– ident: 2
  doi: 10.1016/j.cemconres.2005.04.010
– ident: 83
  doi: 10.1016/j.cemconres.2020.105990
– ident: 38
  doi: 10.1016/j.cemconres.2010.10.003
– ident: 20
  doi: 10.1021/ic9800076
– ident: 27
  doi: 10.1007/s11595-018-1941-6
– ident: 29
  doi: 10.1016/j.cemconres.2011.03.004
– ident: 46
  doi: 10.1016/j.cemconres.2006.10.013
– ident: 9
  doi: 10.1016/j.cemconres.2020.106209
– ident: 31
  doi: 10.1016/j.cemconcomp.2022.104655
– ident: 7
  doi: 10.1002/anie.201203125
– ident: 16
  doi: 10.1016/j.cemconres.2019.02.004
– ident: 84
  doi: 10.1016/j.cemconres.2011.06.003
– ident: 24
  doi: 10.1111/j.1151-2916.1995.tb09057.x
– ident: 69
  doi: 10.1107/S0108768111041759
– ident: 17
  doi: 10.1039/C1CE05976A
– ident: 65
  doi: 10.14250/cement.68.46
– ident: 74
  doi: 10.1107/S002188988708659X
– ident: 62
  doi: 10.1524/zkri.1974.139.1-2.129
– ident: 79
  doi: 10.1680/cc.25929
– ident: 3
  doi: 10.1016/j.cemconres.2015.02.011
– ident: 58
– ident: 30
  doi: 10.1154/1.3549186
– ident: 43
  doi: 10.3151/jact.22.383
– ident: 37
  doi: 10.1016/j.cemconres.2022.106805
– ident: 87
  doi: 10.1007/BF00775655
– ident: 11
  doi: 10.1107/S056774087100579X
– ident: 71
  doi: 10.1201/b19074
– ident: 48
  doi: 10.1107/S0567740875003639
– ident: 22
  doi: 10.1016/j.cemconres.2016.03.003
– ident: 81
  doi: 10.3151/jact.21.934
– ident: 33
– ident: 45
  doi: 10.1002/mrc.984
– ident: 14
  doi: 10.1107/S0021889801002485
– ident: 26
  doi: 10.1016/j.cemconcomp.2017.03.003
– ident: 52
  doi: 10.1524/zkri.1985.172.14.297
– ident: 49
  doi: 10.1107/S0567740870002443
– ident: 18
  doi: 10.1021/cg4002972
– ident: 47
– ident: 53
  doi: 10.1016/0008-8846(92)90130-N
– ident: 57
  doi: 10.1107/S0567740882004993
– ident: 85
  doi: 10.1016/S0008-8846(01)00558-0
– ident: 8
  doi: 10.6028/jres.109.002
– ident: 76
  doi: 10.1346/CCMN.2001.0490604
– ident: 13
  doi: 10.1016/j.jmr.2008.03.001
– ident: 61
  doi: 10.1107/S0021889869006558
– ident: 10
  doi: 10.1107/S1600576718000183
– ident: 1
  doi: 10.1107/S0567740869003876
– ident: 70
  doi: 10.1016/j.cemconres.2004.04.014
– ident: 75
  doi: 10.1016/j.cemconres.2014.06.011
– ident: 5
  doi: 10.1080/14786444508520918
– ident: 60
  doi: 10.1017/S0885715600009647
– ident: 25
  doi: 10.6028/jres.081A.011
– ident: 34
  doi: 10.1016/S0016-7061(97)00056-6
– ident: 19
  doi: 10.1107/S0021889886089458
– ident: 28
  doi: 10.1107/S0021889887086199
– ident: 15
– ident: 41
  doi: 10.3151/jact.12.200
– ident: 40
  doi: 10.1016/j.cemconres.2024.107428
– ident: 50
  doi: 10.1002/anie.201200845
– ident: 68
  doi: 10.1154/1.2362855
– ident: 32
  doi: 10.1107/S0365110X63002000
– ident: 72
  doi: 10.1016/j.cemconres.2016.06.006
– ident: 63
– ident: 78
  doi: 10.3151/jact.21.789
– ident: 6
  doi: 10.3151/jact.21.166
SSID ssj0037377
Score 2.3777246
Snippet For the quantification of mineralogical components in cementitious materials using XRD, the external standard method, where the standard material is measured...
SourceID proquest
crossref
jstage
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 602
SubjectTerms Attenuation coefficients
Calcium aluminate
Calcium carbonate
Carbonation
Cement
Cement paste
Clinker
Corundum
Crystal structure
NMR
Nuclear magnetic resonance
X-ray diffraction
Title Applicability of XRD/Rietveld Analysis with an External Standard Method for the Quantification of Mineral Components in Carbonated Hardened Cement Paste
URI https://www.jstage.jst.go.jp/article/jact/22/10/22_602/_article/-char/en
https://www.proquest.com/docview/3128500243
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Journal of Advanced Concrete Technology, 2024/10/19, Vol.22(10), pp.602-619
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NbxMxELVC4UAPiE-RUpAPPYE23drer2NVikpRKlpaKbeV12vDQtmN0g1S-SX8In4XY3vt3UAOpZdV5Dh2lPcyfmPPjBHaCTlVpCQs4IqKgBUZC4oCvJSIS6myOBUFN9U-T-KjC3Y8i2aj0e9B1NKyLSbi59q8ktugCm2Aq86S_Q9k_aDQAK8BX3gCwvC8Ecb79vTZxLeak_LZ2VsY7ayS7Q95WfYVR7oMtjeHXc1nrTHtDsLU3CDtgw1Pl9xGD3klOa1MXWpjOJra5MPpREG-KPS-O8hVffYPBlNvFJvAgo_8ql2NLxpoXhdxcNDUIFdbuWZr_xOX9irtE958qb41w8MmXV3akOLaN0_5YnnNv5vm9_O5rIb7GMAOHRbSW8tj0AZ1P7sPlbDrlDXOlIFBzGzuqrPehAxZGg5scRySwbIe27n-XjEoKB5zU4FoJ4RM_GdWSnB3AOe6V05IDo4TPKFv7t7RKXLAyDvoLgF3RdvbD6f-NIsmNElsbqiebncw2YoauvcVHILP_6oCI3XOH6IHHV543876CI1k_RhtDipXPkG_VqiHG4WBeruOeNgRD2viYV5jRzzsiIct8TAQDwPx8Crx9IAd8XBPPFzVuCcedsTDlnjYEO8punh3eH5wFHSXfASCkbANmACHoowVKMuIScGYZKIICxWKlDGqFM04By8fsC9ZEpIkjsokZapUiUgFLRP6DG3U8C2eI7y3B2YHHGaWSM4yxdISVnrBZJwpGUacjtFr92PnoquAry9iudSAamQ8wIDMGO34znNb-GV9t9Si5jvdmCxjtO1wzjujcgXjkzQyZUK3bj_yC3S__4dto412sZQvQTu3xStDzD-19NWk
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Applicability+of+XRD%2FRietveld+Analysis+with+an+External+Standard+Method+for+the+Quantification+of+Mineral+Components+in+Carbonated+Hardened+Cement+Paste&rft.jtitle=Journal+of+Advanced+Concrete+Technology&rft.au=Saeki%2C+Naohiko&rft.au=Kurihara%2C+Ryo&rft.au=Maruyama%2C+Ippei&rft.date=2024-10-19&rft.pub=Japan+Concrete+Institute&rft.eissn=1347-3913&rft.volume=22&rft.issue=10&rft.spage=602&rft.epage=619&rft_id=info:doi/10.3151%2Fjact.22.602&rft.externalDocID=article_jact_22_10_22_602_article_char_en
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1346-8014&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1346-8014&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1346-8014&client=summon