Applicability of XRD/Rietveld Analysis with an External Standard Method for the Quantification of Mineral Components in Carbonated Hardened Cement Paste
For the quantification of mineralogical components in cementitious materials using XRD, the external standard method, where the standard material is measured separately from the samples, has several advantages in avoiding artifacts arising from internally mixing the standard material. This method ha...
Saved in:
Published in | Journal of Advanced Concrete Technology Vol. 22; no. 10; pp. 602 - 619 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Tokyo
Japan Concrete Institute
19.10.2024
Japan Science and Technology Agency |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | For the quantification of mineralogical components in cementitious materials using XRD, the external standard method, where the standard material is measured separately from the samples, has several advantages in avoiding artifacts arising from internally mixing the standard material. This method has been applied to the quantification of cement clinker and its hydration process, but rarely to its carbonation progress. In this study, we examined its applicability to carbonated cement pastes. By determining the H2O and CO2 amount contained in each sample, the mass attenuation coefficient was calculated, which enabled quantification using the external standard method. Four different standard materials were examined, among which α-corundum was regarded as the most crystalline, and hence, most suitable. Comparing the obtained quantitative amounts of portlandite and calcium carbonate with those in the TG results and the calcium aluminate phases with those in 27Al NMR results, we demonstrated that the external standard method can accurately quantify the crystalline amount. Additionally, it was shown that the choice of the crystal structure of vaterite for Rietveld refinement has a significant influence on the quantification in Rietveld refinement. |
---|---|
AbstractList | For the quantification of mineralogical components in cementitious materials using XRD, the external standard method, where the standard material is measured separately from the samples, has several advantages in avoiding artifacts arising from internally mixing the standard material. This method has been applied to the quantification of cement clinker and its hydration process, but rarely to its carbonation progress. In this study, we examined its applicability to carbonated cement pastes. By determining the H2O and CO2 amount contained in each sample, the mass attenuation coefficient was calculated, which enabled quantification using the external standard method. Four different standard materials were examined, among which α-corundum was regarded as the most crystalline, and hence, most suitable. Comparing the obtained quantitative amounts of portlandite and calcium carbonate with those in the TG results and the calcium aluminate phases with those in 27Al NMR results, we demonstrated that the external standard method can accurately quantify the crystalline amount. Additionally, it was shown that the choice of the crystal structure of vaterite for Rietveld refinement has a significant influence on the quantification in Rietveld refinement. |
Author | Saeki, Naohiko Maruyama, Ippei Kurihara, Ryo |
Author_xml | – sequence: 1 fullname: Saeki, Naohiko organization: The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, Japan – sequence: 2 fullname: Kurihara, Ryo organization: The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, Japan – sequence: 3 fullname: Maruyama, Ippei organization: The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, Japan |
BookMark | eNp1kc1uEzEUhUeoSLSFFS9giSWa1H8znq5QNJQWqRVtAYndyLGviaOJPdg3tHkTHrdOg7JAYuUr3-8c3aNzUh2FGKCq3jI6E6xhZyttcMb5rKX8RXXMhFS1OGfi6Hlu644y-ao6yXlFqVBCqePqz3yaRm_0wo8etyQ68uP-49m9B_wNoyXzoMdt9pk8eFwSHcjFI0Iqn-Qr6mB1suQGcBktcTERXAK52-iA3hVL9DHsDG98gFQUfVxP5dyAmfhAep0WMWgES66KDYQy9LAua3KrM8Lr6qXTY4Y3f9_T6vuni2_9VX395fJzP7-ujeQUa2matrWt45I2EoyUIM2CLhw1nZTCOXGuNW9ZiW-loly1jVWddNYp0xlhlTit3u19pxR_bSDjsIqbXcI8CMa7hlIuRaHYnjIp5pzADcbjc0JM2o8Do8OugGFXwMD5UAoomvf_aKbk1zpt_0N_2NOrjPonHFid0JsRDmzR7hWHjVnqNEAQT-wkopI |
CitedBy_id | crossref_primary_10_1016_j_cemconres_2024_107777 crossref_primary_10_3151_jact_22_706 |
Cites_doi | 10.1107/S0108270198004223 10.1016/S0008-8846(02)01026-8 10.1016/j.cemconcomp.2023.105400 10.1016/j.jcou.2022.102111 10.1016/j.cemconres.2020.106113 10.1016/j.cemconres.2014.01.007 10.2183/pjab.55.43 10.1111/jace.13401 10.1021/jacs.0c02988 10.1016/j.cemconres.2003.10.027 10.1007/s002690050020 10.1073/pnas.1009959107 10.1107/S1600576719013955 10.1016/j.cemconres.2020.106080 10.1016/j.cemconres.2020.106116 10.1107/S0108768193002575 10.1017/S0885715600013026 10.1179/000844301794388362 10.1680/adcr.14.00104 10.1021/ic00058a043 10.1016/j.cemconres.2005.04.010 10.1016/j.cemconres.2020.105990 10.1016/j.cemconres.2010.10.003 10.1021/ic9800076 10.1007/s11595-018-1941-6 10.1016/j.cemconres.2011.03.004 10.1016/j.cemconres.2006.10.013 10.1016/j.cemconres.2020.106209 10.1016/j.cemconcomp.2022.104655 10.1002/anie.201203125 10.1016/j.cemconres.2019.02.004 10.1016/j.cemconres.2011.06.003 10.1111/j.1151-2916.1995.tb09057.x 10.1107/S0108768111041759 10.1039/C1CE05976A 10.14250/cement.68.46 10.1107/S002188988708659X 10.1524/zkri.1974.139.1-2.129 10.1680/cc.25929 10.1016/j.cemconres.2015.02.011 10.1154/1.3549186 10.3151/jact.22.383 10.1016/j.cemconres.2022.106805 10.1007/BF00775655 10.1107/S056774087100579X 10.1201/b19074 10.1107/S0567740875003639 10.1016/j.cemconres.2016.03.003 10.3151/jact.21.934 10.1002/mrc.984 10.1107/S0021889801002485 10.1016/j.cemconcomp.2017.03.003 10.1524/zkri.1985.172.14.297 10.1107/S0567740870002443 10.1021/cg4002972 10.1016/0008-8846(92)90130-N 10.1107/S0567740882004993 10.1016/S0008-8846(01)00558-0 10.6028/jres.109.002 10.1346/CCMN.2001.0490604 10.1016/j.jmr.2008.03.001 10.1107/S0021889869006558 10.1107/S1600576718000183 10.1107/S0567740869003876 10.1016/j.cemconres.2004.04.014 10.1016/j.cemconres.2014.06.011 10.1080/14786444508520918 10.1017/S0885715600009647 10.6028/jres.081A.011 10.1016/S0016-7061(97)00056-6 10.1107/S0021889886089458 10.1107/S0021889887086199 10.3151/jact.12.200 10.1016/j.cemconres.2024.107428 10.1002/anie.201200845 10.1154/1.2362855 10.1107/S0365110X63002000 10.1016/j.cemconres.2016.06.006 10.3151/jact.21.789 10.3151/jact.21.166 |
ContentType | Journal Article |
Copyright | 2024 by Japan Concrete Institute Copyright Japan Science and Technology Agency 2024 |
Copyright_xml | – notice: 2024 by Japan Concrete Institute – notice: Copyright Japan Science and Technology Agency 2024 |
DBID | AAYXX CITATION 7QQ 7SR 8BQ 8FD FR3 JG9 KR7 |
DOI | 10.3151/jact.22.602 |
DatabaseName | CrossRef Ceramic Abstracts Engineered Materials Abstracts METADEX Technology Research Database Engineering Research Database Materials Research Database Civil Engineering Abstracts |
DatabaseTitle | CrossRef Materials Research Database Civil Engineering Abstracts Engineered Materials Abstracts Technology Research Database Ceramic Abstracts Engineering Research Database METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1347-3913 |
EndPage | 619 |
ExternalDocumentID | 10_3151_jact_22_602 article_jact_22_10_22_602_article_char_en |
GroupedDBID | 5GY ACIWK ADDVE AENEX ALMA_UNASSIGNED_HOLDINGS CS3 DU5 EBS EJD JSF JSH KQ8 OK1 P2P RJT RZJ AAYXX CITATION 7QQ 7SR 8BQ 8FD FR3 JG9 KR7 |
ID | FETCH-LOGICAL-c420t-4c566d6f24054ec44e4cb0bf0c8443ff39aa261134d4702765d784fdf7c8c3d73 |
ISSN | 1346-8014 |
IngestDate | Mon Jun 30 10:10:52 EDT 2025 Thu Apr 24 22:54:48 EDT 2025 Tue Jul 01 01:31:06 EDT 2025 Thu Nov 07 14:37:23 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c420t-4c566d6f24054ec44e4cb0bf0c8443ff39aa261134d4702765d784fdf7c8c3d73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://www.jstage.jst.go.jp/article/jact/22/10/22_602/_article/-char/en |
PQID | 3128500243 |
PQPubID | 1996343 |
PageCount | 18 |
ParticipantIDs | proquest_journals_3128500243 crossref_citationtrail_10_3151_jact_22_602 crossref_primary_10_3151_jact_22_602 jstage_primary_article_jact_22_10_22_602_article_char_en |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024/10/19 |
PublicationDateYYYYMMDD | 2024-10-19 |
PublicationDate_xml | – month: 10 year: 2024 text: 2024/10/19 day: 19 |
PublicationDecade | 2020 |
PublicationPlace | Tokyo |
PublicationPlace_xml | – name: Tokyo |
PublicationTitle | Journal of Advanced Concrete Technology |
PublicationTitleAlternate | ACT |
PublicationYear | 2024 |
Publisher | Japan Concrete Institute Japan Science and Technology Agency |
Publisher_xml | – name: Japan Concrete Institute – name: Japan Science and Technology Agency |
References | 47) Matschei, T., Lothenbach, B. and Glasser, F. P., (2007b). “Thermodynamic properties of Portland cement hydrates in the system CaO-Al2O3-SiO2-CaSO4-CaCO3-H2O.” Cement and Concrete Research, 37(10), 1379-1410. 66) Santacruz, I., La Torre, Á. G. D., Álvarez-Pinazo, G., Cabeza, A., Cuesta, A., Sanz, J. and Aranda, M. A. G., (2016). “Structure of stratlingite and effect of hydration methodology on microstructure.” Advances in Cement Research, 28(1), 13-22. 33) Kangni-Foli, E., (2019). “Study of the kinetics rates of low alkalinity cementitious materials carbonation: impact on the microstructure, the gas transport and the mechanical properties.” Thesis (PhD). Paris Sciences et Lettres University. 34) Kentgens, A. P. M., (1997). “A practical guide to solid-state NMR of half-integer quadrupolar nuclei with some applications to disordered systems.” Geoderma, 80(3), 271-306. 56) Payá, J., Monzó, J., Borrachero, M. V. and Velázquez, S., (2003). “Evaluation of the pozzolanic activity of fluid catalytic cracking catalyst residue (FC3R). Thermogravimetric analysis studies on FC3R-Portland cement pastes.” Cement and Concrete Research, 33(4), 603-609. 73) Skibsted, J., Henderson, E. and Jakobsen, H. J., (1993). “Characterization of calcium aluminate phases in cements by aluminum-27 MAS NMR spectroscopy.” Inorganic Chemistry, 32(6), 1013-1027. 81) Wang, Z., Aili, A., Minami, M. and Maruyama, I., (2023). “Verification method of direct air capture by cementitious material using carbon isotopes.” Journal of Advanced Concrete Technology, 21(11), 934-940. 22) Galan, I., Beltagui, H., Garcia-Mate, M., Glasser, F. P. and Imbabi, M. S., (2016). “Impact of drying on pore structures in ettringite-rich cements.” Cement and Concrete Research, 84, 85-94. 39) Li, X., Snellings, R. and Scrivener, K. L., (2019). “Quantification of amorphous siliceous fly ash in hydrated blended cement pastes by X-ray powder diffraction.” Journal of Applied Crystallography, 52(6), 1358-1370. 11) Colville, A. A. and Geller, S., (1971). “The crystal structure of brownmillerite, Ca2FeAlO5.” Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry.” 27(12), 2311-2315. 7) Cartwright, J. H. E., Checa, A. G., Gale, J. D., Gebauer, D. and Sainz-Díaz, C. I., (2012). “Calcium carbonate polyamorphism and its role in biomineralization: How many amorphous calcium carbonates are there?” Angewandte Chemie International Edition, 51(48), 11960-11970. 2) Andersen, M. D., Jakobsen, H. J. and Skibsted, J., (2006). “A new aluminium-hydrate species in hydrated Portland cements characterized by 27Al and 29Si MAS NMR spectroscopy.” Cement and Concrete Research, 36(1), 3-17. 49) Moore, A. E. and Taylor, H. F. W., (1970). “Crystal structure of ettringite.” Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry, 26(4), 386-393. 76) Środoń, J., Drits, V. A., McCarty, D. K., Hsieh, J. C. C. and Eberl, D. D., (2001). “Quantitative X-ray diffraction analysis of clay-bearing rocks from random preparations.” Clays and Clay Minerals, 49(6), 514-528. 55) Pavese, A., Catti, M., Ferraris, G. and Hull, S., (1997). “P-V equation of state of portlandite, Ca(OH)2, from powder neutron diffraction data.” Physics and Chemistry of Minerals, 24(2), 85-89. 14) De La Torre, A. G., Bruque, S. and Aranda, M. A. G., (2001). “Rietveld quantitative amorphous content analysis.” Journal of Applied Crystallography, 34(2), 196-202. 48) Mondal, P. and Jeffery, J. W., (1975). “The crystal structure of tricalcium aluminate, Ca3Al2O6.” Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry, 31(3), 689-697. 32) Kamhi, S. R., (1963). “On the structure of vaterite CaCO3.” Acta Crystallographica, 16(8), 770-772. 25) Greenspan, L., (1977). “Humidity fixed points of binary saturated aqueous solutions.” Journal of Research of the National Bureau of Standards Section A: Physics and Chemistry, 81A(1), 89-96. 31) Jiang, Y., Li, L., Lu, J., Shen, P., Ling, T.-C. and Poon, C. S., (2022). “Mechanism of carbonating recycled concrete fines in aqueous environment: The particle size effect.” Cement and Concrete Composites, 133, 104655. 60) Riello, P., Canton, P. and Fagherazzi, G., (1997). “Calibration of the monochromator bandpass function for the X-ray Rietveld analysis.” Powder Diffraction, 12(3), 160-166. 23) Georget, F., Soja, W. and Scrivener, K. L., (2020). “Characteristic lengths of the carbonation front in naturally carbonated cement pastes: Implications for reactive transport models.” Cement and Concrete Research, 134, 106080. 83) Zajac, M., Skibsted, J., Skocek, J., Durdzinski, P., Bullerjahn, F. and Ben Haha, M., (2020). “Phase assemblage and microstructure of cement paste subjected to enforced, wet carbonation.” Cement and Concrete Research, 130, 105990. 21) François, M., Renaudin, G. and Evrard, O., (1998). “A cementitious compound with composition 3CaO·Al2O3·CaCO3·11H2O.” Acta Crystallographica Section C: Crystal Structure Communications, 54(9), 1214-1217. 79) Taylor, H. F. W., (1997). “Cement chemistry.” 2nd ed. London: Thomas Telford Publishing Services Ltd. 54) O’Connor, B. H. and Raven, M. D., (1988). “Application of the Rietveld refinement procedure in assaying powdered mixtures.” Powder Diffraction, 3(1), 2-6. 74) Smrčok, Ľ., (1987). “Rietveld refinement of 3CaO·Al2O3·6H2O.” Journal of Applied Crystallography, 20(4), 320-322. 72) Shi, Z., Lothenbach, B., Geiker, M. R., Kaufmann, J., Leemann, A., Ferreiro, S. and Skibsted, J., (2016). “Experimental studies and thermodynamic modeling of the carbonation of Portland cement, metakaolin and limestone mortars.” Cement and Concrete Research, 88, 60-72. 40) Maia Neto, F., Snellings, R. and Skibsted, J., (2024). “Aqueous carbonation of aged blended Portland cement pastes: Impact of the Al/Si ratio on the structure of the alumina-silica gel.” Cement and Concrete Research, 177, 107428. 28) Hill, R. J. and Howard, C. J., (1987). “Quantitative phase analysis from neutron powder diffraction data using the Rietveld method.” Journal of Applied Crystallography, 20(6), 467-474. 77) Steiner, S., Lothenbach, B., Proske, T., Borgschulte, A. and Winnefeld, F., (2020). “Effect of relative humidity on the carbonation rate of portlandite, calcium silicate hydrates and ettringite.” Cement and Concrete Research, 135, 106116. 27) He, Z. and Li, Y., (2018). “Synthesis mechanism and material characterization of C4AF obtained by the self-propagating combustion reaction method.” Journal of Wuhan University of Technology - Materials Science Edition, 33(5), 1099-1107. 17) Demichelis, R., Raiteri, P., Gale, J. D. and Dovesi, R., (2011). “A new structural model for disorder in vaterite from first-principles calculations.” CrystEngComm, 14(1), 44-47. 45) Massiot, D., Fayon, F., Capron, M., King, I., Le Calvé, S., Alonso, B., Durand, J.-O., Bujoli, B., Gan, Z. and Hoatson, G., (2002). “Modelling one- and two-dimensional solid-state NMR spectra.” Magnetic Resonance in Chemistry, 40(1), 70-76. 86) Zhou, Q., Lachowski, E. E. and Glasser, F. P., (2004). “Metaettringite, a decomposition product of ettringite.” Cement and Concrete Research, 34(4), 703-710. 50) Mugnaioli, E., Andrusenko, I., Schüler, T., Loges, N., Dinnebier, R. E., Panthöfer, M., Tremel, W. and Kolb, U., (2012). “Ab initio structure determination of vaterite by automated electron diffraction.” Angewandte Chemie International Edition, 51(28), 7041-7045. 8) Cheary, R. W., Coelho, A. A. and Cline, J. P., (2004). “Fundamental parameters line profile fitting in laboratory diffractometers.” Journal of Research of the National Institute of Standards and Technology, 109(1), 1-25. 3) Baquerizo, L. G., Matschei, T., Scrivener, K. L., Saeidpour, M. and Wadsö, L., (2015). “Hydration states of AFm cement phases.” Cement and Concrete Research, 73, 143-157. 82) Zajac, M., Skibsted, J., Bullerjahn, F. and Skocek, J., (2022). “Semi-dry carbonation of recycled concrete paste.” Journal of CO2 Utilization, 63, 102111. 52) Nishi, F., Takeuchi, Y. and Maki, I., (1985). “Tricalcium silicate Ca3O[SiO4]: The monoclinic superstructure.” Zeitschrift für Kristallographie, 172(1-4), 297-314. 87) Zhuravlev, N. N., Manelis, R. M., Gramm, N. V. and Stepanova, A. A., (1967). “X-ray analysis of the lanthanum borides.” Soviet Powder Metallurgy and Metal Ceramics, 6(2), 158-162. 4) Boumaaza, M., Huet, B., Turcry, P. and Aït-Mokhtar, A., (2020). “The CO2-binding capacity of synthetic anhydrous and hydrates: Validation of a test method based on the instantaneous reaction rate.” Cement and Concrete Research, 135, 106113. 64) Saeki, N., Cheng, L., Kurihara, R., Ohkubo, T., Teramoto, A., Suda, Y., Kitagaki, R. and Maruyama, I., (2024). “Natural carbonation process in cement paste particles in different relative humidities.” Cement and Concrete Composites, 146, 105400. 38) Le Saoût, G., Kocaba, V. and Scrivener, K. L., (2011). “Application of the Rietveld method to the analysis of anhydrous cement.” Cement and Concrete Research, 41(2), 133-148. 13) d’Espinose de Lacaillerie, J.-B., Fretigny, C. and Massiot, D., (2008). “MAS NMR spectra of quadrupolar nuclei in disordered solids: The Czjzek model.” Journal of Magnetic Resonance, 192(2), 244-251. 30) Jansen, D., Stabler, C. B., Goetz-Neunhoeffer, F., Dittrich, S. and Neubauer, J., (2011a). “Does ordinary Portland cement contain amorphous phase? A quantitative study using an external standard method.” Powder Diffraction, 26(1), 31-38. 53) Nishikawa, T., Suzuki, K., Ito, S., Sato, K. and Takebe, T., (1992). “Decomposition of synthesized ettringite by carbonation.” Cement and Concrete Research, 22(1), 6-14. 43) Maruyama, I., Noritake, K., Hosoi, Y. and Takahashi, H., (2024). “Development of a large-scale thermogravimetry and gas analyzer for determining carbon in concrete.” Journal of Advanced Concrete Technology, 22(6), 383-390. 78) Takahashi, H., Maruyama, I., Ohkubo, T., Kitagaki, R., Suda, Y., Teramoto, A., Haga, K. and Nagase, T., (2023). “Error factors in quantifying inorganic carbonate CO2 in c 44 45 46 47 48 49 50 51 52 53 10 54 11 55 12 56 13 57 14 58 15 59 16 17 18 19 1 2 3 4 5 6 7 8 9 60 61 62 63 20 64 21 65 22 66 23 67 24 68 25 69 26 27 28 29 70 71 72 73 30 74 31 75 32 76 33 77 34 78 35 79 36 37 38 39 80 81 82 83 40 84 41 85 42 86 43 87 |
References_xml | – reference: 82) Zajac, M., Skibsted, J., Bullerjahn, F. and Skocek, J., (2022). “Semi-dry carbonation of recycled concrete paste.” Journal of CO2 Utilization, 63, 102111. – reference: 67) Sasaki, S., Fujino, K. and Takéuchi, Y., (1979). “X-ray determination of electron-density distributions in oxides, MgO, MnO, CoO, and NiO, and atomic scattering factors of their constituent atoms.” Proceedings of the Japan Academy, Series B, 55(2), 43-48. – reference: 2) Andersen, M. D., Jakobsen, H. J. and Skibsted, J., (2006). “A new aluminium-hydrate species in hydrated Portland cements characterized by 27Al and 29Si MAS NMR spectroscopy.” Cement and Concrete Research, 36(1), 3-17. – reference: 75) Snellings, R., Salze, A. and Scrivener, K. L., (2014). “Use of X-ray diffraction to quantify amorphous supplementary cementitious materials in anhydrous and hydrated blended cements.” Cement and Concrete Research, 64, 89-98. – reference: 42) Maruyama, I., Nishioka, Y., Igarashi, G. and Matsui, K., (2014). “Microstructural and bulk property changes in hardened cement paste during the first drying process.” Cement and Concrete Research, 58, 20-34. – reference: 69) Schmidt, H., Paschke, I., Freyer, D. and Voigt, W., (2011). “Water channel structure of bassanite at high air humidity: crystal structure of CaSO4·0.625H2O.” Acta Crystallographica Section B: Structural Science, 67(6), 467-475. – reference: 78) Takahashi, H., Maruyama, I., Ohkubo, T., Kitagaki, R., Suda, Y., Teramoto, A., Haga, K. and Nagase, T., (2023). “Error factors in quantifying inorganic carbonate CO2 in concrete materials.” Journal of Advanced Concrete Technology, 21(10), 789-802. – reference: 84) Zhang, J. and Scherer, G. W., (2011). “Comparison of methods for arresting hydration of cement.” Cement and Concrete Research, 41(10), 1024-1036. – reference: 9) Chen, B., Horgnies, M., Huet, B., Morin, V., Johannes, K. and Kuznik, F., (2020). “Comparative kinetics study on carbonation of ettringite and meta-ettringite based materials.” Cement and Concrete Research, 137, 106209. – reference: 40) Maia Neto, F., Snellings, R. and Skibsted, J., (2024). “Aqueous carbonation of aged blended Portland cement pastes: Impact of the Al/Si ratio on the structure of the alumina-silica gel.” Cement and Concrete Research, 177, 107428. – reference: 11) Colville, A. A. and Geller, S., (1971). “The crystal structure of brownmillerite, Ca2FeAlO5.” Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry.” 27(12), 2311-2315. – reference: 49) Moore, A. E. and Taylor, H. F. W., (1970). “Crystal structure of ettringite.” Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry, 26(4), 386-393. – reference: 60) Riello, P., Canton, P. and Fagherazzi, G., (1997). “Calibration of the monochromator bandpass function for the X-ray Rietveld analysis.” Powder Diffraction, 12(3), 160-166. – reference: 56) Payá, J., Monzó, J., Borrachero, M. V. and Velázquez, S., (2003). “Evaluation of the pozzolanic activity of fluid catalytic cracking catalyst residue (FC3R). Thermogravimetric analysis studies on FC3R-Portland cement pastes.” Cement and Concrete Research, 33(4), 603-609. – reference: 18) Demichelis, R., Raiteri, P., Gale, J. D. and Dovesi, R., (2013). “The multiple structures of vaterite.” Crystal Growth & Design, 13(6), 2247-2251. – reference: 37) Kurihara, R. and Maruyama, I., (2022). “Surface area development of Portland cement paste during hydration: Direct comparison with 1H NMR relaxometry and water vapor/nitrogen sorption.” Cement and Concrete Research, 157, 106805. – reference: 57) Pedersen, B. F. and Semmingsen, D., (1982). “Neutron diffraction refinement of the structure of gypsum, CaSO4·2H2O.” Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry, 38(4), 1074-1077. – reference: 59) Radha, A. V., Forbes, T. Z., Killian, C. E., Gilbert, P. U. P. A. and Navrotsky, A., (2010). “Transformation and crystallization energetics of synthetic and biogenic amorphous calcium carbonate.” Proceedings of the National Academy of Sciences, 107(38), 16438-16443. – reference: 64) Saeki, N., Cheng, L., Kurihara, R., Ohkubo, T., Teramoto, A., Suda, Y., Kitagaki, R. and Maruyama, I., (2024). “Natural carbonation process in cement paste particles in different relative humidities.” Cement and Concrete Composites, 146, 105400. – reference: 28) Hill, R. J. and Howard, C. J., (1987). “Quantitative phase analysis from neutron powder diffraction data using the Rietveld method.” Journal of Applied Crystallography, 20(6), 467-474. – reference: 4) Boumaaza, M., Huet, B., Turcry, P. and Aït-Mokhtar, A., (2020). “The CO2-binding capacity of synthetic anhydrous and hydrates: Validation of a test method based on the instantaneous reaction rate.” Cement and Concrete Research, 135, 106113. – reference: 71) Scrivener, K. L., Snellings, R. and Lothenbach, B., (2017). “A practical guide to microstructural analysis of cementitious materials.” Boca Raton, Florida: CRC Press. – reference: 87) Zhuravlev, N. N., Manelis, R. M., Gramm, N. V. and Stepanova, A. A., (1967). “X-ray analysis of the lanthanum borides.” Soviet Powder Metallurgy and Metal Ceramics, 6(2), 158-162. – reference: 62) Saalfeld, H., (1974). “Refinement of the crystal structure of gibbsite, Al(OH)3.” Zeitschrift für Kristallographie, 139, 129-135. – reference: 63) Saeki, N., Cheng, L., Kurihara, R. and Maruyama, I., (2023). “Change in phases and water content of hardened cement paste during vacuum drying.” Proceedings of the Japan Concrete Institute, 45(1), 10-15. (in Japanese) – reference: 53) Nishikawa, T., Suzuki, K., Ito, S., Sato, K. and Takebe, T., (1992). “Decomposition of synthesized ettringite by carbonation.” Cement and Concrete Research, 22(1), 6-14. – reference: 32) Kamhi, S. R., (1963). “On the structure of vaterite CaCO3.” Acta Crystallographica, 16(8), 770-772. – reference: 74) Smrčok, Ľ., (1987). “Rietveld refinement of 3CaO·Al2O3·6H2O.” Journal of Applied Crystallography, 20(4), 320-322. – reference: 80) Telford, T., Valentini, L., Dalconi, M. C., Favero, M., Artioli, G. and Ferrari, G., (2015). “In-situ XRD measurement and quantitative analysis of hydrating cement: implications for sulfate incorporation in C-S-H.” Journal of the American Ceramic Society, 98(4), 1259-1264. – reference: 77) Steiner, S., Lothenbach, B., Proske, T., Borgschulte, A. and Winnefeld, F., (2020). “Effect of relative humidity on the carbonation rate of portlandite, calcium silicate hydrates and ettringite.” Cement and Concrete Research, 135, 106116. – reference: 66) Santacruz, I., La Torre, Á. G. D., Álvarez-Pinazo, G., Cabeza, A., Cuesta, A., Sanz, J. and Aranda, M. A. G., (2016). “Structure of stratlingite and effect of hydration methodology on microstructure.” Advances in Cement Research, 28(1), 13-22. – reference: 17) Demichelis, R., Raiteri, P., Gale, J. D. and Dovesi, R., (2011). “A new structural model for disorder in vaterite from first-principles calculations.” CrystEngComm, 14(1), 44-47. – reference: 48) Mondal, P. and Jeffery, J. W., (1975). “The crystal structure of tricalcium aluminate, Ca3Al2O6.” Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry, 31(3), 689-697. – reference: 47) Matschei, T., Lothenbach, B. and Glasser, F. P., (2007b). “Thermodynamic properties of Portland cement hydrates in the system CaO-Al2O3-SiO2-CaSO4-CaCO3-H2O.” Cement and Concrete Research, 37(10), 1379-1410. – reference: 70) Scrivener, K. L., Füllmann, T., Gallucci, E., Walenta, G. and Bermejo, E., (2004). “Quantitative study of Portland cement hydration by X-ray diffraction/Rietveld analysis and independent methods.” Cement and Concrete Research, 34(9), 1541-1547. – reference: 83) Zajac, M., Skibsted, J., Skocek, J., Durdzinski, P., Bullerjahn, F. and Ben Haha, M., (2020). “Phase assemblage and microstructure of cement paste subjected to enforced, wet carbonation.” Cement and Concrete Research, 130, 105990. – reference: 79) Taylor, H. F. W., (1997). “Cement chemistry.” 2nd ed. London: Thomas Telford Publishing Services Ltd. – reference: 61) Rietveld, H. M., (1969). “A profile refinement method for nuclear and magnetic structures.” Journal of Applied Crystallography, 2(2), 65-71. – reference: 46) Matschei, T., Lothenbach, B. and Glasser, F. P., (2007a). “The role of calcium carbonate in cement hydration.” Cement and Concrete Research, 37(4), 551-558. – reference: 3) Baquerizo, L. G., Matschei, T., Scrivener, K. L., Saeidpour, M. and Wadsö, L., (2015). “Hydration states of AFm cement phases.” Cement and Concrete Research, 73, 143-157. – reference: 14) De La Torre, A. G., Bruque, S. and Aranda, M. A. G., (2001). “Rietveld quantitative amorphous content analysis.” Journal of Applied Crystallography, 34(2), 196-202. – reference: 55) Pavese, A., Catti, M., Ferraris, G. and Hull, S., (1997). “P-V equation of state of portlandite, Ca(OH)2, from powder neutron diffraction data.” Physics and Chemistry of Minerals, 24(2), 85-89. – reference: 44) Maslen, E. N., Streltsov, V. A. and Streltsova, N. R., (1993). “X-ray study of the electron density in calcite, CaCO3.” Acta Crystallographica Section B: Structural Science, 49(4), 636-641. – reference: 31) Jiang, Y., Li, L., Lu, J., Shen, P., Ling, T.-C. and Poon, C. S., (2022). “Mechanism of carbonating recycled concrete fines in aqueous environment: The particle size effect.” Cement and Concrete Composites, 133, 104655. – reference: 27) He, Z. and Li, Y., (2018). “Synthesis mechanism and material characterization of C4AF obtained by the self-propagating combustion reaction method.” Journal of Wuhan University of Technology - Materials Science Edition, 33(5), 1099-1107. – reference: 29) Jansen, D., Goetz-Neunhoeffer, F., Stabler, C. and Neubauer, J., (2011b). “A remastered external standard method applied to the quantification of early OPC hydration.” Cement and Concrete Research, 41(6), 602-608. – reference: 6) Bui, N. K., Kurihara, R., Wang, W., Kanematsu, M., Hyodo, H., Takano, M., Hirao, H., Noguchi, T. and Maruyama, I., (2023). “Wet-carbonation-based mineral extraction and CO2 sequestration using concrete waste fines at a low temperature.” Journal of Advanced Concrete Technology, 21(3), 166-188. – reference: 50) Mugnaioli, E., Andrusenko, I., Schüler, T., Loges, N., Dinnebier, R. E., Panthöfer, M., Tremel, W. and Kolb, U., (2012). “Ab initio structure determination of vaterite by automated electron diffraction.” Angewandte Chemie International Edition, 51(28), 7041-7045. – reference: 34) Kentgens, A. P. M., (1997). “A practical guide to solid-state NMR of half-integer quadrupolar nuclei with some applications to disordered systems.” Geoderma, 80(3), 271-306. – reference: 54) O’Connor, B. H. and Raven, M. D., (1988). “Application of the Rietveld refinement procedure in assaying powdered mixtures.” Powder Diffraction, 3(1), 2-6. – reference: 22) Galan, I., Beltagui, H., Garcia-Mate, M., Glasser, F. P. and Imbabi, M. S., (2016). “Impact of drying on pore structures in ettringite-rich cements.” Cement and Concrete Research, 84, 85-94. – reference: 38) Le Saoût, G., Kocaba, V. and Scrivener, K. L., (2011). “Application of the Rietveld method to the analysis of anhydrous cement.” Cement and Concrete Research, 41(2), 133-148. – reference: 35) King, H. W. and Payzant, E. A., (2001). “Error corrections for X-ray powder diffractometry.” Canadian Metallurgical Quarterly, 40(3), 385-394. – reference: 43) Maruyama, I., Noritake, K., Hosoi, Y. and Takahashi, H., (2024). “Development of a large-scale thermogravimetry and gas analyzer for determining carbon in concrete.” Journal of Advanced Concrete Technology, 22(6), 383-390. – reference: 72) Shi, Z., Lothenbach, B., Geiker, M. R., Kaufmann, J., Leemann, A., Ferreiro, S. and Skibsted, J., (2016). “Experimental studies and thermodynamic modeling of the carbonation of Portland cement, metakaolin and limestone mortars.” Cement and Concrete Research, 88, 60-72. – reference: 15) De Villiers, J. P. R., (1971). “Crystal structures of aragonite, strontianite, and witherite.” American Mineralogist, 56(5-6), 758-767. – reference: 13) d’Espinose de Lacaillerie, J.-B., Fretigny, C. and Massiot, D., (2008). “MAS NMR spectra of quadrupolar nuclei in disordered solids: The Czjzek model.” Journal of Magnetic Resonance, 192(2), 244-251. – reference: 16) De Weerdt, K., Plusquellec, G., Belda Revert, A., Geiker, M. R. and Lothenbach, B., (2019). “Effect of carbonation on the pore solution of mortar.” Cement and Concrete Research, 118, 38-56. – reference: 39) Li, X., Snellings, R. and Scrivener, K. L., (2019). “Quantification of amorphous siliceous fly ash in hydrated blended cement pastes by X-ray powder diffraction.” Journal of Applied Crystallography, 52(6), 1358-1370. – reference: 58) Prince, E., (2004). “International tables for crystallography, Volume C: Mathematical, physical and chemical tables.” 3rd ed. Hoboken, New Jersey: John Wiley & Sons Inc. – reference: 85) Zhou, Q. and Glasser, F. P., (2001). “Thermal stability and decomposition mechanisms of ettringite at <120°C.” Cement and Concrete Research, 31(9), 1333-1339. – reference: 30) Jansen, D., Stabler, C. B., Goetz-Neunhoeffer, F., Dittrich, S. and Neubauer, J., (2011a). “Does ordinary Portland cement contain amorphous phase? A quantitative study using an external standard method.” Powder Diffraction, 26(1), 31-38. – reference: 25) Greenspan, L., (1977). “Humidity fixed points of binary saturated aqueous solutions.” Journal of Research of the National Bureau of Standards Section A: Physics and Chemistry, 81A(1), 89-96. – reference: 20) Faucon, P., Charpentier, T., Bertrandie, D., Nonat, A., Virlet, J. and Petit, J. C., (1998). “Characterization of calcium aluminate hydrates and related hydrates of cement pastes by 27Al MQ-MAS NMR.” Inorganic Chemistry, 37(15), 3726-3733. – reference: 36) Kunhi Mohamed, A., Moutzouri, P., Berruyer, P., Walder, B. J., Siramanont, J., Harris, M., Negroni, M., Galmarini, S. C., Parker, S. C., Scrivener, K. L., Emsley, L. and Bowen, P., (2020). “The atomic-level structure of cementitious calcium aluminate silicate hydrate.” Journal of the American Chemical Society, 142(25), 11060-11071. – reference: 8) Cheary, R. W., Coelho, A. A. and Cline, J. P., (2004). “Fundamental parameters line profile fitting in laboratory diffractometers.” Journal of Research of the National Institute of Standards and Technology, 109(1), 1-25. – reference: 41) Maruyama, I. and Igarashi, G., (2014). “Cement reaction and resultant physical properties of cement paste.” Journal of Advanced Concrete Technology, 12(6), 200-213. – reference: 24) Goto, S., Suenaga, K., Kado, T. and Fukuhara, M., (1995). “Calcium silicate carbonation products.” Journal of the American Ceramic Society, 78(11), 2867-2872. – reference: 23) Georget, F., Soja, W. and Scrivener, K. L., (2020). “Characteristic lengths of the carbonation front in naturally carbonated cement pastes: Implications for reactive transport models.” Cement and Concrete Research, 134, 106080. – reference: 76) Środoń, J., Drits, V. A., McCarty, D. K., Hsieh, J. C. C. and Eberl, D. D., (2001). “Quantitative X-ray diffraction analysis of clay-bearing rocks from random preparations.” Clays and Clay Minerals, 49(6), 514-528. – reference: 5) Brindley, G. W., (1945). “XLV. The effect of grain or particle size on X-ray reflections from mixed powders and alloys, considered in relation to the quantitative determination of crystalline substances by X-ray methods.” The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 36(256), 347-369. – reference: 10) Coelho, A. A., (2018). “TOPAS and TOPAS-Academic: An optimization program integrating computer algebra and crystallographic objects written in C++.” Journal of Applied Crystallography, 51(1), 210-218. – reference: 33) Kangni-Foli, E., (2019). “Study of the kinetics rates of low alkalinity cementitious materials carbonation: impact on the microstructure, the gas transport and the mechanical properties.” Thesis (PhD). Paris Sciences et Lettres University. – reference: 1) Abrahams, S. C. and Bernstein, J. L., (1969). “Remeasurement of the structure of hexagonal ZnO.” Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry, 25(7), 1233-1236. – reference: 52) Nishi, F., Takeuchi, Y. and Maki, I., (1985). “Tricalcium silicate Ca3O[SiO4]: The monoclinic superstructure.” Zeitschrift für Kristallographie, 172(1-4), 297-314. – reference: 26) Hargis, C. W., Lothenbach, B., Müller, C. J. and Winnefeld, F., (2017). “Carbonation of calcium sulfoaluminate mortars.” Cement and Concrete Composites, 80, 123-134. – reference: 51) Mumme, W., Hill, R. J., Bushnell-wye, G. and Segnit, E., (1995). “Rietveld crystal structure refinements, crystal chemistry and calculated powder diffraction data for the polymorphs of dicalcium silicate and related phases.” Neues Jahrbuch für Mineralogie, 169, 35-68. – reference: 19) Dollase, W. A., (1986). “Correction of intensities for preferred orientation in powder diffractometry: Application of the March model.” Journal of Applied Crystallography, 19(4), 267-272. – reference: 65) Sagawa, T. and Nawa, T., (2014). “Hydration analysis and phase composition of cement-based materials by X-ray diffraction/Rietveld method using an external standard.” Cement Science and Concrete Technology, 68(1), 46-52. (in Japanese) – reference: 45) Massiot, D., Fayon, F., Capron, M., King, I., Le Calvé, S., Alonso, B., Durand, J.-O., Bujoli, B., Gan, Z. and Hoatson, G., (2002). “Modelling one- and two-dimensional solid-state NMR spectra.” Magnetic Resonance in Chemistry, 40(1), 70-76. – reference: 81) Wang, Z., Aili, A., Minami, M. and Maruyama, I., (2023). “Verification method of direct air capture by cementitious material using carbon isotopes.” Journal of Advanced Concrete Technology, 21(11), 934-940. – reference: 68) Scarlett, N. V. Y. and Madsen, I. C., (2006). “Quantification of phases with partial or no known crystal structures.” Powder Diffraction, 21(4), 278-284. – reference: 12) Cullity, B. D., (1978). “Elements of X-ray diffraction.” Boston, Massachusetts: Addison-Wesley Publishing Company. – reference: 73) Skibsted, J., Henderson, E. and Jakobsen, H. J., (1993). “Characterization of calcium aluminate phases in cements by aluminum-27 MAS NMR spectroscopy.” Inorganic Chemistry, 32(6), 1013-1027. – reference: 86) Zhou, Q., Lachowski, E. E. and Glasser, F. P., (2004). “Metaettringite, a decomposition product of ettringite.” Cement and Concrete Research, 34(4), 703-710. – reference: 7) Cartwright, J. H. E., Checa, A. G., Gale, J. D., Gebauer, D. and Sainz-Díaz, C. I., (2012). “Calcium carbonate polyamorphism and its role in biomineralization: How many amorphous calcium carbonates are there?” Angewandte Chemie International Edition, 51(48), 11960-11970. – reference: 21) François, M., Renaudin, G. and Evrard, O., (1998). “A cementitious compound with composition 3CaO·Al2O3·CaCO3·11H2O.” Acta Crystallographica Section C: Crystal Structure Communications, 54(9), 1214-1217. – ident: 21 doi: 10.1107/S0108270198004223 – ident: 56 doi: 10.1016/S0008-8846(02)01026-8 – ident: 64 doi: 10.1016/j.cemconcomp.2023.105400 – ident: 82 doi: 10.1016/j.jcou.2022.102111 – ident: 4 doi: 10.1016/j.cemconres.2020.106113 – ident: 42 doi: 10.1016/j.cemconres.2014.01.007 – ident: 67 doi: 10.2183/pjab.55.43 – ident: 12 – ident: 80 doi: 10.1111/jace.13401 – ident: 36 doi: 10.1021/jacs.0c02988 – ident: 51 – ident: 86 doi: 10.1016/j.cemconres.2003.10.027 – ident: 55 doi: 10.1007/s002690050020 – ident: 59 doi: 10.1073/pnas.1009959107 – ident: 39 doi: 10.1107/S1600576719013955 – ident: 23 doi: 10.1016/j.cemconres.2020.106080 – ident: 77 doi: 10.1016/j.cemconres.2020.106116 – ident: 44 doi: 10.1107/S0108768193002575 – ident: 54 doi: 10.1017/S0885715600013026 – ident: 35 doi: 10.1179/000844301794388362 – ident: 66 doi: 10.1680/adcr.14.00104 – ident: 73 doi: 10.1021/ic00058a043 – ident: 2 doi: 10.1016/j.cemconres.2005.04.010 – ident: 83 doi: 10.1016/j.cemconres.2020.105990 – ident: 38 doi: 10.1016/j.cemconres.2010.10.003 – ident: 20 doi: 10.1021/ic9800076 – ident: 27 doi: 10.1007/s11595-018-1941-6 – ident: 29 doi: 10.1016/j.cemconres.2011.03.004 – ident: 46 doi: 10.1016/j.cemconres.2006.10.013 – ident: 9 doi: 10.1016/j.cemconres.2020.106209 – ident: 31 doi: 10.1016/j.cemconcomp.2022.104655 – ident: 7 doi: 10.1002/anie.201203125 – ident: 16 doi: 10.1016/j.cemconres.2019.02.004 – ident: 84 doi: 10.1016/j.cemconres.2011.06.003 – ident: 24 doi: 10.1111/j.1151-2916.1995.tb09057.x – ident: 69 doi: 10.1107/S0108768111041759 – ident: 17 doi: 10.1039/C1CE05976A – ident: 65 doi: 10.14250/cement.68.46 – ident: 74 doi: 10.1107/S002188988708659X – ident: 62 doi: 10.1524/zkri.1974.139.1-2.129 – ident: 79 doi: 10.1680/cc.25929 – ident: 3 doi: 10.1016/j.cemconres.2015.02.011 – ident: 58 – ident: 30 doi: 10.1154/1.3549186 – ident: 43 doi: 10.3151/jact.22.383 – ident: 37 doi: 10.1016/j.cemconres.2022.106805 – ident: 87 doi: 10.1007/BF00775655 – ident: 11 doi: 10.1107/S056774087100579X – ident: 71 doi: 10.1201/b19074 – ident: 48 doi: 10.1107/S0567740875003639 – ident: 22 doi: 10.1016/j.cemconres.2016.03.003 – ident: 81 doi: 10.3151/jact.21.934 – ident: 33 – ident: 45 doi: 10.1002/mrc.984 – ident: 14 doi: 10.1107/S0021889801002485 – ident: 26 doi: 10.1016/j.cemconcomp.2017.03.003 – ident: 52 doi: 10.1524/zkri.1985.172.14.297 – ident: 49 doi: 10.1107/S0567740870002443 – ident: 18 doi: 10.1021/cg4002972 – ident: 47 – ident: 53 doi: 10.1016/0008-8846(92)90130-N – ident: 57 doi: 10.1107/S0567740882004993 – ident: 85 doi: 10.1016/S0008-8846(01)00558-0 – ident: 8 doi: 10.6028/jres.109.002 – ident: 76 doi: 10.1346/CCMN.2001.0490604 – ident: 13 doi: 10.1016/j.jmr.2008.03.001 – ident: 61 doi: 10.1107/S0021889869006558 – ident: 10 doi: 10.1107/S1600576718000183 – ident: 1 doi: 10.1107/S0567740869003876 – ident: 70 doi: 10.1016/j.cemconres.2004.04.014 – ident: 75 doi: 10.1016/j.cemconres.2014.06.011 – ident: 5 doi: 10.1080/14786444508520918 – ident: 60 doi: 10.1017/S0885715600009647 – ident: 25 doi: 10.6028/jres.081A.011 – ident: 34 doi: 10.1016/S0016-7061(97)00056-6 – ident: 19 doi: 10.1107/S0021889886089458 – ident: 28 doi: 10.1107/S0021889887086199 – ident: 15 – ident: 41 doi: 10.3151/jact.12.200 – ident: 40 doi: 10.1016/j.cemconres.2024.107428 – ident: 50 doi: 10.1002/anie.201200845 – ident: 68 doi: 10.1154/1.2362855 – ident: 32 doi: 10.1107/S0365110X63002000 – ident: 72 doi: 10.1016/j.cemconres.2016.06.006 – ident: 63 – ident: 78 doi: 10.3151/jact.21.789 – ident: 6 doi: 10.3151/jact.21.166 |
SSID | ssj0037377 |
Score | 2.3777246 |
Snippet | For the quantification of mineralogical components in cementitious materials using XRD, the external standard method, where the standard material is measured... |
SourceID | proquest crossref jstage |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 602 |
SubjectTerms | Attenuation coefficients Calcium aluminate Calcium carbonate Carbonation Cement Cement paste Clinker Corundum Crystal structure NMR Nuclear magnetic resonance X-ray diffraction |
Title | Applicability of XRD/Rietveld Analysis with an External Standard Method for the Quantification of Mineral Components in Carbonated Hardened Cement Paste |
URI | https://www.jstage.jst.go.jp/article/jact/22/10/22_602/_article/-char/en https://www.proquest.com/docview/3128500243 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Journal of Advanced Concrete Technology, 2024/10/19, Vol.22(10), pp.602-619 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NbxMxELVC4UAPiE-RUpAPPYE23drer2NVikpRKlpaKbeV12vDQtmN0g1S-SX8In4XY3vt3UAOpZdV5Dh2lPcyfmPPjBHaCTlVpCQs4IqKgBUZC4oCvJSIS6myOBUFN9U-T-KjC3Y8i2aj0e9B1NKyLSbi59q8ktugCm2Aq86S_Q9k_aDQAK8BX3gCwvC8Ecb79vTZxLeak_LZ2VsY7ayS7Q95WfYVR7oMtjeHXc1nrTHtDsLU3CDtgw1Pl9xGD3klOa1MXWpjOJra5MPpREG-KPS-O8hVffYPBlNvFJvAgo_8ql2NLxpoXhdxcNDUIFdbuWZr_xOX9irtE958qb41w8MmXV3akOLaN0_5YnnNv5vm9_O5rIb7GMAOHRbSW8tj0AZ1P7sPlbDrlDXOlIFBzGzuqrPehAxZGg5scRySwbIe27n-XjEoKB5zU4FoJ4RM_GdWSnB3AOe6V05IDo4TPKFv7t7RKXLAyDvoLgF3RdvbD6f-NIsmNElsbqiebncw2YoauvcVHILP_6oCI3XOH6IHHV543876CI1k_RhtDipXPkG_VqiHG4WBeruOeNgRD2viYV5jRzzsiIct8TAQDwPx8Crx9IAd8XBPPFzVuCcedsTDlnjYEO8punh3eH5wFHSXfASCkbANmACHoowVKMuIScGYZKIICxWKlDGqFM04By8fsC9ZEpIkjsokZapUiUgFLRP6DG3U8C2eI7y3B2YHHGaWSM4yxdISVnrBZJwpGUacjtFr92PnoquAry9iudSAamQ8wIDMGO34znNb-GV9t9Si5jvdmCxjtO1wzjujcgXjkzQyZUK3bj_yC3S__4dto412sZQvQTu3xStDzD-19NWk |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Applicability+of+XRD%2FRietveld+Analysis+with+an+External+Standard+Method+for+the+Quantification+of+Mineral+Components+in+Carbonated+Hardened+Cement+Paste&rft.jtitle=Journal+of+Advanced+Concrete+Technology&rft.au=Saeki%2C+Naohiko&rft.au=Kurihara%2C+Ryo&rft.au=Maruyama%2C+Ippei&rft.date=2024-10-19&rft.pub=Japan+Concrete+Institute&rft.eissn=1347-3913&rft.volume=22&rft.issue=10&rft.spage=602&rft.epage=619&rft_id=info:doi/10.3151%2Fjact.22.602&rft.externalDocID=article_jact_22_10_22_602_article_char_en |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1346-8014&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1346-8014&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1346-8014&client=summon |