A Review on Data Preprocessing Techniques Toward Efficient and Reliable Knowledge Discovery From Building Operational Data
The rapid development in data science and the increasing availability of building operational data have provided great opportunities for developing data-driven solutions for intelligent building energy management. Data preprocessing serves as the foundation for valid data analyses. It is an indispen...
Saved in:
Published in | Frontiers in energy research Vol. 9 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Frontiers Media S.A
29.03.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The rapid development in data science and the increasing availability of building operational data have provided great opportunities for developing data-driven solutions for intelligent building energy management. Data preprocessing serves as the foundation for valid data analyses. It is an indispensable step in building operational data analysis considering the intrinsic complexity of building operations and deficiencies in data quality. Data preprocessing refers to a set of techniques for enhancing the quality of the raw data, such as outlier removal and missing value imputation. This article serves as a comprehensive review of data preprocessing techniques for analysing massive building operational data. A wide variety of data preprocessing techniques are summarised in terms of their applications in missing value imputation, outlier detection, data reduction, data scaling, data transformation, and data partitioning. In addition, three state-of-the-art data science techniques are proposed to tackle practical data challenges in the building field, i.e., data augmentation, transfer learning, and semi-supervised learning. In-depth discussions have been presented to describe the pros and cons of existing preprocessing methods, possible directions for future research and potential applications in smart building energy management. The research outcomes are helpful for the development of data-driven research in the building field. |
---|---|
AbstractList | The rapid development in data science and the increasing availability of building operational data have provided great opportunities for developing data-driven solutions for intelligent building energy management. Data preprocessing serves as the foundation for valid data analyses. It is an indispensable step in building operational data analysis considering the intrinsic complexity of building operations and deficiencies in data quality. Data preprocessing refers to a set of techniques for enhancing the quality of the raw data, such as outlier removal and missing value imputation. This article serves as a comprehensive review of data preprocessing techniques for analysing massive building operational data. A wide variety of data preprocessing techniques are summarised in terms of their applications in missing value imputation, outlier detection, data reduction, data scaling, data transformation, and data partitioning. In addition, three state-of-the-art data science techniques are proposed to tackle practical data challenges in the building field, i.e., data augmentation, transfer learning, and semi-supervised learning. In-depth discussions have been presented to describe the pros and cons of existing preprocessing methods, possible directions for future research and potential applications in smart building energy management. The research outcomes are helpful for the development of data-driven research in the building field. |
Author | Fan, Cheng Wang, Xinghua Chen, Meiling Wang, Jiayuan Huang, Bufu |
Author_xml | – sequence: 1 givenname: Cheng surname: Fan fullname: Fan, Cheng – sequence: 2 givenname: Meiling surname: Chen fullname: Chen, Meiling – sequence: 3 givenname: Xinghua surname: Wang fullname: Wang, Xinghua – sequence: 4 givenname: Jiayuan surname: Wang fullname: Wang, Jiayuan – sequence: 5 givenname: Bufu surname: Huang fullname: Huang, Bufu |
BookMark | eNp1UV1LHDEUDWJBa_0BvuUP7DYfk2Tm0e5quygosoJv4U5yZ42MyTYZXba_vrO7FkqhT_dy4HxxPpPjmCIScsHZVMq6-dphzKupYIJPtRI140fkVIhGT1RTPx3_9Z-Q81JeGGNcClVxdkp-XdIHfA-4oSnSOQxA7zOuc3JYSogrukT3HMPPNyx0mTaQPb3quuACxoFC9CO5D9D2SG9i2vToV0jnobj0jnlLr3N6pd_eQu93UndrzDCEFKHfO30hnzroC55_3DPyeH21nP2Y3N59X8wubyeuEmyYCKORg2qVN61Gw1uPnRrLtLr2Blht1K44F9p3UhhZKdd4xoVhVdOOuJJnZHHQ9Qle7DqHV8hbmyDYPZDyykIeguvRtrJG3VQGpGIVh9EDwXCpha5c2wAftcxBy-VUSsbOujDsSw0ZQm85s7tF7H4RuwtmD4uMTP4P80-S_3N-AwBskcU |
CitedBy_id | crossref_primary_10_1021_acs_est_3c00348 crossref_primary_10_3389_fstro_2024_1488313 crossref_primary_10_12991_jrespharm_1644357 crossref_primary_10_24003_emitter_v12i2_835 crossref_primary_10_52158_jacost_v4i1_493 crossref_primary_10_1007_s00704_024_05155_7 crossref_primary_10_1016_j_compbiomed_2024_109237 crossref_primary_10_1007_s42979_025_03761_4 crossref_primary_10_32604_cmc_2023_046648 crossref_primary_10_1016_j_jpi_2023_100341 crossref_primary_10_51583_IJLTEMAS_2024_130805 crossref_primary_10_3390_sym15091723 crossref_primary_10_1016_j_humgen_2022_201135 crossref_primary_10_1016_j_rockmb_2024_100146 crossref_primary_10_1016_j_ejca_2023_113291 crossref_primary_10_1007_s00484_024_02763_w crossref_primary_10_1186_s42162_022_00214_7 crossref_primary_10_1109_ACCESS_2024_3496561 crossref_primary_10_1007_s10845_023_02126_z crossref_primary_10_3389_fpsyt_2023_1143272 crossref_primary_10_1109_ACCESS_2023_3258399 crossref_primary_10_1016_j_enconman_2025_119737 crossref_primary_10_3390_buildings14123894 crossref_primary_10_1080_08839514_2023_2222494 crossref_primary_10_1007_s44163_025_00241_9 crossref_primary_10_1093_postmj_qgae080 crossref_primary_10_3390_w17050756 crossref_primary_10_1007_s11042_024_18280_2 crossref_primary_10_1016_j_iot_2022_100628 crossref_primary_10_1007_s11042_024_18576_3 crossref_primary_10_1016_j_rineng_2024_102766 crossref_primary_10_1016_j_enbuild_2022_112204 crossref_primary_10_1007_s12273_021_0807_6 crossref_primary_10_2196_59587 crossref_primary_10_1016_j_autcon_2024_105844 crossref_primary_10_3390_jpm12121954 crossref_primary_10_12720_jait_15_10_1193_1204 crossref_primary_10_3390_su151813671 crossref_primary_10_3390_su16124954 crossref_primary_10_1016_j_apenergy_2023_120701 crossref_primary_10_1016_j_heliyon_2024_e36846 crossref_primary_10_3390_electronics13234715 crossref_primary_10_1016_j_mtcomm_2024_110209 crossref_primary_10_1016_j_jconrel_2022_11_014 crossref_primary_10_1007_s10836_024_06152_4 crossref_primary_10_1109_ACCESS_2024_3398635 crossref_primary_10_1007_s13198_024_02535_0 crossref_primary_10_1021_acs_chemrev_2c00360 crossref_primary_10_1016_j_procs_2023_12_155 crossref_primary_10_1021_acsestengg_3c00043 crossref_primary_10_51646_jsesd_v14iFICTS_2024_446 crossref_primary_10_1021_acsami_3c06498 crossref_primary_10_1007_s12273_021_0811_x crossref_primary_10_1186_s13014_024_02573_9 crossref_primary_10_51583_IJLTEMAS_2025_14020019 crossref_primary_10_1016_j_est_2024_114524 crossref_primary_10_1016_j_jpbao_2024_100041 crossref_primary_10_3390_electronics13244981 crossref_primary_10_3390_info16010034 crossref_primary_10_1007_s13369_023_08288_5 crossref_primary_10_1016_j_dmpk_2024_101004 crossref_primary_10_1016_j_jsv_2023_117769 crossref_primary_10_1016_j_cell_2024_07_045 crossref_primary_10_3390_math12091289 crossref_primary_10_3390_s21237902 crossref_primary_10_1016_j_eswa_2025_126991 crossref_primary_10_1177_23998083241259069 crossref_primary_10_1007_s43762_024_00116_2 crossref_primary_10_1016_j_apenergy_2021_117829 crossref_primary_10_1016_j_enbuild_2024_114802 crossref_primary_10_1016_j_rser_2024_114804 crossref_primary_10_1016_j_scs_2023_104770 crossref_primary_10_1289_EHP12901 crossref_primary_10_1016_j_techfore_2024_123901 crossref_primary_10_1007_s00521_024_10076_7 crossref_primary_10_3390_su15065267 crossref_primary_10_1016_j_energy_2023_129939 crossref_primary_10_23939_sisn2023_14_348 crossref_primary_10_1038_s41598_023_31461_7 crossref_primary_10_1016_j_jobe_2022_104445 crossref_primary_10_1109_ACCESS_2024_3362239 crossref_primary_10_1007_s11042_024_19661_3 crossref_primary_10_3389_fnut_2024_1479501 crossref_primary_10_1016_j_dsx_2023_102919 crossref_primary_10_1109_JIOT_2024_3485874 crossref_primary_10_1051_itmconf_20235602007 crossref_primary_10_1016_j_rser_2024_114472 crossref_primary_10_1109_JSTARS_2022_3201273 crossref_primary_10_1109_ACCESS_2024_3518516 crossref_primary_10_2118_207877_PA crossref_primary_10_1007_s11096_025_01899_y crossref_primary_10_1016_j_jhazmat_2025_137185 crossref_primary_10_1109_ACCESS_2022_3151652 crossref_primary_10_1007_s00521_025_10976_2 crossref_primary_10_3389_fpls_2023_1286088 crossref_primary_10_1016_j_engstruct_2023_116359 crossref_primary_10_3390_s22134670 crossref_primary_10_1155_2023_8833753 crossref_primary_10_3390_math12172652 crossref_primary_10_1002_bbb_2596 crossref_primary_10_3390_diagnostics13142417 crossref_primary_10_1007_s12273_024_1114_9 crossref_primary_10_3390_jmse12030493 crossref_primary_10_1109_ACCESS_2024_3450520 crossref_primary_10_1155_2022_2206689 crossref_primary_10_3390_bdcc7010045 crossref_primary_10_3390_math11081846 crossref_primary_10_1016_j_uclim_2023_101570 crossref_primary_10_1016_j_atech_2022_100155 crossref_primary_10_1016_j_jinse_2024_100008 crossref_primary_10_1002_ima_22674 crossref_primary_10_54688_ayd_1182620 crossref_primary_10_1016_j_apenergy_2023_121030 crossref_primary_10_12720_jait_16_3_342_356 crossref_primary_10_1016_j_apenergy_2024_123016 crossref_primary_10_1016_j_conbuildmat_2024_135530 crossref_primary_10_1109_TAI_2024_3491938 crossref_primary_10_1016_j_procir_2024_10_266 crossref_primary_10_1007_s11042_024_19816_2 crossref_primary_10_1016_j_jgsce_2024_205522 crossref_primary_10_3390_info14090477 crossref_primary_10_1016_j_orp_2023_100292 crossref_primary_10_3390_electronics13193885 crossref_primary_10_1007_s11227_024_06606_8 crossref_primary_10_1016_j_egyr_2024_08_075 crossref_primary_10_1038_s41598_024_82420_9 crossref_primary_10_1038_s41598_025_90964_7 crossref_primary_10_3390_s24237503 crossref_primary_10_1007_s12652_023_04694_7 crossref_primary_10_3390_s24030886 crossref_primary_10_3390_info14100550 crossref_primary_10_1016_j_buildenv_2022_109279 crossref_primary_10_7837_kosomes_2024_30_5_415 crossref_primary_10_3390_make7010013 crossref_primary_10_1016_j_enbuild_2022_112372 crossref_primary_10_1016_j_enbuild_2024_115162 |
Cites_doi | 10.1016/j.enbuild.2018.07.017 10.16711/j.1001-7100.2019.03.0108 10.1016/j.apenergy.2019.113497 10.1007/s12273-020-0650-1 10.1016/j.eswa.2015.01.010 10.1016/j.apenergy.2019.113395 10.1016/j.energy.2019.116813 10.7551/mitpress/9780262033589.001.0001 10.1109/AIPR.2018.8707390 10.1016/j.apenergy.2010.04.008 10.1109/tsg.2014.2384997 10.1016/j.apenergy.2017.03.064 10.1016/j.enbuild.2018.01.034 10.1016/j.apenergy.2014.04.016 10.1016/j.apenergy.2018.12.004 10.1109/tsg.2013.2278477 10.1016/j.neucom.2018.10.109 10.1016/j.aei.2019.100944 10.1016/j.csda.2013.02.010 10.1007/s10115-017-1118-1 10.1016/j.neucom.2013.02.016 10.1177/0143624417704977 10.5815/ijitcs.2017.05.04 10.1016/j.enbuild.2019.01.034 10.1016/j.scs.2018.02.016 10.1016/j.apenergy.2015.02.048 10.1016/j.autcon.2014.12.006 10.1016/j.enbuild.2014.02.005 10.1016/j.enbuild.2021.110733 10.3390/su9112119 10.1007/s12273-020-0723-1 10.1007/978-981-32-9868-2_6 10.1016/j.apenergy.2020.114499 10.1016/j.enbuild.2020.110369 10.1016/j.eswa.2013.09.013 10.1016/j.seta.2020.100770 10.1016/j.enbuild.2010.05.007 10.1109/tie.2009.2027926 10.1016/j.neucom.2011.12.036 10.1109/tkde.2009.191 10.1016/j.patcog.2019.107049 10.1016/j.enbuild.2011.12.018 10.1016/j.enbuild.2015.09.060 10.1016/j.enbuild.2015.11.045 10.1016/j.ijrefrig.2019.07.018 10.1016/j.enbuild.2018.10.016 10.1016/j.apenergy.2019.02.052 10.1016/j.egypro.2013.11.057 10.1063/1.106515 10.1016/j.enbuild.2006.03.033 10.1007/s10115-013-0706-y 10.1016/j.energy.2016.02.061 10.1016/j.apenergy.2016.10.091 10.1016/j.enbuild.2018.04.052 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.3389/fenrg.2021.652801 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2296-598X |
ExternalDocumentID | oai_doaj_org_article_b38e6947a35041a8b6ea7136264cb9a1 10_3389_fenrg_2021_652801 |
GroupedDBID | 5VS 9T4 AAFWJ AAYXX ACGFS ACXDI ADBBV AFPKN ALMA_UNASSIGNED_HOLDINGS BCNDV CITATION GROUPED_DOAJ KQ8 M~E OK1 |
ID | FETCH-LOGICAL-c420t-276e1a5b5d7b6e71bdef5598b68d7a08752021126df327345c9d0127049b21153 |
IEDL.DBID | DOA |
ISSN | 2296-598X |
IngestDate | Wed Aug 27 01:19:58 EDT 2025 Tue Jul 01 03:00:19 EDT 2025 Thu Apr 24 23:06:47 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c420t-276e1a5b5d7b6e71bdef5598b68d7a08752021126df327345c9d0127049b21153 |
OpenAccessLink | https://doaj.org/article/b38e6947a35041a8b6ea7136264cb9a1 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_b38e6947a35041a8b6ea7136264cb9a1 crossref_citationtrail_10_3389_fenrg_2021_652801 crossref_primary_10_3389_fenrg_2021_652801 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-03-29 |
PublicationDateYYYYMMDD | 2021-03-29 |
PublicationDate_xml | – month: 03 year: 2021 text: 2021-03-29 day: 29 |
PublicationDecade | 2020 |
PublicationTitle | Frontiers in energy research |
PublicationYear | 2021 |
Publisher | Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media S.A |
References | B65 Wang (B64) 2019; 47 Seem (B54) 2007; 39 Wang (B63) 2015; 146 Yu (B70) 2012; 47 Fan (B14); 236 Capozzoli (B3) 2015; 42 Piscitelli (B50) 2020; 226 Wahid (B62) 2017; 9 Zhang (B71) 2018; 39 Tian (B58) 2012; 90 Sermanet (B55) 2014 Tian (B57) 2019; 186 Triguero (B59) 2015; 42 Fan (B20) 2017; 195 (B28) 2019 Jalori (B29); 121 Li (B41) Gao (B23) 2020; 396 B34 Vandewalle (B61) 2013; 64 Li (B42); 40 Noh (B47) 2017; 9 Ramesh (B51) 2010; 42 Li (B40) 2017; 185 Liu (B46) 2019; 107 Ashouri (B2) 2018; 172 Liu (B45) 2018; 175 Pan (B48) 2010; 22 Fan (B18) 2014; 127 Gulbinas (B25) 2015; 6 Kwac (B38) 2014; 5 Talukdar (B56) 2010 Li (B43) 2010; 57 Dey (B10) 2018 Piscitelli (B49) 2021; 14 Fan (B17); 251 Zhang (B72) 2019; 28 Fan (B15); 109 Kornish (B36) 2018 Goodfellow (B24) 2016 Han (B27) 2011 Chae (B4) 2016; 111 Kolter (B35) 2011 Xiao (B66) 2014; 75 Yan (B68) 2018; 181 Fan (B13); 240 Kang (B32) 2013; 118 Xiao (B67) 2017 Fan (B19); 50 Jenghara (B31) 2018; 56 Rashid (B52) 2019; 42 Guyon (B26) 2003; 3 Um (B60) 2017 Li (B44); 98 Chapelle (B5) 2006 Le Cam (B39) 2016; 101 Fan (B11); 234 Fan (B12) 2020; 262 Ashouri (B1) 2020; 194 Chou (B8) 2014; 41 Yu (B69) 2019; 253 Chollet (B7) 2018 Fan (B21); 14 Ribeiro (B53) 2018; 165 Khan (B33) 2013; 42 Cheng (B6) 2016 Cui (B9) 2018; 34 Jalori (B30); 121 Frid-Adar (B22) 2018 Fan (B16) 2018; 39 Kusiak (B37) 2010; 87 |
References_xml | – volume: 175 start-page: 148 year: 2018 ident: B45 article-title: Energy diagnosis of variable refrigerant flow (VRF) systems: data mining technique and statistical quality control approach publication-title: Energy Build. doi: 10.1016/j.enbuild.2018.07.017 – start-page: 216 year: 2017 ident: B60 article-title: Data augmentation of wearable sensor data for Parkinson’s disease monitoring using convolutional neural networks – volume-title: Energy efficiency: buildings year: 2019 ident: B28 – volume: 47 start-page: 49 year: 2019 ident: B64 article-title: Feature-optimizing selection for chiller fault detection and diagnosis publication-title: Cyro. Supercond. doi: 10.16711/j.1001-7100.2019.03.0108 – volume: 253 start-page: 113497 year: 2019 ident: B69 article-title: A data-driven approach to extract operational signatures of HVAC systems and analyze impact on electricity consumption publication-title: Appl. Energy doi: 10.1016/j.apenergy.2019.113497 – volume: 14 start-page: 131 year: 2021 ident: B49 article-title: A data analytics-based tool for the detection and diagnosis of anomalous daily energy patterns in buildings publication-title: Build. Simul. doi: 10.1007/s12273-020-0650-1 – volume: 34 start-page: 94 year: 2018 ident: B9 article-title: Research on preprocessing technology of building energy consumption monitoring data based on machine learning algorithm publication-title: Build. Sci. – volume: 42 start-page: 4324 year: 2015 ident: B3 article-title: Fault detection analysis using data mining techniques for a cluster of smart office buildings publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2015.01.010 – volume-title: Deep learning with R year: 2018 ident: B7 – volume: 251 start-page: 113395 ident: B17 article-title: A graph mining-based methodology for discovering and visualizing high-level knowledge for building energy management publication-title: Appl. Energy doi: 10.1016/j.apenergy.2019.113395 – volume: 194 start-page: 116813 year: 2020 ident: B1 article-title: Systematic approach to provide building occupants with feedback to reduce energy consumption publication-title: Energy doi: 10.1016/j.energy.2019.116813 – volume-title: Semi-supervised learning year: 2006 ident: B5 doi: 10.7551/mitpress/9780262033589.001.0001 – year: 2018 ident: B36 article-title: DCNN augmentation via synthetic data from variational autoencoders and generative adversarial networks doi: 10.1109/AIPR.2018.8707390 – volume: 87 start-page: 3092 year: 2010 ident: B37 article-title: Modeling and optimization of HVAC energy consumption publication-title: Appl. Energy doi: 10.1016/j.apenergy.2010.04.008 – volume: 6 start-page: 1414 year: 2015 ident: B25 article-title: Segmentation and classification of commercial building occupants by energy-use efficiency and predictability publication-title: IEEE Trans. Smart Grid doi: 10.1109/tsg.2014.2384997 – volume: 195 start-page: 222 year: 2017 ident: B20 article-title: A short-term building cooling load prediction method using deep learning algorithms publication-title: Appl. Energy doi: 10.1016/j.apenergy.2017.03.064 – volume: 165 start-page: 352 year: 2018 ident: B53 article-title: Transfer learning with seasonal and trend adjustment for cross-building energy forecasting publication-title: Energy Build. doi: 10.1016/j.enbuild.2018.01.034 – volume: 127 start-page: 1 year: 2014 ident: B18 article-title: Development of prediction models for next-day building energy consumption and peak power demand using data mining techniques publication-title: Appl. Energy doi: 10.1016/j.apenergy.2014.04.016 – volume-title: Data mining: concepts and techniques year: 2011 ident: B27 – volume: 236 start-page: 700 ident: B14 article-title: Assessment of deep recurrent neural network-based strategies for short-term building energy predictions publication-title: Appl. Energy doi: 10.1016/j.apenergy.2018.12.004 – start-page: 1349 year: 2011 ident: B35 article-title: A large-scale study on predicting and contextualizing building energy usage – volume: 5 start-page: 420 year: 2014 ident: B38 article-title: Household energy consumption segmentation using hourly data publication-title: IEEE Trans. Smart Grid doi: 10.1109/tsg.2013.2278477 – year: 2014 ident: B55 article-title: Overfeat: integrated recognition, localization and detection using convolutional networks – volume: 396 start-page: 487 year: 2020 ident: B23 article-title: Data augmentation in fault diagnosis based on the Wasserstein generative adversarial network with gradient penalty publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.10.109 – volume: 42 start-page: 100944 year: 2019 ident: B52 article-title: Times-series data augmentation and deep learning for construction equipment activity recognition publication-title: Adv. Eng. Inform. doi: 10.1016/j.aei.2019.100944 – volume: 64 start-page: 220 year: 2013 ident: B61 article-title: A predictive deviance criterion for selecting a generative model in semi-supervised classification publication-title: Comput. Stat. Data Anal. doi: 10.1016/j.csda.2013.02.010 – volume: 56 start-page: 123 year: 2018 ident: B31 article-title: Imputing missing value through ensemble concept based on statistical measures publication-title: Knowledge Inf. Syst. doi: 10.1007/s10115-017-1118-1 – volume: 118 start-page: 65 year: 2013 ident: B32 article-title: Locally linear reconstruction based missing value imputation for supervised learning publication-title: Neurocomputing doi: 10.1016/j.neucom.2013.02.016 – volume: 39 start-page: 117 year: 2018 ident: B16 article-title: Mining big building operational data for improving building energy efficiency: a case study publication-title: Build. Serv. Eng. Res. Technol. doi: 10.1177/0143624417704977 – volume: 9 start-page: 23 year: 2017 ident: B62 article-title: Statistical features based approach (SFBA) for hourly energy consumption prediction using neural network publication-title: Networks doi: 10.5815/ijitcs.2017.05.04 – volume: 186 start-page: 230 year: 2019 ident: B57 article-title: Data driven parallel prediction of building energy consumption using generative adversarial nets publication-title: Energy Build. doi: 10.1016/j.enbuild.2019.01.034 – ident: B65 – start-page: 872 year: 2018 ident: B10 article-title: Semi-supervised learning techniques for automated fault detection and diagnosis of HVAC systems – start-page: 646 year: 2016 ident: B6 article-title: Case studies of fault diagnosis and energy saving in buildings using data mining techniques – volume: 39 start-page: 508 year: 2018 ident: B71 article-title: On the feature engineering of building energy data mining publication-title: Sustain. Cities Soc. doi: 10.1016/j.scs.2018.02.016 – volume: 146 start-page: 92 year: 2015 ident: B63 article-title: Benchmarking whole-building energy performance with multi-criteria technique for order preference by similarity to ideal solution using a selective objective-weighting approach publication-title: Appl. Energy doi: 10.1016/j.apenergy.2015.02.048 – volume: 50 start-page: 81 ident: B19 article-title: A framework for knowledge discovery in massive building automation data and its application in building diagnostics publication-title: Autom. Constr. doi: 10.1016/j.autcon.2014.12.006 – volume: 75 start-page: 109 year: 2014 ident: B66 article-title: Data mining in building automation system for improving building operational performance publication-title: Energy Build. doi: 10.1016/j.enbuild.2014.02.005 – ident: B34 – volume: 121 start-page: 156 ident: B30 article-title: A unified inverse modeling framework for whole-building energy interval data: daily and hourly baseline modeling and short-term load forecasting publication-title: ASHRAE Trans. – volume: 234 start-page: 110733 ident: B11 article-title: Statistical characterization of semi-supervised neural networks for fault detection and diagnosis of air handling units publication-title: Energy Build. doi: 10.1016/j.enbuild.2021.110733 – volume: 9 start-page: 2119 year: 2017 ident: B47 article-title: In-depth analysis of energy efficiency related factors in commercial buildings using data cube and association rule mining publication-title: Sustainability doi: 10.3390/su9112119 – volume: 14 start-page: 3 ident: B21 article-title: Advanced data analytics for enhancing building performances: from data-driven to big data-driven approaches publication-title: Build. Simul. doi: 10.1007/s12273-020-0723-1 – start-page: 1473 volume-title: Experiments in graph-based semi-supervised learning methods for class-instance acquisition year: 2010 ident: B56 – start-page: 61 ident: B41 article-title: Using evidence accumulation-based clustering and symbolic transformation to group multiple buildings based on electricity usage patterns publication-title: Sustain. Energy Build. doi: 10.1007/978-981-32-9868-2_6 – volume: 262 start-page: 114499 year: 2020 ident: B12 article-title: Statistical investigations of transfer learning-based methodology for short-term building energy predictions publication-title: Appl. Energy doi: 10.1016/j.apenergy.2020.114499 – volume: 226 start-page: 110369 year: 2020 ident: B50 article-title: Enhancing operational performance of ahus through an advanced fault detection and diagnosis process based on temporal association and decision rules publication-title: Energy Build. doi: 10.1016/j.enbuild.2020.110369 – volume: 41 start-page: 2144 year: 2014 ident: B8 article-title: Smart meter monitoring and data mining techniques for predicting refrigeration system performance publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2013.09.013 – volume: 40 start-page: 100770 ident: B42 article-title: A new strategy to benchmark and evaluate building electricity usage using multiple data mining technologies publication-title: Sustain. Energy Technol. Assess. doi: 10.1016/j.seta.2020.100770 – volume: 42 start-page: 1592 year: 2010 ident: B51 article-title: Life cycle energy analysis of buildings: an overview publication-title: Energy Build. doi: 10.1016/j.enbuild.2010.05.007 – volume: 57 start-page: 3639 year: 2010 ident: B43 article-title: Classification of energy consumption in buildings with outlier detection publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/tie.2009.2027926 – volume: 90 start-page: 46 year: 2012 ident: B58 article-title: A multiple kernel framework for inductive semi-supervised SVM learning publication-title: Neurocomputing doi: 10.1016/j.neucom.2011.12.036 – volume-title: Deep learning year: 2016 ident: B24 – volume: 22 start-page: 1345 year: 2010 ident: B48 article-title: A survey on transfer learning publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/tkde.2009.191 – volume: 98 start-page: 107049 ident: B44 article-title: A baseline regularization scheme for transfer learning with convolutional neural networks publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2019.107049 – start-page: 1 year: 2017 ident: B67 article-title: Mining big building operational data for building cooling load prediction and energy efficiency improvement – volume: 121 start-page: 33 ident: B29 article-title: A new clustering method to identify outliers and diurnal schedules from building energy interval data publication-title: ASHRAE Trans. – volume: 47 start-page: 430 year: 2012 ident: B70 article-title: A novel methodology for knowledge discovery through mining associations between building operational data publication-title: Energy Build. doi: 10.1016/j.enbuild.2011.12.018 – volume: 109 start-page: 75 ident: B15 article-title: Temporal knowledge discovery in big BAS data for building energy management publication-title: Energy Build. doi: 10.1016/j.enbuild.2015.09.060 – volume: 111 start-page: 184 year: 2016 ident: B4 article-title: Artificial neural network model for forecasting sub-hourly electricity usage in commercial buildings publication-title: Energy Build. doi: 10.1016/j.enbuild.2015.11.045 – volume: 107 start-page: 39 year: 2019 ident: B46 article-title: A novel deep reinforcement learning based methodology for short-term HVAC system energy consumption prediction publication-title: Int. J. Refrig. doi: 10.1016/j.ijrefrig.2019.07.018 – volume: 181 start-page: 75 year: 2018 ident: B68 article-title: Semi-supervised learning for early detection and diagnosis of various air handling unit faults publication-title: Energy Build. doi: 10.1016/j.enbuild.2018.10.016 – volume: 240 start-page: 35 ident: B13 article-title: Deep learning-based feature engineering methods for improved building energy prediction publication-title: Appl. Energy doi: 10.1016/j.apenergy.2019.02.052 – volume: 42 start-page: 557 year: 2013 ident: B33 article-title: Fault detection analysis of building energy consumption using data mining techniques publication-title: Energy Procedia doi: 10.1016/j.egypro.2013.11.057 – volume: 3 start-page: 1157 year: 2003 ident: B26 article-title: An introduction to variable and feature selection publication-title: J. Machine Learn. Res. doi: 10.1063/1.106515 – start-page: 289 year: 2018 ident: B22 article-title: Synthetic data augmentation using GAN for improved liver lesion classification – volume: 28 start-page: 201 year: 2019 ident: B72 article-title: Data augmentation method based on generative adversarial network publication-title: Computer Syst. Appl. – volume: 39 start-page: 52 year: 2007 ident: B54 article-title: Using intelligent data analysis to detect abnormal energy consumption in buildings publication-title: Energy and Buildings doi: 10.1016/j.enbuild.2006.03.033 – volume: 42 start-page: 245 year: 2015 ident: B59 article-title: Self-labeled techniques for semi-supervised learning: taxonomy, software and empirical study publication-title: Knowl Inf. Syst. doi: 10.1007/s10115-013-0706-y – volume: 101 start-page: 541 year: 2016 ident: B39 article-title: Forecasting electric demand of supply fan using data mining techniques publication-title: Energy doi: 10.1016/j.energy.2016.02.061 – volume: 185 start-page: 846 year: 2017 ident: B40 article-title: Data partitioning and association mining for identifying VRF energy consumption patterns under various part loads and refrigerant charge conditions publication-title: Appl. Energy doi: 10.1016/j.apenergy.2016.10.091 – volume: 172 start-page: 139 year: 2018 ident: B2 article-title: Development of building energy saving advisory: a data mining approach publication-title: Energy Build. doi: 10.1016/j.enbuild.2018.04.052 |
SSID | ssj0001325410 |
Score | 2.5371087 |
SecondaryResourceType | review_article |
Snippet | The rapid development in data science and the increasing availability of building operational data have provided great opportunities for developing data-driven... |
SourceID | doaj crossref |
SourceType | Open Website Enrichment Source Index Database |
SubjectTerms | building energy management building operational data analysis data preprocessing data science knowledge discovery |
Title | A Review on Data Preprocessing Techniques Toward Efficient and Reliable Knowledge Discovery From Building Operational Data |
URI | https://doaj.org/article/b38e6947a35041a8b6ea7136264cb9a1 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxgQT1Fe8sCEFFo7thOPLW1VgQQMrdQtshMHIUFatWGAX8-dk1SZYGG1nNj6fNI9_Pk7Qm5U5EKrtAwgnLeBEMIFseNhwJhRqZQREt6RbfGkpnPxsJCLVqsv5IRV8sAVcD0bxk5pEZlQ9gUzsVXOQGIFcbhIrTY-8QGf10qmfHUlhMSH1deYkIXpXg7H8Qr5IGd3SvK4bgLTOKKWXr93LJMDsl9HhHRQ7eSQ7LjiiOy1dAKPyfeAVjV8uizoyJSGvqAYpaf4wwQ6a4RYN3TmabB07JUhwKFQU2QUecf4RIo-NhU0OnrbpMje_KKT9fKDDuvu2PR55dZ1fdCvdELmk_HsfhrUTROCVPB-GfBIOWaklVkEUEXMZi5HEXar4iwyqF-PGDCusjxEaRuZ6sxfPwttYVyGp6RTLAt3RigDeJ00SjOnRWa1zrnkKTg0fIwKn3ZJv0EwSWtFcWxs8Z5AZoGgJx70BBdMKtC75Hb7yaqS0_ht8hCPZTsRlbD9ANhHUttH8pd9nP_HTy7ILu4LuWdcX5JOuf50VxCMlPba290PRyrZvA |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Review+on+Data+Preprocessing+Techniques+Toward+Efficient+and+Reliable+Knowledge+Discovery+From+Building+Operational+Data&rft.jtitle=Frontiers+in+energy+research&rft.au=Fan%2C+Cheng&rft.au=Chen%2C+Meiling&rft.au=Wang%2C+Xinghua&rft.au=Wang%2C+Jiayuan&rft.date=2021-03-29&rft.issn=2296-598X&rft.eissn=2296-598X&rft.volume=9&rft_id=info:doi/10.3389%2Ffenrg.2021.652801&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_fenrg_2021_652801 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2296-598X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2296-598X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2296-598X&client=summon |