Polar oxide substrates for graphene growth: A first-principles investigation of graphene on MgO(111)

Given the recent excitement over the truly two-dimensional carbon “super” material – graphene, there is now much effort and focus on the various possibilities of engineering the band gap of graphene for its device applications. One possible and promising route will be to grow graphene directly on so...

Full description

Saved in:
Bibliographic Details
Published inCurrent applied physics Vol. 13; no. 5; pp. 803 - 807
Main Authors Min, Kyung-Ah, Park, Jinwoo, Ryou, Junga, Hong, Suklyun, Soon, Aloysius
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.07.2013
한국물리학회
Subjects
Online AccessGet full text
ISSN1567-1739
1878-1675
DOI10.1016/j.cap.2012.10.013

Cover

Loading…
Abstract Given the recent excitement over the truly two-dimensional carbon “super” material – graphene, there is now much effort and focus on the various possibilities of engineering the band gap of graphene for its device applications. One possible and promising route will be to grow graphene directly on some non-metallic substrates. In this paper, we address the atomic and electronic structure of various graphene structures on the polar MgO(111) using first-principles density-functional theory (DFT) calculations. We find that graphene generally interacts strongly with the O-terminated polar oxide surface, forming strong chemical bonds, inferred from both energetics and detailed density-of-states analysis. We compare our theoretical findings with available experimental results, offering a possible direction for future band gap engineering of graphene on such oxide substrates. ► We investigate monolayer and bilayer graphene on MgO(111) using DFT calculations. ► Graphene interacts strongly with the O-terminated surface, forming chemical bonds. ► For the bilayer graphene on MgO(111), the bottom layer acts as a buffer layer. ► We suggest a possible direction for band gap engineering of graphene on oxides.
AbstractList Given the recent excitement over the truly two-dimensional carbon asupera material a graphene, there is now much effort and focus on the various possibilities of engineering the band gap of graphene for its device applications. One possible and promising route will be to grow graphene directly on some non-metallic substrates. In this paper, we address the atomic and electronic structure of various graphene structures on the polar MgO(111) using first-principles density-functional theory (DFT) calculations. We find that graphene generally interacts strongly with the O-terminated polar oxide surface, forming strong chemical bonds, inferred from both energetics and detailed density-of-states analysis. We compare our theoretical findings with available experimental results, offering a possible direction for future band gap engineering of graphene on such oxide substrates.
Given the recent excitement over the truly two-dimensional carbon “super” material – graphene, there is now much effort and focus on the various possibilities of engineering the band gap of graphene for its device applications. One possible and promising route will be to grow graphene directly on some non-metallic substrates. In this paper, we address the atomic and electronic structure of various graphene structures on the polar MgO(111) using first-principles density-functional theory (DFT) calculations. We find that graphene generally interacts strongly with the O-terminated polar oxide surface, forming strong chemical bonds, inferred from both energetics and detailed density-of-states analysis. We compare our theoretical findings with available experimental results, offering a possible direction for future band gap engineering of graphene on such oxide substrates.
Given the recent excitement over the truly two-dimensional carbon “super” material e graphene, there is now much effort and focus on the various possibilities of engineering the band gap of graphene for its device applications. One possible and promising route will be to grow graphene directly on some nonmetallic substrates. In this paper, we address the atomic and electronic structure of various graphene structures on the polar MgO(111) using first-principles density-functional theory (DFT) calculations. We find that graphene generally interacts strongly with the O-terminated polar oxide surface, forming strong chemical bonds, inferred from both energetics and detailed density-of-states analysis. We compare our theoretical findings with available experimental results, offering a possible direction for future band gap engineering of graphene on such oxide substrates. KCI Citation Count: 10
Given the recent excitement over the truly two-dimensional carbon “super” material – graphene, there is now much effort and focus on the various possibilities of engineering the band gap of graphene for its device applications. One possible and promising route will be to grow graphene directly on some non-metallic substrates. In this paper, we address the atomic and electronic structure of various graphene structures on the polar MgO(111) using first-principles density-functional theory (DFT) calculations. We find that graphene generally interacts strongly with the O-terminated polar oxide surface, forming strong chemical bonds, inferred from both energetics and detailed density-of-states analysis. We compare our theoretical findings with available experimental results, offering a possible direction for future band gap engineering of graphene on such oxide substrates. ► We investigate monolayer and bilayer graphene on MgO(111) using DFT calculations. ► Graphene interacts strongly with the O-terminated surface, forming chemical bonds. ► For the bilayer graphene on MgO(111), the bottom layer acts as a buffer layer. ► We suggest a possible direction for band gap engineering of graphene on oxides.
Author Ryou, Junga
Park, Jinwoo
Min, Kyung-Ah
Hong, Suklyun
Soon, Aloysius
Author_xml – sequence: 1
  givenname: Kyung-Ah
  surname: Min
  fullname: Min, Kyung-Ah
  organization: Department of Physics and Graphene Research Institute, Sejong University, Seoul 143-747, Republic of Korea
– sequence: 2
  givenname: Jinwoo
  surname: Park
  fullname: Park, Jinwoo
  organization: Department of Physics and Graphene Research Institute, Sejong University, Seoul 143-747, Republic of Korea
– sequence: 3
  givenname: Junga
  surname: Ryou
  fullname: Ryou, Junga
  organization: Department of Physics and Graphene Research Institute, Sejong University, Seoul 143-747, Republic of Korea
– sequence: 4
  givenname: Suklyun
  surname: Hong
  fullname: Hong, Suklyun
  email: hong@sejong.ac.kr
  organization: Department of Physics and Graphene Research Institute, Sejong University, Seoul 143-747, Republic of Korea
– sequence: 5
  givenname: Aloysius
  surname: Soon
  fullname: Soon, Aloysius
  email: aloysius.soon@yonsei.ac.kr
  organization: Department of Materials Science & Engineering, Yonsei University, Seoul 120-749, Republic of Korea
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART001790704$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNqNkU1v1DAQhiNUJNrCD-BEjuWQxRN_JIHTquKjUlERLGfL60xSb1M72N4C_55JF4HEoeI0Hvt5x_b7nhRHPngsiufAVsBAvdqtrJlXNYOa-hUD_qg4hrZpK1CNPKK1VE0FDe-eFCcp7RhpBBPHRf8pTCaW4YfrsUz7bcrRZEzlEGI5RjNfo0dahO_5-nW5LgcXU67m6Lx180Sc83eYshtNdsGXYfgrovbjeHUGAC-fFo8HMyV89rueFpt3bzfnH6rLq_cX5-vLyoqa5aqGpunaTlEDW9kqNTSoOtUbKbm1WxAMWzT1thedqqVlrWzQAnYge-x7xU-Ls8NYHwd9Y50Oxt3XMeibqNefNxcaGOdkwx90juHbnn6gb12yOE3GY9gnTa61UirO_gPlohNSiHZ5QHNAbQwpRRy0dfneGXLVTXS5XsLSO01h6SWsZYvCIiX8oySPb038-aDmxUEzmKDNGF3SX78QINlyykEQ8eZAIJl-5zDqZB16i72LaLPug3tg_i9DorYb
CitedBy_id crossref_primary_10_1007_s41918_019_00033_7
crossref_primary_10_1080_09506608_2017_1344377
crossref_primary_10_1016_j_carbon_2022_04_063
crossref_primary_10_1016_j_spmi_2015_10_008
crossref_primary_10_1039_C9EN00608G
crossref_primary_10_7567_JJAP_55_06GF07
crossref_primary_10_1016_j_cap_2025_03_010
crossref_primary_10_1016_j_jallcom_2020_153889
crossref_primary_10_1063_1_4961112
crossref_primary_10_1021_acs_jpcc_7b12305
crossref_primary_10_1016_j_cap_2015_04_028
crossref_primary_10_1088_1361_6463_aabc48
crossref_primary_10_1002_adem_202100762
crossref_primary_10_1039_C4MH00124A
Cites_doi 10.1088/0953-8984/23/7/072204
10.1063/1.3070238
10.1021/jp108616h
10.1002/jcc.20495
10.1103/PhysRev.140.A1133
10.1103/PhysRevLett.99.076802
10.1103/PhysRevLett.106.106801
10.1103/PhysRevB.50.17953
10.1103/PhysRevLett.92.026101
10.1103/PhysRevB.59.1758
10.3938/jkps.59.196
10.1103/PhysRevLett.77.3865
10.1038/nature10680
10.1002/anie.201101174
10.1088/0953-8984/23/24/243201
10.1016/0927-0256(96)00008-0
10.1039/C1NR11067E
10.1103/PhysRevB.54.11169
ContentType Journal Article
Copyright 2012 Elsevier B.V.
Copyright_xml – notice: 2012 Elsevier B.V.
DBID FBQ
AAYXX
CITATION
7QQ
7U5
8FD
JG9
L7M
7S9
L.6
ACYCR
DOI 10.1016/j.cap.2012.10.013
DatabaseName AGRIS
CrossRef
Ceramic Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
AGRICOLA
AGRICOLA - Academic
Korean Citation Index
DatabaseTitle CrossRef
Materials Research Database
Solid State and Superconductivity Abstracts
Ceramic Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Materials Research Database
AGRICOLA



Database_xml – sequence: 1
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Physics
Engineering
EISSN 1878-1675
EndPage 807
ExternalDocumentID oai_kci_go_kr_ARTI_103317
10_1016_j_cap_2012_10_013
US201500133314
S1567173912004361
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9ZL
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABMAC
ABNEU
ABXDB
ABYKQ
ACDAQ
ACFVG
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SPD
SSQ
SSZ
T5K
UHS
~G-
ABPIF
ABPTK
FBQ
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7QQ
7U5
8FD
EFKBS
JG9
L7M
7S9
L.6
ACYCR
ID FETCH-LOGICAL-c420t-217798964201b5866f7e696da553ccb140e8ea2bd49625c0857ec1e915dedd63
IEDL.DBID AIKHN
ISSN 1567-1739
IngestDate Fri Nov 17 19:23:20 EST 2023
Fri Sep 05 07:20:09 EDT 2025
Fri Sep 05 00:08:38 EDT 2025
Thu Apr 24 23:06:44 EDT 2025
Tue Jul 01 01:06:01 EDT 2025
Wed Dec 27 18:59:14 EST 2023
Fri Feb 23 02:29:58 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords MgO
Graphene
Density functional theory
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c420t-217798964201b5866f7e696da553ccb140e8ea2bd49625c0857ec1e915dedd63
Notes http://dx.doi.org/10.1016/j.cap.2012.10.013
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
G704-001115.2013.13.5.006
PQID 1349454486
PQPubID 23500
PageCount 5
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_103317
proquest_miscellaneous_1678556307
proquest_miscellaneous_1349454486
crossref_citationtrail_10_1016_j_cap_2012_10_013
crossref_primary_10_1016_j_cap_2012_10_013
fao_agris_US201500133314
elsevier_sciencedirect_doi_10_1016_j_cap_2012_10_013
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-07-01
PublicationDateYYYYMMDD 2013-07-01
PublicationDate_xml – month: 07
  year: 2013
  text: 2013-07-01
  day: 01
PublicationDecade 2010
PublicationTitle Current applied physics
PublicationYear 2013
Publisher Elsevier B.V
한국물리학회
Publisher_xml – name: Elsevier B.V
– name: 한국물리학회
References Shemella, Nayak (bib6) 2009; 94
Biro, Nemes-Incze, Lambin (bib3) 2012; 4
Kim, Choi, Kim, Cho, Chung (bib1) 2011; 479
Molitor, Güttinger, Stampfer, Dröscher, Jacobsen, Ihn, Ensslin (bib4) 2011; 23
Gaddam, Bjelkevig, Ge, Fukutani, Dowben, Kelber (bib9) 2011; 23
Kresse, Furthmüller (bib13) 1996; 6
Geim (bib2) 2011; 50
Kohn, Sham (bib10) 1965; 140
Grimme (bib16) 2006; 27
Subramanian, Marks, Warschkow, Ellis (bib17) 2004; 92
Perdew, Burke, Ernzerhof (bib11) 1996; 77
Mattausch, Pankratov (bib5) 2007; 99
Park, Yu, Hong (bib18) 2011; 59
Kong, Bjelkevig, Gaddam, Zhou, Lee, Han, Jeong, Wu, Zhang, Xiao, Dowben, Kelber (bib8) 2010; 114
Blöchl (bib14) 1994; 50
Cuong, Otani, Okada (bib7) 2011; 106
Kresse, Joubert (bib15) 1999; 59
Kresse, Furthmüller (bib12) 1996; 54
Blöchl (10.1016/j.cap.2012.10.013_bib14) 1994; 50
Kresse (10.1016/j.cap.2012.10.013_bib13) 1996; 6
Mattausch (10.1016/j.cap.2012.10.013_bib5) 2007; 99
Molitor (10.1016/j.cap.2012.10.013_bib4) 2011; 23
Kresse (10.1016/j.cap.2012.10.013_bib15) 1999; 59
Biro (10.1016/j.cap.2012.10.013_bib3) 2012; 4
Perdew (10.1016/j.cap.2012.10.013_bib11) 1996; 77
Shemella (10.1016/j.cap.2012.10.013_bib6) 2009; 94
Grimme (10.1016/j.cap.2012.10.013_bib16) 2006; 27
Subramanian (10.1016/j.cap.2012.10.013_bib17) 2004; 92
Kim (10.1016/j.cap.2012.10.013_bib1) 2011; 479
Kresse (10.1016/j.cap.2012.10.013_bib12) 1996; 54
Geim (10.1016/j.cap.2012.10.013_bib2) 2011; 50
Cuong (10.1016/j.cap.2012.10.013_bib7) 2011; 106
Kong (10.1016/j.cap.2012.10.013_bib8) 2010; 114
Kohn (10.1016/j.cap.2012.10.013_bib10) 1965; 140
Gaddam (10.1016/j.cap.2012.10.013_bib9) 2011; 23
Park (10.1016/j.cap.2012.10.013_bib18) 2011; 59
References_xml – volume: 77
  start-page: 3865
  year: 1996
  ident: bib11
  publication-title: Phys. Rev. Lett.
– volume: 479
  start-page: 338
  year: 2011
  ident: bib1
  publication-title: Nature
– volume: 114
  start-page: 21618
  year: 2010
  ident: bib8
  publication-title: J. Phys. Chem. C
– volume: 23
  start-page: 072204
  year: 2011
  ident: bib9
  publication-title: J. Phys. Condens. Matter
– volume: 4
  start-page: 1824
  year: 2012
  ident: bib3
  publication-title: Nanoscale
– volume: 92
  start-page: 026101
  year: 2004
  ident: bib17
  publication-title: Phys. Rev. Lett.
– volume: 23
  start-page: 243201
  year: 2011
  ident: bib4
  publication-title: J. Phys. Condens. Matter
– volume: 140
  start-page: A1133
  year: 1965
  ident: bib10
  publication-title: Phys. Rev.
– volume: 59
  start-page: 196
  year: 2011
  ident: bib18
  publication-title: J. Korean Phys. Soc.
– volume: 54
  start-page: 11169
  year: 1996
  ident: bib12
  publication-title: Phys. Rev. B
– volume: 50
  start-page: 6966
  year: 2011
  ident: bib2
  publication-title: Angew. Chem. Int. Ed.
– volume: 106
  start-page: 106801
  year: 2011
  ident: bib7
  publication-title: Phys. Rev. Lett.
– volume: 99
  start-page: 076802
  year: 2007
  ident: bib5
  publication-title: Phys. Rev. Lett.
– volume: 6
  start-page: 15
  year: 1996
  ident: bib13
  publication-title: Comput. Mater. Sci.
– volume: 27
  start-page: 1787
  year: 2006
  ident: bib16
  publication-title: J. Comput. Chem.
– volume: 50
  start-page: 17953
  year: 1994
  ident: bib14
  publication-title: Phys. Rev. B
– volume: 94
  start-page: 032101
  year: 2009
  ident: bib6
  publication-title: Appl. Phys. Lett.
– volume: 59
  start-page: 1758
  year: 1999
  ident: bib15
  publication-title: Phys. Rev. B
– volume: 23
  start-page: 072204
  year: 2011
  ident: 10.1016/j.cap.2012.10.013_bib9
  publication-title: J. Phys. Condens. Matter
  doi: 10.1088/0953-8984/23/7/072204
– volume: 94
  start-page: 032101
  year: 2009
  ident: 10.1016/j.cap.2012.10.013_bib6
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3070238
– volume: 114
  start-page: 21618
  year: 2010
  ident: 10.1016/j.cap.2012.10.013_bib8
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp108616h
– volume: 27
  start-page: 1787
  year: 2006
  ident: 10.1016/j.cap.2012.10.013_bib16
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.20495
– volume: 140
  start-page: A1133
  year: 1965
  ident: 10.1016/j.cap.2012.10.013_bib10
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.140.A1133
– volume: 99
  start-page: 076802
  year: 2007
  ident: 10.1016/j.cap.2012.10.013_bib5
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.99.076802
– volume: 106
  start-page: 106801
  year: 2011
  ident: 10.1016/j.cap.2012.10.013_bib7
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.106.106801
– volume: 50
  start-page: 17953
  year: 1994
  ident: 10.1016/j.cap.2012.10.013_bib14
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.50.17953
– volume: 92
  start-page: 026101
  year: 2004
  ident: 10.1016/j.cap.2012.10.013_bib17
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.92.026101
– volume: 59
  start-page: 1758
  year: 1999
  ident: 10.1016/j.cap.2012.10.013_bib15
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.59.1758
– volume: 59
  start-page: 196
  year: 2011
  ident: 10.1016/j.cap.2012.10.013_bib18
  publication-title: J. Korean Phys. Soc.
  doi: 10.3938/jkps.59.196
– volume: 77
  start-page: 3865
  year: 1996
  ident: 10.1016/j.cap.2012.10.013_bib11
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– volume: 479
  start-page: 338
  year: 2011
  ident: 10.1016/j.cap.2012.10.013_bib1
  publication-title: Nature
  doi: 10.1038/nature10680
– volume: 50
  start-page: 6966
  year: 2011
  ident: 10.1016/j.cap.2012.10.013_bib2
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201101174
– volume: 23
  start-page: 243201
  year: 2011
  ident: 10.1016/j.cap.2012.10.013_bib4
  publication-title: J. Phys. Condens. Matter
  doi: 10.1088/0953-8984/23/24/243201
– volume: 6
  start-page: 15
  year: 1996
  ident: 10.1016/j.cap.2012.10.013_bib13
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/0927-0256(96)00008-0
– volume: 4
  start-page: 1824
  year: 2012
  ident: 10.1016/j.cap.2012.10.013_bib3
  publication-title: Nanoscale
  doi: 10.1039/C1NR11067E
– volume: 54
  start-page: 11169
  year: 1996
  ident: 10.1016/j.cap.2012.10.013_bib12
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.54.11169
SSID ssj0016404
Score 2.080125
Snippet Given the recent excitement over the truly two-dimensional carbon “super” material – graphene, there is now much effort and focus on the various possibilities...
Given the recent excitement over the truly two-dimensional carbon asupera material a graphene, there is now much effort and focus on the various possibilities...
Given the recent excitement over the truly two-dimensional carbon “super” material e graphene, there is now much effort and focus on the various possibilities...
SourceID nrf
proquest
crossref
fao
elsevier
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 803
SubjectTerms Atomic structure
Band theory
Carbon
chemical bonding
Density functional theory
Electronic structure
engineering
Graphene
Mathematical analysis
MgO
Oxides
physics
Two dimensional
물리학
Title Polar oxide substrates for graphene growth: A first-principles investigation of graphene on MgO(111)
URI https://dx.doi.org/10.1016/j.cap.2012.10.013
https://www.proquest.com/docview/1349454486
https://www.proquest.com/docview/1678556307
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART001790704
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Current Applied Physics, 2013, 13(5), , pp.803-807
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3daxQxEA_tFcEX8ZOe1RLBBxW2d8km2YtvR7FclVahLfQtZPNxXSu7x-2V-uTf7kxut0XEe_BlP8IMhEkymV8y-YWQt5ZFC9gHxrfSPBOe55mVNs-U00JK77iMeHb45FTNLsTnS3m5RQ77szCYVtn5_rVPT966Kxl11hwtqmp0BsgDt5A144lHHSDQDs-1kgOyMz3-Mju920xQIt0iiPIZKvSbmynNy1lkrWT8AHO8WP6v6Wk72gae9TL-5bTTTHT0mDzqQkg6XdfyCdkK9VPyIKVyuvYZ8d8QrdLmZ-UDbcEvJP7ZlkJ0ShM9NXg3-GhuV1cf6ZTGCuK_bNGvube0umfeaGraxHsl-D2Zf30Hfuv9c3J-9On8cJZ1dylkTvDxKgPkUeiJBrQxZqWcKBWLoLTyVsrcuRJgVpgEy0svNCAih7z3wbGgmfTBe5W_IIO6qcMuoTrGxNbkXQGhVOClHkdrHZ6YYzDjyiEZ9xY0ruMZx-sufpg-oey7AaMbNDoWgdGH5MOdymJNsrFJWPTNYv7oKQYmgU1qu9CExs7Bd5qLM44rPVCc50wMyRtoV3PtKoNk2_ieN-Z6aQBSHIM6yBQg07e6gQGIuyq2Ds1Na5DfUUhAuWqDDIQEiYmtePl_td8jD3m6hwPzhF-RwWp5E15DNLQq98n2wS-23_X53zTNBAw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxELZKEYIL4qmm5WEkDoC0Tey1vTG3qqJKoSlITaXeLK8fYSnajbKp4MRvZ8bZbYUQOXDZhzWWrBl7PJ89_kzIa8uiBewD41tpngnP88xKm2fKaSGld1xGPDs8PVWTc_HxQl5skcP-LAymVXa-f-3Tk7fuSoadNoeLqhqeAfLALWTNeOJRBwh0W8i8wLy-_V_XeR4AB9IdgiidoXi_tZmSvJxFzkrG9zHDi-X_mpxuRdvAs17Gv1x2moeOHpD7XQBJD9ZtfEi2Qv2I3EmJnK59TPwXxKq0-Vn5QFvwCol9tqUQm9JETg2-DT6aH6uv7-kBjRVEf9miX3FvaXXDu9HUtIk3leB3Ov_8BrzW2ydkdvRhdjjJupsUMif4aJUB7ij0WAPWGLFSjpWKRVBaeStl7lwJICuMg-WlFxrwkEPW--BY0Ez64L3Kn5LtuqnDDqE6xsTV5F0BgVTgpR5Fax2el2Mw38oBGfUaNK5jGcfLLr6bPp3smwGlG1Q6FoHSB-TddZXFmmJjk7DozWL-6CcGpoBN1XbAhMbOwXOa8zOO6zxQnOdMDMgrsKu5dJVBqm18zxtzuTQAKI6hOsgUINNb3cDwwz0VW4fmqjXI7igkYFy1QQYCgsTDVuz-X-tfkruT2fTEnByfftoj93i6kQMzhp-R7dXyKjyHuGhVvkj9_jdhXATX
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Polar+oxide+substrates+for+graphene+growth%3A+A+first-principles+investigation+of+graphene+on+MgO%28111%29&rft.jtitle=Current+applied+physics&rft.au=Min%2C+Kyung-Ah&rft.au=Park%2C+Jinwoo&rft.au=Ryou%2C+Junga&rft.au=Hong%2C+Suklyun&rft.date=2013-07-01&rft.pub=Elsevier+B.V&rft.issn=1567-1739&rft.eissn=1878-1675&rft.volume=13&rft.issue=5&rft.spage=803&rft.epage=807&rft_id=info:doi/10.1016%2Fj.cap.2012.10.013&rft.externalDocID=S1567173912004361
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1567-1739&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1567-1739&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1567-1739&client=summon