The Sabatier Principle in Electrocatalysis: Basics, Limitations, and Extensions

The Sabatier principle, which states that the binding energy between the catalyst and the reactant should be neither too strong nor too weak, has been widely used as the key criterion in designing and screening electrocatalytic materials necessary to promote the sustainability of our society. The wi...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in energy research Vol. 9
Main Authors Ooka, Hideshi, Huang, Jun, Exner, Kai S.
Format Journal Article
LanguageEnglish
Published Frontiers Media S.A 04.05.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The Sabatier principle, which states that the binding energy between the catalyst and the reactant should be neither too strong nor too weak, has been widely used as the key criterion in designing and screening electrocatalytic materials necessary to promote the sustainability of our society. The widespread success of density functional theory (DFT) has made binding energy calculations a routine practice, turning the Sabatier principle from an empirical principle into a quantitative predictive tool. Given its importance in electrocatalysis, we have attempted to introduce the reader to the fundamental concepts of the Sabatier principle with a highlight on the limitations and challenges in its current thermodynamic context. The Sabatier principle is situated at the heart of catalyst development, and moving beyond its current thermodynamic framework is expected to promote the identification of next-generation electrocatalysts.
AbstractList The Sabatier principle, which states that the binding energy between the catalyst and the reactant should be neither too strong nor too weak, has been widely used as the key criterion in designing and screening electrocatalytic materials necessary to promote the sustainability of our society. The widespread success of density functional theory (DFT) has made binding energy calculations a routine practice, turning the Sabatier principle from an empirical principle into a quantitative predictive tool. Given its importance in electrocatalysis, we have attempted to introduce the reader to the fundamental concepts of the Sabatier principle with a highlight on the limitations and challenges in its current thermodynamic context. The Sabatier principle is situated at the heart of catalyst development, and moving beyond its current thermodynamic framework is expected to promote the identification of next-generation electrocatalysts.
Author Huang, Jun
Ooka, Hideshi
Exner, Kai S.
Author_xml – sequence: 1
  givenname: Hideshi
  surname: Ooka
  fullname: Ooka, Hideshi
– sequence: 2
  givenname: Jun
  surname: Huang
  fullname: Huang, Jun
– sequence: 3
  givenname: Kai S.
  surname: Exner
  fullname: Exner, Kai S.
BookMark eNp1UMtKAzEUDaJgrf0Ad_MBTk0yM8nEnZaqhUIFK7gLmeSmpkwzJZmF_XvThyCCm_uC87jnCp37zgNCNwSPi6IWdxZ8WI0ppmTMqrJk-AwNKBUsr0T9cf5rvkSjGNcYY1LQqiR4gBbLT8jeVKN6ByF7Dc5rt20hcz6btqD70GnVq3YXXbzPHlV0Ot5mc7dxfUJ0Pi3Km2z61YOP-_0aXVjVRhid-hC9P02Xk5d8vnieTR7muS4p7nOiBZRAa9PYimIGlEOBkyMLBTWaAVhuleBgsKCGE95UXCsjgDFlG6J1MUSzI6_p1Fpug9uosJOdcvJw6MJKqtA73YIUhpLGKiJSLQkva46TB0iKRRJlPHHxI5cOXYwBrNSn9_qgXCsJlvuY5SFmuY9ZHmNOSPIH-ePkf8w3GsKEMw
CitedBy_id crossref_primary_10_1016_j_ijhydene_2024_11_425
crossref_primary_10_1021_acscatal_4c04418
crossref_primary_10_1002_cctc_202200878
crossref_primary_10_1016_S1872_2067_21_64022_6
crossref_primary_10_1016_j_molliq_2024_125535
crossref_primary_10_1002_anie_202319206
crossref_primary_10_1016_j_physb_2024_416062
crossref_primary_10_1016_j_jallcom_2024_175749
crossref_primary_10_1002_jcc_27466
crossref_primary_10_1680_jnaen_24_00008
crossref_primary_10_1016_j_cattod_2024_115051
crossref_primary_10_1002_smll_202306840
crossref_primary_10_1002_cphc_202400785
crossref_primary_10_1088_2515_7655_ad040f
crossref_primary_10_1007_s40843_023_2447_4
crossref_primary_10_1002_ange_202421554
crossref_primary_10_1002_open_202400085
crossref_primary_10_1016_j_jallcom_2022_165940
crossref_primary_10_1021_acs_chemmater_4c01684
crossref_primary_10_1038_s41467_023_40471_y
crossref_primary_10_1002_smll_202405008
crossref_primary_10_1016_j_jcis_2024_07_109
crossref_primary_10_1039_D4TA05081A
crossref_primary_10_1063_5_0211477
crossref_primary_10_1016_j_jcis_2023_07_047
crossref_primary_10_1039_D3TA07470F
crossref_primary_10_1039_D0CS01079K
crossref_primary_10_1021_acsanm_4c01765
crossref_primary_10_1002_eem2_12723
crossref_primary_10_1002_celc_202400609
crossref_primary_10_1021_acscatal_3c05657
crossref_primary_10_1002_cssc_202400873
crossref_primary_10_1016_j_electacta_2023_143022
crossref_primary_10_1002_adma_202300429
crossref_primary_10_1016_j_ijhydene_2023_07_024
crossref_primary_10_1016_j_rser_2024_114900
crossref_primary_10_3390_nano13222966
crossref_primary_10_1002_advs_202207644
crossref_primary_10_1002_ange_202302779
crossref_primary_10_1016_S1872_2067_22_64207_4
crossref_primary_10_1021_acsnano_2c12029
crossref_primary_10_1002_advs_202309635
crossref_primary_10_1021_acssuschemeng_2c04282
crossref_primary_10_1002_celc_202300789
crossref_primary_10_1016_j_mtener_2022_101083
crossref_primary_10_1016_j_mtener_2022_101087
crossref_primary_10_1016_j_ijhydene_2024_08_354
crossref_primary_10_1016_j_mtcomm_2024_111139
crossref_primary_10_1016_j_est_2023_109205
crossref_primary_10_1039_D4NR02387K
crossref_primary_10_1016_j_mtener_2021_100831
crossref_primary_10_1103_PRXEnergy_3_043008
crossref_primary_10_1016_j_susc_2023_122395
crossref_primary_10_1021_acsenergylett_2c00199
crossref_primary_10_1002_ente_202301197
crossref_primary_10_1021_acs_inorgchem_4c01584
crossref_primary_10_1039_D3TA01063E
crossref_primary_10_1002_smtd_202300482
crossref_primary_10_1016_j_apsusc_2024_161614
crossref_primary_10_1021_acs_langmuir_4c01797
crossref_primary_10_1016_j_ijhydene_2024_09_279
crossref_primary_10_1002_anie_202302779
crossref_primary_10_1038_s41467_024_47628_3
crossref_primary_10_1016_j_jcat_2024_115725
crossref_primary_10_1021_acs_jpcc_2c07007
crossref_primary_10_1002_adts_202301235
crossref_primary_10_1039_D3TA07896E
crossref_primary_10_1021_jacs_4c18638
crossref_primary_10_1016_j_mtsust_2024_100683
crossref_primary_10_59761_RCR5085
crossref_primary_10_1002_aenm_202300282
crossref_primary_10_1016_j_jechem_2023_12_048
crossref_primary_10_1016_j_cplett_2024_141750
crossref_primary_10_1016_j_joule_2024_06_023
crossref_primary_10_1021_acs_langmuir_3c00268
crossref_primary_10_1039_D4QI01723D
crossref_primary_10_1039_D4NR03026E
crossref_primary_10_3390_molecules29246018
crossref_primary_10_1021_acs_inorgchem_2c04336
crossref_primary_10_1039_D4NR02021A
crossref_primary_10_3390_coatings12070918
crossref_primary_10_1016_j_electacta_2024_145174
crossref_primary_10_1021_acs_chemrev_1c01003
crossref_primary_10_1016_j_isci_2021_103628
crossref_primary_10_1021_acs_accounts_4c00048
crossref_primary_10_1039_D4TA06969B
crossref_primary_10_1021_acs_jcim_3c01649
crossref_primary_10_1016_j_ijhydene_2024_12_385
crossref_primary_10_1039_D2TA08095H
crossref_primary_10_1021_acsnano_3c09523
crossref_primary_10_1039_D4CY00036F
crossref_primary_10_1016_j_apcatb_2022_121082
crossref_primary_10_1021_acsami_4c10391
crossref_primary_10_1016_j_jelechem_2023_117367
crossref_primary_10_1021_acsami_4c14076
crossref_primary_10_3390_nano13152176
crossref_primary_10_1021_acs_chemrev_2c00397
crossref_primary_10_1002_cctc_202402013
crossref_primary_10_1021_acs_chemmater_2c01572
crossref_primary_10_1039_D2DT01857H
crossref_primary_10_1016_j_ynexs_2024_100029
crossref_primary_10_1021_acs_jpcc_1c05671
crossref_primary_10_1002_anie_202421554
crossref_primary_10_1021_acs_inorgchem_3c03320
crossref_primary_10_1021_acs_inorgchem_2c04448
crossref_primary_10_1021_acs_jpcc_4c00299
crossref_primary_10_1039_D3CC05453E
crossref_primary_10_1002_aenm_202403738
crossref_primary_10_1021_acs_jpclett_4c02162
crossref_primary_10_1016_j_apsusc_2022_153979
crossref_primary_10_1016_j_mtener_2023_101364
crossref_primary_10_1016_j_mtener_2024_101641
crossref_primary_10_1016_j_seppur_2023_126188
crossref_primary_10_1021_acs_inorgchem_4c05048
crossref_primary_10_1002_ange_202301408
crossref_primary_10_1021_acs_chemrev_3c00252
crossref_primary_10_1021_acs_jpcc_3c00757
crossref_primary_10_1016_j_decarb_2024_100091
crossref_primary_10_1002_adfm_202309264
crossref_primary_10_1021_acs_jafc_3c01898
crossref_primary_10_1021_acs_jpclett_4c02844
crossref_primary_10_1039_D1EE03953A
crossref_primary_10_1002_ange_202318635
crossref_primary_10_1016_j_ccr_2024_216322
crossref_primary_10_1016_j_ensm_2022_09_014
crossref_primary_10_1002_anie_202301408
crossref_primary_10_1016_j_coelec_2023_101332
crossref_primary_10_1002_smll_202105331
crossref_primary_10_1021_acs_jpcc_2c08254
crossref_primary_10_1021_acs_jpcc_3c03472
crossref_primary_10_1039_D4CC02012J
crossref_primary_10_1149_1945_7111_ad8f01
crossref_primary_10_1002_advs_202305505
crossref_primary_10_1002_ceat_202200458
crossref_primary_10_1039_D2CY00389A
crossref_primary_10_1021_acs_chemrev_3c00382
crossref_primary_10_1016_j_est_2024_115251
crossref_primary_10_1039_D4TA00320A
crossref_primary_10_3390_catal13101371
crossref_primary_10_1016_j_nanoen_2024_109897
crossref_primary_10_1002_cctc_202400130
crossref_primary_10_1016_j_apsusc_2024_159942
crossref_primary_10_1016_j_ijhydene_2024_07_286
crossref_primary_10_1021_acs_jpclett_3c01596
crossref_primary_10_1002_adma_202408139
crossref_primary_10_3390_catal11101165
crossref_primary_10_1021_acsaem_2c01383
crossref_primary_10_1016_j_ijhydene_2024_02_103
crossref_primary_10_1021_acs_jpclett_4c00474
crossref_primary_10_1002_jcc_27063
crossref_primary_10_1016_j_ijhydene_2023_09_291
crossref_primary_10_1016_j_jechem_2024_04_001
crossref_primary_10_3389_fchem_2023_1175132
crossref_primary_10_1002_anie_202318635
crossref_primary_10_1016_j_ccr_2025_216473
crossref_primary_10_1021_acscatal_1c04547
crossref_primary_10_1016_j_checat_2024_101098
crossref_primary_10_1016_j_jcat_2024_115357
crossref_primary_10_1021_acssuschemeng_4c03545
crossref_primary_10_1039_D4NH00305E
crossref_primary_10_1016_j_checat_2022_09_003
crossref_primary_10_1016_j_apsusc_2023_156827
crossref_primary_10_1002_aenm_202300239
crossref_primary_10_1021_acsaem_1c01723
crossref_primary_10_1021_acsomega_4c07017
crossref_primary_10_1021_acs_jpcc_2c07411
crossref_primary_10_1016_j_electacta_2021_139019
crossref_primary_10_1021_acscatal_3c04956
crossref_primary_10_1021_acscatal_4c00229
crossref_primary_10_1016_j_apsusc_2025_162706
crossref_primary_10_1021_acs_chemrev_3c00712
crossref_primary_10_1016_j_apcatb_2022_121959
crossref_primary_10_1016_j_ijhydene_2024_07_155
crossref_primary_10_1016_j_cattod_2022_11_025
crossref_primary_10_1016_j_est_2023_110005
crossref_primary_10_1002_adfm_202409406
crossref_primary_10_1016_j_mtcomm_2023_106429
crossref_primary_10_1016_j_ijhydene_2024_12_068
crossref_primary_10_1039_D4TA02042A
crossref_primary_10_1002_cctc_202200345
crossref_primary_10_1021_acs_jpcc_4c07958
crossref_primary_10_1088_2516_1075_ad3123
crossref_primary_10_1016_j_jcat_2023_01_020
crossref_primary_10_1021_jacs_3c05287
crossref_primary_10_1016_j_ijhydene_2022_10_111
crossref_primary_10_1016_j_jallcom_2024_175330
crossref_primary_10_1021_acs_energyfuels_3c02358
crossref_primary_10_1039_D2CP04939B
crossref_primary_10_1021_acs_jpcc_2c02734
crossref_primary_10_1021_acsami_2c19391
crossref_primary_10_1016_j_ensm_2023_103078
crossref_primary_10_1038_s41467_024_51280_2
crossref_primary_10_1016_j_checat_2023_100621
crossref_primary_10_1021_acs_energyfuels_3c05194
crossref_primary_10_1016_j_electacta_2022_140799
crossref_primary_10_1016_j_jallcom_2024_173862
crossref_primary_10_1016_j_cclet_2024_110656
crossref_primary_10_1002_nadc_20224125416
crossref_primary_10_1002_open_202400124
crossref_primary_10_1016_j_fuel_2023_130654
crossref_primary_10_1021_acscatal_3c03728
crossref_primary_10_1016_j_apcatb_2024_124340
crossref_primary_10_1021_acs_langmuir_3c02260
crossref_primary_10_3390_catal12101223
crossref_primary_10_3390_app13053023
crossref_primary_10_1021_acscatal_2c03997
crossref_primary_10_1016_j_rser_2023_113227
crossref_primary_10_1016_j_apsusc_2025_162605
crossref_primary_10_1039_D2QM00121G
crossref_primary_10_3390_pr10051008
crossref_primary_10_1016_j_ijhydene_2023_04_119
crossref_primary_10_1016_j_ijhydene_2025_01_497
crossref_primary_10_1002_aoc_7541
crossref_primary_10_1002_adma_202400640
crossref_primary_10_1002_cey2_663
crossref_primary_10_1016_j_cis_2025_103429
crossref_primary_10_1016_j_mtchem_2023_101800
crossref_primary_10_1063_5_0186416
crossref_primary_10_1002_admi_202201138
crossref_primary_10_1021_acscatal_3c05738
crossref_primary_10_1021_acsami_3c02026
crossref_primary_10_1038_s41598_024_71703_w
crossref_primary_10_1063_5_0192779
crossref_primary_10_3389_fchem_2022_852196
crossref_primary_10_1016_j_electacta_2023_142634
crossref_primary_10_1021_acs_jafc_3c06487
crossref_primary_10_1021_jacs_3c11651
crossref_primary_10_1039_D1TA09657E
crossref_primary_10_1002_ange_202310069
crossref_primary_10_1016_j_mtcomm_2024_109509
crossref_primary_10_1021_acs_energyfuels_4c01461
crossref_primary_10_1021_acs_inorgchem_1c02633
crossref_primary_10_1002_adma_202305730
crossref_primary_10_1016_j_coelec_2023_101284
crossref_primary_10_1039_D3CY00742A
crossref_primary_10_1021_acs_inorgchem_3c02423
crossref_primary_10_1002_anie_202200755
crossref_primary_10_1016_j_jallcom_2024_174281
crossref_primary_10_1016_j_surfrep_2023_100597
crossref_primary_10_1149_1945_7111_ad377f
crossref_primary_10_1039_D3TA06580D
crossref_primary_10_1016_j_catcom_2021_106378
crossref_primary_10_1155_er_4906357
crossref_primary_10_1016_j_ijhydene_2022_09_264
crossref_primary_10_1021_acs_inorgchem_3c01572
crossref_primary_10_1021_acsnano_4c07613
crossref_primary_10_1016_j_physb_2024_416438
crossref_primary_10_1063_5_0151159
crossref_primary_10_1016_j_partic_2023_04_010
crossref_primary_10_1002_batt_202200468
crossref_primary_10_1021_acs_jpcc_3c04380
crossref_primary_10_1002_cite_202200071
crossref_primary_10_1021_acsanm_4c02434
crossref_primary_10_1039_D2CP03001B
crossref_primary_10_1002_ange_202200755
crossref_primary_10_1021_jacsau_4c00932
crossref_primary_10_1002_admi_202400559
crossref_primary_10_1016_j_checat_2024_101039
crossref_primary_10_1038_s41598_025_85891_6
crossref_primary_10_1002_smll_202300368
crossref_primary_10_1039_D3TA04225A
crossref_primary_10_1111_1462_2920_70055
crossref_primary_10_1149_1945_7111_acf246
crossref_primary_10_1016_j_jechem_2024_02_068
crossref_primary_10_3390_nano13061071
crossref_primary_10_1002_aenm_202302493
crossref_primary_10_1002_cphc_202400442
crossref_primary_10_1039_D4CP01792G
crossref_primary_10_1016_j_apcatb_2024_124423
crossref_primary_10_1007_s41918_023_00186_6
crossref_primary_10_1016_j_apsusc_2023_156587
crossref_primary_10_1016_j_matchemphys_2024_129785
crossref_primary_10_1021_acsnano_4c06063
crossref_primary_10_1002_ange_202319206
crossref_primary_10_1039_D4CP03153A
crossref_primary_10_1002_adma_202107072
crossref_primary_10_1016_j_colsurfa_2023_132450
crossref_primary_10_1016_j_cej_2024_157783
crossref_primary_10_1002_anie_202310069
crossref_primary_10_1002_cctc_202300491
crossref_primary_10_1021_acs_jpcc_3c07671
crossref_primary_10_1021_acs_energyfuels_1c03667
crossref_primary_10_1039_D4CP01084A
crossref_primary_10_1039_D4CP01682C
crossref_primary_10_1021_acs_jpcc_2c04731
Cites_doi 10.1007/s11244-013-0171-6
10.1016/j.electacta.2014.07.057
10.1016/0022-0728(93)85014-8
10.1021/acscatal.0c03865
10.1016/j.ijhydene.2020.07.088
10.1063/1.4865107
10.1002/celc.202001228
10.1021/acs.jpclett.0c02012
10.1021/cr1001436
10.1021/acs.jpclett.8b00810
10.1021/cr9001808
10.1039/C9TA06286F
10.1002/celc.202001465
10.1021/acsenergylett.0c00957
10.1039/C1CP21717H
10.1149/2.022211jes
10.1002/smll.201901980
10.1016/j.electacta.2006.12.007
10.1039/C9EE02873K
10.1021/acscatal.9b05248
10.1002/cctc.201000397
10.1007/s10800-005-9058-y
10.1002/cctc.201900500
10.1021/jacs.7b10142
10.1002/anie.201905501
10.1016/j.cattod.2014.08.001
10.1039/TF9514701332
10.1039/C4EE00440J
10.1016/j.jelechem.2013.08.033
10.1038/ncomms12363
10.1021/ja101578m
10.1002/anie.201406112
10.1039/C3SC50205H
10.1038/srep138012015
10.1016/j.elecom.2015.03.008
10.1021/acscatal.8b00574
10.1039/C7NR06054H
10.1016/0013-4686(75)90017-1
10.1002/aenm.201500985
10.1016/0013-4686(87)85001-6
10.1039/C9EE02697E
10.1021/ic900798q
10.1021/acs.jpcc.0c01621
10.1002/celc.201800838
10.1039/C8EE01501E
10.1021/jacs.0c01104
10.1021/acs.langmuir.7b00696
10.1021/jp1048887
10.1002/anie.202003688
10.1021/acs.jpcc.0c10092
10.1038/nenergy.2017.31
10.1021/acscatal.9b04186
10.1021/cr100085k
10.1021/acscatal.0c01906
10.1063/1.5054580
10.1021/acs.langmuir.8b02219
10.1016/j.nanoen.2016.12.056
10.1002/adfm.202005060
10.1039/C9CP06584A
10.3389/fenrg.2020.00155
10.1149/2.0152001JES
10.1021/acscatal.5b02550
10.1021/cs5012298
10.1021/acscatal.0c01862
10.1016/j.jcat.2004.02.034
10.1021/acs.jpcc.0c02824
10.1016/j.coelec.2020.100673
10.1002/celc.202000120
10.1039/P29930000799
10.1038/s41524-020-00394-4
10.1007/s10008-012-1918-x
10.1038/s41467-019-12994-w
10.1016/j.jelechem.2006.05.013
10.1021/ar1000956
10.1021/jacs.9b01834
10.1016/S0022-0728(72)80485-6
10.1039/D0CP03667F
10.1016/j.cossms.2020.100805
10.1073/pnas.1602984113
10.1021/jacs.8b05382
10.1002/qua.24481
10.1016/j.susc.2007.01.037
10.1002/elan.201600270
10.1002/wcms.1100
10.1016/S0378-7753(02)00542-6
10.1039/C4CP00394B
10.1021/acs.jpclett.9b01428
10.1039/D0CP00896F
10.1016/0013-4686(89)87082-3
10.1016/j.elecom.2018.01.012
10.1038/s41560-019-0450-y
10.1021/acscatal.0c03336
10.1126/science.1212858
10.1002/celc.201900784
10.1021/acs.jpclett.9b02436
10.1524/zpch.1960.26.1_2.016
10.1021/jp077210j
10.3389/fchem.2020.00634
10.1515/pac-2014-5026
10.1039/C9NH00100J
10.1038/s41467-019-13777-z
10.1016/j.electacta.2021.137975
10.1021/acs.jpcc.6b09019
10.1021/acsenergylett.9b02306
10.1039/B802218F
10.1039/C5SC02910D
10.1021/jz201461p
10.1021/acscatal.6b01211
10.1002/cctc.201901459
10.1038/ncomms6848
10.1021/acs.jpcc.9b05364
10.1016/j.nanoen.2016.04.011
10.1021/acs.jpclett.5b02556
10.1039/D0CP02741C
10.1021/acscatal.8b03547
10.1021/jacs.7b12774
10.1021/jp047349j
10.1524/zpch.1956.6.3_4.178
10.1021/acscatal.9b02416
10.1021/acs.jpclett.6b01254
10.1063/1.5132354
10.1039/C3CY01049J
10.1039/C9EE01341E
10.1021/ar9001284
10.1016/j.electacta.2012.04.062
10.1038/s41467-020-19212-y
10.1126/science.aaf5050
10.1016/j.nanoen.2017.05.022
10.1016/j.jelechem.2010.10.004
10.1063/1.5144912
10.1021/acscatal.9b01564
10.1021/acscatal.8b01432
10.1149/1.1856988
10.1021/jacs.0c10632
10.1021/acscatal.7b03991
10.1039/C6SC02984A
10.1021/acscatal.9b02799
10.1039/c2cp42369c
10.1039/B803956A
10.1021/acscatal.9b01606
10.1021/acs.chemrev.5b00389
10.1007/978-3-642-04937-8
10.1021/j100057a020
10.1002/anie.201511804
10.1021/acsaem.9b00791
10.1021/acscatal.9b00732
10.1016/j.ijhydene.2013.01.151
10.1039/C0NR00857E
10.1039/F19898502309
10.1016/j.susc.2012.08.005
10.1021/acs.jpcc.6b03930
10.1039/C8CP01315B
10.1021/acs.jpclett.7b02895
10.1126/science.aaw4675
10.1021/acs.jpcc.9b10860
10.1016/j.elecom.2015.09.019
10.1021/ja0504690
10.1002/advs.201700275
10.1016/j.matt.2019.09.011
10.1002/wcms.1499
10.1002/cssc.201900298
10.1021/jacs.7b06808
10.1002/9783527680603.ch56
10.1002/wcms.1446
10.1039/TF9585401053
10.1002/cctc.201701709
10.1246/bcsj.64.123
10.1021/acscentsci.0c00756
10.1016/j.ijhydene.2003.09.007
10.1021/cs300227s
10.1038/nchem.1069
10.1021/acs.jpclett.9b01796
10.1021/acs.jpcc.8b02465
10.1038/nmat4938
10.1021/acs.jpclett.7b01018
10.1038/nchem.121
10.1038/s41467-019-09791-w
10.1039/C9CS00607A
10.1021/ed200818t
10.1021/jacs.7b05642
10.1149/1.3483106
10.1039/C4CP00571F
10.1002/adma.201801351
10.1021/acscatal.7b01648
10.1021/acs.jpclett.5b01559
10.1021/jp711191j
10.1002/celc.201800690
10.1039/C9SC03831K
10.1016/j.ijhydene.2011.12.148
10.1073/pnas.2008429117
10.1007/s40684-019-00077-6
10.1039/D0CP04508J
10.1021/acs.jctc.9b00605
10.1021/acsaem.9b01480
10.1016/j.chemphys.2005.05.038
10.1016/j.cattod.2013.07.006
10.1021/acscatal.7b03142
10.1016/j.cattod.2018.03.048
10.1016/j.coelec.2018.03.025
10.1021/acs.jpcc.7b03481
10.1038/nmat1752
10.1002/cctc.201601662
10.1016/j.jelechem.2006.11.008
10.1039/C6FD00094K
10.1021/cs501312v
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.3389/fenrg.2021.654460
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2296-598X
ExternalDocumentID oai_doaj_org_article_9d21bfa191bf4174870420e7e33e3067
10_3389_fenrg_2021_654460
GroupedDBID 5VS
9T4
AAFWJ
AAYXX
ACGFS
ACXDI
ADBBV
AFPKN
ALMA_UNASSIGNED_HOLDINGS
BCNDV
CITATION
GROUPED_DOAJ
KQ8
M~E
OK1
ID FETCH-LOGICAL-c420t-1c9e4e28dbf5206e27e30541fe32dc6eef7fa97ed092d717b57cad9e66afb1cc3
IEDL.DBID DOA
ISSN 2296-598X
IngestDate Wed Aug 27 01:22:25 EDT 2025
Tue Jul 01 03:00:20 EDT 2025
Thu Apr 24 23:12:42 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c420t-1c9e4e28dbf5206e27e30541fe32dc6eef7fa97ed092d717b57cad9e66afb1cc3
OpenAccessLink https://doaj.org/article/9d21bfa191bf4174870420e7e33e3067
ParticipantIDs doaj_primary_oai_doaj_org_article_9d21bfa191bf4174870420e7e33e3067
crossref_citationtrail_10_3389_fenrg_2021_654460
crossref_primary_10_3389_fenrg_2021_654460
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-05-04
PublicationDateYYYYMMDD 2021-05-04
PublicationDate_xml – month: 05
  year: 2021
  text: 2021-05-04
  day: 04
PublicationDecade 2020
PublicationTitle Frontiers in energy research
PublicationYear 2021
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Sheng (B161) 2010; 157
Back (B7); 10
He (B79) 2020; 117
Ulissi (B181) 2016; 7
Cheng (B25) 2008; 112
Exner (B42); 30
Dubouis (B29) 2019; 10
Hörmann (B86) 2020; 6
Busch (B18) 2020; 22
Exner (B40); 7
Martnez-Hincapié (B123) 2018; 88
Kortlever (B108); 6
Vos (B188) 2018; 140
Sheng (B162) 2015; 6
Birdja (B12) 2019; 4
Gossenberger (B60) 2020; 8
Trasatti (B180) 1987; 32
Exner (B44); 8
Gao (B54) 2015; 55
Wodrich (B193) 2018; 10
Frumkin (B53) 1975; 20
Bard (B8) 2010; 132
Tahir (B173) 2017; 37
Koper (B103); 660
Smith (B167) 2020; 13
Sumaria (B170) 2018; 8
Murata (B128) 1991; 64
Briquet (B15) 2017; 9
Su (B169) 2018; 30
Hansen (B75) 2008; 10
Koper (B104); 17
Gerischer (B57) 1956; 6
Hao (B77) 2020; 11
Abidi (B1) 2020
Zeradjanin (B200) 2016; 28
Back (B6); 9
Schmickler (B158) 2010
Zhang (B204) 2019; 10
Zhang (B205) 2014; 4
Li (B116) 2016; 6
Garcia (B55) 2019; 58
Kenmoe (B98) 2018; 122
Che (B23) 2013; 218
Li (B117) 2020; 10
Xie (B196) 2017; 9
Kozuch (B109) 2012; 2
Lindgren (B118) 2020; 10
Gurudayal (B69) 2019; 2
Greeley (B64) 2006; 5
Pajkossy (B134) 1989; 34
Mathew (B125) 2014; 140
Bhattacharyya (B11) 2021; 125
Goings (B58) 2020; 6
Chen (B24) 2017; 32
Exner (B37); 124
Hörmann (B85) 2019; 150
Exner (B35); 9
Klamt (B101) 1993; 5
Parada (B136) 2019; 364
Hu (B87) 2004; 29
Nørskov (B131) 2004; 108
Hansen (B76) 2016; 120
Sakaushi (B154) 2020; 22
Exner (B39); 22
Sakong (B155) 2020; 22
Huang (B88); 120
Vinogradova (B185) 2018; 34
Busch (B17) 2016; 29
Bligaard (B13) 2004; 224
Govind Rajan (B62) 2020; 10
Handoko (B74) 2019; 4
Kunimatsu (B112) 2007; 52
Kozuch (B110) 2011; 44
Koper (B105); 4
Wintrich (B192) 2019; 6
Zhang (B203) 2018; 5
Sayfutyarova (B157) 2020; 11
Guidelli (B67) 2014; 86
Yang (B198) 2020; 5
Halck (B71) 2014; 16
Auinger (B4) 2011; 13
Hammes-Schiffer (B72) 2009; 42
Gómez-Marín (B59) 2014; 4
Kastlunger (B96) 2018; 122
Pérez-Gallent (B141) 2017; 139
Durst (B30) 2014; 7
Saveleva (B156) 2018; 9
Lum (B120) 2018; 11
Bochevarov (B14) 2013; 113
Warren (B191) 2010; 110
Hajiyani (B70) 2018; 8
Mehta (B127) 2003; 114
Nørskov (B130) 2009; 1
Retuerto (B144) 2019; 10
Ringe (B145) 2019; 12
Nørskov (B129) 2005; 152
Ringe (B146) 2020; 11
Ávila (B5) 2020; 7
Suntivich (B172); 334
Li (B115) 2019; 15
Exner (B32); 11
Kim (B99) 2017; 139
Seitz (B160) 2016; 353
Katsounaros (B97) 2016; 7
Parsons (B139) 1958; 54
Skúlason (B166) 2010; 114
Shinagawa (B164) 2015; 5
Zhou (B207) 2020; 124
Rodriguez (B147) 2014; 16
He (B80) 2017; 8
Exner (B33); 123
Shinagawa (B165) 2019; 11
Gattrell (B56) 2006; 594
Heenen (B81) 2020; 152
Mefford (B126) 2020; 13
Exner (B36); 12
Marshall (B122) 2015; 61
Tao (B175) 2019; 141
Xue (B197) 2018; 5
Exner (B38); 22
Rootsaert (B149) 1960; 26
Theerthagiri (B176) 2020; 24
Calle-Vallejo (B20) 2012; 84
Rossmeisl (B152); 607
Toyao (B178) 2020; 10
Yao (B199) 2019; 7
Pegis (B140) 2017; 139
Karlsson (B95) 2016; 116
Akhade (B2) 2018; 312
Sabatier (B153) 1913
Ooka (B132) 2017; 33
Exner (B46); 375
Exner (B41); 45
Laursen (B113) 2012; 89
Park (B137) 2012; 37
Calle-Vallejo (B21) 2013; 607
Louch (B119) 1993; 346
Warburton (B190) 2020; 142
Hinnemann (B82) 2005; 127
Kari (B94) 2018; 8
Carmo (B22) 2013; 38
Ulissi (B182) 2017; 7
Gupta (B68) 2006; 36
Exner (B43); 10
Exner (B47) 2014; 53
Huang (B89); 193
Zhang (B202) 2020; 124
Ledezma-Yanez (B114) 2017; 2
Busch (B19) 2015; 6
Rojas-Carbonell (B148) 2018; 8
Huang (B91) 2019; 1
Diaz-Morales (B27) 2016; 7
Peterson (B142) 2012; 3
Zheng (B206) 2016; 2
Koper (B106); 15
Varela (B184) 2016; 6
Exner (B31) 2018; 5
Pande (B135) 2019; 4
Parsons (B138) 1951; 47
Shetty (B163) 2020; 10
Greeley (B65) 2007; 601
Exner (B49) 2019; 9
Zhu (B208) 2020; 142
Exner (B45); 26
Xiao (B195) 2015; 5
Craig (B26) 2019; 10
Exner (B48) 2016; 55
Tang (B174) 2016; 6
Wang (B189) 2009; 140
Göttle (B61) 2017; 8
Kjaergaard (B100) 2010; 49
Mathew (B124) 2019; 151
Basdogan (B10); 10
Exner (B50) 2018; 8
Fabbri (B51) 2017; 16
He (B78) 2018; 140
Ooka (B133) 2019; 10
Tichter (B177) 2020; 8
Kant (B93) 1994; 98
Huang (B90) 2018; 20
Piqué (B143) 2020; 22
Govindarajan (B63) 2018; 8
Rossmeisl (B150); 111
Viswanathan (B186) 2014; 57
Man (B121) 2011; 3
Groß (B66) 2020
Kortlever (B107); 244
Zhu (B209) 2019; 167
Hori (B84) 1989; 85
Fang (B52) 2014; 4
Hammes-Schiffer (B73) 2010; 110
Trasatti (B179) 1972; 39
Dickens (B28) 2017; 121
Schouten (B159) 2014; 716
Basdogan (B9); 16
Song (B168) 2020; 49
Kang (B92) 2019; 6
Wuttig (B194) 2016; 113
Ardagh (B3) 2019; 9
Exner (B34); 2
Krishnamurthy (B111) 2018; 9
Rossmeisl (B151) 2005; 319
Van Santen (B183) 2009; 110
Koper (B102); 3
Holewinski (B83) 2012; 159
Viswanathan (B187) 2012; 2
Suntivich (B171); 3
Bumroongsakulsawat (B16) 2014; 141
Zhang (B201) 2020; 10
References_xml – volume: 57
  start-page: 215
  year: 2014
  ident: B186
  article-title: Unifying solution and surface electrochemistry: limitations and opportunities in surface electrocatalysis.
  publication-title: Top. Catal.
  doi: 10.1007/s11244-013-0171-6
– volume: 141
  start-page: 216
  year: 2014
  ident: B16
  article-title: Effect of solution pH on CO: formate formation rates during electrochemical reduction of aqueous CO2 at Sn cathodes.
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2014.07.057
– volume: 346
  start-page: 211
  year: 1993
  ident: B119
  article-title: Transport to rough electrode surfaces: part 2: perturbation solution for two-dimensional steady state transport to an arbitrary surface under mixed diffusion-kinetic control.
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/0022-0728(93)85014-8
– volume: 10
  start-page: 12607
  ident: B43
  article-title: A universal descriptor for the screening of electrode materials for multiple-electron processes: beyond the thermodynamic overpotential.
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.0c03865
– volume: 45
  start-page: 27221
  ident: B41
  article-title: Paradigm change in hydrogen electrocatalysis: the volcano’s apex is located at weak bonding of the reaction intermediate.
  publication-title: Int. J. Hyd. Energ.
  doi: 10.1016/j.ijhydene.2020.07.088
– volume: 140
  year: 2014
  ident: B125
  article-title: Implicit solvation model for density-functional study of nanocrystal surfaces and reaction pathways.
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4865107
– volume: 7
  start-page: 4269
  year: 2020
  ident: B5
  article-title: Role of the partial charge transfer on the chloride adlayers on Au (100).
  publication-title: ChemElectroChem
  doi: 10.1002/celc.202001228
– volume: 11
  start-page: 7109
  year: 2020
  ident: B157
  article-title: Excited state molecular dynamics of photoinduced proton-coupled electron transfer in anthracene–phenol–pyridine triads.
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.0c02012
– volume: 110
  start-page: 6939
  year: 2010
  ident: B73
  article-title: Theory of coupled electron and proton transfer reactions.
  publication-title: Chem. Rev.
  doi: 10.1021/cr1001436
– volume: 9
  start-page: 3154
  year: 2018
  ident: B156
  article-title: Operando evidence for a universal oxygen evolution mechanism on thermal and electrochemical iridium oxides.
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.8b00810
– volume: 110
  start-page: 2005
  year: 2009
  ident: B183
  article-title: Reactivity theory of transition-metal surfaces: a Brønsted- evans- polanyi linear activation energy- free-energy analysis.
  publication-title: Chem. Rev.
  doi: 10.1021/cr9001808
– volume: 7
  start-page: 19290
  year: 2019
  ident: B199
  article-title: Algorithm screening to accelerate discovery of 2d metal-free electrocatalysts for hydrogen evolution reaction.
  publication-title: J. Mat. Chem. A
  doi: 10.1039/C9TA06286F
– volume: 8
  start-page: 46
  ident: B44
  article-title: Boosting the stability of RuO2 in the acidic oxygen evolution reaction by tuning oxygen-vacancy formation energies: a viable approach beyond noble-metal catalysts?
  publication-title: ChemElectroChem
  doi: 10.1002/celc.202001465
– volume: 5
  start-page: 2313
  year: 2020
  ident: B198
  article-title: High-throughput identification of exfoliable two-dimensional materials with active basal planes for hydrogen evolution.
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.0c00957
– volume: 13
  start-page: 16384
  year: 2011
  ident: B4
  article-title: Near-surface ion distribution and buffer effects during electrochemical reactions.
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C1CP21717H
– volume: 159
  year: 2012
  ident: B83
  article-title: Elementary mechanisms in electrocatalysis: revisiting the ORR tafel slope.
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.022211jes
– volume: 15
  year: 2019
  ident: B115
  article-title: Recent progress on surface reconstruction of earth-abundant electrocatalysts for water oxidation.
  publication-title: Small
  doi: 10.1002/smll.201901980
– volume: 52
  start-page: 5715
  year: 2007
  ident: B112
  article-title: Hydrogen adsorption and hydrogen evolution reaction on a polycrystalline Pt electrode studied by surface-enhanced infrared absorption spectroscopy.
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2006.12.007
– volume: 13
  start-page: 331
  year: 2020
  ident: B167
  article-title: Current and future role of haber–bosch ammonia in a carbon-free energy landscape.
  publication-title: Energ. Environ. Sci.
  doi: 10.1039/C9EE02873K
– volume: 10
  start-page: 4377
  year: 2020
  ident: B117
  article-title: An adaptive machine learning strategy for accelerating discovery of perovskite electrocatalysts.
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.9b05248
– volume: 3
  start-page: 1159
  year: 2011
  ident: B121
  article-title: Universality in oxygen evolution electrocatalysis on oxide surfaces.
  publication-title: ChemCatChem
  doi: 10.1002/cctc.201000397
– volume: 36
  start-page: 161
  year: 2006
  ident: B68
  article-title: Calculation for the cathode surface concentrations in the electrochemical reduction of CO2 in KHCO3 solutions.
  publication-title: J. Appl. Electrochem.
  doi: 10.1007/s10800-005-9058-y
– volume: 11
  start-page: 3234
  ident: B32
  article-title: Activity-stability volcano plots for material optimization in electrocatalysis.
  publication-title: ChemCatChem
  doi: 10.1002/cctc.201900500
– volume: 139
  start-page: 16412
  year: 2017
  ident: B141
  article-title: Structure-and potential-dependent cation effects on CO reduction at copper single-crystal electrodes.
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b10142
– volume: 58
  start-page: 12999
  year: 2019
  ident: B55
  article-title: Enhancement of oxygen evolution activity of nickel oxyhydroxide by electrolyte alkali cations.
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201905501
– volume: 244
  start-page: 58
  ident: B107
  article-title: Electrochemical CO2 reduction to formic acid on a Pd-based formic acid oxidation catalyst.
  publication-title: Catal. Tod.
  doi: 10.1016/j.cattod.2014.08.001
– volume: 47
  start-page: 1332
  year: 1951
  ident: B138
  article-title: General equations for the kinetics of electrode processes.
  publication-title: Trans. Faraday Soc.
  doi: 10.1039/TF9514701332
– volume: 7
  start-page: 2255
  year: 2014
  ident: B30
  article-title: New insights into the electrochemical hydrogen oxidation and evolution reaction mechanism.
  publication-title: Energ. Environ. Sci.
  doi: 10.1039/C4EE00440J
– volume: 716
  start-page: 53
  year: 2014
  ident: B159
  article-title: The influence of pH on the reduction of CO and CO2 to hydrocarbons on copper electrodes.
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/j.jelechem.2013.08.033
– volume: 7
  start-page: 1
  year: 2016
  ident: B27
  article-title: Iridium-based double perovskites for efficient water oxidation in acid media.
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms12363
– volume: 132
  start-page: 7559
  year: 2010
  ident: B8
  article-title: Inner-sphere heterogeneous electrode reactions. Electrocatalysis and photocatalysis: the challenge.
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja101578m
– volume: 53
  start-page: 11032
  year: 2014
  ident: B47
  article-title: Controlling selectivity in the chlorine evolution reaction over RuO2-based catalysts.
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201406112
– volume: 4
  start-page: 2710
  ident: B105
  article-title: Theory of multiple proton–electron transfer reactions and its implications for electrocatalysis.
  publication-title: Chem. Sci.
  doi: 10.1039/C3SC50205H
– volume: 5
  year: 2015
  ident: B164
  article-title: Insight on tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion.
  publication-title: Sci. Rep.
  doi: 10.1038/srep138012015
– volume: 55
  start-page: 1
  year: 2015
  ident: B54
  article-title: pH effect on electrocatalytic reduction of CO2 over Pd and Pt nanoparticles.
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2015.03.008
– volume: 8
  start-page: 11773
  year: 2018
  ident: B70
  article-title: Surface termination and composition control of activity of the CoxNi1–xFe2O4 (001) surface for water oxidation: insights from DFT + U calculations.
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.8b00574
– volume: 9
  start-page: 16059
  year: 2017
  ident: B196
  article-title: In situ growth of cobalt at cobalt-borate core–shell nanosheets as highly-efficient electrocatalysts for oxygen evolution reaction in alkaline/neutral medium.
  publication-title: Nanoscale
  doi: 10.1039/C7NR06054H
– volume: 20
  start-page: 347
  year: 1975
  ident: B53
  article-title: Potentials of zero total and zero free charge of platinum group metals.
  publication-title: Electrochim. Acta
  doi: 10.1016/0013-4686(75)90017-1
– volume: 5
  year: 2015
  ident: B195
  article-title: A review of phosphide-based materials for electrocatalytic hydrogen evolution.
  publication-title: Adv. Energ. Mater.
  doi: 10.1002/aenm.201500985
– volume: 32
  start-page: 369
  year: 1987
  ident: B180
  article-title: Progress in the understanding of the mechanism of chlorine evolution at oxide electrodes.
  publication-title: Electrochim. Acta
  doi: 10.1016/0013-4686(87)85001-6
– volume: 13
  start-page: 622
  year: 2020
  ident: B126
  article-title: Interpreting Tafel behavior of consecutive electrochemical reactions through combined thermodynamic and steady state microkinetic approaches.
  publication-title: Energ. Environ. Sci.
  doi: 10.1039/C9EE02697E
– volume: 49
  start-page: 3567
  year: 2010
  ident: B100
  article-title: Enzymatic versus inorganic oxygen reduction catalysts: comparison of the energy levels in a free-energy scheme.
  publication-title: Inorg. Chem.
  doi: 10.1021/ic900798q
– volume: 124
  start-page: 13672
  year: 2020
  ident: B207
  article-title: Combining single crystal experiments and microkinetic modeling in disentangling thermodynamic, kinetic and double-layer factors influencing oxygen reduction.
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.0c01621
– volume: 5
  start-page: 3243
  year: 2018
  ident: B31
  article-title: Activity–stability volcano plots for the investigation of nano-sized electrode materials in lithium-ion batteries.
  publication-title: ChemElectroChem
  doi: 10.1002/celc.201800838
– volume: 11
  start-page: 2935
  year: 2018
  ident: B120
  article-title: Sequential catalysis controls selectivity in electrochemical CO2 reduction on Cu.
  publication-title: Energ. Environ. Sci.
  doi: 10.1039/C8EE01501E
– volume: 142
  start-page: 8748
  year: 2020
  ident: B208
  article-title: pH-dependent hydrogen and water binding energies on platinum surfaces as directly probed through surface-enhanced infrared absorption spectroscopy.
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c01104
– volume: 33
  start-page: 9307
  year: 2017
  ident: B132
  article-title: Competition between hydrogen evolution and carbon dioxide reduction on copper electrodes in mildly acidic media.
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.7b00696
– volume: 114
  start-page: 18182
  year: 2010
  ident: B166
  article-title: Modeling the electrochemical hydrogen oxidation and evolution reactions on the basis of density functional theory calculations.
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp1048887
– volume: 22
  start-page: 10236
  ident: B39
  article-title: Does a Thermoneutral Electrocatalyst correspond to the apex of a volcano plot for a simple two-electron process?
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202003688
– volume: 125
  start-page: 4379
  year: 2021
  ident: B11
  article-title: Structure and reactivity of IrO X nanoparticles for the oxygen evolution reaction in electrocatalysis: an electronic structure theory study.
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.0c10092
– volume: 2
  start-page: 1
  year: 2017
  ident: B114
  article-title: Interfacial water reorganization as a pH-dependent descriptor of the hydrogen evolution rate on platinum electrodes.
  publication-title: Nat. Energ.
  doi: 10.1038/nenergy.2017.31
– volume: 10
  start-page: 2260
  year: 2020
  ident: B178
  article-title: Machine learning for catalysis informatics: recent applications and prospects.
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.9b04186
– volume: 110
  start-page: 6961
  year: 2010
  ident: B191
  article-title: Thermochemistry of proton-coupled electron transfer reagents and its implications.
  publication-title: Chem. Rev.
  doi: 10.1021/cr100085k
– volume: 10
  start-page: 8597
  year: 2020
  ident: B201
  article-title: Advances in thermodynamic-kinetic model for analyzing the oxygen evolution reaction.
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.0c01906
– volume: 150
  year: 2019
  ident: B85
  article-title: Grand canonical simulations of electrochemical interfaces in implicit solvation models.
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.5054580
– volume: 34
  start-page: 12259
  year: 2018
  ident: B185
  article-title: Quantifying confidence in DFT-predicted surface pourbaix diagrams of transition-metal electrode–electrolyte interfaces.
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.8b02219
– volume: 32
  start-page: 353
  year: 2017
  ident: B24
  article-title: Highly active and stable single iron site confined in graphene nanosheets for oxygen reduction reaction.
  publication-title: Nano Energ.
  doi: 10.1016/j.nanoen.2016.12.056
– volume: 30
  ident: B42
  article-title: Recent progress in the development of screening methods to identify electrode materials for the oxygen evolution reaction.
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202005060
– volume: 122
  start-page: 5432
  year: 2018
  ident: B98
  article-title: Water adsorption on clean and defective anatase Tio2 (001) nanotube surfaces: a surface science approach.
  publication-title: J. Phys. Chem. B
  doi: 10.1039/C9CP06584A
– volume: 8
  year: 2020
  ident: B177
  article-title: Finite heterogeneous rate constants for the electrochemical oxidation of Vo2+ at glassy carbon electrodes.
  publication-title: Front. Energ. Res.
  doi: 10.3389/fenrg.2020.00155
– volume: 167
  year: 2019
  ident: B209
  article-title: Modeling electrocatalytic oxidation of formic acid at platinum.
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0152001JES
– volume: 6
  start-page: 2136
  year: 2016
  ident: B184
  article-title: Tuning the catalytic activity and selectivity of Cu for CO2 electroreduction in the presence of halides.
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.5b02550
– volume: 4
  start-page: 3742
  year: 2014
  ident: B205
  article-title: Competition between CO2 reduction and H2 evolution on transition-metal electrocatalysts.
  publication-title: ACS Catal.
  doi: 10.1021/cs5012298
– volume: 10
  start-page: 11177
  year: 2020
  ident: B62
  article-title: Why do we use the materials and operating conditions we use for heterogeneous (Photo) electrochemical water splitting?
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.0c01862
– volume: 224
  start-page: 206
  year: 2004
  ident: B13
  article-title: The Brønsted–Evans–polanyi relation and the volcano curve in heterogeneous catalysis.
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2004.02.034
– volume: 124
  start-page: 16951
  year: 2020
  ident: B202
  article-title: Understanding surface charge effects in electrocatalysis. Part I: peroxodisulfate reduction at Pt (111).
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.0c02824
– volume: 26
  ident: B45
  article-title: Hydrogen electrocatalysis revisited: weak bonding of adsorbed hydrogen as design principle for active electrode materials.
  publication-title: Curr. Opin. Electrochem.
  doi: 10.1016/j.coelec.2020.100673
– volume: 7
  start-page: 1448
  ident: B40
  article-title: Overpotential-dependent volcano plots to assess activity trends in the competing chlorine and oxygen evolution reactions.
  publication-title: ChemElectroChem
  doi: 10.1002/celc.202000120
– volume: 5
  start-page: 799
  year: 1993
  ident: B101
  article-title: COSMO: a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient.
  publication-title: J. Chem. Soc. Perkin Trans. II
  doi: 10.1039/P29930000799
– volume: 6
  start-page: 1
  year: 2020
  ident: B86
  article-title: Electrosorption at metal surfaces from first principles.
  publication-title: NPJ Comput. Mater.
  doi: 10.1038/s41524-020-00394-4
– volume: 17
  start-page: 339
  ident: B104
  article-title: Analysis of electrocatalytic reaction schemes: distinction between rate-determining and potential-determining steps.
  publication-title: J. Solid State Electrochem.
  doi: 10.1007/s10008-012-1918-x
– volume: 10
  start-page: 1
  year: 2019
  ident: B26
  article-title: Universal scaling relations for the rational design of molecular water oxidation catalysts with near-zero overpotential.
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-12994-w
– volume: 594
  start-page: 1
  year: 2006
  ident: B56
  article-title: A review of the aqueous electrochemical reduction of CO2 to hydrocarbons at copper.
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/j.jelechem.2006.05.013
– volume: 44
  start-page: 101
  year: 2011
  ident: B110
  article-title: How to conceptualize catalytic cycles? The energetic span model.
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar1000956
– volume: 141
  start-page: 13803
  year: 2019
  ident: B175
  article-title: Revealing energetics of surface oxygen redox from kinetic fingerprint in oxygen electrocatalysis.
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b01834
– volume: 39
  start-page: 163
  year: 1972
  ident: B179
  article-title: Work function, electronegativity, and electrochemical behaviour of metals: III. Electrolytic hydrogen evolution in acid solutions.
  publication-title: J. Electroanal. Chem. Interfacial Electrochem.
  doi: 10.1016/S0022-0728(72)80485-6
– volume: 22
  start-page: 22451
  ident: B38
  article-title: Design criteria for the competing chlorine and oxygen evolution reactions: avoid the OCl adsorbate to enhance chlorine selectivity.
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/D0CP03667F
– volume: 24
  year: 2020
  ident: B176
  article-title: Fundamental aspects and recent advances in transition metal nitrides as electrocatalysts for hydrogen evolution reaction: a review.
  publication-title: Curr. Opin. Solid State Mater. Sci.
  doi: 10.1016/j.cossms.2020.100805
– volume: 113
  start-page: E4585
  year: 2016
  ident: B194
  article-title: Inhibited proton transfer enhances Au-catalyzed CO2-to-fuels selectivity.
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1602984113
– volume: 140
  start-page: 10270
  year: 2018
  ident: B188
  article-title: MnOx/IrOx as selective oxygen evolution electrocatalyst in acidic chloride solution.
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b05382
– volume: 113
  start-page: 2110
  year: 2013
  ident: B14
  article-title: Jaguar: a high-performance quantum chemistry software program with strengths in life and materials sciences.
  publication-title: Int. J. Quantum Chem.
  doi: 10.1002/qua.24481
– volume: 601
  start-page: 1590
  year: 2007
  ident: B65
  article-title: Large-scale, density functional theory-based screening of alloys for hydrogen evolution.
  publication-title: Surf. Sci
  doi: 10.1016/j.susc.2007.01.037
– volume: 28
  start-page: 2256
  year: 2016
  ident: B200
  article-title: A critical review on hydrogen evolution electrocatalysis: re-exploring the volcano-relationship.
  publication-title: Electroanalysis
  doi: 10.1002/elan.201600270
– volume: 2
  start-page: 795
  year: 2012
  ident: B109
  article-title: A refinement of everyday thinking: the energetic span model for kinetic assessment of catalytic cycles.
  publication-title: WIRES Comput. Mol. Sci.
  doi: 10.1002/wcms.1100
– volume: 114
  start-page: 32
  year: 2003
  ident: B127
  article-title: Review and analysis of PEM fuel cell design and manufacturing.
  publication-title: J. Power Sources
  doi: 10.1016/S0378-7753(02)00542-6
– volume: 16
  start-page: 13583
  year: 2014
  ident: B147
  article-title: Electrocatalysis on gold.
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C4CP00394B
– volume: 10
  start-page: 4401
  ident: B7
  article-title: Convolutional neural network of atomic surface structures to predict binding energies for high-throughput screening of catalysts.
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.9b01428
– volume: 22
  start-page: 6797
  year: 2020
  ident: B143
  article-title: Designing water splitting catalysts using rules of thumb: advantages, dangers and alternatives.
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/D0CP00896F
– volume: 34
  start-page: 171
  year: 1989
  ident: B134
  article-title: Diffusion to fractal surfaces? II. Verification of theory.
  publication-title: Electrochim. Acta
  doi: 10.1016/0013-4686(89)87082-3
– volume: 88
  start-page: 43
  year: 2018
  ident: B123
  article-title: Peroxodisulfate reduction as a probe to interfacial charge.
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2018.01.012
– volume: 4
  start-page: 732
  year: 2019
  ident: B12
  article-title: Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels.
  publication-title: Nat. Energ.
  doi: 10.1038/s41560-019-0450-y
– volume: 10
  start-page: 12666
  year: 2020
  ident: B163
  article-title: The catalytic mechanics of dynamic surfaces: stimulating methods for promoting catalytic resonance.
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.0c03336
– volume: 334
  start-page: 1383
  ident: B172
  article-title: A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles.
  publication-title: Science
  doi: 10.1126/science.1212858
– volume: 6
  start-page: 3108
  year: 2019
  ident: B192
  article-title: Enhancing the selectivity between oxygen and chlorine towards chlorine during the anodic chlorine evolution reaction on a dimensionally stable anode.
  publication-title: ChemElectroChem
  doi: 10.1002/celc.201900784
– volume: 10
  start-page: 7037
  year: 2019
  ident: B204
  article-title: Potential-dependent volcano plot for oxygen reduction: mathematical origin and implications for catalyst design.
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.9b02436
– volume: 26
  start-page: 16
  year: 1960
  ident: B149
  article-title: Interaction of formic acid vapour with tungsten.
  publication-title: Z. Phys. Chem.
  doi: 10.1524/zpch.1960.26.1_2.016
– volume: 6
  year: 2016
  ident: B116
  article-title: Recent advances in breaking scaling relations for effective electrochemical conversion of CO2.
  publication-title: Adv. Energ. Mater.
  doi: 10.1021/jp077210j
– volume: 8
  year: 2020
  ident: B60
  article-title: Sulfate, bisulfate, and hydrogen co-adsorption on Pt (111) and Au (111) in an electrochemical environment.
  publication-title: Front. Chem.
  doi: 10.3389/fchem.2020.00634
– volume: 86
  start-page: 245
  year: 2014
  ident: B67
  article-title: Defining the transfer coefficient in electrochemistry: an assessment (Iupac Technical Report).
  publication-title: Pure Appl. Chem.
  doi: 10.1515/pac-2014-5026
– volume: 4
  start-page: 809
  year: 2019
  ident: B74
  article-title: Theory-guided materials design: two-dimensional mxenes in electro-and photocatalysis.
  publication-title: Nanoscale Horiz.
  doi: 10.1039/C9NH00100J
– volume: 11
  start-page: 1
  year: 2020
  ident: B146
  article-title: Double layer charging driven carbon dioxide adsorption limits the rate of electrochemical carbon dioxide reduction on gold.
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-13777-z
– volume: 375
  ident: B46
  article-title: Why approximating electrocatalytic activity by a single free-energy change is insufficient.
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2021.137975
– volume: 120
  start-page: 29135
  year: 2016
  ident: B76
  article-title: pH in grand canonical statistics of an electrochemical interface.
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.6b09019
– volume: 4
  start-page: 2952
  year: 2019
  ident: B135
  article-title: Computational screening of current collectors for enabling anode-free lithium metal batteries.
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.9b02306
– volume: 140
  start-page: 347
  year: 2009
  ident: B189
  article-title: Intrinsic kinetic equation for oxygen reduction reaction in acidic media: the double tafel slope and fuel cell applications.
  publication-title: Faraday Disc.
  doi: 10.1039/B802218F
– volume: 6
  start-page: 6754
  year: 2015
  ident: B19
  article-title: Linear scaling relationships and volcano plots in homogeneous catalysis–revisiting the suzuki reaction.
  publication-title: Chem. Sci.
  doi: 10.1039/C5SC02910D
– volume: 3
  start-page: 251
  year: 2012
  ident: B142
  article-title: Activity descriptors for CO2 electroreduction to methane on transition-metal catalysts.
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz201461p
– volume: 6
  start-page: 4953
  year: 2016
  ident: B174
  article-title: Mechanism of hydrogen evolution reaction on 1T-MoS2 from first principles.
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.6b01211
– volume: 11
  start-page: 5961
  year: 2019
  ident: B165
  article-title: Switching of kinetically relevant reactants for the aqueous cathodic process determined by mass-transport coupled with protolysis.
  publication-title: ChemCatChem
  doi: 10.1002/cctc.201901459
– volume: 6
  start-page: 1
  year: 2015
  ident: B162
  article-title: Correlating hydrogen oxidation and evolution activity on platinum at different pH with measured hydrogen binding energy.
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms6848
– volume: 123
  start-page: 16921
  ident: B33
  article-title: Beyond the traditional volcano concept: overpotential-dependent volcano plots exemplified by the chlorine evolution reaction over transition-metal oxides.
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.9b05364
– volume: 29
  start-page: 126
  year: 2016
  ident: B17
  article-title: Beyond the top of the volcano?–A unified approach to electrocatalytic oxygen reduction and oxygen evolution.
  publication-title: Nano Energ.
  doi: 10.1016/j.nanoen.2016.04.011
– volume: 7
  start-page: 387
  year: 2016
  ident: B97
  article-title: Evidence for decoupled electron and proton transfer in the electrochemical oxidation of ammonia on Pt (100).
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.5b02556
– volume: 22
  start-page: 19401
  year: 2020
  ident: B154
  article-title: Advances and challenges for experiment and theory for multi-electron multi-proton transfer at electrified solid–liquid interfaces.
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/D0CP02741C
– volume: 8
  start-page: 11966
  year: 2018
  ident: B94
  article-title: Sabatier principle for interfacial (Heterogeneous) enzyme catalysis.
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.8b03547
– volume: 140
  start-page: 2012
  year: 2018
  ident: B78
  article-title: Selective electrocatalytic reduction of nitrite to dinitrogen based on decoupled proton–electron transfer.
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b12774
– volume: 108
  start-page: 17886
  year: 2004
  ident: B131
  article-title: Origin of the overpotential for oxygen reduction at a fuel-cell cathode.
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp047349j
– volume: 6
  start-page: 178
  year: 1956
  ident: B57
  article-title: Über die Katalytische Zersetzung Von Wasserstoffsuperoxyd an metallischem platin.
  publication-title: Z. Phys. Chem.
  doi: 10.1524/zpch.1956.6.3_4.178
– volume: 9
  start-page: 7651
  ident: B6
  article-title: Toward a design of active oxygen evolution catalysts: insights from automated density functional theory calculations and machine learning.
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.9b02416
– volume: 7
  start-page: 3931
  year: 2016
  ident: B181
  article-title: Automated discovery and construction of surface phase diagrams using machine learning.
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.6b01254
– volume: 151
  year: 2019
  ident: B124
  article-title: Implicit self-consistent electrolyte model in plane-wave density-functional theory.
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.5132354
– volume: 4
  start-page: 1685
  year: 2014
  ident: B59
  article-title: Oxygen reduction reaction at Pt single crystals: a critical overview.
  publication-title: Catal. Sci. Technol.
  doi: 10.1039/C3CY01049J
– year: 1913
  ident: B153
  publication-title: La Catalyse en Chimie Organique, Encyclopédie de Science Chimique Appliquée.
– volume: 12
  start-page: 3001
  year: 2019
  ident: B145
  article-title: Understanding cation effects in electrochemical CO2 reduction.
  publication-title: Energ. Environ. Sci.
  doi: 10.1039/C9EE01341E
– volume: 42
  start-page: 1881
  year: 2009
  ident: B72
  article-title: Theory of proton-coupled electron transfer in energy conversion processes.
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar9001284
– volume: 84
  start-page: 3
  year: 2012
  ident: B20
  article-title: First-principles computational electrochemistry: achievements and challenges.
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2012.04.062
– volume: 11
  start-page: 1
  year: 2020
  ident: B77
  article-title: Dopants fixation of ruthenium for boosting acidic oxygen evolution stability and activity.
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-19212-y
– volume: 353
  start-page: 1011
  year: 2016
  ident: B160
  article-title: A highly active and stable IrOx/SrIrO3 catalyst for the oxygen evolution reaction.
  publication-title: Science
  doi: 10.1126/science.aaf5050
– volume: 37
  start-page: 136
  year: 2017
  ident: B173
  article-title: Electrocatalytic oxygen evolution reaction for energy conversion and storage: a comprehensive review.
  publication-title: Nano Energ.
  doi: 10.1016/j.nanoen.2017.05.022
– volume: 660
  start-page: 254
  ident: B103
  article-title: Thermodynamic theory of multi-electron transfer reactions: implications for electrocatalysis.
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/j.jelechem.2010.10.004
– volume: 152
  year: 2020
  ident: B81
  article-title: Solvation at metal/water interfaces: an Ab initio molecular dynamics benchmark of common computational approaches.
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.5144912
– volume: 9
  start-page: 6755
  year: 2019
  ident: B49
  article-title: Beyond the rate-determining step in the oxygen evolution reaction over a single-crystalline IrO2 (110) model electrode: kinetic scaling relations.
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.9b01564
– volume: 8
  start-page: 9034
  year: 2018
  ident: B170
  article-title: Quantifying confidence in DFT predicted surface pourbaix diagrams and associated reaction pathways for chlorine evolution.
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.8b01432
– volume: 152
  year: 2005
  ident: B129
  article-title: Trends in the exchange current for hydrogen evolution.
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1856988
– volume: 142
  start-page: 20855
  year: 2020
  ident: B190
  article-title: Interfacial field-driven proton-coupled electron transfer at graphite-conjugated organic acids.
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c10632
– volume: 8
  start-page: 3041
  year: 2018
  ident: B148
  article-title: Effect of pH on the activity of platinum group metal-free catalysts in oxygen reduction reaction.
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.7b03991
– volume: 8
  start-page: 458
  year: 2017
  ident: B61
  article-title: Proton-coupled electron transfer in the electrocatalysis of CO2 reduction: prediction of Sequential Vs. Concerted pathways using DFT.
  publication-title: Chem. Sci.
  doi: 10.1039/C6SC02984A
– volume: 10
  start-page: 121
  year: 2020
  ident: B118
  article-title: A challenge to the G ∼0 interpretation of hydrogen evolution.
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.9b02799
– volume: 15
  start-page: 1399
  ident: B106
  article-title: Theory of the transition from sequential to concerted electrochemical proton–electron transfer.
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c2cp42369c
– volume: 10
  start-page: 3722
  year: 2008
  ident: B75
  article-title: Surface pourbaix diagrams and oxygen reduction activity of Pt, Ag and Ni (111) surfaces studied by DFT.
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/B803956A
– volume: 9
  start-page: 6929
  year: 2019
  ident: B3
  article-title: Principles of dynamic heterogeneous catalysis: surface resonance and turnover frequency response.
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.9b01606
– volume: 116
  start-page: 2982
  year: 2016
  ident: B95
  article-title: Selectivity between oxygen and chlorine evolution in the chlor-alkali and chlorate processes.
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.5b00389
– year: 2010
  ident: B158
  publication-title: Interfacial Electrochemistry.
  doi: 10.1007/978-3-642-04937-8
– volume: 98
  start-page: 1663
  year: 1994
  ident: B93
  article-title: Can one electrochemically measure the statistical morphology of a rough electrode?
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100057a020
– volume: 55
  start-page: 7501
  year: 2016
  ident: B48
  article-title: Full kinetics from first principles of the chlorine evolution reaction over a RuO2 (110) model electrode.
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201511804
– volume: 2
  start-page: 4551
  year: 2019
  ident: B69
  article-title: Sequential cascade electrocatalytic conversion of carbon dioxide to C–C coupled products.
  publication-title: ACS Appl. Energ. Mater.
  doi: 10.1021/acsaem.9b00791
– volume: 9
  start-page: 5320
  ident: B35
  article-title: Is thermodynamics a good descriptor for the activity? Re-investigation of Sabatier’s principle by the free energy diagram in electrocatalysis.
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.9b00732
– volume: 38
  start-page: 4901
  year: 2013
  ident: B22
  article-title: A comprehensive review on PEM water electrolysis.
  publication-title: Int. J. Hyd. Energ.
  doi: 10.1016/j.ijhydene.2013.01.151
– volume: 3
  start-page: 2054
  ident: B102
  article-title: Structure sensitivity and nanoscale effects in electrocatalysis.
  publication-title: Nanoscale
  doi: 10.1039/C0NR00857E
– volume: 85
  start-page: 2309
  year: 1989
  ident: B84
  article-title: Formation of hydrocarbons in the electrochemical reduction of carbon dioxide at a copper electrode in aqueous solution.
  publication-title: J. Chem. Soc.
  doi: 10.1039/F19898502309
– volume: 607
  start-page: 47
  year: 2013
  ident: B21
  article-title: Oxygen reduction and evolution at single-metal active sites: comparison between functionalized graphitic materials and protoporphyrins.
  publication-title: Surf. Sci.
  doi: 10.1016/j.susc.2012.08.005
– volume: 120
  start-page: 13587
  ident: B88
  article-title: Non-monotonic surface charging behavior of platinum: a paradigm change.
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.6b03930
– volume: 20
  start-page: 11776
  year: 2018
  ident: B90
  article-title: Unifying theoretical framework for deciphering the oxygen reduction reaction on platinum.
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C8CP01315B
– volume: 9
  start-page: 588
  year: 2018
  ident: B111
  article-title: Maximal predictability approach for identifying the right descriptors for electrocatalytic reactions.
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.7b02895
– volume: 364
  start-page: 471
  year: 2019
  ident: B136
  article-title: Concerted proton-electron transfer reactions in the marcus inverted region.
  publication-title: Science
  doi: 10.1126/science.aaw4675
– volume: 22
  start-page: 10431
  year: 2020
  ident: B155
  article-title: Water structures on a Pt (111) electrode from Ab initio molecular dynamic simulations for a variety of electrochemical conditions.
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C9CP06584A
– volume: 124
  start-page: 822
  ident: B37
  article-title: Comparison of the conventional volcano analysis with a unifying approach: material screening based on a combination of experiment and theory.
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.9b10860
– volume: 61
  start-page: 23
  year: 2015
  ident: B122
  article-title: Avoid the quasi-equilibrium assumption when evaluating the electrocatalytic oxygen evolution reaction mechanism by tafel slope analysis.
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2015.09.019
– volume: 127
  start-page: 5308
  year: 2005
  ident: B82
  article-title: Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution.
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0504690
– volume: 5
  year: 2018
  ident: B203
  article-title: Progress and perspective of electrocatalytic CO2 reduction for renewable carbonaceous fuels and chemicals.
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201700275
– volume: 111
  start-page: 18821
  ident: B150
  article-title: Comparing electrochemical and biological water splitting.
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp077210j
– volume: 1
  start-page: 1494
  year: 2019
  ident: B91
  article-title: Strategies to break the scaling relation toward enhanced oxygen electrocatalysis.
  publication-title: Matter
  doi: 10.1016/j.matt.2019.09.011
– year: 2020
  ident: B1
  article-title: Atomistic modeling of electrocatalysis: are we there yet?
  publication-title: WIRES Comput. Mol. Sci.
  doi: 10.1002/wcms.1499
– volume: 12
  start-page: 2330
  ident: B36
  article-title: Recent advancements towards closing the gap between electrocatalysis and battery science communities: the computational lithium electrode and activity–stability volcano plots.
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201900298
– volume: 139
  start-page: 12076
  year: 2017
  ident: B99
  article-title: High-performance pyrochlore-type yttrium ruthenate electrocatalyst for oxygen evolution reaction in acidic media.
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b06808
– year: 2020
  ident: B66
  article-title: Theory of solid/electrolyte interfaces
  publication-title: Surface and Interface Science: Volume 8: Interfacial Electrochemistry
  doi: 10.1002/9783527680603.ch56
– volume: 10
  ident: B10
  article-title: Advances and challenges in modeling solvated reaction mechanisms for renewable fuels and chemicals.
  publication-title: WIRES Comput. Mol. Sci.
  doi: 10.1002/wcms.1446
– volume: 54
  start-page: 1053
  year: 1958
  ident: B139
  article-title: The rate of electrolytic hydrogen evolution and the heat of adsorption of hydrogen.
  publication-title: Trans. Faraday Soc.
  doi: 10.1039/TF9585401053
– volume: 10
  start-page: 1586
  year: 2018
  ident: B193
  article-title: On the generality of molecular volcano plots.
  publication-title: ChemCatChem
  doi: 10.1002/cctc.201701709
– volume: 64
  start-page: 123
  year: 1991
  ident: B128
  article-title: Product selectivity affected by cationic species in electrochemical reduction of CO2 and CO at a Cu electrode.
  publication-title: Bull. Chem. Soc. Jpn.
  doi: 10.1246/bcsj.64.123
– volume: 6
  start-page: 1594
  year: 2020
  ident: B58
  article-title: Nonequilibrium dynamics of proton-coupled electron transfer in proton wires: concerted but asynchronous mechanisms.
  publication-title: ACS Cent. Sci.
  doi: 10.1021/acscentsci.0c00756
– volume: 29
  start-page: 791
  year: 2004
  ident: B87
  article-title: Oxygen evolution reaction on IrO2-based DSA type electrodes: kinetics analysis of tafel lines and EIS.
  publication-title: Int. J. Hyd. Energ.
  doi: 10.1016/j.ijhydene.2003.09.007
– volume: 2
  start-page: 1654
  year: 2012
  ident: B187
  article-title: Universality in oxygen reduction electrocatalysis on metal surfaces.
  publication-title: ACS Catal.
  doi: 10.1021/cs300227s
– volume: 3
  start-page: 546
  ident: B171
  article-title: Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal–air batteries.
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.1069
– volume: 10
  start-page: 6706
  year: 2019
  ident: B133
  article-title: Shift of the optimum binding energy at higher rates of catalysis.
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.9b01796
– volume: 122
  start-page: 12771
  year: 2018
  ident: B96
  article-title: Controlled-potential simulation of elementary electrochemical reactions: proton discharge on metal surfaces.
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.8b02465
– volume: 16
  start-page: 925
  year: 2017
  ident: B51
  article-title: Dynamic surface self-reconstruction is the key of highly active perovskite nano-electrocatalysts for water splitting.
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4938
– volume: 8
  start-page: 2243
  year: 2017
  ident: B80
  article-title: Importance of solvation for the accurate prediction of oxygen reduction activities of pt-based electrocatalysts.
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.7b01018
– volume: 1
  start-page: 37
  year: 2009
  ident: B130
  article-title: Towards the computational design of solid catalysts.
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.121
– volume: 10
  start-page: 1
  year: 2019
  ident: B144
  article-title: Na-doped ruthenium perovskite electrocatalysts with improved oxygen evolution activity and durability in acidic media.
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-09791-w
– volume: 49
  start-page: 2196
  year: 2020
  ident: B168
  article-title: A review on fundamentals for designing oxygen evolution electrocatalysts.
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C9CS00607A
– volume: 89
  start-page: 1595
  year: 2012
  ident: B113
  article-title: Electrochemical hydrogen evolution: Sabatier’s principle and the volcano plot.
  publication-title: J. Chem. Educ.
  doi: 10.1021/ed200818t
– volume: 2
  year: 2016
  ident: B206
  article-title: Universal dependence of hydrogen oxidation and evolution reaction activity of platinum-group metals on pH and hydrogen binding energy.
  publication-title: Sci. Adv.
  doi: 10.1021/jacs.0c01104
– volume: 139
  start-page: 11000
  year: 2017
  ident: B140
  article-title: Identifying and breaking scaling relations in molecular catalysis of electrochemical reactions.
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b05642
– volume: 157
  year: 2010
  ident: B161
  article-title: Hydrogen oxidation and evolution reaction kinetics on platinum: acid Vs Alkaline electrolytes.
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.3483106
– volume: 16
  start-page: 13682
  year: 2014
  ident: B71
  article-title: Beyond the volcano limitations in electrocatalysis–oxygen evolution reaction.
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C4CP00571F
– volume: 30
  year: 2018
  ident: B169
  article-title: Assembling ultrasmall copper-doped ruthenium oxide nanocrystals into hollow porous polyhedra: highly robust electrocatalysts for oxygen evolution in acidic media.
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201801351
– volume: 7
  start-page: 6600
  year: 2017
  ident: B182
  article-title: Machine-learning methods enable exhaustive searches for active bimetallic facets and reveal active site motifs for CO2 reduction.
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.7b01648
– volume: 6
  start-page: 4073
  ident: B108
  article-title: Catalysts and reaction pathways for the electrochemical reduction of carbon dioxide.
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.5b01559
– volume: 112
  start-page: 1308
  year: 2008
  ident: B25
  article-title: Brønsted- evans- polanyi relation of multistep reactions and volcano curve in heterogeneous catalysis.
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp711191j
– volume: 5
  start-page: 2326
  year: 2018
  ident: B197
  article-title: Influence of alkali metal cations on the hydrogen evolution reaction activity of Pt, Ir, Au, and Ag electrodes in alkaline electrolytes.
  publication-title: ChemElectroChem
  doi: 10.1002/celc.201800690
– volume: 10
  start-page: 9165
  year: 2019
  ident: B29
  article-title: The hydrogen evolution reaction: from material to interfacial descriptors.
  publication-title: Chem. Sci.
  doi: 10.1039/C9SC03831K
– volume: 37
  start-page: 5850
  year: 2012
  ident: B137
  article-title: A review of gas diffusion layer in PEM fuel cells: materials and designs.
  publication-title: Int. J. Hyd. Energ.
  doi: 10.1016/j.ijhydene.2011.12.148
– volume: 117
  start-page: 31631
  year: 2020
  ident: B79
  article-title: Atomic-scale evidence for highly selective electrocatalytic N- N coupling on metallic MoS2.
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.2008429117
– volume: 6
  start-page: 271
  year: 2019
  ident: B92
  article-title: Pt-Sputtered Ti mesh electrode for polymer electrolyte membrane fuel cells.
  publication-title: Int. J. Precis
  doi: 10.1007/s40684-019-00077-6
– volume: 22
  start-page: 25833
  year: 2020
  ident: B18
  article-title: Method for the accurate prediction of electron transfer potentials using an effective absolute potential.
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/D0CP04508J
– volume: 16
  start-page: 633
  ident: B9
  article-title: Machine learning-guided approach for studying solvation environments.
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.9b00605
– volume: 2
  start-page: 7991
  ident: B34
  article-title: Design criteria for oxygen evolution electrocatalysts from first principles: introduction of a unifying material-screening approach.
  publication-title: ACS Appl. Energ. Mater.
  doi: 10.1021/acsaem.9b01480
– volume: 319
  start-page: 178
  year: 2005
  ident: B151
  article-title: Electrolysis of water on (Oxidized) metal surfaces.
  publication-title: Chem. Phys.
  doi: 10.1016/j.chemphys.2005.05.038
– volume: 218
  start-page: 162
  year: 2013
  ident: B23
  article-title: Nobel prize in chemistry 1912 to sabatier: organic chemistry or catalysis?
  publication-title: Catal. Tod.
  doi: 10.1016/j.cattod.2013.07.006
– volume: 8
  start-page: 1864
  year: 2018
  ident: B50
  article-title: A universal approach to determine the free energy diagram of an electrocatalytic reaction.
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.7b03142
– volume: 312
  start-page: 82
  year: 2018
  ident: B2
  article-title: Using brønsted-evans-polanyi relations to predict electrode potential-dependent activation energies.
  publication-title: Catal. Tod.
  doi: 10.1016/j.cattod.2018.03.048
– volume: 8
  start-page: 110
  year: 2018
  ident: B63
  article-title: Does the breaking of adsorption-energy scaling relations guarantee enhanced electrocatalysis?
  publication-title: Curr. Opin. Electrochem.
  doi: 10.1016/j.coelec.2018.03.025
– volume: 121
  start-page: 18516
  year: 2017
  ident: B28
  article-title: A theoretical investigation into the role of surface defects for oxygen evolution on RuO2.
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.7b03481
– volume: 5
  start-page: 909
  year: 2006
  ident: B64
  article-title: Computational high-throughput screening of electrocatalytic materials for hydrogen evolution.
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1752
– volume: 9
  start-page: 1261
  year: 2017
  ident: B15
  article-title: A new type of scaling relations to assess the accuracy of computational predictions of catalytic activities applied to the oxygen evolution reaction.
  publication-title: ChemCatChem
  doi: 10.1002/cctc.201601662
– volume: 607
  start-page: 83
  ident: B152
  article-title: Electrolysis of water on oxide surfaces.
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/j.jelechem.2006.11.008
– volume: 193
  start-page: 427
  ident: B89
  article-title: Theory of electrostatic phenomena in water-filled Pt nanopores.
  publication-title: Faraday Disc.
  doi: 10.1039/C6FD00094K
– volume: 4
  start-page: 4364
  year: 2014
  ident: B52
  article-title: Tafel kinetics of electrocatalytic reactions: from experiment to first-principles.
  publication-title: ACS Catal.
  doi: 10.1021/cs501312v
SSID ssj0001325410
Score 2.6004043
SecondaryResourceType review_article
Snippet The Sabatier principle, which states that the binding energy between the catalyst and the reactant should be neither too strong nor too weak, has been widely...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
SubjectTerms electrocatalysis
kinetics
Sabatier principle
theory
thermodynamics
Title The Sabatier Principle in Electrocatalysis: Basics, Limitations, and Extensions
URI https://doaj.org/article/9d21bfa191bf4174870420e7e33e3067
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6kJz2IT6wv9uBJGptskn14s9JSBB-ghd7CvkYEiVIr-POd3aSlXvTiMckm7H6zZOebnf2GkDMplMNnIoHciSSUs0gkGJH41BnNuSx1POF9e8fHk-JmWk5XSn2FnLBGHrgBrq8cywxopBUGCnSfcX4VLPXC57kP7m74--Kat0KmYnQlR-KTtduYyMJUH9Acz8gHWXbBS-RA6Y-FaEWvPy4soy2y2XqE9KrpyTZZ8_UO2VjRCdwl92hM-qhN0ECd0YdFfJy-1HTYlLGJUZggLnJJBxqB_-jReHSpicf1qK4dHX7FbHW83iOT0fDpepy0lRASi4OdJ5lVvvBMOgMlS7lnOHz0tTLwOXOWew8CtBLepYo5JGimFFY75TnXYDJr833Sqd9qf0CoAuAZNwDK8kKYXFolpZHSIVGyUkKXpAtYKtt2M1SreK2QLgQkq4hkFZCsGiS75Hz5ynujkfFb40HAetkwyFvHG2j0qjV69ZfRD__jI0dkPfQrZi8Wx6Qzn336E_Qw5uY0TqZvvDbN7A
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Sabatier+Principle+in+Electrocatalysis%3A+Basics%2C+Limitations%2C+and+Extensions&rft.jtitle=Frontiers+in+energy+research&rft.au=Hideshi+Ooka&rft.au=Jun+Huang&rft.au=Kai+S.+Exner&rft.au=Kai+S.+Exner&rft.date=2021-05-04&rft.pub=Frontiers+Media+S.A&rft.eissn=2296-598X&rft.volume=9&rft_id=info:doi/10.3389%2Ffenrg.2021.654460&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_9d21bfa191bf4174870420e7e33e3067
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2296-598X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2296-598X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2296-598X&client=summon