The Sabatier Principle in Electrocatalysis: Basics, Limitations, and Extensions
The Sabatier principle, which states that the binding energy between the catalyst and the reactant should be neither too strong nor too weak, has been widely used as the key criterion in designing and screening electrocatalytic materials necessary to promote the sustainability of our society. The wi...
Saved in:
Published in | Frontiers in energy research Vol. 9 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Frontiers Media S.A
04.05.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The Sabatier principle, which states that the binding energy between the catalyst and the reactant should be neither too strong nor too weak, has been widely used as the key criterion in designing and screening electrocatalytic materials necessary to promote the sustainability of our society. The widespread success of density functional theory (DFT) has made binding energy calculations a routine practice, turning the Sabatier principle from an empirical principle into a quantitative predictive tool. Given its importance in electrocatalysis, we have attempted to introduce the reader to the fundamental concepts of the Sabatier principle with a highlight on the limitations and challenges in its current thermodynamic context. The Sabatier principle is situated at the heart of catalyst development, and moving beyond its current thermodynamic framework is expected to promote the identification of next-generation electrocatalysts. |
---|---|
AbstractList | The Sabatier principle, which states that the binding energy between the catalyst and the reactant should be neither too strong nor too weak, has been widely used as the key criterion in designing and screening electrocatalytic materials necessary to promote the sustainability of our society. The widespread success of density functional theory (DFT) has made binding energy calculations a routine practice, turning the Sabatier principle from an empirical principle into a quantitative predictive tool. Given its importance in electrocatalysis, we have attempted to introduce the reader to the fundamental concepts of the Sabatier principle with a highlight on the limitations and challenges in its current thermodynamic context. The Sabatier principle is situated at the heart of catalyst development, and moving beyond its current thermodynamic framework is expected to promote the identification of next-generation electrocatalysts. |
Author | Huang, Jun Ooka, Hideshi Exner, Kai S. |
Author_xml | – sequence: 1 givenname: Hideshi surname: Ooka fullname: Ooka, Hideshi – sequence: 2 givenname: Jun surname: Huang fullname: Huang, Jun – sequence: 3 givenname: Kai S. surname: Exner fullname: Exner, Kai S. |
BookMark | eNp1UMtKAzEUDaJgrf0Ad_MBTk0yM8nEnZaqhUIFK7gLmeSmpkwzJZmF_XvThyCCm_uC87jnCp37zgNCNwSPi6IWdxZ8WI0ppmTMqrJk-AwNKBUsr0T9cf5rvkSjGNcYY1LQqiR4gBbLT8jeVKN6ByF7Dc5rt20hcz6btqD70GnVq3YXXbzPHlV0Ot5mc7dxfUJ0Pi3Km2z61YOP-_0aXVjVRhid-hC9P02Xk5d8vnieTR7muS4p7nOiBZRAa9PYimIGlEOBkyMLBTWaAVhuleBgsKCGE95UXCsjgDFlG6J1MUSzI6_p1Fpug9uosJOdcvJw6MJKqtA73YIUhpLGKiJSLQkva46TB0iKRRJlPHHxI5cOXYwBrNSn9_qgXCsJlvuY5SFmuY9ZHmNOSPIH-ePkf8w3GsKEMw |
CitedBy_id | crossref_primary_10_1016_j_ijhydene_2024_11_425 crossref_primary_10_1021_acscatal_4c04418 crossref_primary_10_1002_cctc_202200878 crossref_primary_10_1016_S1872_2067_21_64022_6 crossref_primary_10_1016_j_molliq_2024_125535 crossref_primary_10_1002_anie_202319206 crossref_primary_10_1016_j_physb_2024_416062 crossref_primary_10_1016_j_jallcom_2024_175749 crossref_primary_10_1002_jcc_27466 crossref_primary_10_1680_jnaen_24_00008 crossref_primary_10_1016_j_cattod_2024_115051 crossref_primary_10_1002_smll_202306840 crossref_primary_10_1002_cphc_202400785 crossref_primary_10_1088_2515_7655_ad040f crossref_primary_10_1007_s40843_023_2447_4 crossref_primary_10_1002_ange_202421554 crossref_primary_10_1002_open_202400085 crossref_primary_10_1016_j_jallcom_2022_165940 crossref_primary_10_1021_acs_chemmater_4c01684 crossref_primary_10_1038_s41467_023_40471_y crossref_primary_10_1002_smll_202405008 crossref_primary_10_1016_j_jcis_2024_07_109 crossref_primary_10_1039_D4TA05081A crossref_primary_10_1063_5_0211477 crossref_primary_10_1016_j_jcis_2023_07_047 crossref_primary_10_1039_D3TA07470F crossref_primary_10_1039_D0CS01079K crossref_primary_10_1021_acsanm_4c01765 crossref_primary_10_1002_eem2_12723 crossref_primary_10_1002_celc_202400609 crossref_primary_10_1021_acscatal_3c05657 crossref_primary_10_1002_cssc_202400873 crossref_primary_10_1016_j_electacta_2023_143022 crossref_primary_10_1002_adma_202300429 crossref_primary_10_1016_j_ijhydene_2023_07_024 crossref_primary_10_1016_j_rser_2024_114900 crossref_primary_10_3390_nano13222966 crossref_primary_10_1002_advs_202207644 crossref_primary_10_1002_ange_202302779 crossref_primary_10_1016_S1872_2067_22_64207_4 crossref_primary_10_1021_acsnano_2c12029 crossref_primary_10_1002_advs_202309635 crossref_primary_10_1021_acssuschemeng_2c04282 crossref_primary_10_1002_celc_202300789 crossref_primary_10_1016_j_mtener_2022_101083 crossref_primary_10_1016_j_mtener_2022_101087 crossref_primary_10_1016_j_ijhydene_2024_08_354 crossref_primary_10_1016_j_mtcomm_2024_111139 crossref_primary_10_1016_j_est_2023_109205 crossref_primary_10_1039_D4NR02387K crossref_primary_10_1016_j_mtener_2021_100831 crossref_primary_10_1103_PRXEnergy_3_043008 crossref_primary_10_1016_j_susc_2023_122395 crossref_primary_10_1021_acsenergylett_2c00199 crossref_primary_10_1002_ente_202301197 crossref_primary_10_1021_acs_inorgchem_4c01584 crossref_primary_10_1039_D3TA01063E crossref_primary_10_1002_smtd_202300482 crossref_primary_10_1016_j_apsusc_2024_161614 crossref_primary_10_1021_acs_langmuir_4c01797 crossref_primary_10_1016_j_ijhydene_2024_09_279 crossref_primary_10_1002_anie_202302779 crossref_primary_10_1038_s41467_024_47628_3 crossref_primary_10_1016_j_jcat_2024_115725 crossref_primary_10_1021_acs_jpcc_2c07007 crossref_primary_10_1002_adts_202301235 crossref_primary_10_1039_D3TA07896E crossref_primary_10_1021_jacs_4c18638 crossref_primary_10_1016_j_mtsust_2024_100683 crossref_primary_10_59761_RCR5085 crossref_primary_10_1002_aenm_202300282 crossref_primary_10_1016_j_jechem_2023_12_048 crossref_primary_10_1016_j_cplett_2024_141750 crossref_primary_10_1016_j_joule_2024_06_023 crossref_primary_10_1021_acs_langmuir_3c00268 crossref_primary_10_1039_D4QI01723D crossref_primary_10_1039_D4NR03026E crossref_primary_10_3390_molecules29246018 crossref_primary_10_1021_acs_inorgchem_2c04336 crossref_primary_10_1039_D4NR02021A crossref_primary_10_3390_coatings12070918 crossref_primary_10_1016_j_electacta_2024_145174 crossref_primary_10_1021_acs_chemrev_1c01003 crossref_primary_10_1016_j_isci_2021_103628 crossref_primary_10_1021_acs_accounts_4c00048 crossref_primary_10_1039_D4TA06969B crossref_primary_10_1021_acs_jcim_3c01649 crossref_primary_10_1016_j_ijhydene_2024_12_385 crossref_primary_10_1039_D2TA08095H crossref_primary_10_1021_acsnano_3c09523 crossref_primary_10_1039_D4CY00036F crossref_primary_10_1016_j_apcatb_2022_121082 crossref_primary_10_1021_acsami_4c10391 crossref_primary_10_1016_j_jelechem_2023_117367 crossref_primary_10_1021_acsami_4c14076 crossref_primary_10_3390_nano13152176 crossref_primary_10_1021_acs_chemrev_2c00397 crossref_primary_10_1002_cctc_202402013 crossref_primary_10_1021_acs_chemmater_2c01572 crossref_primary_10_1039_D2DT01857H crossref_primary_10_1016_j_ynexs_2024_100029 crossref_primary_10_1021_acs_jpcc_1c05671 crossref_primary_10_1002_anie_202421554 crossref_primary_10_1021_acs_inorgchem_3c03320 crossref_primary_10_1021_acs_inorgchem_2c04448 crossref_primary_10_1021_acs_jpcc_4c00299 crossref_primary_10_1039_D3CC05453E crossref_primary_10_1002_aenm_202403738 crossref_primary_10_1021_acs_jpclett_4c02162 crossref_primary_10_1016_j_apsusc_2022_153979 crossref_primary_10_1016_j_mtener_2023_101364 crossref_primary_10_1016_j_mtener_2024_101641 crossref_primary_10_1016_j_seppur_2023_126188 crossref_primary_10_1021_acs_inorgchem_4c05048 crossref_primary_10_1002_ange_202301408 crossref_primary_10_1021_acs_chemrev_3c00252 crossref_primary_10_1021_acs_jpcc_3c00757 crossref_primary_10_1016_j_decarb_2024_100091 crossref_primary_10_1002_adfm_202309264 crossref_primary_10_1021_acs_jafc_3c01898 crossref_primary_10_1021_acs_jpclett_4c02844 crossref_primary_10_1039_D1EE03953A crossref_primary_10_1002_ange_202318635 crossref_primary_10_1016_j_ccr_2024_216322 crossref_primary_10_1016_j_ensm_2022_09_014 crossref_primary_10_1002_anie_202301408 crossref_primary_10_1016_j_coelec_2023_101332 crossref_primary_10_1002_smll_202105331 crossref_primary_10_1021_acs_jpcc_2c08254 crossref_primary_10_1021_acs_jpcc_3c03472 crossref_primary_10_1039_D4CC02012J crossref_primary_10_1149_1945_7111_ad8f01 crossref_primary_10_1002_advs_202305505 crossref_primary_10_1002_ceat_202200458 crossref_primary_10_1039_D2CY00389A crossref_primary_10_1021_acs_chemrev_3c00382 crossref_primary_10_1016_j_est_2024_115251 crossref_primary_10_1039_D4TA00320A crossref_primary_10_3390_catal13101371 crossref_primary_10_1016_j_nanoen_2024_109897 crossref_primary_10_1002_cctc_202400130 crossref_primary_10_1016_j_apsusc_2024_159942 crossref_primary_10_1016_j_ijhydene_2024_07_286 crossref_primary_10_1021_acs_jpclett_3c01596 crossref_primary_10_1002_adma_202408139 crossref_primary_10_3390_catal11101165 crossref_primary_10_1021_acsaem_2c01383 crossref_primary_10_1016_j_ijhydene_2024_02_103 crossref_primary_10_1021_acs_jpclett_4c00474 crossref_primary_10_1002_jcc_27063 crossref_primary_10_1016_j_ijhydene_2023_09_291 crossref_primary_10_1016_j_jechem_2024_04_001 crossref_primary_10_3389_fchem_2023_1175132 crossref_primary_10_1002_anie_202318635 crossref_primary_10_1016_j_ccr_2025_216473 crossref_primary_10_1021_acscatal_1c04547 crossref_primary_10_1016_j_checat_2024_101098 crossref_primary_10_1016_j_jcat_2024_115357 crossref_primary_10_1021_acssuschemeng_4c03545 crossref_primary_10_1039_D4NH00305E crossref_primary_10_1016_j_checat_2022_09_003 crossref_primary_10_1016_j_apsusc_2023_156827 crossref_primary_10_1002_aenm_202300239 crossref_primary_10_1021_acsaem_1c01723 crossref_primary_10_1021_acsomega_4c07017 crossref_primary_10_1021_acs_jpcc_2c07411 crossref_primary_10_1016_j_electacta_2021_139019 crossref_primary_10_1021_acscatal_3c04956 crossref_primary_10_1021_acscatal_4c00229 crossref_primary_10_1016_j_apsusc_2025_162706 crossref_primary_10_1021_acs_chemrev_3c00712 crossref_primary_10_1016_j_apcatb_2022_121959 crossref_primary_10_1016_j_ijhydene_2024_07_155 crossref_primary_10_1016_j_cattod_2022_11_025 crossref_primary_10_1016_j_est_2023_110005 crossref_primary_10_1002_adfm_202409406 crossref_primary_10_1016_j_mtcomm_2023_106429 crossref_primary_10_1016_j_ijhydene_2024_12_068 crossref_primary_10_1039_D4TA02042A crossref_primary_10_1002_cctc_202200345 crossref_primary_10_1021_acs_jpcc_4c07958 crossref_primary_10_1088_2516_1075_ad3123 crossref_primary_10_1016_j_jcat_2023_01_020 crossref_primary_10_1021_jacs_3c05287 crossref_primary_10_1016_j_ijhydene_2022_10_111 crossref_primary_10_1016_j_jallcom_2024_175330 crossref_primary_10_1021_acs_energyfuels_3c02358 crossref_primary_10_1039_D2CP04939B crossref_primary_10_1021_acs_jpcc_2c02734 crossref_primary_10_1021_acsami_2c19391 crossref_primary_10_1016_j_ensm_2023_103078 crossref_primary_10_1038_s41467_024_51280_2 crossref_primary_10_1016_j_checat_2023_100621 crossref_primary_10_1021_acs_energyfuels_3c05194 crossref_primary_10_1016_j_electacta_2022_140799 crossref_primary_10_1016_j_jallcom_2024_173862 crossref_primary_10_1016_j_cclet_2024_110656 crossref_primary_10_1002_nadc_20224125416 crossref_primary_10_1002_open_202400124 crossref_primary_10_1016_j_fuel_2023_130654 crossref_primary_10_1021_acscatal_3c03728 crossref_primary_10_1016_j_apcatb_2024_124340 crossref_primary_10_1021_acs_langmuir_3c02260 crossref_primary_10_3390_catal12101223 crossref_primary_10_3390_app13053023 crossref_primary_10_1021_acscatal_2c03997 crossref_primary_10_1016_j_rser_2023_113227 crossref_primary_10_1016_j_apsusc_2025_162605 crossref_primary_10_1039_D2QM00121G crossref_primary_10_3390_pr10051008 crossref_primary_10_1016_j_ijhydene_2023_04_119 crossref_primary_10_1016_j_ijhydene_2025_01_497 crossref_primary_10_1002_aoc_7541 crossref_primary_10_1002_adma_202400640 crossref_primary_10_1002_cey2_663 crossref_primary_10_1016_j_cis_2025_103429 crossref_primary_10_1016_j_mtchem_2023_101800 crossref_primary_10_1063_5_0186416 crossref_primary_10_1002_admi_202201138 crossref_primary_10_1021_acscatal_3c05738 crossref_primary_10_1021_acsami_3c02026 crossref_primary_10_1038_s41598_024_71703_w crossref_primary_10_1063_5_0192779 crossref_primary_10_3389_fchem_2022_852196 crossref_primary_10_1016_j_electacta_2023_142634 crossref_primary_10_1021_acs_jafc_3c06487 crossref_primary_10_1021_jacs_3c11651 crossref_primary_10_1039_D1TA09657E crossref_primary_10_1002_ange_202310069 crossref_primary_10_1016_j_mtcomm_2024_109509 crossref_primary_10_1021_acs_energyfuels_4c01461 crossref_primary_10_1021_acs_inorgchem_1c02633 crossref_primary_10_1002_adma_202305730 crossref_primary_10_1016_j_coelec_2023_101284 crossref_primary_10_1039_D3CY00742A crossref_primary_10_1021_acs_inorgchem_3c02423 crossref_primary_10_1002_anie_202200755 crossref_primary_10_1016_j_jallcom_2024_174281 crossref_primary_10_1016_j_surfrep_2023_100597 crossref_primary_10_1149_1945_7111_ad377f crossref_primary_10_1039_D3TA06580D crossref_primary_10_1016_j_catcom_2021_106378 crossref_primary_10_1155_er_4906357 crossref_primary_10_1016_j_ijhydene_2022_09_264 crossref_primary_10_1021_acs_inorgchem_3c01572 crossref_primary_10_1021_acsnano_4c07613 crossref_primary_10_1016_j_physb_2024_416438 crossref_primary_10_1063_5_0151159 crossref_primary_10_1016_j_partic_2023_04_010 crossref_primary_10_1002_batt_202200468 crossref_primary_10_1021_acs_jpcc_3c04380 crossref_primary_10_1002_cite_202200071 crossref_primary_10_1021_acsanm_4c02434 crossref_primary_10_1039_D2CP03001B crossref_primary_10_1002_ange_202200755 crossref_primary_10_1021_jacsau_4c00932 crossref_primary_10_1002_admi_202400559 crossref_primary_10_1016_j_checat_2024_101039 crossref_primary_10_1038_s41598_025_85891_6 crossref_primary_10_1002_smll_202300368 crossref_primary_10_1039_D3TA04225A crossref_primary_10_1111_1462_2920_70055 crossref_primary_10_1149_1945_7111_acf246 crossref_primary_10_1016_j_jechem_2024_02_068 crossref_primary_10_3390_nano13061071 crossref_primary_10_1002_aenm_202302493 crossref_primary_10_1002_cphc_202400442 crossref_primary_10_1039_D4CP01792G crossref_primary_10_1016_j_apcatb_2024_124423 crossref_primary_10_1007_s41918_023_00186_6 crossref_primary_10_1016_j_apsusc_2023_156587 crossref_primary_10_1016_j_matchemphys_2024_129785 crossref_primary_10_1021_acsnano_4c06063 crossref_primary_10_1002_ange_202319206 crossref_primary_10_1039_D4CP03153A crossref_primary_10_1002_adma_202107072 crossref_primary_10_1016_j_colsurfa_2023_132450 crossref_primary_10_1016_j_cej_2024_157783 crossref_primary_10_1002_anie_202310069 crossref_primary_10_1002_cctc_202300491 crossref_primary_10_1021_acs_jpcc_3c07671 crossref_primary_10_1021_acs_energyfuels_1c03667 crossref_primary_10_1039_D4CP01084A crossref_primary_10_1039_D4CP01682C crossref_primary_10_1021_acs_jpcc_2c04731 |
Cites_doi | 10.1007/s11244-013-0171-6 10.1016/j.electacta.2014.07.057 10.1016/0022-0728(93)85014-8 10.1021/acscatal.0c03865 10.1016/j.ijhydene.2020.07.088 10.1063/1.4865107 10.1002/celc.202001228 10.1021/acs.jpclett.0c02012 10.1021/cr1001436 10.1021/acs.jpclett.8b00810 10.1021/cr9001808 10.1039/C9TA06286F 10.1002/celc.202001465 10.1021/acsenergylett.0c00957 10.1039/C1CP21717H 10.1149/2.022211jes 10.1002/smll.201901980 10.1016/j.electacta.2006.12.007 10.1039/C9EE02873K 10.1021/acscatal.9b05248 10.1002/cctc.201000397 10.1007/s10800-005-9058-y 10.1002/cctc.201900500 10.1021/jacs.7b10142 10.1002/anie.201905501 10.1016/j.cattod.2014.08.001 10.1039/TF9514701332 10.1039/C4EE00440J 10.1016/j.jelechem.2013.08.033 10.1038/ncomms12363 10.1021/ja101578m 10.1002/anie.201406112 10.1039/C3SC50205H 10.1038/srep138012015 10.1016/j.elecom.2015.03.008 10.1021/acscatal.8b00574 10.1039/C7NR06054H 10.1016/0013-4686(75)90017-1 10.1002/aenm.201500985 10.1016/0013-4686(87)85001-6 10.1039/C9EE02697E 10.1021/ic900798q 10.1021/acs.jpcc.0c01621 10.1002/celc.201800838 10.1039/C8EE01501E 10.1021/jacs.0c01104 10.1021/acs.langmuir.7b00696 10.1021/jp1048887 10.1002/anie.202003688 10.1021/acs.jpcc.0c10092 10.1038/nenergy.2017.31 10.1021/acscatal.9b04186 10.1021/cr100085k 10.1021/acscatal.0c01906 10.1063/1.5054580 10.1021/acs.langmuir.8b02219 10.1016/j.nanoen.2016.12.056 10.1002/adfm.202005060 10.1039/C9CP06584A 10.3389/fenrg.2020.00155 10.1149/2.0152001JES 10.1021/acscatal.5b02550 10.1021/cs5012298 10.1021/acscatal.0c01862 10.1016/j.jcat.2004.02.034 10.1021/acs.jpcc.0c02824 10.1016/j.coelec.2020.100673 10.1002/celc.202000120 10.1039/P29930000799 10.1038/s41524-020-00394-4 10.1007/s10008-012-1918-x 10.1038/s41467-019-12994-w 10.1016/j.jelechem.2006.05.013 10.1021/ar1000956 10.1021/jacs.9b01834 10.1016/S0022-0728(72)80485-6 10.1039/D0CP03667F 10.1016/j.cossms.2020.100805 10.1073/pnas.1602984113 10.1021/jacs.8b05382 10.1002/qua.24481 10.1016/j.susc.2007.01.037 10.1002/elan.201600270 10.1002/wcms.1100 10.1016/S0378-7753(02)00542-6 10.1039/C4CP00394B 10.1021/acs.jpclett.9b01428 10.1039/D0CP00896F 10.1016/0013-4686(89)87082-3 10.1016/j.elecom.2018.01.012 10.1038/s41560-019-0450-y 10.1021/acscatal.0c03336 10.1126/science.1212858 10.1002/celc.201900784 10.1021/acs.jpclett.9b02436 10.1524/zpch.1960.26.1_2.016 10.1021/jp077210j 10.3389/fchem.2020.00634 10.1515/pac-2014-5026 10.1039/C9NH00100J 10.1038/s41467-019-13777-z 10.1016/j.electacta.2021.137975 10.1021/acs.jpcc.6b09019 10.1021/acsenergylett.9b02306 10.1039/B802218F 10.1039/C5SC02910D 10.1021/jz201461p 10.1021/acscatal.6b01211 10.1002/cctc.201901459 10.1038/ncomms6848 10.1021/acs.jpcc.9b05364 10.1016/j.nanoen.2016.04.011 10.1021/acs.jpclett.5b02556 10.1039/D0CP02741C 10.1021/acscatal.8b03547 10.1021/jacs.7b12774 10.1021/jp047349j 10.1524/zpch.1956.6.3_4.178 10.1021/acscatal.9b02416 10.1021/acs.jpclett.6b01254 10.1063/1.5132354 10.1039/C3CY01049J 10.1039/C9EE01341E 10.1021/ar9001284 10.1016/j.electacta.2012.04.062 10.1038/s41467-020-19212-y 10.1126/science.aaf5050 10.1016/j.nanoen.2017.05.022 10.1016/j.jelechem.2010.10.004 10.1063/1.5144912 10.1021/acscatal.9b01564 10.1021/acscatal.8b01432 10.1149/1.1856988 10.1021/jacs.0c10632 10.1021/acscatal.7b03991 10.1039/C6SC02984A 10.1021/acscatal.9b02799 10.1039/c2cp42369c 10.1039/B803956A 10.1021/acscatal.9b01606 10.1021/acs.chemrev.5b00389 10.1007/978-3-642-04937-8 10.1021/j100057a020 10.1002/anie.201511804 10.1021/acsaem.9b00791 10.1021/acscatal.9b00732 10.1016/j.ijhydene.2013.01.151 10.1039/C0NR00857E 10.1039/F19898502309 10.1016/j.susc.2012.08.005 10.1021/acs.jpcc.6b03930 10.1039/C8CP01315B 10.1021/acs.jpclett.7b02895 10.1126/science.aaw4675 10.1021/acs.jpcc.9b10860 10.1016/j.elecom.2015.09.019 10.1021/ja0504690 10.1002/advs.201700275 10.1016/j.matt.2019.09.011 10.1002/wcms.1499 10.1002/cssc.201900298 10.1021/jacs.7b06808 10.1002/9783527680603.ch56 10.1002/wcms.1446 10.1039/TF9585401053 10.1002/cctc.201701709 10.1246/bcsj.64.123 10.1021/acscentsci.0c00756 10.1016/j.ijhydene.2003.09.007 10.1021/cs300227s 10.1038/nchem.1069 10.1021/acs.jpclett.9b01796 10.1021/acs.jpcc.8b02465 10.1038/nmat4938 10.1021/acs.jpclett.7b01018 10.1038/nchem.121 10.1038/s41467-019-09791-w 10.1039/C9CS00607A 10.1021/ed200818t 10.1021/jacs.7b05642 10.1149/1.3483106 10.1039/C4CP00571F 10.1002/adma.201801351 10.1021/acscatal.7b01648 10.1021/acs.jpclett.5b01559 10.1021/jp711191j 10.1002/celc.201800690 10.1039/C9SC03831K 10.1016/j.ijhydene.2011.12.148 10.1073/pnas.2008429117 10.1007/s40684-019-00077-6 10.1039/D0CP04508J 10.1021/acs.jctc.9b00605 10.1021/acsaem.9b01480 10.1016/j.chemphys.2005.05.038 10.1016/j.cattod.2013.07.006 10.1021/acscatal.7b03142 10.1016/j.cattod.2018.03.048 10.1016/j.coelec.2018.03.025 10.1021/acs.jpcc.7b03481 10.1038/nmat1752 10.1002/cctc.201601662 10.1016/j.jelechem.2006.11.008 10.1039/C6FD00094K 10.1021/cs501312v |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.3389/fenrg.2021.654460 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2296-598X |
ExternalDocumentID | oai_doaj_org_article_9d21bfa191bf4174870420e7e33e3067 10_3389_fenrg_2021_654460 |
GroupedDBID | 5VS 9T4 AAFWJ AAYXX ACGFS ACXDI ADBBV AFPKN ALMA_UNASSIGNED_HOLDINGS BCNDV CITATION GROUPED_DOAJ KQ8 M~E OK1 |
ID | FETCH-LOGICAL-c420t-1c9e4e28dbf5206e27e30541fe32dc6eef7fa97ed092d717b57cad9e66afb1cc3 |
IEDL.DBID | DOA |
ISSN | 2296-598X |
IngestDate | Wed Aug 27 01:22:25 EDT 2025 Tue Jul 01 03:00:20 EDT 2025 Thu Apr 24 23:12:42 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c420t-1c9e4e28dbf5206e27e30541fe32dc6eef7fa97ed092d717b57cad9e66afb1cc3 |
OpenAccessLink | https://doaj.org/article/9d21bfa191bf4174870420e7e33e3067 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_9d21bfa191bf4174870420e7e33e3067 crossref_citationtrail_10_3389_fenrg_2021_654460 crossref_primary_10_3389_fenrg_2021_654460 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-05-04 |
PublicationDateYYYYMMDD | 2021-05-04 |
PublicationDate_xml | – month: 05 year: 2021 text: 2021-05-04 day: 04 |
PublicationDecade | 2020 |
PublicationTitle | Frontiers in energy research |
PublicationYear | 2021 |
Publisher | Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media S.A |
References | Sheng (B161) 2010; 157 Back (B7); 10 He (B79) 2020; 117 Ulissi (B181) 2016; 7 Cheng (B25) 2008; 112 Exner (B42); 30 Dubouis (B29) 2019; 10 Hörmann (B86) 2020; 6 Busch (B18) 2020; 22 Exner (B40); 7 Martnez-Hincapié (B123) 2018; 88 Kortlever (B108); 6 Vos (B188) 2018; 140 Sheng (B162) 2015; 6 Birdja (B12) 2019; 4 Gossenberger (B60) 2020; 8 Trasatti (B180) 1987; 32 Exner (B44); 8 Gao (B54) 2015; 55 Wodrich (B193) 2018; 10 Frumkin (B53) 1975; 20 Bard (B8) 2010; 132 Tahir (B173) 2017; 37 Koper (B103); 660 Smith (B167) 2020; 13 Sumaria (B170) 2018; 8 Murata (B128) 1991; 64 Briquet (B15) 2017; 9 Su (B169) 2018; 30 Hansen (B75) 2008; 10 Koper (B104); 17 Gerischer (B57) 1956; 6 Hao (B77) 2020; 11 Abidi (B1) 2020 Zeradjanin (B200) 2016; 28 Back (B6); 9 Schmickler (B158) 2010 Zhang (B204) 2019; 10 Zhang (B205) 2014; 4 Li (B116) 2016; 6 Garcia (B55) 2019; 58 Kenmoe (B98) 2018; 122 Che (B23) 2013; 218 Li (B117) 2020; 10 Xie (B196) 2017; 9 Kozuch (B109) 2012; 2 Lindgren (B118) 2020; 10 Gurudayal (B69) 2019; 2 Greeley (B64) 2006; 5 Pajkossy (B134) 1989; 34 Mathew (B125) 2014; 140 Bhattacharyya (B11) 2021; 125 Goings (B58) 2020; 6 Chen (B24) 2017; 32 Exner (B37); 124 Hörmann (B85) 2019; 150 Exner (B35); 9 Klamt (B101) 1993; 5 Parada (B136) 2019; 364 Hu (B87) 2004; 29 Nørskov (B131) 2004; 108 Hansen (B76) 2016; 120 Sakaushi (B154) 2020; 22 Exner (B39); 22 Sakong (B155) 2020; 22 Huang (B88); 120 Vinogradova (B185) 2018; 34 Busch (B17) 2016; 29 Bligaard (B13) 2004; 224 Govind Rajan (B62) 2020; 10 Handoko (B74) 2019; 4 Kunimatsu (B112) 2007; 52 Kozuch (B110) 2011; 44 Koper (B105); 4 Wintrich (B192) 2019; 6 Zhang (B203) 2018; 5 Sayfutyarova (B157) 2020; 11 Guidelli (B67) 2014; 86 Yang (B198) 2020; 5 Halck (B71) 2014; 16 Auinger (B4) 2011; 13 Hammes-Schiffer (B72) 2009; 42 Gómez-Marín (B59) 2014; 4 Kastlunger (B96) 2018; 122 Pérez-Gallent (B141) 2017; 139 Durst (B30) 2014; 7 Saveleva (B156) 2018; 9 Lum (B120) 2018; 11 Bochevarov (B14) 2013; 113 Warren (B191) 2010; 110 Hajiyani (B70) 2018; 8 Mehta (B127) 2003; 114 Nørskov (B130) 2009; 1 Retuerto (B144) 2019; 10 Ringe (B145) 2019; 12 Nørskov (B129) 2005; 152 Ringe (B146) 2020; 11 Ávila (B5) 2020; 7 Suntivich (B172); 334 Li (B115) 2019; 15 Exner (B32); 11 Kim (B99) 2017; 139 Seitz (B160) 2016; 353 Katsounaros (B97) 2016; 7 Parsons (B139) 1958; 54 Skúlason (B166) 2010; 114 Shinagawa (B164) 2015; 5 Zhou (B207) 2020; 124 Rodriguez (B147) 2014; 16 He (B80) 2017; 8 Exner (B33); 123 Shinagawa (B165) 2019; 11 Gattrell (B56) 2006; 594 Heenen (B81) 2020; 152 Mefford (B126) 2020; 13 Exner (B36); 12 Marshall (B122) 2015; 61 Tao (B175) 2019; 141 Xue (B197) 2018; 5 Exner (B38); 22 Rootsaert (B149) 1960; 26 Theerthagiri (B176) 2020; 24 Calle-Vallejo (B20) 2012; 84 Rossmeisl (B152); 607 Toyao (B178) 2020; 10 Yao (B199) 2019; 7 Pegis (B140) 2017; 139 Karlsson (B95) 2016; 116 Akhade (B2) 2018; 312 Sabatier (B153) 1913 Ooka (B132) 2017; 33 Exner (B46); 375 Exner (B41); 45 Laursen (B113) 2012; 89 Park (B137) 2012; 37 Calle-Vallejo (B21) 2013; 607 Louch (B119) 1993; 346 Warburton (B190) 2020; 142 Hinnemann (B82) 2005; 127 Kari (B94) 2018; 8 Carmo (B22) 2013; 38 Ulissi (B182) 2017; 7 Gupta (B68) 2006; 36 Exner (B43); 10 Exner (B47) 2014; 53 Huang (B89); 193 Zhang (B202) 2020; 124 Ledezma-Yanez (B114) 2017; 2 Busch (B19) 2015; 6 Rojas-Carbonell (B148) 2018; 8 Huang (B91) 2019; 1 Diaz-Morales (B27) 2016; 7 Peterson (B142) 2012; 3 Zheng (B206) 2016; 2 Koper (B106); 15 Varela (B184) 2016; 6 Exner (B31) 2018; 5 Pande (B135) 2019; 4 Parsons (B138) 1951; 47 Shetty (B163) 2020; 10 Greeley (B65) 2007; 601 Exner (B49) 2019; 9 Zhu (B208) 2020; 142 Exner (B45); 26 Xiao (B195) 2015; 5 Craig (B26) 2019; 10 Exner (B48) 2016; 55 Tang (B174) 2016; 6 Wang (B189) 2009; 140 Göttle (B61) 2017; 8 Kjaergaard (B100) 2010; 49 Mathew (B124) 2019; 151 Basdogan (B10); 10 Exner (B50) 2018; 8 Fabbri (B51) 2017; 16 He (B78) 2018; 140 Ooka (B133) 2019; 10 Tichter (B177) 2020; 8 Kant (B93) 1994; 98 Huang (B90) 2018; 20 Piqué (B143) 2020; 22 Govindarajan (B63) 2018; 8 Rossmeisl (B150); 111 Viswanathan (B186) 2014; 57 Man (B121) 2011; 3 Groß (B66) 2020 Kortlever (B107); 244 Zhu (B209) 2019; 167 Hori (B84) 1989; 85 Fang (B52) 2014; 4 Hammes-Schiffer (B73) 2010; 110 Trasatti (B179) 1972; 39 Dickens (B28) 2017; 121 Schouten (B159) 2014; 716 Basdogan (B9); 16 Song (B168) 2020; 49 Kang (B92) 2019; 6 Wuttig (B194) 2016; 113 Ardagh (B3) 2019; 9 Exner (B34); 2 Krishnamurthy (B111) 2018; 9 Rossmeisl (B151) 2005; 319 Van Santen (B183) 2009; 110 Koper (B102); 3 Holewinski (B83) 2012; 159 Viswanathan (B187) 2012; 2 Suntivich (B171); 3 Bumroongsakulsawat (B16) 2014; 141 Zhang (B201) 2020; 10 |
References_xml | – volume: 57 start-page: 215 year: 2014 ident: B186 article-title: Unifying solution and surface electrochemistry: limitations and opportunities in surface electrocatalysis. publication-title: Top. Catal. doi: 10.1007/s11244-013-0171-6 – volume: 141 start-page: 216 year: 2014 ident: B16 article-title: Effect of solution pH on CO: formate formation rates during electrochemical reduction of aqueous CO2 at Sn cathodes. publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2014.07.057 – volume: 346 start-page: 211 year: 1993 ident: B119 article-title: Transport to rough electrode surfaces: part 2: perturbation solution for two-dimensional steady state transport to an arbitrary surface under mixed diffusion-kinetic control. publication-title: J. Electroanal. Chem. doi: 10.1016/0022-0728(93)85014-8 – volume: 10 start-page: 12607 ident: B43 article-title: A universal descriptor for the screening of electrode materials for multiple-electron processes: beyond the thermodynamic overpotential. publication-title: ACS Catal. doi: 10.1021/acscatal.0c03865 – volume: 45 start-page: 27221 ident: B41 article-title: Paradigm change in hydrogen electrocatalysis: the volcano’s apex is located at weak bonding of the reaction intermediate. publication-title: Int. J. Hyd. Energ. doi: 10.1016/j.ijhydene.2020.07.088 – volume: 140 year: 2014 ident: B125 article-title: Implicit solvation model for density-functional study of nanocrystal surfaces and reaction pathways. publication-title: J. Chem. Phys. doi: 10.1063/1.4865107 – volume: 7 start-page: 4269 year: 2020 ident: B5 article-title: Role of the partial charge transfer on the chloride adlayers on Au (100). publication-title: ChemElectroChem doi: 10.1002/celc.202001228 – volume: 11 start-page: 7109 year: 2020 ident: B157 article-title: Excited state molecular dynamics of photoinduced proton-coupled electron transfer in anthracene–phenol–pyridine triads. publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.0c02012 – volume: 110 start-page: 6939 year: 2010 ident: B73 article-title: Theory of coupled electron and proton transfer reactions. publication-title: Chem. Rev. doi: 10.1021/cr1001436 – volume: 9 start-page: 3154 year: 2018 ident: B156 article-title: Operando evidence for a universal oxygen evolution mechanism on thermal and electrochemical iridium oxides. publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.8b00810 – volume: 110 start-page: 2005 year: 2009 ident: B183 article-title: Reactivity theory of transition-metal surfaces: a Brønsted- evans- polanyi linear activation energy- free-energy analysis. publication-title: Chem. Rev. doi: 10.1021/cr9001808 – volume: 7 start-page: 19290 year: 2019 ident: B199 article-title: Algorithm screening to accelerate discovery of 2d metal-free electrocatalysts for hydrogen evolution reaction. publication-title: J. Mat. Chem. A doi: 10.1039/C9TA06286F – volume: 8 start-page: 46 ident: B44 article-title: Boosting the stability of RuO2 in the acidic oxygen evolution reaction by tuning oxygen-vacancy formation energies: a viable approach beyond noble-metal catalysts? publication-title: ChemElectroChem doi: 10.1002/celc.202001465 – volume: 5 start-page: 2313 year: 2020 ident: B198 article-title: High-throughput identification of exfoliable two-dimensional materials with active basal planes for hydrogen evolution. publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.0c00957 – volume: 13 start-page: 16384 year: 2011 ident: B4 article-title: Near-surface ion distribution and buffer effects during electrochemical reactions. publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C1CP21717H – volume: 159 year: 2012 ident: B83 article-title: Elementary mechanisms in electrocatalysis: revisiting the ORR tafel slope. publication-title: J. Electrochem. Soc. doi: 10.1149/2.022211jes – volume: 15 year: 2019 ident: B115 article-title: Recent progress on surface reconstruction of earth-abundant electrocatalysts for water oxidation. publication-title: Small doi: 10.1002/smll.201901980 – volume: 52 start-page: 5715 year: 2007 ident: B112 article-title: Hydrogen adsorption and hydrogen evolution reaction on a polycrystalline Pt electrode studied by surface-enhanced infrared absorption spectroscopy. publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2006.12.007 – volume: 13 start-page: 331 year: 2020 ident: B167 article-title: Current and future role of haber–bosch ammonia in a carbon-free energy landscape. publication-title: Energ. Environ. Sci. doi: 10.1039/C9EE02873K – volume: 10 start-page: 4377 year: 2020 ident: B117 article-title: An adaptive machine learning strategy for accelerating discovery of perovskite electrocatalysts. publication-title: ACS Catal. doi: 10.1021/acscatal.9b05248 – volume: 3 start-page: 1159 year: 2011 ident: B121 article-title: Universality in oxygen evolution electrocatalysis on oxide surfaces. publication-title: ChemCatChem doi: 10.1002/cctc.201000397 – volume: 36 start-page: 161 year: 2006 ident: B68 article-title: Calculation for the cathode surface concentrations in the electrochemical reduction of CO2 in KHCO3 solutions. publication-title: J. Appl. Electrochem. doi: 10.1007/s10800-005-9058-y – volume: 11 start-page: 3234 ident: B32 article-title: Activity-stability volcano plots for material optimization in electrocatalysis. publication-title: ChemCatChem doi: 10.1002/cctc.201900500 – volume: 139 start-page: 16412 year: 2017 ident: B141 article-title: Structure-and potential-dependent cation effects on CO reduction at copper single-crystal electrodes. publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b10142 – volume: 58 start-page: 12999 year: 2019 ident: B55 article-title: Enhancement of oxygen evolution activity of nickel oxyhydroxide by electrolyte alkali cations. publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201905501 – volume: 244 start-page: 58 ident: B107 article-title: Electrochemical CO2 reduction to formic acid on a Pd-based formic acid oxidation catalyst. publication-title: Catal. Tod. doi: 10.1016/j.cattod.2014.08.001 – volume: 47 start-page: 1332 year: 1951 ident: B138 article-title: General equations for the kinetics of electrode processes. publication-title: Trans. Faraday Soc. doi: 10.1039/TF9514701332 – volume: 7 start-page: 2255 year: 2014 ident: B30 article-title: New insights into the electrochemical hydrogen oxidation and evolution reaction mechanism. publication-title: Energ. Environ. Sci. doi: 10.1039/C4EE00440J – volume: 716 start-page: 53 year: 2014 ident: B159 article-title: The influence of pH on the reduction of CO and CO2 to hydrocarbons on copper electrodes. publication-title: J. Electroanal. Chem. doi: 10.1016/j.jelechem.2013.08.033 – volume: 7 start-page: 1 year: 2016 ident: B27 article-title: Iridium-based double perovskites for efficient water oxidation in acid media. publication-title: Nat. Commun. doi: 10.1038/ncomms12363 – volume: 132 start-page: 7559 year: 2010 ident: B8 article-title: Inner-sphere heterogeneous electrode reactions. Electrocatalysis and photocatalysis: the challenge. publication-title: J. Am. Chem. Soc. doi: 10.1021/ja101578m – volume: 53 start-page: 11032 year: 2014 ident: B47 article-title: Controlling selectivity in the chlorine evolution reaction over RuO2-based catalysts. publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201406112 – volume: 4 start-page: 2710 ident: B105 article-title: Theory of multiple proton–electron transfer reactions and its implications for electrocatalysis. publication-title: Chem. Sci. doi: 10.1039/C3SC50205H – volume: 5 year: 2015 ident: B164 article-title: Insight on tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion. publication-title: Sci. Rep. doi: 10.1038/srep138012015 – volume: 55 start-page: 1 year: 2015 ident: B54 article-title: pH effect on electrocatalytic reduction of CO2 over Pd and Pt nanoparticles. publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2015.03.008 – volume: 8 start-page: 11773 year: 2018 ident: B70 article-title: Surface termination and composition control of activity of the CoxNi1–xFe2O4 (001) surface for water oxidation: insights from DFT + U calculations. publication-title: ACS Catal. doi: 10.1021/acscatal.8b00574 – volume: 9 start-page: 16059 year: 2017 ident: B196 article-title: In situ growth of cobalt at cobalt-borate core–shell nanosheets as highly-efficient electrocatalysts for oxygen evolution reaction in alkaline/neutral medium. publication-title: Nanoscale doi: 10.1039/C7NR06054H – volume: 20 start-page: 347 year: 1975 ident: B53 article-title: Potentials of zero total and zero free charge of platinum group metals. publication-title: Electrochim. Acta doi: 10.1016/0013-4686(75)90017-1 – volume: 5 year: 2015 ident: B195 article-title: A review of phosphide-based materials for electrocatalytic hydrogen evolution. publication-title: Adv. Energ. Mater. doi: 10.1002/aenm.201500985 – volume: 32 start-page: 369 year: 1987 ident: B180 article-title: Progress in the understanding of the mechanism of chlorine evolution at oxide electrodes. publication-title: Electrochim. Acta doi: 10.1016/0013-4686(87)85001-6 – volume: 13 start-page: 622 year: 2020 ident: B126 article-title: Interpreting Tafel behavior of consecutive electrochemical reactions through combined thermodynamic and steady state microkinetic approaches. publication-title: Energ. Environ. Sci. doi: 10.1039/C9EE02697E – volume: 49 start-page: 3567 year: 2010 ident: B100 article-title: Enzymatic versus inorganic oxygen reduction catalysts: comparison of the energy levels in a free-energy scheme. publication-title: Inorg. Chem. doi: 10.1021/ic900798q – volume: 124 start-page: 13672 year: 2020 ident: B207 article-title: Combining single crystal experiments and microkinetic modeling in disentangling thermodynamic, kinetic and double-layer factors influencing oxygen reduction. publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.0c01621 – volume: 5 start-page: 3243 year: 2018 ident: B31 article-title: Activity–stability volcano plots for the investigation of nano-sized electrode materials in lithium-ion batteries. publication-title: ChemElectroChem doi: 10.1002/celc.201800838 – volume: 11 start-page: 2935 year: 2018 ident: B120 article-title: Sequential catalysis controls selectivity in electrochemical CO2 reduction on Cu. publication-title: Energ. Environ. Sci. doi: 10.1039/C8EE01501E – volume: 142 start-page: 8748 year: 2020 ident: B208 article-title: pH-dependent hydrogen and water binding energies on platinum surfaces as directly probed through surface-enhanced infrared absorption spectroscopy. publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c01104 – volume: 33 start-page: 9307 year: 2017 ident: B132 article-title: Competition between hydrogen evolution and carbon dioxide reduction on copper electrodes in mildly acidic media. publication-title: Langmuir doi: 10.1021/acs.langmuir.7b00696 – volume: 114 start-page: 18182 year: 2010 ident: B166 article-title: Modeling the electrochemical hydrogen oxidation and evolution reactions on the basis of density functional theory calculations. publication-title: J. Phys. Chem. C doi: 10.1021/jp1048887 – volume: 22 start-page: 10236 ident: B39 article-title: Does a Thermoneutral Electrocatalyst correspond to the apex of a volcano plot for a simple two-electron process? publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202003688 – volume: 125 start-page: 4379 year: 2021 ident: B11 article-title: Structure and reactivity of IrO X nanoparticles for the oxygen evolution reaction in electrocatalysis: an electronic structure theory study. publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.0c10092 – volume: 2 start-page: 1 year: 2017 ident: B114 article-title: Interfacial water reorganization as a pH-dependent descriptor of the hydrogen evolution rate on platinum electrodes. publication-title: Nat. Energ. doi: 10.1038/nenergy.2017.31 – volume: 10 start-page: 2260 year: 2020 ident: B178 article-title: Machine learning for catalysis informatics: recent applications and prospects. publication-title: ACS Catal. doi: 10.1021/acscatal.9b04186 – volume: 110 start-page: 6961 year: 2010 ident: B191 article-title: Thermochemistry of proton-coupled electron transfer reagents and its implications. publication-title: Chem. Rev. doi: 10.1021/cr100085k – volume: 10 start-page: 8597 year: 2020 ident: B201 article-title: Advances in thermodynamic-kinetic model for analyzing the oxygen evolution reaction. publication-title: ACS Catal. doi: 10.1021/acscatal.0c01906 – volume: 150 year: 2019 ident: B85 article-title: Grand canonical simulations of electrochemical interfaces in implicit solvation models. publication-title: J. Chem. Phys. doi: 10.1063/1.5054580 – volume: 34 start-page: 12259 year: 2018 ident: B185 article-title: Quantifying confidence in DFT-predicted surface pourbaix diagrams of transition-metal electrode–electrolyte interfaces. publication-title: Langmuir doi: 10.1021/acs.langmuir.8b02219 – volume: 32 start-page: 353 year: 2017 ident: B24 article-title: Highly active and stable single iron site confined in graphene nanosheets for oxygen reduction reaction. publication-title: Nano Energ. doi: 10.1016/j.nanoen.2016.12.056 – volume: 30 ident: B42 article-title: Recent progress in the development of screening methods to identify electrode materials for the oxygen evolution reaction. publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202005060 – volume: 122 start-page: 5432 year: 2018 ident: B98 article-title: Water adsorption on clean and defective anatase Tio2 (001) nanotube surfaces: a surface science approach. publication-title: J. Phys. Chem. B doi: 10.1039/C9CP06584A – volume: 8 year: 2020 ident: B177 article-title: Finite heterogeneous rate constants for the electrochemical oxidation of Vo2+ at glassy carbon electrodes. publication-title: Front. Energ. Res. doi: 10.3389/fenrg.2020.00155 – volume: 167 year: 2019 ident: B209 article-title: Modeling electrocatalytic oxidation of formic acid at platinum. publication-title: J. Electrochem. Soc. doi: 10.1149/2.0152001JES – volume: 6 start-page: 2136 year: 2016 ident: B184 article-title: Tuning the catalytic activity and selectivity of Cu for CO2 electroreduction in the presence of halides. publication-title: ACS Catal. doi: 10.1021/acscatal.5b02550 – volume: 4 start-page: 3742 year: 2014 ident: B205 article-title: Competition between CO2 reduction and H2 evolution on transition-metal electrocatalysts. publication-title: ACS Catal. doi: 10.1021/cs5012298 – volume: 10 start-page: 11177 year: 2020 ident: B62 article-title: Why do we use the materials and operating conditions we use for heterogeneous (Photo) electrochemical water splitting? publication-title: ACS Catal. doi: 10.1021/acscatal.0c01862 – volume: 224 start-page: 206 year: 2004 ident: B13 article-title: The Brønsted–Evans–polanyi relation and the volcano curve in heterogeneous catalysis. publication-title: J. Catal. doi: 10.1016/j.jcat.2004.02.034 – volume: 124 start-page: 16951 year: 2020 ident: B202 article-title: Understanding surface charge effects in electrocatalysis. Part I: peroxodisulfate reduction at Pt (111). publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.0c02824 – volume: 26 ident: B45 article-title: Hydrogen electrocatalysis revisited: weak bonding of adsorbed hydrogen as design principle for active electrode materials. publication-title: Curr. Opin. Electrochem. doi: 10.1016/j.coelec.2020.100673 – volume: 7 start-page: 1448 ident: B40 article-title: Overpotential-dependent volcano plots to assess activity trends in the competing chlorine and oxygen evolution reactions. publication-title: ChemElectroChem doi: 10.1002/celc.202000120 – volume: 5 start-page: 799 year: 1993 ident: B101 article-title: COSMO: a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. publication-title: J. Chem. Soc. Perkin Trans. II doi: 10.1039/P29930000799 – volume: 6 start-page: 1 year: 2020 ident: B86 article-title: Electrosorption at metal surfaces from first principles. publication-title: NPJ Comput. Mater. doi: 10.1038/s41524-020-00394-4 – volume: 17 start-page: 339 ident: B104 article-title: Analysis of electrocatalytic reaction schemes: distinction between rate-determining and potential-determining steps. publication-title: J. Solid State Electrochem. doi: 10.1007/s10008-012-1918-x – volume: 10 start-page: 1 year: 2019 ident: B26 article-title: Universal scaling relations for the rational design of molecular water oxidation catalysts with near-zero overpotential. publication-title: Nat. Commun. doi: 10.1038/s41467-019-12994-w – volume: 594 start-page: 1 year: 2006 ident: B56 article-title: A review of the aqueous electrochemical reduction of CO2 to hydrocarbons at copper. publication-title: J. Electroanal. Chem. doi: 10.1016/j.jelechem.2006.05.013 – volume: 44 start-page: 101 year: 2011 ident: B110 article-title: How to conceptualize catalytic cycles? The energetic span model. publication-title: Acc. Chem. Res. doi: 10.1021/ar1000956 – volume: 141 start-page: 13803 year: 2019 ident: B175 article-title: Revealing energetics of surface oxygen redox from kinetic fingerprint in oxygen electrocatalysis. publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b01834 – volume: 39 start-page: 163 year: 1972 ident: B179 article-title: Work function, electronegativity, and electrochemical behaviour of metals: III. Electrolytic hydrogen evolution in acid solutions. publication-title: J. Electroanal. Chem. Interfacial Electrochem. doi: 10.1016/S0022-0728(72)80485-6 – volume: 22 start-page: 22451 ident: B38 article-title: Design criteria for the competing chlorine and oxygen evolution reactions: avoid the OCl adsorbate to enhance chlorine selectivity. publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/D0CP03667F – volume: 24 year: 2020 ident: B176 article-title: Fundamental aspects and recent advances in transition metal nitrides as electrocatalysts for hydrogen evolution reaction: a review. publication-title: Curr. Opin. Solid State Mater. Sci. doi: 10.1016/j.cossms.2020.100805 – volume: 113 start-page: E4585 year: 2016 ident: B194 article-title: Inhibited proton transfer enhances Au-catalyzed CO2-to-fuels selectivity. publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1602984113 – volume: 140 start-page: 10270 year: 2018 ident: B188 article-title: MnOx/IrOx as selective oxygen evolution electrocatalyst in acidic chloride solution. publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b05382 – volume: 113 start-page: 2110 year: 2013 ident: B14 article-title: Jaguar: a high-performance quantum chemistry software program with strengths in life and materials sciences. publication-title: Int. J. Quantum Chem. doi: 10.1002/qua.24481 – volume: 601 start-page: 1590 year: 2007 ident: B65 article-title: Large-scale, density functional theory-based screening of alloys for hydrogen evolution. publication-title: Surf. Sci doi: 10.1016/j.susc.2007.01.037 – volume: 28 start-page: 2256 year: 2016 ident: B200 article-title: A critical review on hydrogen evolution electrocatalysis: re-exploring the volcano-relationship. publication-title: Electroanalysis doi: 10.1002/elan.201600270 – volume: 2 start-page: 795 year: 2012 ident: B109 article-title: A refinement of everyday thinking: the energetic span model for kinetic assessment of catalytic cycles. publication-title: WIRES Comput. Mol. Sci. doi: 10.1002/wcms.1100 – volume: 114 start-page: 32 year: 2003 ident: B127 article-title: Review and analysis of PEM fuel cell design and manufacturing. publication-title: J. Power Sources doi: 10.1016/S0378-7753(02)00542-6 – volume: 16 start-page: 13583 year: 2014 ident: B147 article-title: Electrocatalysis on gold. publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C4CP00394B – volume: 10 start-page: 4401 ident: B7 article-title: Convolutional neural network of atomic surface structures to predict binding energies for high-throughput screening of catalysts. publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.9b01428 – volume: 22 start-page: 6797 year: 2020 ident: B143 article-title: Designing water splitting catalysts using rules of thumb: advantages, dangers and alternatives. publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/D0CP00896F – volume: 34 start-page: 171 year: 1989 ident: B134 article-title: Diffusion to fractal surfaces? II. Verification of theory. publication-title: Electrochim. Acta doi: 10.1016/0013-4686(89)87082-3 – volume: 88 start-page: 43 year: 2018 ident: B123 article-title: Peroxodisulfate reduction as a probe to interfacial charge. publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2018.01.012 – volume: 4 start-page: 732 year: 2019 ident: B12 article-title: Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels. publication-title: Nat. Energ. doi: 10.1038/s41560-019-0450-y – volume: 10 start-page: 12666 year: 2020 ident: B163 article-title: The catalytic mechanics of dynamic surfaces: stimulating methods for promoting catalytic resonance. publication-title: ACS Catal. doi: 10.1021/acscatal.0c03336 – volume: 334 start-page: 1383 ident: B172 article-title: A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. publication-title: Science doi: 10.1126/science.1212858 – volume: 6 start-page: 3108 year: 2019 ident: B192 article-title: Enhancing the selectivity between oxygen and chlorine towards chlorine during the anodic chlorine evolution reaction on a dimensionally stable anode. publication-title: ChemElectroChem doi: 10.1002/celc.201900784 – volume: 10 start-page: 7037 year: 2019 ident: B204 article-title: Potential-dependent volcano plot for oxygen reduction: mathematical origin and implications for catalyst design. publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.9b02436 – volume: 26 start-page: 16 year: 1960 ident: B149 article-title: Interaction of formic acid vapour with tungsten. publication-title: Z. Phys. Chem. doi: 10.1524/zpch.1960.26.1_2.016 – volume: 6 year: 2016 ident: B116 article-title: Recent advances in breaking scaling relations for effective electrochemical conversion of CO2. publication-title: Adv. Energ. Mater. doi: 10.1021/jp077210j – volume: 8 year: 2020 ident: B60 article-title: Sulfate, bisulfate, and hydrogen co-adsorption on Pt (111) and Au (111) in an electrochemical environment. publication-title: Front. Chem. doi: 10.3389/fchem.2020.00634 – volume: 86 start-page: 245 year: 2014 ident: B67 article-title: Defining the transfer coefficient in electrochemistry: an assessment (Iupac Technical Report). publication-title: Pure Appl. Chem. doi: 10.1515/pac-2014-5026 – volume: 4 start-page: 809 year: 2019 ident: B74 article-title: Theory-guided materials design: two-dimensional mxenes in electro-and photocatalysis. publication-title: Nanoscale Horiz. doi: 10.1039/C9NH00100J – volume: 11 start-page: 1 year: 2020 ident: B146 article-title: Double layer charging driven carbon dioxide adsorption limits the rate of electrochemical carbon dioxide reduction on gold. publication-title: Nat. Commun. doi: 10.1038/s41467-019-13777-z – volume: 375 ident: B46 article-title: Why approximating electrocatalytic activity by a single free-energy change is insufficient. publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2021.137975 – volume: 120 start-page: 29135 year: 2016 ident: B76 article-title: pH in grand canonical statistics of an electrochemical interface. publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.6b09019 – volume: 4 start-page: 2952 year: 2019 ident: B135 article-title: Computational screening of current collectors for enabling anode-free lithium metal batteries. publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.9b02306 – volume: 140 start-page: 347 year: 2009 ident: B189 article-title: Intrinsic kinetic equation for oxygen reduction reaction in acidic media: the double tafel slope and fuel cell applications. publication-title: Faraday Disc. doi: 10.1039/B802218F – volume: 6 start-page: 6754 year: 2015 ident: B19 article-title: Linear scaling relationships and volcano plots in homogeneous catalysis–revisiting the suzuki reaction. publication-title: Chem. Sci. doi: 10.1039/C5SC02910D – volume: 3 start-page: 251 year: 2012 ident: B142 article-title: Activity descriptors for CO2 electroreduction to methane on transition-metal catalysts. publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz201461p – volume: 6 start-page: 4953 year: 2016 ident: B174 article-title: Mechanism of hydrogen evolution reaction on 1T-MoS2 from first principles. publication-title: ACS Catal. doi: 10.1021/acscatal.6b01211 – volume: 11 start-page: 5961 year: 2019 ident: B165 article-title: Switching of kinetically relevant reactants for the aqueous cathodic process determined by mass-transport coupled with protolysis. publication-title: ChemCatChem doi: 10.1002/cctc.201901459 – volume: 6 start-page: 1 year: 2015 ident: B162 article-title: Correlating hydrogen oxidation and evolution activity on platinum at different pH with measured hydrogen binding energy. publication-title: Nat. Commun. doi: 10.1038/ncomms6848 – volume: 123 start-page: 16921 ident: B33 article-title: Beyond the traditional volcano concept: overpotential-dependent volcano plots exemplified by the chlorine evolution reaction over transition-metal oxides. publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.9b05364 – volume: 29 start-page: 126 year: 2016 ident: B17 article-title: Beyond the top of the volcano?–A unified approach to electrocatalytic oxygen reduction and oxygen evolution. publication-title: Nano Energ. doi: 10.1016/j.nanoen.2016.04.011 – volume: 7 start-page: 387 year: 2016 ident: B97 article-title: Evidence for decoupled electron and proton transfer in the electrochemical oxidation of ammonia on Pt (100). publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.5b02556 – volume: 22 start-page: 19401 year: 2020 ident: B154 article-title: Advances and challenges for experiment and theory for multi-electron multi-proton transfer at electrified solid–liquid interfaces. publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/D0CP02741C – volume: 8 start-page: 11966 year: 2018 ident: B94 article-title: Sabatier principle for interfacial (Heterogeneous) enzyme catalysis. publication-title: ACS Catal. doi: 10.1021/acscatal.8b03547 – volume: 140 start-page: 2012 year: 2018 ident: B78 article-title: Selective electrocatalytic reduction of nitrite to dinitrogen based on decoupled proton–electron transfer. publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b12774 – volume: 108 start-page: 17886 year: 2004 ident: B131 article-title: Origin of the overpotential for oxygen reduction at a fuel-cell cathode. publication-title: J. Phys. Chem. B doi: 10.1021/jp047349j – volume: 6 start-page: 178 year: 1956 ident: B57 article-title: Über die Katalytische Zersetzung Von Wasserstoffsuperoxyd an metallischem platin. publication-title: Z. Phys. Chem. doi: 10.1524/zpch.1956.6.3_4.178 – volume: 9 start-page: 7651 ident: B6 article-title: Toward a design of active oxygen evolution catalysts: insights from automated density functional theory calculations and machine learning. publication-title: ACS Catal. doi: 10.1021/acscatal.9b02416 – volume: 7 start-page: 3931 year: 2016 ident: B181 article-title: Automated discovery and construction of surface phase diagrams using machine learning. publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.6b01254 – volume: 151 year: 2019 ident: B124 article-title: Implicit self-consistent electrolyte model in plane-wave density-functional theory. publication-title: J. Chem. Phys. doi: 10.1063/1.5132354 – volume: 4 start-page: 1685 year: 2014 ident: B59 article-title: Oxygen reduction reaction at Pt single crystals: a critical overview. publication-title: Catal. Sci. Technol. doi: 10.1039/C3CY01049J – year: 1913 ident: B153 publication-title: La Catalyse en Chimie Organique, Encyclopédie de Science Chimique Appliquée. – volume: 12 start-page: 3001 year: 2019 ident: B145 article-title: Understanding cation effects in electrochemical CO2 reduction. publication-title: Energ. Environ. Sci. doi: 10.1039/C9EE01341E – volume: 42 start-page: 1881 year: 2009 ident: B72 article-title: Theory of proton-coupled electron transfer in energy conversion processes. publication-title: Acc. Chem. Res. doi: 10.1021/ar9001284 – volume: 84 start-page: 3 year: 2012 ident: B20 article-title: First-principles computational electrochemistry: achievements and challenges. publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2012.04.062 – volume: 11 start-page: 1 year: 2020 ident: B77 article-title: Dopants fixation of ruthenium for boosting acidic oxygen evolution stability and activity. publication-title: Nat. Commun. doi: 10.1038/s41467-020-19212-y – volume: 353 start-page: 1011 year: 2016 ident: B160 article-title: A highly active and stable IrOx/SrIrO3 catalyst for the oxygen evolution reaction. publication-title: Science doi: 10.1126/science.aaf5050 – volume: 37 start-page: 136 year: 2017 ident: B173 article-title: Electrocatalytic oxygen evolution reaction for energy conversion and storage: a comprehensive review. publication-title: Nano Energ. doi: 10.1016/j.nanoen.2017.05.022 – volume: 660 start-page: 254 ident: B103 article-title: Thermodynamic theory of multi-electron transfer reactions: implications for electrocatalysis. publication-title: J. Electroanal. Chem. doi: 10.1016/j.jelechem.2010.10.004 – volume: 152 year: 2020 ident: B81 article-title: Solvation at metal/water interfaces: an Ab initio molecular dynamics benchmark of common computational approaches. publication-title: J. Chem. Phys. doi: 10.1063/1.5144912 – volume: 9 start-page: 6755 year: 2019 ident: B49 article-title: Beyond the rate-determining step in the oxygen evolution reaction over a single-crystalline IrO2 (110) model electrode: kinetic scaling relations. publication-title: ACS Catal. doi: 10.1021/acscatal.9b01564 – volume: 8 start-page: 9034 year: 2018 ident: B170 article-title: Quantifying confidence in DFT predicted surface pourbaix diagrams and associated reaction pathways for chlorine evolution. publication-title: ACS Catal. doi: 10.1021/acscatal.8b01432 – volume: 152 year: 2005 ident: B129 article-title: Trends in the exchange current for hydrogen evolution. publication-title: J. Electrochem. Soc. doi: 10.1149/1.1856988 – volume: 142 start-page: 20855 year: 2020 ident: B190 article-title: Interfacial field-driven proton-coupled electron transfer at graphite-conjugated organic acids. publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c10632 – volume: 8 start-page: 3041 year: 2018 ident: B148 article-title: Effect of pH on the activity of platinum group metal-free catalysts in oxygen reduction reaction. publication-title: ACS Catal. doi: 10.1021/acscatal.7b03991 – volume: 8 start-page: 458 year: 2017 ident: B61 article-title: Proton-coupled electron transfer in the electrocatalysis of CO2 reduction: prediction of Sequential Vs. Concerted pathways using DFT. publication-title: Chem. Sci. doi: 10.1039/C6SC02984A – volume: 10 start-page: 121 year: 2020 ident: B118 article-title: A challenge to the G ∼0 interpretation of hydrogen evolution. publication-title: ACS Catal. doi: 10.1021/acscatal.9b02799 – volume: 15 start-page: 1399 ident: B106 article-title: Theory of the transition from sequential to concerted electrochemical proton–electron transfer. publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c2cp42369c – volume: 10 start-page: 3722 year: 2008 ident: B75 article-title: Surface pourbaix diagrams and oxygen reduction activity of Pt, Ag and Ni (111) surfaces studied by DFT. publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/B803956A – volume: 9 start-page: 6929 year: 2019 ident: B3 article-title: Principles of dynamic heterogeneous catalysis: surface resonance and turnover frequency response. publication-title: ACS Catal. doi: 10.1021/acscatal.9b01606 – volume: 116 start-page: 2982 year: 2016 ident: B95 article-title: Selectivity between oxygen and chlorine evolution in the chlor-alkali and chlorate processes. publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.5b00389 – year: 2010 ident: B158 publication-title: Interfacial Electrochemistry. doi: 10.1007/978-3-642-04937-8 – volume: 98 start-page: 1663 year: 1994 ident: B93 article-title: Can one electrochemically measure the statistical morphology of a rough electrode? publication-title: J. Phys. Chem. doi: 10.1021/j100057a020 – volume: 55 start-page: 7501 year: 2016 ident: B48 article-title: Full kinetics from first principles of the chlorine evolution reaction over a RuO2 (110) model electrode. publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201511804 – volume: 2 start-page: 4551 year: 2019 ident: B69 article-title: Sequential cascade electrocatalytic conversion of carbon dioxide to C–C coupled products. publication-title: ACS Appl. Energ. Mater. doi: 10.1021/acsaem.9b00791 – volume: 9 start-page: 5320 ident: B35 article-title: Is thermodynamics a good descriptor for the activity? Re-investigation of Sabatier’s principle by the free energy diagram in electrocatalysis. publication-title: ACS Catal. doi: 10.1021/acscatal.9b00732 – volume: 38 start-page: 4901 year: 2013 ident: B22 article-title: A comprehensive review on PEM water electrolysis. publication-title: Int. J. Hyd. Energ. doi: 10.1016/j.ijhydene.2013.01.151 – volume: 3 start-page: 2054 ident: B102 article-title: Structure sensitivity and nanoscale effects in electrocatalysis. publication-title: Nanoscale doi: 10.1039/C0NR00857E – volume: 85 start-page: 2309 year: 1989 ident: B84 article-title: Formation of hydrocarbons in the electrochemical reduction of carbon dioxide at a copper electrode in aqueous solution. publication-title: J. Chem. Soc. doi: 10.1039/F19898502309 – volume: 607 start-page: 47 year: 2013 ident: B21 article-title: Oxygen reduction and evolution at single-metal active sites: comparison between functionalized graphitic materials and protoporphyrins. publication-title: Surf. Sci. doi: 10.1016/j.susc.2012.08.005 – volume: 120 start-page: 13587 ident: B88 article-title: Non-monotonic surface charging behavior of platinum: a paradigm change. publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.6b03930 – volume: 20 start-page: 11776 year: 2018 ident: B90 article-title: Unifying theoretical framework for deciphering the oxygen reduction reaction on platinum. publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C8CP01315B – volume: 9 start-page: 588 year: 2018 ident: B111 article-title: Maximal predictability approach for identifying the right descriptors for electrocatalytic reactions. publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.7b02895 – volume: 364 start-page: 471 year: 2019 ident: B136 article-title: Concerted proton-electron transfer reactions in the marcus inverted region. publication-title: Science doi: 10.1126/science.aaw4675 – volume: 22 start-page: 10431 year: 2020 ident: B155 article-title: Water structures on a Pt (111) electrode from Ab initio molecular dynamic simulations for a variety of electrochemical conditions. publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C9CP06584A – volume: 124 start-page: 822 ident: B37 article-title: Comparison of the conventional volcano analysis with a unifying approach: material screening based on a combination of experiment and theory. publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.9b10860 – volume: 61 start-page: 23 year: 2015 ident: B122 article-title: Avoid the quasi-equilibrium assumption when evaluating the electrocatalytic oxygen evolution reaction mechanism by tafel slope analysis. publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2015.09.019 – volume: 127 start-page: 5308 year: 2005 ident: B82 article-title: Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0504690 – volume: 5 year: 2018 ident: B203 article-title: Progress and perspective of electrocatalytic CO2 reduction for renewable carbonaceous fuels and chemicals. publication-title: Adv. Sci. doi: 10.1002/advs.201700275 – volume: 111 start-page: 18821 ident: B150 article-title: Comparing electrochemical and biological water splitting. publication-title: J. Phys. Chem. C doi: 10.1021/jp077210j – volume: 1 start-page: 1494 year: 2019 ident: B91 article-title: Strategies to break the scaling relation toward enhanced oxygen electrocatalysis. publication-title: Matter doi: 10.1016/j.matt.2019.09.011 – year: 2020 ident: B1 article-title: Atomistic modeling of electrocatalysis: are we there yet? publication-title: WIRES Comput. Mol. Sci. doi: 10.1002/wcms.1499 – volume: 12 start-page: 2330 ident: B36 article-title: Recent advancements towards closing the gap between electrocatalysis and battery science communities: the computational lithium electrode and activity–stability volcano plots. publication-title: ChemSusChem doi: 10.1002/cssc.201900298 – volume: 139 start-page: 12076 year: 2017 ident: B99 article-title: High-performance pyrochlore-type yttrium ruthenate electrocatalyst for oxygen evolution reaction in acidic media. publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b06808 – year: 2020 ident: B66 article-title: Theory of solid/electrolyte interfaces publication-title: Surface and Interface Science: Volume 8: Interfacial Electrochemistry doi: 10.1002/9783527680603.ch56 – volume: 10 ident: B10 article-title: Advances and challenges in modeling solvated reaction mechanisms for renewable fuels and chemicals. publication-title: WIRES Comput. Mol. Sci. doi: 10.1002/wcms.1446 – volume: 54 start-page: 1053 year: 1958 ident: B139 article-title: The rate of electrolytic hydrogen evolution and the heat of adsorption of hydrogen. publication-title: Trans. Faraday Soc. doi: 10.1039/TF9585401053 – volume: 10 start-page: 1586 year: 2018 ident: B193 article-title: On the generality of molecular volcano plots. publication-title: ChemCatChem doi: 10.1002/cctc.201701709 – volume: 64 start-page: 123 year: 1991 ident: B128 article-title: Product selectivity affected by cationic species in electrochemical reduction of CO2 and CO at a Cu electrode. publication-title: Bull. Chem. Soc. Jpn. doi: 10.1246/bcsj.64.123 – volume: 6 start-page: 1594 year: 2020 ident: B58 article-title: Nonequilibrium dynamics of proton-coupled electron transfer in proton wires: concerted but asynchronous mechanisms. publication-title: ACS Cent. Sci. doi: 10.1021/acscentsci.0c00756 – volume: 29 start-page: 791 year: 2004 ident: B87 article-title: Oxygen evolution reaction on IrO2-based DSA type electrodes: kinetics analysis of tafel lines and EIS. publication-title: Int. J. Hyd. Energ. doi: 10.1016/j.ijhydene.2003.09.007 – volume: 2 start-page: 1654 year: 2012 ident: B187 article-title: Universality in oxygen reduction electrocatalysis on metal surfaces. publication-title: ACS Catal. doi: 10.1021/cs300227s – volume: 3 start-page: 546 ident: B171 article-title: Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal–air batteries. publication-title: Nat. Chem. doi: 10.1038/nchem.1069 – volume: 10 start-page: 6706 year: 2019 ident: B133 article-title: Shift of the optimum binding energy at higher rates of catalysis. publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.9b01796 – volume: 122 start-page: 12771 year: 2018 ident: B96 article-title: Controlled-potential simulation of elementary electrochemical reactions: proton discharge on metal surfaces. publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.8b02465 – volume: 16 start-page: 925 year: 2017 ident: B51 article-title: Dynamic surface self-reconstruction is the key of highly active perovskite nano-electrocatalysts for water splitting. publication-title: Nat. Mater. doi: 10.1038/nmat4938 – volume: 8 start-page: 2243 year: 2017 ident: B80 article-title: Importance of solvation for the accurate prediction of oxygen reduction activities of pt-based electrocatalysts. publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.7b01018 – volume: 1 start-page: 37 year: 2009 ident: B130 article-title: Towards the computational design of solid catalysts. publication-title: Nat. Chem. doi: 10.1038/nchem.121 – volume: 10 start-page: 1 year: 2019 ident: B144 article-title: Na-doped ruthenium perovskite electrocatalysts with improved oxygen evolution activity and durability in acidic media. publication-title: Nat. Commun. doi: 10.1038/s41467-019-09791-w – volume: 49 start-page: 2196 year: 2020 ident: B168 article-title: A review on fundamentals for designing oxygen evolution electrocatalysts. publication-title: Chem. Soc. Rev. doi: 10.1039/C9CS00607A – volume: 89 start-page: 1595 year: 2012 ident: B113 article-title: Electrochemical hydrogen evolution: Sabatier’s principle and the volcano plot. publication-title: J. Chem. Educ. doi: 10.1021/ed200818t – volume: 2 year: 2016 ident: B206 article-title: Universal dependence of hydrogen oxidation and evolution reaction activity of platinum-group metals on pH and hydrogen binding energy. publication-title: Sci. Adv. doi: 10.1021/jacs.0c01104 – volume: 139 start-page: 11000 year: 2017 ident: B140 article-title: Identifying and breaking scaling relations in molecular catalysis of electrochemical reactions. publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b05642 – volume: 157 year: 2010 ident: B161 article-title: Hydrogen oxidation and evolution reaction kinetics on platinum: acid Vs Alkaline electrolytes. publication-title: J. Electrochem. Soc. doi: 10.1149/1.3483106 – volume: 16 start-page: 13682 year: 2014 ident: B71 article-title: Beyond the volcano limitations in electrocatalysis–oxygen evolution reaction. publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C4CP00571F – volume: 30 year: 2018 ident: B169 article-title: Assembling ultrasmall copper-doped ruthenium oxide nanocrystals into hollow porous polyhedra: highly robust electrocatalysts for oxygen evolution in acidic media. publication-title: Adv. Mater. doi: 10.1002/adma.201801351 – volume: 7 start-page: 6600 year: 2017 ident: B182 article-title: Machine-learning methods enable exhaustive searches for active bimetallic facets and reveal active site motifs for CO2 reduction. publication-title: ACS Catal. doi: 10.1021/acscatal.7b01648 – volume: 6 start-page: 4073 ident: B108 article-title: Catalysts and reaction pathways for the electrochemical reduction of carbon dioxide. publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.5b01559 – volume: 112 start-page: 1308 year: 2008 ident: B25 article-title: Brønsted- evans- polanyi relation of multistep reactions and volcano curve in heterogeneous catalysis. publication-title: J. Phys. Chem. C doi: 10.1021/jp711191j – volume: 5 start-page: 2326 year: 2018 ident: B197 article-title: Influence of alkali metal cations on the hydrogen evolution reaction activity of Pt, Ir, Au, and Ag electrodes in alkaline electrolytes. publication-title: ChemElectroChem doi: 10.1002/celc.201800690 – volume: 10 start-page: 9165 year: 2019 ident: B29 article-title: The hydrogen evolution reaction: from material to interfacial descriptors. publication-title: Chem. Sci. doi: 10.1039/C9SC03831K – volume: 37 start-page: 5850 year: 2012 ident: B137 article-title: A review of gas diffusion layer in PEM fuel cells: materials and designs. publication-title: Int. J. Hyd. Energ. doi: 10.1016/j.ijhydene.2011.12.148 – volume: 117 start-page: 31631 year: 2020 ident: B79 article-title: Atomic-scale evidence for highly selective electrocatalytic N- N coupling on metallic MoS2. publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.2008429117 – volume: 6 start-page: 271 year: 2019 ident: B92 article-title: Pt-Sputtered Ti mesh electrode for polymer electrolyte membrane fuel cells. publication-title: Int. J. Precis doi: 10.1007/s40684-019-00077-6 – volume: 22 start-page: 25833 year: 2020 ident: B18 article-title: Method for the accurate prediction of electron transfer potentials using an effective absolute potential. publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/D0CP04508J – volume: 16 start-page: 633 ident: B9 article-title: Machine learning-guided approach for studying solvation environments. publication-title: J. Chem. Theory Comput. doi: 10.1021/acs.jctc.9b00605 – volume: 2 start-page: 7991 ident: B34 article-title: Design criteria for oxygen evolution electrocatalysts from first principles: introduction of a unifying material-screening approach. publication-title: ACS Appl. Energ. Mater. doi: 10.1021/acsaem.9b01480 – volume: 319 start-page: 178 year: 2005 ident: B151 article-title: Electrolysis of water on (Oxidized) metal surfaces. publication-title: Chem. Phys. doi: 10.1016/j.chemphys.2005.05.038 – volume: 218 start-page: 162 year: 2013 ident: B23 article-title: Nobel prize in chemistry 1912 to sabatier: organic chemistry or catalysis? publication-title: Catal. Tod. doi: 10.1016/j.cattod.2013.07.006 – volume: 8 start-page: 1864 year: 2018 ident: B50 article-title: A universal approach to determine the free energy diagram of an electrocatalytic reaction. publication-title: ACS Catal. doi: 10.1021/acscatal.7b03142 – volume: 312 start-page: 82 year: 2018 ident: B2 article-title: Using brønsted-evans-polanyi relations to predict electrode potential-dependent activation energies. publication-title: Catal. Tod. doi: 10.1016/j.cattod.2018.03.048 – volume: 8 start-page: 110 year: 2018 ident: B63 article-title: Does the breaking of adsorption-energy scaling relations guarantee enhanced electrocatalysis? publication-title: Curr. Opin. Electrochem. doi: 10.1016/j.coelec.2018.03.025 – volume: 121 start-page: 18516 year: 2017 ident: B28 article-title: A theoretical investigation into the role of surface defects for oxygen evolution on RuO2. publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.7b03481 – volume: 5 start-page: 909 year: 2006 ident: B64 article-title: Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. publication-title: Nat. Mater. doi: 10.1038/nmat1752 – volume: 9 start-page: 1261 year: 2017 ident: B15 article-title: A new type of scaling relations to assess the accuracy of computational predictions of catalytic activities applied to the oxygen evolution reaction. publication-title: ChemCatChem doi: 10.1002/cctc.201601662 – volume: 607 start-page: 83 ident: B152 article-title: Electrolysis of water on oxide surfaces. publication-title: J. Electroanal. Chem. doi: 10.1016/j.jelechem.2006.11.008 – volume: 193 start-page: 427 ident: B89 article-title: Theory of electrostatic phenomena in water-filled Pt nanopores. publication-title: Faraday Disc. doi: 10.1039/C6FD00094K – volume: 4 start-page: 4364 year: 2014 ident: B52 article-title: Tafel kinetics of electrocatalytic reactions: from experiment to first-principles. publication-title: ACS Catal. doi: 10.1021/cs501312v |
SSID | ssj0001325410 |
Score | 2.6004043 |
SecondaryResourceType | review_article |
Snippet | The Sabatier principle, which states that the binding energy between the catalyst and the reactant should be neither too strong nor too weak, has been widely... |
SourceID | doaj crossref |
SourceType | Open Website Enrichment Source Index Database |
SubjectTerms | electrocatalysis kinetics Sabatier principle theory thermodynamics |
Title | The Sabatier Principle in Electrocatalysis: Basics, Limitations, and Extensions |
URI | https://doaj.org/article/9d21bfa191bf4174870420e7e33e3067 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6kJz2IT6wv9uBJGptskn14s9JSBB-ghd7CvkYEiVIr-POd3aSlXvTiMckm7H6zZOebnf2GkDMplMNnIoHciSSUs0gkGJH41BnNuSx1POF9e8fHk-JmWk5XSn2FnLBGHrgBrq8cywxopBUGCnSfcX4VLPXC57kP7m74--Kat0KmYnQlR-KTtduYyMJUH9Acz8gHWXbBS-RA6Y-FaEWvPy4soy2y2XqE9KrpyTZZ8_UO2VjRCdwl92hM-qhN0ECd0YdFfJy-1HTYlLGJUZggLnJJBxqB_-jReHSpicf1qK4dHX7FbHW83iOT0fDpepy0lRASi4OdJ5lVvvBMOgMlS7lnOHz0tTLwOXOWew8CtBLepYo5JGimFFY75TnXYDJr833Sqd9qf0CoAuAZNwDK8kKYXFolpZHSIVGyUkKXpAtYKtt2M1SreK2QLgQkq4hkFZCsGiS75Hz5ynujkfFb40HAetkwyFvHG2j0qjV69ZfRD__jI0dkPfQrZi8Wx6Qzn336E_Qw5uY0TqZvvDbN7A |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Sabatier+Principle+in+Electrocatalysis%3A+Basics%2C+Limitations%2C+and+Extensions&rft.jtitle=Frontiers+in+energy+research&rft.au=Hideshi+Ooka&rft.au=Jun+Huang&rft.au=Kai+S.+Exner&rft.au=Kai+S.+Exner&rft.date=2021-05-04&rft.pub=Frontiers+Media+S.A&rft.eissn=2296-598X&rft.volume=9&rft_id=info:doi/10.3389%2Ffenrg.2021.654460&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_9d21bfa191bf4174870420e7e33e3067 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2296-598X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2296-598X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2296-598X&client=summon |