The pharmacodynamic modulation effect of oxytocin on resting state functional connectivity network topology
Neuroimaging studies have demonstrated that intranasal oxytocin has extensive effects on the resting state functional connectivity of social and emotional processing networks and may have therapeutic potential. However, the extent to which intranasal oxytocin modulates functional connectivity networ...
Saved in:
Published in | Frontiers in pharmacology Vol. 15; p. 1460513 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Media S.A
06.01.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 1663-9812 1663-9812 |
DOI | 10.3389/fphar.2024.1460513 |
Cover
Loading…
Abstract | Neuroimaging studies have demonstrated that intranasal oxytocin has extensive effects on the resting state functional connectivity of social and emotional processing networks and may have therapeutic potential. However, the extent to which intranasal oxytocin modulates functional connectivity network topology remains less explored, with inconsistent findings in the existing literature. To address this gap, we conducted an exploratory data-driven study.
We recruited 142 healthy males and administered 24 IU of intranasal oxytocin or placebo in a randomized controlled double-blind design. Resting-state functional MRI data were acquired for each subject. Network-based statistical analysis and graph theoretical approaches were employed to evaluate oxytocin's effects on whole-brain functional connectivity and graph topological measures.
Our results revealed that oxytocin altered connectivity patterns within brain networks involved in sensory and motor processing, attention, memory, emotion and reward functions as well as social cognition, including the default mode, limbic, frontoparietal, cerebellar, and visual networks. Furthermore, oxytocin increased local efficiency, clustering coefficients, and small-world propensity in specific brain regions including the cerebellum, left thalamus, posterior cingulate cortex, right orbitofrontal cortex, right superior frontal gyrus, left inferior frontal gyrus, and right middle orbitofrontal cortex, while decreasing nodal path topological measures in the left and right caudate.
These findings suggest that intranasal oxytocin may produce its functional effects through influencing the integration and segregation of information flow within small-world brain networks, particularly in regions closely associated with social cognition and motivation. |
---|---|
AbstractList | Neuroimaging studies have demonstrated that intranasal oxytocin has extensive effects on the resting state functional connectivity of social and emotional processing networks and may have therapeutic potential. However, the extent to which intranasal oxytocin modulates functional connectivity network topology remains less explored, with inconsistent findings in the existing literature. To address this gap, we conducted an exploratory data-driven study.
We recruited 142 healthy males and administered 24 IU of intranasal oxytocin or placebo in a randomized controlled double-blind design. Resting-state functional MRI data were acquired for each subject. Network-based statistical analysis and graph theoretical approaches were employed to evaluate oxytocin's effects on whole-brain functional connectivity and graph topological measures.
Our results revealed that oxytocin altered connectivity patterns within brain networks involved in sensory and motor processing, attention, memory, emotion and reward functions as well as social cognition, including the default mode, limbic, frontoparietal, cerebellar, and visual networks. Furthermore, oxytocin increased local efficiency, clustering coefficients, and small-world propensity in specific brain regions including the cerebellum, left thalamus, posterior cingulate cortex, right orbitofrontal cortex, right superior frontal gyrus, left inferior frontal gyrus, and right middle orbitofrontal cortex, while decreasing nodal path topological measures in the left and right caudate.
These findings suggest that intranasal oxytocin may produce its functional effects through influencing the integration and segregation of information flow within small-world brain networks, particularly in regions closely associated with social cognition and motivation. IntroductionNeuroimaging studies have demonstrated that intranasal oxytocin has extensive effects on the resting state functional connectivity of social and emotional processing networks and may have therapeutic potential. However, the extent to which intranasal oxytocin modulates functional connectivity network topology remains less explored, with inconsistent findings in the existing literature. To address this gap, we conducted an exploratory data-driven study.MethodsWe recruited 142 healthy males and administered 24 IU of intranasal oxytocin or placebo in a randomized controlled double-blind design. Resting-state functional MRI data were acquired for each subject. Network-based statistical analysis and graph theoretical approaches were employed to evaluate oxytocin’s effects on whole-brain functional connectivity and graph topological measures.ResultsOur results revealed that oxytocin altered connectivity patterns within brain networks involved in sensory and motor processing, attention, memory, emotion and reward functions as well as social cognition, including the default mode, limbic, frontoparietal, cerebellar, and visual networks. Furthermore, oxytocin increased local efficiency, clustering coefficients, and small-world propensity in specific brain regions including the cerebellum, left thalamus, posterior cingulate cortex, right orbitofrontal cortex, right superior frontal gyrus, left inferior frontal gyrus, and right middle orbitofrontal cortex, while decreasing nodal path topological measures in the left and right caudate.DiscussionThese findings suggest that intranasal oxytocin may produce its functional effects through influencing the integration and segregation of information flow within small-world brain networks, particularly in regions closely associated with social cognition and motivation. Neuroimaging studies have demonstrated that intranasal oxytocin has extensive effects on the resting state functional connectivity of social and emotional processing networks and may have therapeutic potential. However, the extent to which intranasal oxytocin modulates functional connectivity network topology remains less explored, with inconsistent findings in the existing literature. To address this gap, we conducted an exploratory data-driven study.IntroductionNeuroimaging studies have demonstrated that intranasal oxytocin has extensive effects on the resting state functional connectivity of social and emotional processing networks and may have therapeutic potential. However, the extent to which intranasal oxytocin modulates functional connectivity network topology remains less explored, with inconsistent findings in the existing literature. To address this gap, we conducted an exploratory data-driven study.We recruited 142 healthy males and administered 24 IU of intranasal oxytocin or placebo in a randomized controlled double-blind design. Resting-state functional MRI data were acquired for each subject. Network-based statistical analysis and graph theoretical approaches were employed to evaluate oxytocin's effects on whole-brain functional connectivity and graph topological measures.MethodsWe recruited 142 healthy males and administered 24 IU of intranasal oxytocin or placebo in a randomized controlled double-blind design. Resting-state functional MRI data were acquired for each subject. Network-based statistical analysis and graph theoretical approaches were employed to evaluate oxytocin's effects on whole-brain functional connectivity and graph topological measures.Our results revealed that oxytocin altered connectivity patterns within brain networks involved in sensory and motor processing, attention, memory, emotion and reward functions as well as social cognition, including the default mode, limbic, frontoparietal, cerebellar, and visual networks. Furthermore, oxytocin increased local efficiency, clustering coefficients, and small-world propensity in specific brain regions including the cerebellum, left thalamus, posterior cingulate cortex, right orbitofrontal cortex, right superior frontal gyrus, left inferior frontal gyrus, and right middle orbitofrontal cortex, while decreasing nodal path topological measures in the left and right caudate.ResultsOur results revealed that oxytocin altered connectivity patterns within brain networks involved in sensory and motor processing, attention, memory, emotion and reward functions as well as social cognition, including the default mode, limbic, frontoparietal, cerebellar, and visual networks. Furthermore, oxytocin increased local efficiency, clustering coefficients, and small-world propensity in specific brain regions including the cerebellum, left thalamus, posterior cingulate cortex, right orbitofrontal cortex, right superior frontal gyrus, left inferior frontal gyrus, and right middle orbitofrontal cortex, while decreasing nodal path topological measures in the left and right caudate.These findings suggest that intranasal oxytocin may produce its functional effects through influencing the integration and segregation of information flow within small-world brain networks, particularly in regions closely associated with social cognition and motivation.DiscussionThese findings suggest that intranasal oxytocin may produce its functional effects through influencing the integration and segregation of information flow within small-world brain networks, particularly in regions closely associated with social cognition and motivation. |
Author | Xu, Lei Kendrick, Keith M. Klugah-Brown, Benjamin Jiang, Xi Hagan, Abraham Tonny Li, Jialin |
AuthorAffiliation | MOE Key Laboratory for Neuroinformation , The Clinical Hospital of Chengdu Brain Science Institute , University of Electronic Science and Technology of China , Chengdu , China |
AuthorAffiliation_xml | – name: MOE Key Laboratory for Neuroinformation , The Clinical Hospital of Chengdu Brain Science Institute , University of Electronic Science and Technology of China , Chengdu , China |
Author_xml | – sequence: 1 givenname: Abraham Tonny surname: Hagan fullname: Hagan, Abraham Tonny – sequence: 2 givenname: Lei surname: Xu fullname: Xu, Lei – sequence: 3 givenname: Benjamin surname: Klugah-Brown fullname: Klugah-Brown, Benjamin – sequence: 4 givenname: Jialin surname: Li fullname: Li, Jialin – sequence: 5 givenname: Xi surname: Jiang fullname: Jiang, Xi – sequence: 6 givenname: Keith M. surname: Kendrick fullname: Kendrick, Keith M. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39834799$$D View this record in MEDLINE/PubMed |
BookMark | eNpVkk1v3CAQhq0qVfPR_IEeKo697BYYsM2pqqK2iRSpl_SMxhh2SWzYYpzW_75sdhslCAk0PHpGGt7z6iTEYKvqA6NrgFZ9drstpjWnXKyZqKlk8KY6Y3UNK9UyfvLiflpdTtM9LQuUglq8q05BtSAapc6qh7utJXvViCb2S8DRGzLGfh4w-xiIdc6aTKIj8e-So_GBlGqyU_ZhQ6aM2RI3B7OHcSAmhlB4_-jzQoLNf2J6IDnu4hA3y_vqrcNhspfH86L69f3b3dX16vbnj5urr7crIzjNK8awYwbKrkFJJ0zPwVEhewGiR25axFY5RmXXAGeMqZ62tWq6RvLGcgC4qG4O3j7ivd4lP2JadESvnwoxbTSm7M1gdSfbrsyl5kCt4IZhadaiQ4tNYwFVcX05uHZzN9re2JATDq-kr1-C3-pNfNSMNQIk7A2fjoYUf89lcHr0k7HDgMHGedLAZCNlzWhd0I8vmz13-f9dBeAHwKQ4Tcm6Z4RRvY-FfoqF3sdCH2MB_wBqI63w |
Cites_doi | 10.2147/NDT.S63470 10.1016/j.physrep.2005.10.009 10.1002/cne.24942 10.1089/brain.2012.0073 10.1111/j.1749-6632.2010.05947.x 10.1155/2012/412512 10.1371/journal.pone.0068910 10.1089/brain.2017.0528 10.1017/S0033291720003803 10.1007/978-3-031-24105-5_3 10.1177/1971400917697342 10.1016/j.neuroimage.2009.12.051 10.7554/eLife.31373 10.1016/j.physbeh.2014.11.018 10.1152/physrev.2001.81.2.629 10.3389/fncom.2011.00005 10.1038/s41467-023-41744-2 10.1016/j.eurpsy.2015.02.010 10.1016/j.neuroimage.2018.09.067 10.1038/s41398-021-01241-w 10.2215/CJN.09590911 10.1016/j.neuroimage.2009.10.003 10.1016/j.neuroimage.2020.117668 10.1016/j.nicl.2017.08.008 10.1038/nrn2575 10.1007/s00702-016-1510-0 10.1371/journal.pone.0013701 10.1016/j.neuroimage.2013.04.013 10.1159/000524543 10.1073/pnas.1203593109 10.1016/j.neuroimage.2017.01.078 10.1371/journal.pone.0001049 10.1089/brain.2011.0038 10.1016/j.neuropsychologia.2007.11.030 10.1097/WCO.0b013e32832d93dd 10.1016/j.mri.2012.01.003 10.1038/s42003-020-01610-z 10.1016/j.neuroimage.2021.118503 10.1371/journal.pcbi.0020095 10.1038/npp.2015.278 10.1007/s12311-021-01246-7 10.1016/j.neuroscience.2021.01.018 10.1007/s11682-019-00205-5 10.1016/j.paid.2011.07.005 10.1038/s41398-020-00885-4 10.1093/psyrad/kkad005 10.1023/A:1005653411471 10.1007/s12311-020-01155-1 10.1016/j.neuroimage.2022.118893 10.1017/S1461145712000533 10.1038/nrn.2016.22 10.1038/nrn3155 10.1016/j.neuroimage.2007.04.042 10.1016/j.bspc.2016.08.013 10.1177/1073858416667720 10.1177/1073858406293182 10.1038/s41380-024-02406-x 10.1038/s41598-023-29754-y 10.1073/pnas.1705521114 10.1038/s42003-023-05673-6 10.1016/j.bpsc.2019.01.008 10.1080/01616412.2019.1709141 10.1038/s41380-020-00864-7 10.1038/npp.2014.53 10.1016/j.psyneuen.2012.11.019 10.1016/j.jneumeth.2015.02.021 10.1038/s41467-019-08503-8 10.1002/hbm.20623 10.1093/psyrad/kkab003 10.1093/schbul/sbac066 10.1016/j.jneumeth.2018.07.001 10.1038/s41380-022-01924-w 10.1016/j.neubiorev.2020.02.032 10.1016/S0140-6736(20)30260-9 10.1007/s00406-019-00989-z 10.1111/jnp.12015 10.1093/scan/nsac016 10.1093/cercor/bhy295 10.1016/j.neuroimage.2009.12.027 10.1073/pnas.1314190110 10.1111/j.1749-6632.2010.05888.x 10.1037/0022-3514.54.6.1063 10.1016/j.neuroimage.2019.116326 10.1016/j.neubiorev.2018.09.011 10.1016/j.neures.2004.06.015 10.1016/j.psyneuen.2024.107067 10.1007/978-3-030-88832-9_133 10.1007/7854_2017_19 |
ContentType | Journal Article |
Copyright | Copyright © 2025 Hagan, Xu, Klugah-Brown, Li, Jiang and Kendrick. Copyright © 2025 Hagan, Xu, Klugah-Brown, Li, Jiang and Kendrick. 2025 Hagan, Xu, Klugah-Brown, Li, Jiang and Kendrick |
Copyright_xml | – notice: Copyright © 2025 Hagan, Xu, Klugah-Brown, Li, Jiang and Kendrick. – notice: Copyright © 2025 Hagan, Xu, Klugah-Brown, Li, Jiang and Kendrick. 2025 Hagan, Xu, Klugah-Brown, Li, Jiang and Kendrick |
DBID | AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.3389/fphar.2024.1460513 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Pharmacy, Therapeutics, & Pharmacology |
DocumentTitleAlternate | Hagan et al |
EISSN | 1663-9812 |
ExternalDocumentID | oai_doaj_org_article_b58b0036230e42c1acd28afaea77e3a9 PMC11743539 39834799 10_3389_fphar_2024_1460513 |
Genre | Journal Article |
GroupedDBID | 53G 5VS 9T4 AAFWJ AAKDD AAYXX ACGFO ACGFS ACXDI ADBBV ADRAZ AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV CITATION DIK EMOBN GROUPED_DOAJ GX1 HYE KQ8 M48 M~E O5R O5S OK1 P2P PGMZT RNS RPM IAO IEA IHR IHW IPNFZ NPM RIG 7X8 5PM |
ID | FETCH-LOGICAL-c420t-11ab1c31c36395f4cd23f045d434da2c8aa89f105b7321119d08697b7527e2333 |
IEDL.DBID | DOA |
ISSN | 1663-9812 |
IngestDate | Wed Aug 27 01:27:48 EDT 2025 Thu Aug 21 18:40:16 EDT 2025 Fri Jul 11 14:26:56 EDT 2025 Thu Jan 30 12:30:00 EST 2025 Tue Jul 01 01:11:48 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | small-worldness oxytocin resting state fMRI graph theory pharmacodynamics |
Language | English |
License | Copyright © 2025 Hagan, Xu, Klugah-Brown, Li, Jiang and Kendrick. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c420t-11ab1c31c36395f4cd23f045d434da2c8aa89f105b7321119d08697b7527e2333 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Edited by: Song Zhang, Shanghai Jiao Tong University, China Reviewed by: Wenhan Yang, Central South University, China Yikang Liu, United Imaging Intelligence, United States |
OpenAccessLink | https://doaj.org/article/b58b0036230e42c1acd28afaea77e3a9 |
PMID | 39834799 |
PQID | 3157556106 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_b58b0036230e42c1acd28afaea77e3a9 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11743539 proquest_miscellaneous_3157556106 pubmed_primary_39834799 crossref_primary_10_3389_fphar_2024_1460513 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-01-06 |
PublicationDateYYYYMMDD | 2025-01-06 |
PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-06 day: 06 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | Frontiers in pharmacology |
PublicationTitleAlternate | Front Pharmacol |
PublicationYear | 2025 |
Publisher | Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media S.A |
References | Coenjaerts (B18) 2023; 13 Schmidt (B65) 2020; 10 Sæther (B63) 2023; 28 Van den Heuvel (B77) 2012; 109 Chao (B16) 2021; 20 Xin (B90) 2021; 31 Whitfield-Gabrieli (B85) 2012; 2 Van Overwalle (B79); 206 Canario (B13) 2021; 1 Hayasaka (B29) 2010; 50 Bassett (B6) 2009; 22 Hordacre (B30) 2018 Kaut (B34) 2020; 42 Procyshyn (B55) 2022; 17 Zalesky (B93) 2010; 50 Boccaletti (B10) 2006; 424 Behzadi (B9) 2007; 37 Kumar (B42) 2020; 270 Yao (B91) 2017; 6 Zheng (B96) 2021; 459 Wasserman (B83) 2023 Frijling (B26) 2016; 41 Schultz (B66) 2016; 123 Sporns (B73) 2007; 2 Loutit (B46) 2021; 529 Poppy (B54) 2014 Beck (B8) 1996 Kou (B39) 2022; 52 Chao (B15) 2023; 14 Lee (B45) 2023 Brodmann (B11) 2017; 7 Patriat (B52) 2013; 78 Wang (B82) 2009; 30 Parker (B50) 2017; 114 Yin (B92) 2017; 31 Kovács (B40) 2015; 30 Bassett (B7) 2017; 23 Le (B44) 2022; 91 Lang (B43) 2012; 2012 Sporns (B72); 5 Jiang (B32) 2023; 3 Feng (B24) 2012; 30 Martins (B48) 2021; 4 Koch (B36) 2016; 17 Audunsdottir (B3) 2024; 167 Quintana (B56) 2021; 26 Seeley (B67) 2018; 95 Sripada (B74) 2013; 16 Jiang (B31) 2021; 227 Van Overwalle (B78); 19 Guastella (B28) 2013; 38 Santander (B62) 2017 Bullmore (B12) 2009; 10 Pickering (B53) 2012; 7 Kaiser (B33) 2006; 2 Wu (B88); 395 Rubinov (B60) 2010; 52 Alaerts (B1) 2019; 4 Wu (B87); 14 Xia (B89) 2013; 8 Davies (B20) 2024; 29 Snyder (B69) 2022 Zhao (B94); 184 Gimpl (B27) 2001; 81 Saito (B61) 2023; 6 Raimondo (B58) 2021; 243 Cao (B14) 2015; 11 Dodhia (B22) 2014; 39 Takakusaki (B75) 2004; 50 Scheele (B64) 2013; 110 Baron-Cohen (B4) 2001; 31 Dickerson (B21) 2008; 46 Kendrick (B35) 2018; 35 Watson (B84) 1988; 54 Zhao (B95); 184 Bassett (B5) 2006; 12 Kou (B38) 2021; 11 Telesford (B76) 2011; 1 Waller (B81) 2018; 308 Allison (B2) 2011; 51 Smitha (B68) 2017; 30 Sporns (B71); 1224 Eckstein (B23) 2017; 149 Rolls (B59) 2022; 249 Fornito (B25) 2016 Kruschwitz (B41) 2015; 245 Christopher (B17) 2013; 7 Patel (B51) 2015; 139 Quintana (B57) 2019; 10 Van Wijk (B80) 2010; 5 Spielberger (B70) 1983 Ohi (B49) 2017; 16 Marín (B47) 2012; 13 Wig (B86) 2011; 1224 Korann (B37) 2022; 48 Cromwell (B19) 2020; 113 |
References_xml | – volume: 11 start-page: 2801 year: 2015 ident: B14 article-title: Connectomics in psychiatric research: advances and applications publication-title: Neuropsychiatric Dis. Treat. doi: 10.2147/NDT.S63470 – volume: 424 start-page: 175 year: 2006 ident: B10 article-title: Complex networks: structure and dynamics publication-title: Phys. Rep. doi: 10.1016/j.physrep.2005.10.009 – volume: 529 start-page: 187 year: 2021 ident: B46 article-title: Functional organization and connectivity of the dorsal column nuclei complex reveals a sensorimotor integration and distribution hub publication-title: J. Comp. Neurology doi: 10.1002/cne.24942 – volume: 2 start-page: 125 year: 2012 ident: B85 article-title: Conn: a functional connectivity toolbox for correlated and anticorrelated brain networks publication-title: Brain Connect. doi: 10.1089/brain.2012.0073 – volume: 1224 start-page: 126 year: 2011 ident: B86 article-title: Concepts and principles in the analysis of brain networks publication-title: Ann. N. Y. Acad. Sci. doi: 10.1111/j.1749-6632.2010.05947.x – volume: 2012 start-page: 412512 year: 2012 ident: B43 article-title: Brain connectivity analysis: a short survey publication-title: Comput. Intell. Neurosci. doi: 10.1155/2012/412512 – volume: 8 start-page: e68910 year: 2013 ident: B89 article-title: BrainNet Viewer: a network visualization tool for human brain connectomics publication-title: PloS one doi: 10.1371/journal.pone.0068910 – volume: 7 start-page: 454 year: 2017 ident: B11 article-title: Intranasal oxytocin selectively modulates large-scale brain networks in humans publication-title: Brain Connect. doi: 10.1089/brain.2017.0528 – volume: 52 start-page: 1959 year: 2022 ident: B39 article-title: A randomized trial shows dose-frequency and genotype may determine the therapeutic efficacy of intranasal oxytocin publication-title: Psychol. Med. doi: 10.1017/S0033291720003803 – start-page: 35 year: 2023 ident: B83 article-title: The human connectome: an overview publication-title: Aprax. Neural Netw. Model doi: 10.1007/978-3-031-24105-5_3 – volume-title: Beck depression inventory–II (BDI-II) [database record] year: 1996 ident: B8 – volume: 30 start-page: 305 year: 2017 ident: B68 article-title: Resting state fMRI: a review on methods in resting state connectivity analysis and resting state networks publication-title: Neuroradiol. J. doi: 10.1177/1971400917697342 – volume: 50 start-page: 499 year: 2010 ident: B29 article-title: Comparison of characteristics between region-and voxel-based network analyses in resting-state fMRI data publication-title: NeuroImage doi: 10.1016/j.neuroimage.2009.12.051 – volume: 6 start-page: e31373 year: 2017 ident: B91 article-title: Oxytocin signaling in the medial amygdala is required for sex discrimination of social cues publication-title: eLife doi: 10.7554/eLife.31373 – volume: 139 start-page: 254 year: 2015 ident: B51 article-title: Oxytocin and vasopressin modulate risk-taking publication-title: Physiology and Behav. doi: 10.1016/j.physbeh.2014.11.018 – volume: 81 start-page: 629 year: 2001 ident: B27 article-title: The oxytocin receptor system: structure, function, and regulation publication-title: Physiol. Rev. doi: 10.1152/physrev.2001.81.2.629 – volume: 5 start-page: 5 ident: B72 article-title: The non-random brain: efficiency, economy, and complex dynamics publication-title: Front. Comput. Neurosci. doi: 10.3389/fncom.2011.00005 – volume: 14 start-page: 6007 year: 2023 ident: B15 article-title: Social memory deficit caused by dysregulation of the cerebellar vermis publication-title: Nat. Commun. doi: 10.1038/s41467-023-41744-2 – volume: 30 start-page: 542 year: 2015 ident: B40 article-title: Off-label intranasal oxytocin use in adults is associated with increased amygdala-cingulate resting-state connectivity publication-title: Eur. Psychiatry doi: 10.1016/j.eurpsy.2015.02.010 – volume: 184 start-page: 781 ident: B95 article-title: Oxytocin differentially modulates specific dorsal and ventral striatal functional connections with frontal and cerebellar regions publication-title: Neuroimage doi: 10.1016/j.neuroimage.2018.09.067 – volume: 11 start-page: 94 year: 2021 ident: B38 article-title: In the nose or on the tongue? Contrasting motivational effects of oral and intranasal oxytocin on arousal and reward during social processing publication-title: Transl. psychiatry doi: 10.1038/s41398-021-01241-w – volume: 7 start-page: 1355 year: 2012 ident: B53 article-title: New metrics for assessing diagnostic potential of candidate biomarkers publication-title: Clin. J. Am. Soc. Nephrol. doi: 10.2215/CJN.09590911 – volume: 52 start-page: 1059 year: 2010 ident: B60 article-title: Complex network measures of brain connectivity: uses and interpretations publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.10.003 – volume: 227 start-page: 117668 year: 2021 ident: B31 article-title: Intrinsic, dynamic and effective connectivity among large-scale brain networks modulated by oxytocin publication-title: Neuroimage doi: 10.1016/j.neuroimage.2020.117668 – volume: 16 start-page: 248 year: 2017 ident: B49 article-title: Cognitive clustering in schizophrenia patients, their first-degree relatives and healthy subjects is associated with anterior cingulate cortex volume publication-title: NeuroImage Clin. doi: 10.1016/j.nicl.2017.08.008 – volume: 10 start-page: 186 year: 2009 ident: B12 article-title: Complex brain networks: graph theoretical analysis of structural and functional systems publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn2575 – volume: 123 start-page: 679 year: 2016 ident: B66 article-title: Reward functions of the basal ganglia publication-title: J. neural Transm. doi: 10.1007/s00702-016-1510-0 – volume: 5 start-page: e13701 year: 2010 ident: B80 article-title: Comparing brain networks of different size and connectivity density using graph theory publication-title: PloS one doi: 10.1371/journal.pone.0013701 – volume: 78 start-page: 463 year: 2013 ident: B52 article-title: The effect of resting condition on resting-state fMRI reliability and consistency: a comparison between resting with eyes open, closed, and fixated publication-title: NeuroImage doi: 10.1016/j.neuroimage.2013.04.013 – volume: 91 start-page: 335 year: 2022 ident: B44 article-title: Infrequent intranasal oxytocin followed by positive social interaction improves symptoms in autistic children: a pilot randomized clinical trial publication-title: Psychotherapy Psychosomatics doi: 10.1159/000524543 – volume: 109 start-page: 11372 year: 2012 ident: B77 article-title: High-cost, high-capacity backbone for global brain communication publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1203593109 – volume: 149 start-page: 458 year: 2017 ident: B23 article-title: Oxytocin differentially alters resting state functional connectivity between amygdala subregions and emotional control networks: inverse correlation with depressive traits publication-title: Neuroimage doi: 10.1016/j.neuroimage.2017.01.078 – volume: 2 start-page: e1049 year: 2007 ident: B73 article-title: Identification and classification of hubs in brain networks publication-title: PloS one doi: 10.1371/journal.pone.0001049 – volume: 1 start-page: 367 year: 2011 ident: B76 article-title: The ubiquity of small-world networks publication-title: Brain connect. doi: 10.1089/brain.2011.0038 – volume: 46 start-page: 1624 year: 2008 ident: B21 article-title: Functional abnormalities of the medial temporal lobe memory system in mild cognitive impairment and Alzheimer's disease: insights from functional MRI studies publication-title: Neuropsychologia doi: 10.1016/j.neuropsychologia.2007.11.030 – volume: 22 start-page: 340 year: 2009 ident: B6 article-title: Human brain networks in health and disease publication-title: Curr. Opin. neurology doi: 10.1097/WCO.0b013e32832d93dd – volume: 30 start-page: 672 year: 2012 ident: B24 article-title: FMRI connectivity analysis of acupuncture effects on the whole brain network in mild cognitive impairment patients publication-title: Magn. Reson. Imaging doi: 10.1016/j.mri.2012.01.003 – volume: 4 start-page: 68 year: 2021 ident: B48 article-title: Oxytocin modulates local topography of human functional connectome in healthy men at rest publication-title: Commun. Biol. doi: 10.1038/s42003-020-01610-z – volume: 243 start-page: 118503 year: 2021 ident: B58 article-title: Advances in resting state fMRI acquisitions for functional connectomics publication-title: NeuroImage doi: 10.1016/j.neuroimage.2021.118503 – volume: 2 start-page: e95 year: 2006 ident: B33 article-title: Nonoptimal component placement, but short processing paths, due to long-distance projections in neural systems publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.0020095 – volume: 41 start-page: 1286 year: 2016 ident: B26 article-title: Intranasal oxytocin affects amygdala functional connectivity after trauma script-driven imagery in distressed recently trauma-exposed individuals publication-title: Neuropsychopharmacology doi: 10.1038/npp.2015.278 – volume: 20 start-page: 836 year: 2021 ident: B16 article-title: Functional convergence of motor and social processes in lobule IV/V of the mouse cerebellum publication-title: Cerebellum doi: 10.1007/s12311-021-01246-7 – volume-title: Functional Activation and Connectivity under the Influence of oxytocin: an explorative Study using functional magnetic resonance imaging year: 2014 ident: B54 – volume-title: The social (neural) network: Towards a unifying endophenotype between genes and behavior Doctoral dissertation year: 2017 ident: B62 – volume: 459 start-page: 153 year: 2021 ident: B96 article-title: Graph theoretic analysis reveals intranasal oxytocin induced network changes over frontal regions publication-title: Neuroscience doi: 10.1016/j.neuroscience.2021.01.018 – volume: 14 start-page: 2530 ident: B87 article-title: Oxytocin effects on the resting-state mentalizing brain network publication-title: Brain imaging Behav. doi: 10.1007/s11682-019-00205-5 – volume: 51 start-page: 829 year: 2011 ident: B2 article-title: Psychometric analysis of the Empathy quotient (EQ) publication-title: Personality Individ. Differ. doi: 10.1016/j.paid.2011.07.005 – volume: 10 start-page: 203 year: 2020 ident: B65 article-title: Acute oxytocin effects in inferring others’ beliefs and social emotions in people at clinical high risk for psychosis publication-title: Transl. psychiatry doi: 10.1038/s41398-020-00885-4 – volume: 3 start-page: kkad005 year: 2023 ident: B32 article-title: A brain structural connectivity biomarker for autism spectrum disorder diagnosis in early childhood publication-title: Psychoradiology doi: 10.1093/psyrad/kkad005 – volume: 31 start-page: 5 year: 2001 ident: B4 article-title: The autism-spectrum quotient (AQ): evidence from asperger syndrome/high-functioning autism, males and females, scientists and mathematicians publication-title: J. Autism Dev. Disord. doi: 10.1023/A:1005653411471 – volume-title: The study of rhesus monkey’s behavior and neural connectivity in social-hierarchy: experimental modeling and implementation of computational analysis schemes year: 2023 ident: B45 – volume: 19 start-page: 833 ident: B78 article-title: Consensus paper: cerebellum and social cognition publication-title: Cerebellum doi: 10.1007/s12311-020-01155-1 – volume: 249 start-page: 118893 year: 2022 ident: B59 article-title: Risk-taking in humans and the medial orbitofrontal cortex reward system publication-title: NeuroImage doi: 10.1016/j.neuroimage.2022.118893 – volume: 16 start-page: 255 year: 2013 ident: B74 article-title: Oxytocin enhances resting-state connectivity between amygdala and medial frontal cortex publication-title: Int. J. Neuropsychopharmacol. doi: 10.1017/S1461145712000533 – volume: 17 start-page: 307 year: 2016 ident: B36 article-title: Neural correlates of consciousness: progress and problems publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn.2016.22 – volume: 13 start-page: 107 year: 2012 ident: B47 article-title: Interneuron dysfunction in psychiatric disorders publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn3155 – volume: 37 start-page: 90 year: 2007 ident: B9 article-title: A component based noise correction method (CompCor) for BOLD and perfusion based fMRI publication-title: Neuroimage doi: 10.1016/j.neuroimage.2007.04.042 – volume: 31 start-page: 331 year: 2017 ident: B92 article-title: Functional brain network analysis of schizophrenic patients with positive and negative syndrome based on mutual information of EEG time series publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2016.08.013 – volume: 23 start-page: 499 year: 2017 ident: B7 article-title: Small-world brain networks revisited publication-title: Neurosci. doi: 10.1177/1073858416667720 – volume-title: Fundamentals of brain network analysis year: 2016 ident: B25 – volume: 12 start-page: 512 year: 2006 ident: B5 article-title: Small-world brain networks publication-title: Neurosci. a Rev. J. bringing Neurobiol. neurology psychiatry doi: 10.1177/1073858406293182 – volume: 29 start-page: 1241 year: 2024 ident: B20 article-title: Connectome dysfunction in patients at clinical high risk for psychosis and modulation by oxytocin publication-title: Mol. psychiatry doi: 10.1038/s41380-024-02406-x – volume: 13 start-page: 3113 year: 2023 ident: B18 article-title: Effects of exogenous oxytocin and estradiol on resting-state functional connectivity in women and men publication-title: Sci. Rep. doi: 10.1038/s41598-023-29754-y – volume: 114 start-page: 8119 year: 2017 ident: B50 article-title: Intranasal oxytocin treatment for social deficits and biomarkers of response in children with autism publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1705521114 – volume: 6 start-page: 1291 year: 2023 ident: B61 article-title: Cerebellar vermis joins the brain’s social network publication-title: Commun. Biol. doi: 10.1038/s42003-023-05673-6 – volume: 4 start-page: 655 year: 2019 ident: B1 article-title: Amygdala–hippocampal connectivity is associated with endogenous levels of oxytocin and can be altered by exogenously administered oxytocin in adults with autism publication-title: Biol. Psychiatry Cognitive Neurosci. Neuroimaging doi: 10.1016/j.bpsc.2019.01.008 – volume: 42 start-page: 62 year: 2020 ident: B34 article-title: Resting-state fMRI reveals increased functional connectivity in the cerebellum but decreased functional connectivity of the caudate nucleus in Parkinson’s disease publication-title: Neurological Res. doi: 10.1080/01616412.2019.1709141 – volume: 26 start-page: 80 year: 2021 ident: B56 article-title: Advances in the field of intranasal oxytocin research: lessons learned and future directions for clinical research publication-title: Mol. Psychiatry doi: 10.1038/s41380-020-00864-7 – volume: 39 start-page: 2061 year: 2014 ident: B22 article-title: Modulation of resting-state amygdala-frontal functional connectivity by oxytocin in generalized social anxiety disorder publication-title: Neuropsychopharmacology doi: 10.1038/npp.2014.53 – volume: 38 start-page: 612 year: 2013 ident: B28 article-title: Recommendations for the standardisation of oxytocin nasal administration and guidelines for its reporting in human research publication-title: Psychoneuroendocrinology doi: 10.1016/j.psyneuen.2012.11.019 – volume: 245 start-page: 107 year: 2015 ident: B41 article-title: GraphVar: a user-friendly toolbox for comprehensive graph analyses of functional brain connectivity publication-title: J. Neurosci. methods doi: 10.1016/j.jneumeth.2015.02.021 – volume: 10 start-page: 668 year: 2019 ident: B57 article-title: Oxytocin pathway gene networks in the human brain publication-title: Nat. Commun. doi: 10.1038/s41467-019-08503-8 – volume: 30 start-page: 1511 year: 2009 ident: B82 article-title: Parcellation-dependent small-world brain functional networks: a resting-state fMRI study publication-title: Hum. brain Mapp. doi: 10.1002/hbm.20623 – volume: 1 start-page: 42 year: 2021 ident: B13 article-title: A review of resting-state fMRI and its use to examine psychiatric disorders publication-title: Psychoradiology doi: 10.1093/psyrad/kkab003 – volume: 48 start-page: 1115 year: 2022 ident: B37 article-title: Effect of intranasal oxytocin on resting-state effective connectivity in schizophrenia publication-title: Schizophr. Bull. doi: 10.1093/schbul/sbac066 – volume: 308 start-page: 21 year: 2018 ident: B81 article-title: GraphVar 2.0: a user-friendly toolbox for machine learning on functional connectivity measures publication-title: J. Neurosci. methods doi: 10.1016/j.jneumeth.2018.07.001 – volume: 28 start-page: 1284 year: 2023 ident: B63 article-title: Inflammation and cognition in severe mental illness: patterns of covariation and subgroups publication-title: Mol. Psychiatry doi: 10.1038/s41380-022-01924-w – volume: 113 start-page: 204 year: 2020 ident: B19 article-title: Mapping the interconnected neural systems underlying motivation and emotion: a key step toward understanding the human affectome publication-title: Neurosci. and Biobehav. Rev. doi: 10.1016/j.neubiorev.2020.02.032 – volume: 395 start-page: 689 ident: B88 article-title: Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: a modelling study publication-title: Lancet doi: 10.1016/S0140-6736(20)30260-9 – start-page: 29 year: 2018 ident: B30 article-title: Motor control: structure and function of the nervous system publication-title: Neurol. Physiother. Pocketb. – volume: 270 start-page: 567 year: 2020 ident: B42 article-title: Oxytocin modulates the effective connectivity between the precuneus and the dorsolateral prefrontal cortex publication-title: Eur. archives psychiatry Clin. Neurosci. doi: 10.1007/s00406-019-00989-z – volume: 7 start-page: 225 year: 2013 ident: B17 article-title: Neuroimaging of brain changes associated with cognitive impairment in Parkinson's disease publication-title: J. Neuropsychology doi: 10.1111/jnp.12015 – volume: 17 start-page: 929 year: 2022 ident: B55 article-title: Oxytocin enhances basolateral amygdala activation and functional connectivity while processing emotional faces: preliminary findings in autistic vs non-autistic women publication-title: Soc. cognitive Affect. Neurosci. doi: 10.1093/scan/nsac016 – volume: 31 start-page: 1848 year: 2021 ident: B90 article-title: Oxytocin modulates the intrinsic dynamics between attention-related large-scale networks publication-title: Cereb. Cortex doi: 10.1093/cercor/bhy295 – volume: 50 start-page: 970 year: 2010 ident: B93 article-title: Whole-brain anatomical networks: does the choice of nodes matter? publication-title: NeuroImage doi: 10.1016/j.neuroimage.2009.12.027 – volume: 184 start-page: 781 ident: B94 article-title: Oxytocin differentially modulates specific dorsal and ventral striatal functional connections with frontal and cerebellar regions publication-title: Neuroimage doi: 10.1016/j.neuroimage.2018.09.067 – volume: 110 start-page: 20308 year: 2013 ident: B64 article-title: Oxytocin enhances brain reward system responses in men viewing the face of their female partner publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1314190110 – volume: 1224 start-page: 109 ident: B71 article-title: The human connectome: a complex network publication-title: Ann. N. Y. Acad. Sci. doi: 10.1111/j.1749-6632.2010.05888.x – volume: 54 start-page: 1063 year: 1988 ident: B84 article-title: Development and validation of brief measures of positive and negative affect: the PANAS scales publication-title: J. Personality Soc. Psychol. doi: 10.1037/0022-3514.54.6.1063 – volume-title: State-Trait Anxiety Inventory for Adults (STAI-AD) [Database record] year: 1983 ident: B70 – volume: 206 start-page: 116326 ident: B79 article-title: Connectivity between the cerebrum and cerebellum during social and non-social sequencing using dynamic causal modelling publication-title: NeuroImage doi: 10.1016/j.neuroimage.2019.116326 – volume: 95 start-page: 17 year: 2018 ident: B67 article-title: Intranasal oxytocin and OXTR genotype effects on resting state functional connectivity: a systematic review publication-title: Neurosci. Biobehav. Rev. doi: 10.1016/j.neubiorev.2018.09.011 – volume: 50 start-page: 137 year: 2004 ident: B75 article-title: Role of basal ganglia–brainstem pathways in the control of motor behaviors publication-title: Neurosci. Res. doi: 10.1016/j.neures.2004.06.015 – volume: 167 start-page: 107067 year: 2024 ident: B3 article-title: The effects of oxytocin administration on social and routinized behaviors in autism: a preregistered systematic review and meta-analysis publication-title: Psychoneuroendocrinology doi: 10.1016/j.psyneuen.2024.107067 – start-page: 1939 year: 2022 ident: B69 article-title: Intrinsic brain activity and resting state networks publication-title: Neurosci. 21st century basic Clin. doi: 10.1007/978-3-030-88832-9_133 – volume: 35 start-page: 321 year: 2018 ident: B35 article-title: Overview of human oxytocin research publication-title: Behav. Pharmacol. Neuropeptides Oxytocin doi: 10.1007/7854_2017_19 |
SSID | ssj0000399364 |
Score | 2.3745594 |
Snippet | Neuroimaging studies have demonstrated that intranasal oxytocin has extensive effects on the resting state functional connectivity of social and emotional... IntroductionNeuroimaging studies have demonstrated that intranasal oxytocin has extensive effects on the resting state functional connectivity of social and... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | 1460513 |
SubjectTerms | graph theory oxytocin pharmacodynamics Pharmacology resting state fMRI small-worldness |
SummonAdditionalLinks | – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEB6VcuGCyju8tEioF2rIPpy1DwgBoqqQinpopN5W-6QVYKeJK9X_nhmv0xJUbki-eB3LK38ez_c5O_MBvPZB6qC1L1Co6UJhBBXWIyAWuevUlgkpOVUjH36bHczV15PyZAvWdkfjDVzdKO3IT2q-_Pn28rz_gAH_nhQn5tt3aXFqqbWnUBT3-JTJW3AbM5OmQD0c6f7wZqZsPFO5duYfp27kp6GN_03c8-8llH_kpP0duDuSSfYxo38PtmJzH3aPcjfqfo8dXxdXrfbYLju67lPdP4AfeJgtxqGQnenZrzaMhl4sL_VgbWLtZd8hiA3DUfLywHTHhkokRmkxf01knpbM-GxGwZq8upx12YOhfwjz_S_Hnw-K0Xuh8EpMu4Jz67iXuCGFKZPyQciE9C8oqYIVvrK2qhOSM6clakheB9RGtXa6FDoKKeUj2G7aJj4B5lTiUfiYMF8qlOPO1ZV2gcuAe6g4J_BmfcfNIrfYMChNCB8z4GMIHzPiM4FPBMrVL6k99jDQLr-bMdqMKys3dNqR06iE5xanX9lko9U6SltP4NUaUoPhRP-R2Ca2FysjOfJX4pSzCTzOEF9dStYV1d3i2dUG-Btz2TzSnJ0OLbs5Cb9S1k__x-yfwR1BLsT0IWj2HLa75UV8gdSocy-H5_03ugERyg priority: 102 providerName: Scholars Portal |
Title | The pharmacodynamic modulation effect of oxytocin on resting state functional connectivity network topology |
URI | https://www.ncbi.nlm.nih.gov/pubmed/39834799 https://www.proquest.com/docview/3157556106 https://pubmed.ncbi.nlm.nih.gov/PMC11743539 https://doaj.org/article/b58b0036230e42c1acd28afaea77e3a9 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS-wwFA7iyo3c63OuDyKIGy1OHp20SxVFBMWFgruQJ4rYDlrB-feek1SduQhuhDLQdIaGfKc935c5D0J2nRfKK-UKEGqqkPAEFcYBIAa469CUESg5ZiNfXo3Ob-XFXXk31eoLY8JyeeC8cIe2rGwqmiKGQXLHjPO8MtEEo1QQJqXugc-bElPpHYx-dyRzlgyosPowju8N1v_kEl8OYIpixhOlgv3fscz_gyWnvM_ZH7LY00Z6lKf7l8yFZonsXee605MDevOVRvVyQPfo9VdF6skyeYTLdNwP-dyDnj61vm_dRXNQB20jbd8mHcDVUBjFrh3g2GjKOaLoAPO-IXUYHONy2wna5Dhy2uVuC5MVcnt2enNyXvRdFgon-bArGDOWOQEHkJUySlhfEYHoeSmkN9xVxlR1BBpmlQC1yGoPKqhWVpVcBS6EWCXzTduEdUKtjCxwFyJ4RgnC29q6UtYz4eEMtOWA7H-suB7nYhoaRAjioxM-GvHRPT4DcoygfH4TC2GnATAP3ZuH_sk8BmTnA1INDw7-G2Ka0L6-aMGAqSJ7HA3IWob481airjDDFn5dzYA_M5fZK83DfSrOzVDilaL-9xuz3yALHPsN45bPaJPMd8-vYQtIUGe3k73D56Ws3gGhzAp3 |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+pharmacodynamic+modulation+effect+of+oxytocin+on+resting+state+functional+connectivity+network+topology&rft.jtitle=Frontiers+in+pharmacology&rft.au=Abraham+Tonny+Hagan&rft.au=Lei+Xu&rft.au=Benjamin+Klugah-Brown&rft.au=Jialin+Li&rft.date=2025-01-06&rft.pub=Frontiers+Media+S.A&rft.eissn=1663-9812&rft.volume=15&rft_id=info:doi/10.3389%2Ffphar.2024.1460513&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_b58b0036230e42c1acd28afaea77e3a9 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1663-9812&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1663-9812&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1663-9812&client=summon |