The pharmacodynamic modulation effect of oxytocin on resting state functional connectivity network topology

Neuroimaging studies have demonstrated that intranasal oxytocin has extensive effects on the resting state functional connectivity of social and emotional processing networks and may have therapeutic potential. However, the extent to which intranasal oxytocin modulates functional connectivity networ...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in pharmacology Vol. 15; p. 1460513
Main Authors Hagan, Abraham Tonny, Xu, Lei, Klugah-Brown, Benjamin, Li, Jialin, Jiang, Xi, Kendrick, Keith M.
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Media S.A 06.01.2025
Subjects
Online AccessGet full text
ISSN1663-9812
1663-9812
DOI10.3389/fphar.2024.1460513

Cover

Loading…
Abstract Neuroimaging studies have demonstrated that intranasal oxytocin has extensive effects on the resting state functional connectivity of social and emotional processing networks and may have therapeutic potential. However, the extent to which intranasal oxytocin modulates functional connectivity network topology remains less explored, with inconsistent findings in the existing literature. To address this gap, we conducted an exploratory data-driven study. We recruited 142 healthy males and administered 24 IU of intranasal oxytocin or placebo in a randomized controlled double-blind design. Resting-state functional MRI data were acquired for each subject. Network-based statistical analysis and graph theoretical approaches were employed to evaluate oxytocin's effects on whole-brain functional connectivity and graph topological measures. Our results revealed that oxytocin altered connectivity patterns within brain networks involved in sensory and motor processing, attention, memory, emotion and reward functions as well as social cognition, including the default mode, limbic, frontoparietal, cerebellar, and visual networks. Furthermore, oxytocin increased local efficiency, clustering coefficients, and small-world propensity in specific brain regions including the cerebellum, left thalamus, posterior cingulate cortex, right orbitofrontal cortex, right superior frontal gyrus, left inferior frontal gyrus, and right middle orbitofrontal cortex, while decreasing nodal path topological measures in the left and right caudate. These findings suggest that intranasal oxytocin may produce its functional effects through influencing the integration and segregation of information flow within small-world brain networks, particularly in regions closely associated with social cognition and motivation.
AbstractList Neuroimaging studies have demonstrated that intranasal oxytocin has extensive effects on the resting state functional connectivity of social and emotional processing networks and may have therapeutic potential. However, the extent to which intranasal oxytocin modulates functional connectivity network topology remains less explored, with inconsistent findings in the existing literature. To address this gap, we conducted an exploratory data-driven study. We recruited 142 healthy males and administered 24 IU of intranasal oxytocin or placebo in a randomized controlled double-blind design. Resting-state functional MRI data were acquired for each subject. Network-based statistical analysis and graph theoretical approaches were employed to evaluate oxytocin's effects on whole-brain functional connectivity and graph topological measures. Our results revealed that oxytocin altered connectivity patterns within brain networks involved in sensory and motor processing, attention, memory, emotion and reward functions as well as social cognition, including the default mode, limbic, frontoparietal, cerebellar, and visual networks. Furthermore, oxytocin increased local efficiency, clustering coefficients, and small-world propensity in specific brain regions including the cerebellum, left thalamus, posterior cingulate cortex, right orbitofrontal cortex, right superior frontal gyrus, left inferior frontal gyrus, and right middle orbitofrontal cortex, while decreasing nodal path topological measures in the left and right caudate. These findings suggest that intranasal oxytocin may produce its functional effects through influencing the integration and segregation of information flow within small-world brain networks, particularly in regions closely associated with social cognition and motivation.
IntroductionNeuroimaging studies have demonstrated that intranasal oxytocin has extensive effects on the resting state functional connectivity of social and emotional processing networks and may have therapeutic potential. However, the extent to which intranasal oxytocin modulates functional connectivity network topology remains less explored, with inconsistent findings in the existing literature. To address this gap, we conducted an exploratory data-driven study.MethodsWe recruited 142 healthy males and administered 24 IU of intranasal oxytocin or placebo in a randomized controlled double-blind design. Resting-state functional MRI data were acquired for each subject. Network-based statistical analysis and graph theoretical approaches were employed to evaluate oxytocin’s effects on whole-brain functional connectivity and graph topological measures.ResultsOur results revealed that oxytocin altered connectivity patterns within brain networks involved in sensory and motor processing, attention, memory, emotion and reward functions as well as social cognition, including the default mode, limbic, frontoparietal, cerebellar, and visual networks. Furthermore, oxytocin increased local efficiency, clustering coefficients, and small-world propensity in specific brain regions including the cerebellum, left thalamus, posterior cingulate cortex, right orbitofrontal cortex, right superior frontal gyrus, left inferior frontal gyrus, and right middle orbitofrontal cortex, while decreasing nodal path topological measures in the left and right caudate.DiscussionThese findings suggest that intranasal oxytocin may produce its functional effects through influencing the integration and segregation of information flow within small-world brain networks, particularly in regions closely associated with social cognition and motivation.
Neuroimaging studies have demonstrated that intranasal oxytocin has extensive effects on the resting state functional connectivity of social and emotional processing networks and may have therapeutic potential. However, the extent to which intranasal oxytocin modulates functional connectivity network topology remains less explored, with inconsistent findings in the existing literature. To address this gap, we conducted an exploratory data-driven study.IntroductionNeuroimaging studies have demonstrated that intranasal oxytocin has extensive effects on the resting state functional connectivity of social and emotional processing networks and may have therapeutic potential. However, the extent to which intranasal oxytocin modulates functional connectivity network topology remains less explored, with inconsistent findings in the existing literature. To address this gap, we conducted an exploratory data-driven study.We recruited 142 healthy males and administered 24 IU of intranasal oxytocin or placebo in a randomized controlled double-blind design. Resting-state functional MRI data were acquired for each subject. Network-based statistical analysis and graph theoretical approaches were employed to evaluate oxytocin's effects on whole-brain functional connectivity and graph topological measures.MethodsWe recruited 142 healthy males and administered 24 IU of intranasal oxytocin or placebo in a randomized controlled double-blind design. Resting-state functional MRI data were acquired for each subject. Network-based statistical analysis and graph theoretical approaches were employed to evaluate oxytocin's effects on whole-brain functional connectivity and graph topological measures.Our results revealed that oxytocin altered connectivity patterns within brain networks involved in sensory and motor processing, attention, memory, emotion and reward functions as well as social cognition, including the default mode, limbic, frontoparietal, cerebellar, and visual networks. Furthermore, oxytocin increased local efficiency, clustering coefficients, and small-world propensity in specific brain regions including the cerebellum, left thalamus, posterior cingulate cortex, right orbitofrontal cortex, right superior frontal gyrus, left inferior frontal gyrus, and right middle orbitofrontal cortex, while decreasing nodal path topological measures in the left and right caudate.ResultsOur results revealed that oxytocin altered connectivity patterns within brain networks involved in sensory and motor processing, attention, memory, emotion and reward functions as well as social cognition, including the default mode, limbic, frontoparietal, cerebellar, and visual networks. Furthermore, oxytocin increased local efficiency, clustering coefficients, and small-world propensity in specific brain regions including the cerebellum, left thalamus, posterior cingulate cortex, right orbitofrontal cortex, right superior frontal gyrus, left inferior frontal gyrus, and right middle orbitofrontal cortex, while decreasing nodal path topological measures in the left and right caudate.These findings suggest that intranasal oxytocin may produce its functional effects through influencing the integration and segregation of information flow within small-world brain networks, particularly in regions closely associated with social cognition and motivation.DiscussionThese findings suggest that intranasal oxytocin may produce its functional effects through influencing the integration and segregation of information flow within small-world brain networks, particularly in regions closely associated with social cognition and motivation.
Author Xu, Lei
Kendrick, Keith M.
Klugah-Brown, Benjamin
Jiang, Xi
Hagan, Abraham Tonny
Li, Jialin
AuthorAffiliation MOE Key Laboratory for Neuroinformation , The Clinical Hospital of Chengdu Brain Science Institute , University of Electronic Science and Technology of China , Chengdu , China
AuthorAffiliation_xml – name: MOE Key Laboratory for Neuroinformation , The Clinical Hospital of Chengdu Brain Science Institute , University of Electronic Science and Technology of China , Chengdu , China
Author_xml – sequence: 1
  givenname: Abraham Tonny
  surname: Hagan
  fullname: Hagan, Abraham Tonny
– sequence: 2
  givenname: Lei
  surname: Xu
  fullname: Xu, Lei
– sequence: 3
  givenname: Benjamin
  surname: Klugah-Brown
  fullname: Klugah-Brown, Benjamin
– sequence: 4
  givenname: Jialin
  surname: Li
  fullname: Li, Jialin
– sequence: 5
  givenname: Xi
  surname: Jiang
  fullname: Jiang, Xi
– sequence: 6
  givenname: Keith M.
  surname: Kendrick
  fullname: Kendrick, Keith M.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39834799$$D View this record in MEDLINE/PubMed
BookMark eNpVkk1v3CAQhq0qVfPR_IEeKo697BYYsM2pqqK2iRSpl_SMxhh2SWzYYpzW_75sdhslCAk0PHpGGt7z6iTEYKvqA6NrgFZ9drstpjWnXKyZqKlk8KY6Y3UNK9UyfvLiflpdTtM9LQuUglq8q05BtSAapc6qh7utJXvViCb2S8DRGzLGfh4w-xiIdc6aTKIj8e-So_GBlGqyU_ZhQ6aM2RI3B7OHcSAmhlB4_-jzQoLNf2J6IDnu4hA3y_vqrcNhspfH86L69f3b3dX16vbnj5urr7crIzjNK8awYwbKrkFJJ0zPwVEhewGiR25axFY5RmXXAGeMqZ62tWq6RvLGcgC4qG4O3j7ivd4lP2JadESvnwoxbTSm7M1gdSfbrsyl5kCt4IZhadaiQ4tNYwFVcX05uHZzN9re2JATDq-kr1-C3-pNfNSMNQIk7A2fjoYUf89lcHr0k7HDgMHGedLAZCNlzWhd0I8vmz13-f9dBeAHwKQ4Tcm6Z4RRvY-FfoqF3sdCH2MB_wBqI63w
Cites_doi 10.2147/NDT.S63470
10.1016/j.physrep.2005.10.009
10.1002/cne.24942
10.1089/brain.2012.0073
10.1111/j.1749-6632.2010.05947.x
10.1155/2012/412512
10.1371/journal.pone.0068910
10.1089/brain.2017.0528
10.1017/S0033291720003803
10.1007/978-3-031-24105-5_3
10.1177/1971400917697342
10.1016/j.neuroimage.2009.12.051
10.7554/eLife.31373
10.1016/j.physbeh.2014.11.018
10.1152/physrev.2001.81.2.629
10.3389/fncom.2011.00005
10.1038/s41467-023-41744-2
10.1016/j.eurpsy.2015.02.010
10.1016/j.neuroimage.2018.09.067
10.1038/s41398-021-01241-w
10.2215/CJN.09590911
10.1016/j.neuroimage.2009.10.003
10.1016/j.neuroimage.2020.117668
10.1016/j.nicl.2017.08.008
10.1038/nrn2575
10.1007/s00702-016-1510-0
10.1371/journal.pone.0013701
10.1016/j.neuroimage.2013.04.013
10.1159/000524543
10.1073/pnas.1203593109
10.1016/j.neuroimage.2017.01.078
10.1371/journal.pone.0001049
10.1089/brain.2011.0038
10.1016/j.neuropsychologia.2007.11.030
10.1097/WCO.0b013e32832d93dd
10.1016/j.mri.2012.01.003
10.1038/s42003-020-01610-z
10.1016/j.neuroimage.2021.118503
10.1371/journal.pcbi.0020095
10.1038/npp.2015.278
10.1007/s12311-021-01246-7
10.1016/j.neuroscience.2021.01.018
10.1007/s11682-019-00205-5
10.1016/j.paid.2011.07.005
10.1038/s41398-020-00885-4
10.1093/psyrad/kkad005
10.1023/A:1005653411471
10.1007/s12311-020-01155-1
10.1016/j.neuroimage.2022.118893
10.1017/S1461145712000533
10.1038/nrn.2016.22
10.1038/nrn3155
10.1016/j.neuroimage.2007.04.042
10.1016/j.bspc.2016.08.013
10.1177/1073858416667720
10.1177/1073858406293182
10.1038/s41380-024-02406-x
10.1038/s41598-023-29754-y
10.1073/pnas.1705521114
10.1038/s42003-023-05673-6
10.1016/j.bpsc.2019.01.008
10.1080/01616412.2019.1709141
10.1038/s41380-020-00864-7
10.1038/npp.2014.53
10.1016/j.psyneuen.2012.11.019
10.1016/j.jneumeth.2015.02.021
10.1038/s41467-019-08503-8
10.1002/hbm.20623
10.1093/psyrad/kkab003
10.1093/schbul/sbac066
10.1016/j.jneumeth.2018.07.001
10.1038/s41380-022-01924-w
10.1016/j.neubiorev.2020.02.032
10.1016/S0140-6736(20)30260-9
10.1007/s00406-019-00989-z
10.1111/jnp.12015
10.1093/scan/nsac016
10.1093/cercor/bhy295
10.1016/j.neuroimage.2009.12.027
10.1073/pnas.1314190110
10.1111/j.1749-6632.2010.05888.x
10.1037/0022-3514.54.6.1063
10.1016/j.neuroimage.2019.116326
10.1016/j.neubiorev.2018.09.011
10.1016/j.neures.2004.06.015
10.1016/j.psyneuen.2024.107067
10.1007/978-3-030-88832-9_133
10.1007/7854_2017_19
ContentType Journal Article
Copyright Copyright © 2025 Hagan, Xu, Klugah-Brown, Li, Jiang and Kendrick.
Copyright © 2025 Hagan, Xu, Klugah-Brown, Li, Jiang and Kendrick. 2025 Hagan, Xu, Klugah-Brown, Li, Jiang and Kendrick
Copyright_xml – notice: Copyright © 2025 Hagan, Xu, Klugah-Brown, Li, Jiang and Kendrick.
– notice: Copyright © 2025 Hagan, Xu, Klugah-Brown, Li, Jiang and Kendrick. 2025 Hagan, Xu, Klugah-Brown, Li, Jiang and Kendrick
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.3389/fphar.2024.1460513
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
DocumentTitleAlternate Hagan et al
EISSN 1663-9812
ExternalDocumentID oai_doaj_org_article_b58b0036230e42c1acd28afaea77e3a9
PMC11743539
39834799
10_3389_fphar_2024_1460513
Genre Journal Article
GroupedDBID 53G
5VS
9T4
AAFWJ
AAKDD
AAYXX
ACGFO
ACGFS
ACXDI
ADBBV
ADRAZ
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
CITATION
DIK
EMOBN
GROUPED_DOAJ
GX1
HYE
KQ8
M48
M~E
O5R
O5S
OK1
P2P
PGMZT
RNS
RPM
IAO
IEA
IHR
IHW
IPNFZ
NPM
RIG
7X8
5PM
ID FETCH-LOGICAL-c420t-11ab1c31c36395f4cd23f045d434da2c8aa89f105b7321119d08697b7527e2333
IEDL.DBID DOA
ISSN 1663-9812
IngestDate Wed Aug 27 01:27:48 EDT 2025
Thu Aug 21 18:40:16 EDT 2025
Fri Jul 11 14:26:56 EDT 2025
Thu Jan 30 12:30:00 EST 2025
Tue Jul 01 01:11:48 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords small-worldness
oxytocin
resting state fMRI
graph theory
pharmacodynamics
Language English
License Copyright © 2025 Hagan, Xu, Klugah-Brown, Li, Jiang and Kendrick.
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c420t-11ab1c31c36395f4cd23f045d434da2c8aa89f105b7321119d08697b7527e2333
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Edited by: Song Zhang, Shanghai Jiao Tong University, China
Reviewed by: Wenhan Yang, Central South University, China
Yikang Liu, United Imaging Intelligence, United States
OpenAccessLink https://doaj.org/article/b58b0036230e42c1acd28afaea77e3a9
PMID 39834799
PQID 3157556106
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_b58b0036230e42c1acd28afaea77e3a9
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11743539
proquest_miscellaneous_3157556106
pubmed_primary_39834799
crossref_primary_10_3389_fphar_2024_1460513
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-01-06
PublicationDateYYYYMMDD 2025-01-06
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-06
  day: 06
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in pharmacology
PublicationTitleAlternate Front Pharmacol
PublicationYear 2025
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Coenjaerts (B18) 2023; 13
Schmidt (B65) 2020; 10
Sæther (B63) 2023; 28
Van den Heuvel (B77) 2012; 109
Chao (B16) 2021; 20
Xin (B90) 2021; 31
Whitfield-Gabrieli (B85) 2012; 2
Van Overwalle (B79); 206
Canario (B13) 2021; 1
Hayasaka (B29) 2010; 50
Bassett (B6) 2009; 22
Hordacre (B30) 2018
Kaut (B34) 2020; 42
Procyshyn (B55) 2022; 17
Zalesky (B93) 2010; 50
Boccaletti (B10) 2006; 424
Behzadi (B9) 2007; 37
Kumar (B42) 2020; 270
Yao (B91) 2017; 6
Zheng (B96) 2021; 459
Wasserman (B83) 2023
Frijling (B26) 2016; 41
Schultz (B66) 2016; 123
Sporns (B73) 2007; 2
Loutit (B46) 2021; 529
Poppy (B54) 2014
Beck (B8) 1996
Kou (B39) 2022; 52
Chao (B15) 2023; 14
Lee (B45) 2023
Brodmann (B11) 2017; 7
Patriat (B52) 2013; 78
Wang (B82) 2009; 30
Parker (B50) 2017; 114
Yin (B92) 2017; 31
Kovács (B40) 2015; 30
Bassett (B7) 2017; 23
Le (B44) 2022; 91
Lang (B43) 2012; 2012
Sporns (B72); 5
Jiang (B32) 2023; 3
Feng (B24) 2012; 30
Martins (B48) 2021; 4
Koch (B36) 2016; 17
Audunsdottir (B3) 2024; 167
Quintana (B56) 2021; 26
Seeley (B67) 2018; 95
Sripada (B74) 2013; 16
Jiang (B31) 2021; 227
Van Overwalle (B78); 19
Guastella (B28) 2013; 38
Santander (B62) 2017
Bullmore (B12) 2009; 10
Pickering (B53) 2012; 7
Kaiser (B33) 2006; 2
Wu (B88); 395
Rubinov (B60) 2010; 52
Alaerts (B1) 2019; 4
Wu (B87); 14
Xia (B89) 2013; 8
Davies (B20) 2024; 29
Snyder (B69) 2022
Zhao (B94); 184
Gimpl (B27) 2001; 81
Saito (B61) 2023; 6
Raimondo (B58) 2021; 243
Cao (B14) 2015; 11
Dodhia (B22) 2014; 39
Takakusaki (B75) 2004; 50
Scheele (B64) 2013; 110
Baron-Cohen (B4) 2001; 31
Dickerson (B21) 2008; 46
Kendrick (B35) 2018; 35
Watson (B84) 1988; 54
Zhao (B95); 184
Bassett (B5) 2006; 12
Kou (B38) 2021; 11
Telesford (B76) 2011; 1
Waller (B81) 2018; 308
Allison (B2) 2011; 51
Smitha (B68) 2017; 30
Sporns (B71); 1224
Eckstein (B23) 2017; 149
Rolls (B59) 2022; 249
Fornito (B25) 2016
Kruschwitz (B41) 2015; 245
Christopher (B17) 2013; 7
Patel (B51) 2015; 139
Quintana (B57) 2019; 10
Van Wijk (B80) 2010; 5
Spielberger (B70) 1983
Ohi (B49) 2017; 16
Marín (B47) 2012; 13
Wig (B86) 2011; 1224
Korann (B37) 2022; 48
Cromwell (B19) 2020; 113
References_xml – volume: 11
  start-page: 2801
  year: 2015
  ident: B14
  article-title: Connectomics in psychiatric research: advances and applications
  publication-title: Neuropsychiatric Dis. Treat.
  doi: 10.2147/NDT.S63470
– volume: 424
  start-page: 175
  year: 2006
  ident: B10
  article-title: Complex networks: structure and dynamics
  publication-title: Phys. Rep.
  doi: 10.1016/j.physrep.2005.10.009
– volume: 529
  start-page: 187
  year: 2021
  ident: B46
  article-title: Functional organization and connectivity of the dorsal column nuclei complex reveals a sensorimotor integration and distribution hub
  publication-title: J. Comp. Neurology
  doi: 10.1002/cne.24942
– volume: 2
  start-page: 125
  year: 2012
  ident: B85
  article-title: Conn: a functional connectivity toolbox for correlated and anticorrelated brain networks
  publication-title: Brain Connect.
  doi: 10.1089/brain.2012.0073
– volume: 1224
  start-page: 126
  year: 2011
  ident: B86
  article-title: Concepts and principles in the analysis of brain networks
  publication-title: Ann. N. Y. Acad. Sci.
  doi: 10.1111/j.1749-6632.2010.05947.x
– volume: 2012
  start-page: 412512
  year: 2012
  ident: B43
  article-title: Brain connectivity analysis: a short survey
  publication-title: Comput. Intell. Neurosci.
  doi: 10.1155/2012/412512
– volume: 8
  start-page: e68910
  year: 2013
  ident: B89
  article-title: BrainNet Viewer: a network visualization tool for human brain connectomics
  publication-title: PloS one
  doi: 10.1371/journal.pone.0068910
– volume: 7
  start-page: 454
  year: 2017
  ident: B11
  article-title: Intranasal oxytocin selectively modulates large-scale brain networks in humans
  publication-title: Brain Connect.
  doi: 10.1089/brain.2017.0528
– volume: 52
  start-page: 1959
  year: 2022
  ident: B39
  article-title: A randomized trial shows dose-frequency and genotype may determine the therapeutic efficacy of intranasal oxytocin
  publication-title: Psychol. Med.
  doi: 10.1017/S0033291720003803
– start-page: 35
  year: 2023
  ident: B83
  article-title: The human connectome: an overview
  publication-title: Aprax. Neural Netw. Model
  doi: 10.1007/978-3-031-24105-5_3
– volume-title: Beck depression inventory–II (BDI-II) [database record]
  year: 1996
  ident: B8
– volume: 30
  start-page: 305
  year: 2017
  ident: B68
  article-title: Resting state fMRI: a review on methods in resting state connectivity analysis and resting state networks
  publication-title: Neuroradiol. J.
  doi: 10.1177/1971400917697342
– volume: 50
  start-page: 499
  year: 2010
  ident: B29
  article-title: Comparison of characteristics between region-and voxel-based network analyses in resting-state fMRI data
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2009.12.051
– volume: 6
  start-page: e31373
  year: 2017
  ident: B91
  article-title: Oxytocin signaling in the medial amygdala is required for sex discrimination of social cues
  publication-title: eLife
  doi: 10.7554/eLife.31373
– volume: 139
  start-page: 254
  year: 2015
  ident: B51
  article-title: Oxytocin and vasopressin modulate risk-taking
  publication-title: Physiology and Behav.
  doi: 10.1016/j.physbeh.2014.11.018
– volume: 81
  start-page: 629
  year: 2001
  ident: B27
  article-title: The oxytocin receptor system: structure, function, and regulation
  publication-title: Physiol. Rev.
  doi: 10.1152/physrev.2001.81.2.629
– volume: 5
  start-page: 5
  ident: B72
  article-title: The non-random brain: efficiency, economy, and complex dynamics
  publication-title: Front. Comput. Neurosci.
  doi: 10.3389/fncom.2011.00005
– volume: 14
  start-page: 6007
  year: 2023
  ident: B15
  article-title: Social memory deficit caused by dysregulation of the cerebellar vermis
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-41744-2
– volume: 30
  start-page: 542
  year: 2015
  ident: B40
  article-title: Off-label intranasal oxytocin use in adults is associated with increased amygdala-cingulate resting-state connectivity
  publication-title: Eur. Psychiatry
  doi: 10.1016/j.eurpsy.2015.02.010
– volume: 184
  start-page: 781
  ident: B95
  article-title: Oxytocin differentially modulates specific dorsal and ventral striatal functional connections with frontal and cerebellar regions
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2018.09.067
– volume: 11
  start-page: 94
  year: 2021
  ident: B38
  article-title: In the nose or on the tongue? Contrasting motivational effects of oral and intranasal oxytocin on arousal and reward during social processing
  publication-title: Transl. psychiatry
  doi: 10.1038/s41398-021-01241-w
– volume: 7
  start-page: 1355
  year: 2012
  ident: B53
  article-title: New metrics for assessing diagnostic potential of candidate biomarkers
  publication-title: Clin. J. Am. Soc. Nephrol.
  doi: 10.2215/CJN.09590911
– volume: 52
  start-page: 1059
  year: 2010
  ident: B60
  article-title: Complex network measures of brain connectivity: uses and interpretations
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.10.003
– volume: 227
  start-page: 117668
  year: 2021
  ident: B31
  article-title: Intrinsic, dynamic and effective connectivity among large-scale brain networks modulated by oxytocin
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2020.117668
– volume: 16
  start-page: 248
  year: 2017
  ident: B49
  article-title: Cognitive clustering in schizophrenia patients, their first-degree relatives and healthy subjects is associated with anterior cingulate cortex volume
  publication-title: NeuroImage Clin.
  doi: 10.1016/j.nicl.2017.08.008
– volume: 10
  start-page: 186
  year: 2009
  ident: B12
  article-title: Complex brain networks: graph theoretical analysis of structural and functional systems
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn2575
– volume: 123
  start-page: 679
  year: 2016
  ident: B66
  article-title: Reward functions of the basal ganglia
  publication-title: J. neural Transm.
  doi: 10.1007/s00702-016-1510-0
– volume: 5
  start-page: e13701
  year: 2010
  ident: B80
  article-title: Comparing brain networks of different size and connectivity density using graph theory
  publication-title: PloS one
  doi: 10.1371/journal.pone.0013701
– volume: 78
  start-page: 463
  year: 2013
  ident: B52
  article-title: The effect of resting condition on resting-state fMRI reliability and consistency: a comparison between resting with eyes open, closed, and fixated
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.04.013
– volume: 91
  start-page: 335
  year: 2022
  ident: B44
  article-title: Infrequent intranasal oxytocin followed by positive social interaction improves symptoms in autistic children: a pilot randomized clinical trial
  publication-title: Psychotherapy Psychosomatics
  doi: 10.1159/000524543
– volume: 109
  start-page: 11372
  year: 2012
  ident: B77
  article-title: High-cost, high-capacity backbone for global brain communication
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1203593109
– volume: 149
  start-page: 458
  year: 2017
  ident: B23
  article-title: Oxytocin differentially alters resting state functional connectivity between amygdala subregions and emotional control networks: inverse correlation with depressive traits
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2017.01.078
– volume: 2
  start-page: e1049
  year: 2007
  ident: B73
  article-title: Identification and classification of hubs in brain networks
  publication-title: PloS one
  doi: 10.1371/journal.pone.0001049
– volume: 1
  start-page: 367
  year: 2011
  ident: B76
  article-title: The ubiquity of small-world networks
  publication-title: Brain connect.
  doi: 10.1089/brain.2011.0038
– volume: 46
  start-page: 1624
  year: 2008
  ident: B21
  article-title: Functional abnormalities of the medial temporal lobe memory system in mild cognitive impairment and Alzheimer's disease: insights from functional MRI studies
  publication-title: Neuropsychologia
  doi: 10.1016/j.neuropsychologia.2007.11.030
– volume: 22
  start-page: 340
  year: 2009
  ident: B6
  article-title: Human brain networks in health and disease
  publication-title: Curr. Opin. neurology
  doi: 10.1097/WCO.0b013e32832d93dd
– volume: 30
  start-page: 672
  year: 2012
  ident: B24
  article-title: FMRI connectivity analysis of acupuncture effects on the whole brain network in mild cognitive impairment patients
  publication-title: Magn. Reson. Imaging
  doi: 10.1016/j.mri.2012.01.003
– volume: 4
  start-page: 68
  year: 2021
  ident: B48
  article-title: Oxytocin modulates local topography of human functional connectome in healthy men at rest
  publication-title: Commun. Biol.
  doi: 10.1038/s42003-020-01610-z
– volume: 243
  start-page: 118503
  year: 2021
  ident: B58
  article-title: Advances in resting state fMRI acquisitions for functional connectomics
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2021.118503
– volume: 2
  start-page: e95
  year: 2006
  ident: B33
  article-title: Nonoptimal component placement, but short processing paths, due to long-distance projections in neural systems
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.0020095
– volume: 41
  start-page: 1286
  year: 2016
  ident: B26
  article-title: Intranasal oxytocin affects amygdala functional connectivity after trauma script-driven imagery in distressed recently trauma-exposed individuals
  publication-title: Neuropsychopharmacology
  doi: 10.1038/npp.2015.278
– volume: 20
  start-page: 836
  year: 2021
  ident: B16
  article-title: Functional convergence of motor and social processes in lobule IV/V of the mouse cerebellum
  publication-title: Cerebellum
  doi: 10.1007/s12311-021-01246-7
– volume-title: Functional Activation and Connectivity under the Influence of oxytocin: an explorative Study using functional magnetic resonance imaging
  year: 2014
  ident: B54
– volume-title: The social (neural) network: Towards a unifying endophenotype between genes and behavior Doctoral dissertation
  year: 2017
  ident: B62
– volume: 459
  start-page: 153
  year: 2021
  ident: B96
  article-title: Graph theoretic analysis reveals intranasal oxytocin induced network changes over frontal regions
  publication-title: Neuroscience
  doi: 10.1016/j.neuroscience.2021.01.018
– volume: 14
  start-page: 2530
  ident: B87
  article-title: Oxytocin effects on the resting-state mentalizing brain network
  publication-title: Brain imaging Behav.
  doi: 10.1007/s11682-019-00205-5
– volume: 51
  start-page: 829
  year: 2011
  ident: B2
  article-title: Psychometric analysis of the Empathy quotient (EQ)
  publication-title: Personality Individ. Differ.
  doi: 10.1016/j.paid.2011.07.005
– volume: 10
  start-page: 203
  year: 2020
  ident: B65
  article-title: Acute oxytocin effects in inferring others’ beliefs and social emotions in people at clinical high risk for psychosis
  publication-title: Transl. psychiatry
  doi: 10.1038/s41398-020-00885-4
– volume: 3
  start-page: kkad005
  year: 2023
  ident: B32
  article-title: A brain structural connectivity biomarker for autism spectrum disorder diagnosis in early childhood
  publication-title: Psychoradiology
  doi: 10.1093/psyrad/kkad005
– volume: 31
  start-page: 5
  year: 2001
  ident: B4
  article-title: The autism-spectrum quotient (AQ): evidence from asperger syndrome/high-functioning autism, males and females, scientists and mathematicians
  publication-title: J. Autism Dev. Disord.
  doi: 10.1023/A:1005653411471
– volume-title: The study of rhesus monkey’s behavior and neural connectivity in social-hierarchy: experimental modeling and implementation of computational analysis schemes
  year: 2023
  ident: B45
– volume: 19
  start-page: 833
  ident: B78
  article-title: Consensus paper: cerebellum and social cognition
  publication-title: Cerebellum
  doi: 10.1007/s12311-020-01155-1
– volume: 249
  start-page: 118893
  year: 2022
  ident: B59
  article-title: Risk-taking in humans and the medial orbitofrontal cortex reward system
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2022.118893
– volume: 16
  start-page: 255
  year: 2013
  ident: B74
  article-title: Oxytocin enhances resting-state connectivity between amygdala and medial frontal cortex
  publication-title: Int. J. Neuropsychopharmacol.
  doi: 10.1017/S1461145712000533
– volume: 17
  start-page: 307
  year: 2016
  ident: B36
  article-title: Neural correlates of consciousness: progress and problems
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn.2016.22
– volume: 13
  start-page: 107
  year: 2012
  ident: B47
  article-title: Interneuron dysfunction in psychiatric disorders
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn3155
– volume: 37
  start-page: 90
  year: 2007
  ident: B9
  article-title: A component based noise correction method (CompCor) for BOLD and perfusion based fMRI
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2007.04.042
– volume: 31
  start-page: 331
  year: 2017
  ident: B92
  article-title: Functional brain network analysis of schizophrenic patients with positive and negative syndrome based on mutual information of EEG time series
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2016.08.013
– volume: 23
  start-page: 499
  year: 2017
  ident: B7
  article-title: Small-world brain networks revisited
  publication-title: Neurosci.
  doi: 10.1177/1073858416667720
– volume-title: Fundamentals of brain network analysis
  year: 2016
  ident: B25
– volume: 12
  start-page: 512
  year: 2006
  ident: B5
  article-title: Small-world brain networks
  publication-title: Neurosci. a Rev. J. bringing Neurobiol. neurology psychiatry
  doi: 10.1177/1073858406293182
– volume: 29
  start-page: 1241
  year: 2024
  ident: B20
  article-title: Connectome dysfunction in patients at clinical high risk for psychosis and modulation by oxytocin
  publication-title: Mol. psychiatry
  doi: 10.1038/s41380-024-02406-x
– volume: 13
  start-page: 3113
  year: 2023
  ident: B18
  article-title: Effects of exogenous oxytocin and estradiol on resting-state functional connectivity in women and men
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-023-29754-y
– volume: 114
  start-page: 8119
  year: 2017
  ident: B50
  article-title: Intranasal oxytocin treatment for social deficits and biomarkers of response in children with autism
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1705521114
– volume: 6
  start-page: 1291
  year: 2023
  ident: B61
  article-title: Cerebellar vermis joins the brain’s social network
  publication-title: Commun. Biol.
  doi: 10.1038/s42003-023-05673-6
– volume: 4
  start-page: 655
  year: 2019
  ident: B1
  article-title: Amygdala–hippocampal connectivity is associated with endogenous levels of oxytocin and can be altered by exogenously administered oxytocin in adults with autism
  publication-title: Biol. Psychiatry Cognitive Neurosci. Neuroimaging
  doi: 10.1016/j.bpsc.2019.01.008
– volume: 42
  start-page: 62
  year: 2020
  ident: B34
  article-title: Resting-state fMRI reveals increased functional connectivity in the cerebellum but decreased functional connectivity of the caudate nucleus in Parkinson’s disease
  publication-title: Neurological Res.
  doi: 10.1080/01616412.2019.1709141
– volume: 26
  start-page: 80
  year: 2021
  ident: B56
  article-title: Advances in the field of intranasal oxytocin research: lessons learned and future directions for clinical research
  publication-title: Mol. Psychiatry
  doi: 10.1038/s41380-020-00864-7
– volume: 39
  start-page: 2061
  year: 2014
  ident: B22
  article-title: Modulation of resting-state amygdala-frontal functional connectivity by oxytocin in generalized social anxiety disorder
  publication-title: Neuropsychopharmacology
  doi: 10.1038/npp.2014.53
– volume: 38
  start-page: 612
  year: 2013
  ident: B28
  article-title: Recommendations for the standardisation of oxytocin nasal administration and guidelines for its reporting in human research
  publication-title: Psychoneuroendocrinology
  doi: 10.1016/j.psyneuen.2012.11.019
– volume: 245
  start-page: 107
  year: 2015
  ident: B41
  article-title: GraphVar: a user-friendly toolbox for comprehensive graph analyses of functional brain connectivity
  publication-title: J. Neurosci. methods
  doi: 10.1016/j.jneumeth.2015.02.021
– volume: 10
  start-page: 668
  year: 2019
  ident: B57
  article-title: Oxytocin pathway gene networks in the human brain
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-08503-8
– volume: 30
  start-page: 1511
  year: 2009
  ident: B82
  article-title: Parcellation-dependent small-world brain functional networks: a resting-state fMRI study
  publication-title: Hum. brain Mapp.
  doi: 10.1002/hbm.20623
– volume: 1
  start-page: 42
  year: 2021
  ident: B13
  article-title: A review of resting-state fMRI and its use to examine psychiatric disorders
  publication-title: Psychoradiology
  doi: 10.1093/psyrad/kkab003
– volume: 48
  start-page: 1115
  year: 2022
  ident: B37
  article-title: Effect of intranasal oxytocin on resting-state effective connectivity in schizophrenia
  publication-title: Schizophr. Bull.
  doi: 10.1093/schbul/sbac066
– volume: 308
  start-page: 21
  year: 2018
  ident: B81
  article-title: GraphVar 2.0: a user-friendly toolbox for machine learning on functional connectivity measures
  publication-title: J. Neurosci. methods
  doi: 10.1016/j.jneumeth.2018.07.001
– volume: 28
  start-page: 1284
  year: 2023
  ident: B63
  article-title: Inflammation and cognition in severe mental illness: patterns of covariation and subgroups
  publication-title: Mol. Psychiatry
  doi: 10.1038/s41380-022-01924-w
– volume: 113
  start-page: 204
  year: 2020
  ident: B19
  article-title: Mapping the interconnected neural systems underlying motivation and emotion: a key step toward understanding the human affectome
  publication-title: Neurosci. and Biobehav. Rev.
  doi: 10.1016/j.neubiorev.2020.02.032
– volume: 395
  start-page: 689
  ident: B88
  article-title: Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: a modelling study
  publication-title: Lancet
  doi: 10.1016/S0140-6736(20)30260-9
– start-page: 29
  year: 2018
  ident: B30
  article-title: Motor control: structure and function of the nervous system
  publication-title: Neurol. Physiother. Pocketb.
– volume: 270
  start-page: 567
  year: 2020
  ident: B42
  article-title: Oxytocin modulates the effective connectivity between the precuneus and the dorsolateral prefrontal cortex
  publication-title: Eur. archives psychiatry Clin. Neurosci.
  doi: 10.1007/s00406-019-00989-z
– volume: 7
  start-page: 225
  year: 2013
  ident: B17
  article-title: Neuroimaging of brain changes associated with cognitive impairment in Parkinson's disease
  publication-title: J. Neuropsychology
  doi: 10.1111/jnp.12015
– volume: 17
  start-page: 929
  year: 2022
  ident: B55
  article-title: Oxytocin enhances basolateral amygdala activation and functional connectivity while processing emotional faces: preliminary findings in autistic vs non-autistic women
  publication-title: Soc. cognitive Affect. Neurosci.
  doi: 10.1093/scan/nsac016
– volume: 31
  start-page: 1848
  year: 2021
  ident: B90
  article-title: Oxytocin modulates the intrinsic dynamics between attention-related large-scale networks
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhy295
– volume: 50
  start-page: 970
  year: 2010
  ident: B93
  article-title: Whole-brain anatomical networks: does the choice of nodes matter?
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2009.12.027
– volume: 184
  start-page: 781
  ident: B94
  article-title: Oxytocin differentially modulates specific dorsal and ventral striatal functional connections with frontal and cerebellar regions
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2018.09.067
– volume: 110
  start-page: 20308
  year: 2013
  ident: B64
  article-title: Oxytocin enhances brain reward system responses in men viewing the face of their female partner
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1314190110
– volume: 1224
  start-page: 109
  ident: B71
  article-title: The human connectome: a complex network
  publication-title: Ann. N. Y. Acad. Sci.
  doi: 10.1111/j.1749-6632.2010.05888.x
– volume: 54
  start-page: 1063
  year: 1988
  ident: B84
  article-title: Development and validation of brief measures of positive and negative affect: the PANAS scales
  publication-title: J. Personality Soc. Psychol.
  doi: 10.1037/0022-3514.54.6.1063
– volume-title: State-Trait Anxiety Inventory for Adults (STAI-AD) [Database record]
  year: 1983
  ident: B70
– volume: 206
  start-page: 116326
  ident: B79
  article-title: Connectivity between the cerebrum and cerebellum during social and non-social sequencing using dynamic causal modelling
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2019.116326
– volume: 95
  start-page: 17
  year: 2018
  ident: B67
  article-title: Intranasal oxytocin and OXTR genotype effects on resting state functional connectivity: a systematic review
  publication-title: Neurosci. Biobehav. Rev.
  doi: 10.1016/j.neubiorev.2018.09.011
– volume: 50
  start-page: 137
  year: 2004
  ident: B75
  article-title: Role of basal ganglia–brainstem pathways in the control of motor behaviors
  publication-title: Neurosci. Res.
  doi: 10.1016/j.neures.2004.06.015
– volume: 167
  start-page: 107067
  year: 2024
  ident: B3
  article-title: The effects of oxytocin administration on social and routinized behaviors in autism: a preregistered systematic review and meta-analysis
  publication-title: Psychoneuroendocrinology
  doi: 10.1016/j.psyneuen.2024.107067
– start-page: 1939
  year: 2022
  ident: B69
  article-title: Intrinsic brain activity and resting state networks
  publication-title: Neurosci. 21st century basic Clin.
  doi: 10.1007/978-3-030-88832-9_133
– volume: 35
  start-page: 321
  year: 2018
  ident: B35
  article-title: Overview of human oxytocin research
  publication-title: Behav. Pharmacol. Neuropeptides Oxytocin
  doi: 10.1007/7854_2017_19
SSID ssj0000399364
Score 2.3745594
Snippet Neuroimaging studies have demonstrated that intranasal oxytocin has extensive effects on the resting state functional connectivity of social and emotional...
IntroductionNeuroimaging studies have demonstrated that intranasal oxytocin has extensive effects on the resting state functional connectivity of social and...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 1460513
SubjectTerms graph theory
oxytocin
pharmacodynamics
Pharmacology
resting state fMRI
small-worldness
SummonAdditionalLinks – databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEB6VcuGCyju8tEioF2rIPpy1DwgBoqqQinpopN5W-6QVYKeJK9X_nhmv0xJUbki-eB3LK38ez_c5O_MBvPZB6qC1L1Co6UJhBBXWIyAWuevUlgkpOVUjH36bHczV15PyZAvWdkfjDVzdKO3IT2q-_Pn28rz_gAH_nhQn5tt3aXFqqbWnUBT3-JTJW3AbM5OmQD0c6f7wZqZsPFO5duYfp27kp6GN_03c8-8llH_kpP0duDuSSfYxo38PtmJzH3aPcjfqfo8dXxdXrfbYLju67lPdP4AfeJgtxqGQnenZrzaMhl4sL_VgbWLtZd8hiA3DUfLywHTHhkokRmkxf01knpbM-GxGwZq8upx12YOhfwjz_S_Hnw-K0Xuh8EpMu4Jz67iXuCGFKZPyQciE9C8oqYIVvrK2qhOSM6clakheB9RGtXa6FDoKKeUj2G7aJj4B5lTiUfiYMF8qlOPO1ZV2gcuAe6g4J_BmfcfNIrfYMChNCB8z4GMIHzPiM4FPBMrVL6k99jDQLr-bMdqMKys3dNqR06iE5xanX9lko9U6SltP4NUaUoPhRP-R2Ca2FysjOfJX4pSzCTzOEF9dStYV1d3i2dUG-Btz2TzSnJ0OLbs5Cb9S1k__x-yfwR1BLsT0IWj2HLa75UV8gdSocy-H5_03ugERyg
  priority: 102
  providerName: Scholars Portal
Title The pharmacodynamic modulation effect of oxytocin on resting state functional connectivity network topology
URI https://www.ncbi.nlm.nih.gov/pubmed/39834799
https://www.proquest.com/docview/3157556106
https://pubmed.ncbi.nlm.nih.gov/PMC11743539
https://doaj.org/article/b58b0036230e42c1acd28afaea77e3a9
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS-wwFA7iyo3c63OuDyKIGy1OHp20SxVFBMWFgruQJ4rYDlrB-feek1SduQhuhDLQdIaGfKc935c5D0J2nRfKK-UKEGqqkPAEFcYBIAa469CUESg5ZiNfXo3Ob-XFXXk31eoLY8JyeeC8cIe2rGwqmiKGQXLHjPO8MtEEo1QQJqXugc-bElPpHYx-dyRzlgyosPowju8N1v_kEl8OYIpixhOlgv3fscz_gyWnvM_ZH7LY00Z6lKf7l8yFZonsXee605MDevOVRvVyQPfo9VdF6skyeYTLdNwP-dyDnj61vm_dRXNQB20jbd8mHcDVUBjFrh3g2GjKOaLoAPO-IXUYHONy2wna5Dhy2uVuC5MVcnt2enNyXvRdFgon-bArGDOWOQEHkJUySlhfEYHoeSmkN9xVxlR1BBpmlQC1yGoPKqhWVpVcBS6EWCXzTduEdUKtjCxwFyJ4RgnC29q6UtYz4eEMtOWA7H-suB7nYhoaRAjioxM-GvHRPT4DcoygfH4TC2GnATAP3ZuH_sk8BmTnA1INDw7-G2Ka0L6-aMGAqSJ7HA3IWob481airjDDFn5dzYA_M5fZK83DfSrOzVDilaL-9xuz3yALHPsN45bPaJPMd8-vYQtIUGe3k73D56Ws3gGhzAp3
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+pharmacodynamic+modulation+effect+of+oxytocin+on+resting+state+functional+connectivity+network+topology&rft.jtitle=Frontiers+in+pharmacology&rft.au=Abraham+Tonny+Hagan&rft.au=Lei+Xu&rft.au=Benjamin+Klugah-Brown&rft.au=Jialin+Li&rft.date=2025-01-06&rft.pub=Frontiers+Media+S.A&rft.eissn=1663-9812&rft.volume=15&rft_id=info:doi/10.3389%2Ffphar.2024.1460513&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_b58b0036230e42c1acd28afaea77e3a9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1663-9812&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1663-9812&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1663-9812&client=summon