Aqueously Cathodic Deposition of ZIF‐8 Membranes for Superior Propylene/Propane Separation
Electrochemical deposition has emerged as a novel approach to fabricate metal–organic framework (MOF) films. Here, for the first time, an aqueously cathodic deposition (ACD) approach is developed to fabricate ZIF‐8 type of MOF membranes without addition of any supporting electrolyte or modulator. Th...
Saved in:
Published in | Advanced functional materials Vol. 30; no. 7 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.02.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Electrochemical deposition has emerged as a novel approach to fabricate metal–organic framework (MOF) films. Here, for the first time, an aqueously cathodic deposition (ACD) approach is developed to fabricate ZIF‐8 type of MOF membranes without addition of any supporting electrolyte or modulator. The fabrication process uses 100% water as the sole solvent and a low‐defect density membrane is obtained in only 60 min under room temperature without any pre‐synthesis treatment. The membrane exhibits superior performance in C3H6/C3H8 separation with 182 GPU C3H6 permeance and 142 selectivity, making it sit at the upper bound of permeance versus selectivity graph, outperforming majority of the published data up to 2019. Notably, this approach uses an extremely low current density (0.13 mA cm−2) operated under an ultrafacile apparatus set‐up, enabling an attractive way for environmentally friendly, energy efficient, and easily scalable MOF membrane fabrications. This work demonstrates a great potential of aqueously electrochemical deposition of MOF membrane in the future research.
An ultrathin ZIF‐8 membrane with ≈500 nm thickness is fabricated via a novel aqueous cathodic deposition method. The membrane shows superior C3H6/C3H8 separation performance with the permeance of C3H6 up to 182 GPU and a selectivity of C3H6 over C3H8 up to 142, which surpasses all the reported membrane performances prepared by conventional methods. |
---|---|
AbstractList | Electrochemical deposition has emerged as a novel approach to fabricate metal–organic framework (MOF) films. Here, for the first time, an aqueously cathodic deposition (ACD) approach is developed to fabricate ZIF‐8 type of MOF membranes without addition of any supporting electrolyte or modulator. The fabrication process uses 100% water as the sole solvent and a low‐defect density membrane is obtained in only 60 min under room temperature without any pre‐synthesis treatment. The membrane exhibits superior performance in C3H6/C3H8 separation with 182 GPU C3H6 permeance and 142 selectivity, making it sit at the upper bound of permeance versus selectivity graph, outperforming majority of the published data up to 2019. Notably, this approach uses an extremely low current density (0.13 mA cm−2) operated under an ultrafacile apparatus set‐up, enabling an attractive way for environmentally friendly, energy efficient, and easily scalable MOF membrane fabrications. This work demonstrates a great potential of aqueously electrochemical deposition of MOF membrane in the future research.
An ultrathin ZIF‐8 membrane with ≈500 nm thickness is fabricated via a novel aqueous cathodic deposition method. The membrane shows superior C3H6/C3H8 separation performance with the permeance of C3H6 up to 182 GPU and a selectivity of C3H6 over C3H8 up to 142, which surpasses all the reported membrane performances prepared by conventional methods. Electrochemical deposition has emerged as a novel approach to fabricate metal–organic framework (MOF) films. Here, for the first time, an aqueously cathodic deposition (ACD) approach is developed to fabricate ZIF‐8 type of MOF membranes without addition of any supporting electrolyte or modulator. The fabrication process uses 100% water as the sole solvent and a low‐defect density membrane is obtained in only 60 min under room temperature without any pre‐synthesis treatment. The membrane exhibits superior performance in C 3 H 6 /C 3 H 8 separation with 182 GPU C 3 H 6 permeance and 142 selectivity, making it sit at the upper bound of permeance versus selectivity graph, outperforming majority of the published data up to 2019. Notably, this approach uses an extremely low current density (0.13 mA cm −2 ) operated under an ultrafacile apparatus set‐up, enabling an attractive way for environmentally friendly, energy efficient, and easily scalable MOF membrane fabrications. This work demonstrates a great potential of aqueously electrochemical deposition of MOF membrane in the future research. Electrochemical deposition has emerged as a novel approach to fabricate metal–organic framework (MOF) films. Here, for the first time, an aqueously cathodic deposition (ACD) approach is developed to fabricate ZIF‐8 type of MOF membranes without addition of any supporting electrolyte or modulator. The fabrication process uses 100% water as the sole solvent and a low‐defect density membrane is obtained in only 60 min under room temperature without any pre‐synthesis treatment. The membrane exhibits superior performance in C3H6/C3H8 separation with 182 GPU C3H6 permeance and 142 selectivity, making it sit at the upper bound of permeance versus selectivity graph, outperforming majority of the published data up to 2019. Notably, this approach uses an extremely low current density (0.13 mA cm−2) operated under an ultrafacile apparatus set‐up, enabling an attractive way for environmentally friendly, energy efficient, and easily scalable MOF membrane fabrications. This work demonstrates a great potential of aqueously electrochemical deposition of MOF membrane in the future research. |
Author | Chi, Heng‐Yu Yang, Chih‐Wen Wei, Ruicong Lu, Dongwei Lai, Zhiping Li, Xiang Wan, Yi |
Author_xml | – sequence: 1 givenname: Ruicong surname: Wei fullname: Wei, Ruicong organization: King Abdullah University of Science and Technology – sequence: 2 givenname: Heng‐Yu surname: Chi fullname: Chi, Heng‐Yu organization: King Abdullah University of Science and Technology – sequence: 3 givenname: Xiang surname: Li fullname: Li, Xiang organization: King Abdullah University of Science and Technology – sequence: 4 givenname: Dongwei surname: Lu fullname: Lu, Dongwei organization: King Abdullah University of Science and Technology – sequence: 5 givenname: Yi surname: Wan fullname: Wan, Yi organization: King Abdullah University of Science and Technology – sequence: 6 givenname: Chih‐Wen surname: Yang fullname: Yang, Chih‐Wen organization: King Abdullah University of Science and Technology – sequence: 7 givenname: Zhiping orcidid: 0000-0001-9555-6009 surname: Lai fullname: Lai, Zhiping email: zhiping.lai@kaust.edu.sa organization: King Abdullah University of Science and Technology |
BookMark | eNqFkNFKwzAUhoNMcJveeh3wulvSdE1zOTangw2FKYgIJU1PsKNratIivfMRfEafxNbJBEG8OeeH_N85Of8A9QpTAELnlIwoIf5Ypno38gkVhJNIHKE-DWnoMeJHvYOmDydo4NyWEMo5C_roafpSg6ld3uCZrJ5Nmik8h9K4rMpMgY3Gj8vFx9t7hNewS6wswGFtLN7UJdisFbfWlE0OBYw71b7jDZTSyg4_Rcda5g7OvvsQ3S8u72bX3urmajmbrjwV-ER4gus0FMCJ5pHWoSIpVRQCmUQTohjzoa0SJE9TSQMuZQDJRAhJUpEEVGvFhuhiP7e0pj3HVfHW1LZoV8Y-mzAW0kj4rSvYu5Q1zlnQscqqr39WVmZ5TEnc5Rh3OcaHHFts9AsrbbaTtvkbEHvgNcuh-ccdT-eL9Q_7CR8Tio0 |
CitedBy_id | crossref_primary_10_1021_acs_iecr_3c00795 crossref_primary_10_1002_adma_202002165 crossref_primary_10_1021_jacs_0c07481 crossref_primary_10_1002_anie_202502862 crossref_primary_10_1016_j_cej_2023_143048 crossref_primary_10_1002_smll_202401594 crossref_primary_10_1002_anie_202017089 crossref_primary_10_1016_j_ccr_2023_215101 crossref_primary_10_1016_j_seppur_2024_128586 crossref_primary_10_1021_acsabm_1c00473 crossref_primary_10_1002_anie_202309095 crossref_primary_10_1002_chem_202401868 crossref_primary_10_1016_j_est_2023_109786 crossref_primary_10_1021_acs_energyfuels_2c01427 crossref_primary_10_1002_advs_202001398 crossref_primary_10_1002_smll_202208177 crossref_primary_10_1002_anie_202300262 crossref_primary_10_1002_ange_202502862 crossref_primary_10_1016_j_seppur_2021_119044 crossref_primary_10_1021_acsami_3c19491 crossref_primary_10_1021_acs_iecr_3c02048 crossref_primary_10_1063_5_0169507 crossref_primary_10_3934_matersci_2022012 crossref_primary_10_1021_acsmaterialslett_0c00560 crossref_primary_10_1039_D0TA03749D crossref_primary_10_1080_10643389_2020_1849893 crossref_primary_10_1039_D1TA08705C crossref_primary_10_1002_adfm_202208064 crossref_primary_10_4019_bjscc_83_28 crossref_primary_10_1016_j_scib_2020_07_010 crossref_primary_10_1002_ange_202108485 crossref_primary_10_1002_ange_202017089 crossref_primary_10_1021_acsami_4c13500 crossref_primary_10_1039_D3EW00852E crossref_primary_10_1016_j_pmatsci_2025_101432 crossref_primary_10_1016_j_memsci_2021_119175 crossref_primary_10_1002_ange_202008943 crossref_primary_10_1002_smll_202301460 crossref_primary_10_1016_j_jechem_2021_09_009 crossref_primary_10_1016_j_seppur_2023_124751 crossref_primary_10_1021_acsami_3c01936 crossref_primary_10_1021_acs_langmuir_2c01317 crossref_primary_10_1038_s41563_023_01669_z crossref_primary_10_1002_aic_17410 crossref_primary_10_1002_ange_202300262 crossref_primary_10_1021_acsmaterialslett_2c00294 crossref_primary_10_1016_j_seppur_2023_123987 crossref_primary_10_1021_acsami_1c21077 crossref_primary_10_3390_polym15081950 crossref_primary_10_1016_j_seppur_2021_120045 crossref_primary_10_1021_acsmaterialslett_2c00119 crossref_primary_10_1021_acs_energyfuels_3c00212 crossref_primary_10_1016_j_cej_2024_157192 crossref_primary_10_1039_D0CS00552E crossref_primary_10_3390_membranes13090782 crossref_primary_10_1016_j_colsurfa_2021_127950 crossref_primary_10_1002_aic_18385 crossref_primary_10_1002_smtd_202300278 crossref_primary_10_1002_ange_202309095 crossref_primary_10_1002_anie_202108485 crossref_primary_10_1002_adma_202201423 crossref_primary_10_1002_adfm_202105577 crossref_primary_10_1039_D2TA00226D crossref_primary_10_1080_10643389_2021_1975444 crossref_primary_10_1016_j_cej_2024_155773 crossref_primary_10_1126_sciadv_abm6741 crossref_primary_10_1002_aic_17889 crossref_primary_10_1149_1945_7111_abc6c6 crossref_primary_10_1002_anie_202404058 crossref_primary_10_1002_smll_202107108 crossref_primary_10_1021_acsmaterialslett_1c00815 crossref_primary_10_1002_adfm_202303447 crossref_primary_10_1039_D3CS00131H crossref_primary_10_1002_aic_18455 crossref_primary_10_1039_D0CS00786B crossref_primary_10_3390_membranes12121205 crossref_primary_10_1021_acs_iecr_1c04986 crossref_primary_10_1002_anie_202008943 crossref_primary_10_1021_acsmaterialslett_5c00361 crossref_primary_10_1126_sciadv_ads6315 crossref_primary_10_1021_acs_analchem_2c05668 crossref_primary_10_3390_membranes11050310 crossref_primary_10_1016_j_seppur_2021_119109 crossref_primary_10_1002_aenm_202402441 crossref_primary_10_1039_D4AY00691G crossref_primary_10_1146_annurev_chembioeng_092320_120148 crossref_primary_10_1002_ange_202404058 crossref_primary_10_1021_acs_jpclett_1c01834 crossref_primary_10_1021_acsapm_4c02014 crossref_primary_10_1021_acsomega_1c05126 crossref_primary_10_3390_membranes12111062 crossref_primary_10_1039_D3TC04366E crossref_primary_10_1021_acssuschemeng_4c05575 crossref_primary_10_1002_adfm_202314683 crossref_primary_10_1039_D0TA00406E crossref_primary_10_1016_j_jcis_2024_03_181 |
Cites_doi | 10.1039/C1CE06002C 10.1021/acs.jpclett.5b02683 10.1038/nmat4509 10.1039/C7TA06049A 10.1021/cm103571y 10.1039/c0cc05002d 10.1126/science.aat4123 10.1021/jz300855a 10.1002/anie.201808465 10.1016/j.memsci.2011.11.024 10.1021/ja9039983 10.1021/ja2041546 10.1021/acs.jpcc.6b09778 10.1002/adfm.201707427 10.1039/C5RA17024A 10.1039/C5CP02230D 10.1039/C4TA05116E 10.1039/C6TA07860E 10.1021/jp401367k 10.1016/j.coche.2018.03.002 10.1016/j.memsci.2015.06.019 10.1021/acs.jpclett.5b01135 10.1021/cm900069f 10.1039/C5CS00292C 10.1073/pnas.0602439103 10.1006/jssc.1998.8284 10.1016/j.solidstatesciences.2017.05.002 10.1039/C7CS00315C 10.1002/celc.201402429 10.1039/C6TA02118B 10.1021/cm504806p |
ContentType | Journal Article |
Copyright | 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.201907089 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adfm_201907089 ADFM201907089 |
Genre | article |
GrantInformation_xml | – fundername: KAUST funderid: URF/1/3435 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ AAHHS AANHP AAYXX ACBWZ ACCFJ ACRPL ACYXJ ADNMO ADZOD AEEZP AEQDE AGQPQ AIWBW AJBDE ASPBG AVWKF AZFZN CITATION EJD FEDTE HF~ HVGLF LW6 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
ID | FETCH-LOGICAL-c4209-97fd69e70f78ff6c0d1c1e4ab850c332e0c3aea7dda147aa4eb599a0d9b41ffc3 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Fri Jul 25 04:14:00 EDT 2025 Tue Jul 01 04:12:06 EDT 2025 Thu Apr 24 23:12:23 EDT 2025 Sun Jul 06 04:45:00 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4209-97fd69e70f78ff6c0d1c1e4ab850c332e0c3aea7dda147aa4eb599a0d9b41ffc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-9555-6009 |
PQID | 2353361892 |
PQPubID | 2045204 |
PageCount | 7 |
ParticipantIDs | proquest_journals_2353361892 crossref_citationtrail_10_1002_adfm_201907089 crossref_primary_10_1002_adfm_201907089 wiley_primary_10_1002_adfm_201907089_ADFM201907089 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-02-01 |
PublicationDateYYYYMMDD | 2020-02-01 |
PublicationDate_xml | – month: 02 year: 2020 text: 2020-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2020 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2015; 493 2016; 4 2015; 2 2018; 28 2012; 3 2009; 21 2011 2018; 133 4 2015; 3 2015; 44 2015 2012; 27 14 2017 2018; 46 361 2013; 117 1999; 146 2012; 390–391 2011; 23 2009; 131 2011; 47 2016 2019; 15 58 2018; 20 2017 2015; 5 5 2006; 103 2017 2017; 5 69 2015 2016; 17 120 2016 2015; 7 6 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_8_2 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_2 e_1_2_7_19_1 e_1_2_7_17_2 e_1_2_7_18_1 e_1_2_7_17_1 Zhou S. (e_1_2_7_12_2) 2018; 4 e_1_2_7_16_1 e_1_2_7_2_1 e_1_2_7_14_2 e_1_2_7_15_1 e_1_2_7_1_1 e_1_2_7_14_1 e_1_2_7_13_1 e_1_2_7_12_1 e_1_2_7_11_1 e_1_2_7_10_1 e_1_2_7_24_2 e_1_2_7_23_2 e_1_2_7_24_1 e_1_2_7_22_2 e_1_2_7_23_1 e_1_2_7_22_1 e_1_2_7_21_1 e_1_2_7_20_1 |
References_xml | – volume: 15 58 start-page: 304 1123 year: 2016 2019 publication-title: Nat. Mater. Angew. Chem., Int. Ed. – volume: 46 361 start-page: 5730 1008 year: 2017 2018 publication-title: Chem. Soc. Rev. Science – volume: 4 year: 2016 publication-title: J. Mater. Chem. A – volume: 21 start-page: 2580 year: 2009 publication-title: Chem. Mater. – volume: 47 start-page: 2071 year: 2011 publication-title: Chem. Commun. – volume: 2 start-page: 462 year: 2015 publication-title: ChemElectroChem – volume: 20 start-page: 78 year: 2018 publication-title: Curr. Opin. Chem. Eng. – volume: 133 4 year: 2011 2018 publication-title: J. Am. Chem. Soc. Sci. Avd. – volume: 27 14 start-page: 1801 492 year: 2015 2012 publication-title: Chem. Mater. CrystEngComm – volume: 146 start-page: 13 year: 1999 publication-title: J. Solid State Chem. – volume: 131 year: 2009 publication-title: J. Am. Chem. Soc. – volume: 23 start-page: 2130 year: 2011 publication-title: Chem. Mater. – volume: 3 start-page: 2130 year: 2012 publication-title: J. Phys. Chem. Lett. – volume: 5 5 year: 2017 2015 publication-title: J. Mater. Chem. A RSC Adv. – volume: 103 year: 2006 publication-title: Proc. Natl. Acad. Sci. USA – volume: 390–391 start-page: 93 year: 2012 publication-title: J. Membr. Sci. – volume: 117 start-page: 7565 year: 2013 publication-title: J. Phys. Chem. C – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. – volume: 44 start-page: 7128 year: 2015 publication-title: Chem. Soc. Rev. – volume: 17 120 year: 2015 2016 publication-title: Phys. Chem. Chem. Phys. J. Phys. Chem. C – volume: 5 69 start-page: 952 13 year: 2017 2017 publication-title: J. Mater. Chem. A Solid State Sci. – volume: 7 6 start-page: 459 3437 year: 2016 2015 publication-title: J. Phys. Chem. Lett. J. Phys. Chem. Lett. – volume: 493 start-page: 88 year: 2015 publication-title: J. Membr. Sci. – volume: 3 start-page: 2999 year: 2015 publication-title: J. Mater. Chem. A – ident: e_1_2_7_14_2 doi: 10.1039/C1CE06002C – ident: e_1_2_7_24_1 doi: 10.1021/acs.jpclett.5b02683 – ident: e_1_2_7_17_1 doi: 10.1038/nmat4509 – ident: e_1_2_7_22_1 doi: 10.1039/C7TA06049A – ident: e_1_2_7_16_1 doi: 10.1021/cm103571y – ident: e_1_2_7_15_1 doi: 10.1039/c0cc05002d – ident: e_1_2_7_8_2 doi: 10.1126/science.aat4123 – ident: e_1_2_7_5_1 doi: 10.1021/jz300855a – ident: e_1_2_7_17_2 doi: 10.1002/anie.201808465 – ident: e_1_2_7_6_1 doi: 10.1016/j.memsci.2011.11.024 – ident: e_1_2_7_4_1 doi: 10.1021/ja9039983 – ident: e_1_2_7_12_1 doi: 10.1021/ja2041546 – ident: e_1_2_7_23_2 doi: 10.1021/acs.jpcc.6b09778 – ident: e_1_2_7_13_1 doi: 10.1002/adfm.201707427 – ident: e_1_2_7_22_2 doi: 10.1039/C5RA17024A – ident: e_1_2_7_23_1 doi: 10.1039/C5CP02230D – ident: e_1_2_7_18_1 doi: 10.1039/C4TA05116E – ident: e_1_2_7_19_1 doi: 10.1039/C6TA07860E – ident: e_1_2_7_21_1 doi: 10.1021/jp401367k – ident: e_1_2_7_2_1 doi: 10.1016/j.coche.2018.03.002 – ident: e_1_2_7_7_1 doi: 10.1016/j.memsci.2015.06.019 – ident: e_1_2_7_24_2 doi: 10.1021/acs.jpclett.5b01135 – ident: e_1_2_7_11_1 doi: 10.1021/cm900069f – volume: 4 start-page: eaau1393 year: 2018 ident: e_1_2_7_12_2 publication-title: Sci. Avd. – ident: e_1_2_7_1_1 doi: 10.1039/C5CS00292C – ident: e_1_2_7_3_1 doi: 10.1073/pnas.0602439103 – ident: e_1_2_7_20_1 doi: 10.1006/jssc.1998.8284 – ident: e_1_2_7_19_2 doi: 10.1016/j.solidstatesciences.2017.05.002 – ident: e_1_2_7_8_1 doi: 10.1039/C7CS00315C – ident: e_1_2_7_10_1 doi: 10.1002/celc.201402429 – ident: e_1_2_7_9_1 doi: 10.1039/C6TA02118B – ident: e_1_2_7_14_1 doi: 10.1021/cm504806p |
SSID | ssj0017734 |
Score | 2.6209671 |
Snippet | Electrochemical deposition has emerged as a novel approach to fabricate metal–organic framework (MOF) films. Here, for the first time, an aqueously cathodic... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | aqueous Deposition electrochemical Low currents Materials science Membranes Metal-organic frameworks MOF membrane Propylene propylene/propane separation Reluctance Room temperature Selectivity Separation Upper bounds ZIF‐8 |
Title | Aqueously Cathodic Deposition of ZIF‐8 Membranes for Superior Propylene/Propane Separation |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201907089 https://www.proquest.com/docview/2353361892 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA4yX_TBuzgvIw-CT3VNmjbN43AOFSfiFIYIJVcQdZVdHuaTP8Hf6C8xadduE0TQl5LSpJzmnJPztT3nCwCHFrRJFiDjBUoRz1pI4HEZS4_HioZhZDQTWZbvVXR2Ry66YXemij_nhyg_uDnPyNZr5-BcDOpT0lCujKsktwGN-rGr4HMJWw4V3ZT8UYjS_LdyhFyCF-oWrI0-rs8Pn49KU6g5C1iziNNaBbyQNU80eToeDcWxfPtG4_ifh1kDKxM4Chu5_ayDBd3bAMszJIWb4KFhpUxHg-cxdOWCqXqUsKmLZC-YGnh_3vp8_4hhW79YGezaCS0Shp2RI1G2jet--jq2wU3XXctehx2dM46nvS1w1zq9PTnzJnsyeJJgn3mMGhUxTX1DY2Mi6SskkSZcxKEvgwBre-SaU6U4IpRzokXIGPcVEwQZI4NtUOmlPb0DoLBQLBJck1BKEioqCDOBYwDDkoZK-1XgFTpJ5ISw3O2b8ZzkVMs4cbOWlLNWBUdl_9ecquPHnvuFipOJyw4SHFjkG6GY4SrAma5-uUvSaLba5dnuXwbtgSXs3t-zLPB9UBn2R_rAgpyhqIHFRrN92allBv0F6_P3SA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NTtwwEB5ROLQ9tPRP3ZYfH1r1FDZ2nDg-9LBiWe0WFlUFpFVVKfhXqoANYndVLSceoa_SV-EReBLs_AGVqkqVOPQSOYpjxZ4Zz-fJ-DPAOwfaFI-wDSKtaeA0JAqESlUgUs3iOLGGyyLLdzfpH9BPo3i0AL_qvTAlP0QTcPOWUczX3sB9QLp9wxoqtPVbyZ1HY2HKq7zKbTP_4VZtk4-DrhPxe0J6W_ub_aA6WCBQlIQ84MzqhBsWWpZam6hQY4UNFTKNQxVFxLirMIJpLTBlQlAjY85FqLmk2FoVuXYfwJI_RtzT9Xe_NIxVmLHyR3aCfUoZHtU8kSFp3_3eu37wBtzehsiFj-s9hct6dMrUlqON2VRuqPPfiCP_q-FbhicV4kad0kSewYIZP4fHt3gYX8C3jhuWfDY5niO_IzLX3xXqmjqfDeUWfR30ri5-pmhoTlynnXtADuyjvZnniXaFz2f56dz5b9P2Jfcc7ZmSVD0fv4SDe-neK1gc52PzGpB0aDORwtBYKRprJim3kSc5I4rF2oQtCGolyFTFye6PBjnOSjZpknkpZY2UWvChqX9aspH8seZKrVNZNStNMhI5cJ_glJMWkEI5_tJK1un2hs3dm395aR0e9veHO9nOYHf7LTwiPlxRJL2vwOL0bGZWHaabyrXCihAc3rfeXQNglVbk |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3dahQxFD7UCqIX_ourVXOheDXdJJOZTC68WDoOXWtLsRYWEcb8glh3lu4usl75CD6Kr-Ir9ElM5q-tIILQC2-GDJMJk5xzcr5kTr4D8NSDNi1i4qLYGBZ5DYkjqTMdyczwJEmdFaqO8t1Ltw_Zq0kyWYMf3VmYhh-i33ALllHP18HAZ8YNT0lDpXHhJLl3aBxnog2r3LGrL37RNn8xzr2En1FavHy7tR21eQUizSgWkeDOpMJy7HjmXKqxIZpYJlWWYB3H1PqrtJIbIwnjUjKrEiEkNkIx4pyOfbuX4DJLsQjJIvI3PWEV4bz5j52SEFFGJh1NJKbD89973g2eYtuzCLl2ccUN-NkNThPZ8mlzuVCb-utvvJH_0-jdhOst3kajxkBuwZqd3oZrZ1gY78D7kR-Vajk_WqFwHrIyHzXKbRfNhiqH3o2Lk2_fM7RrP_s-e-eAPNRHB8vAEu0L-8fVbOW9tx2Gkn-ODmxDqV5N78LhhXTvHqxPq6m9D0h5rJkqaVmiNUsMV0y4OFCcUc0TY_EAok4HSt0ysofEIEdlwyVNyyClspfSAJ739WcNF8kfa250KlW2c9K8pLGH9inJBB0ArXXjL62Uo7zY7e8e_MtLT-DKfl6Ur8d7Ow_hKg17FXXE-wasL46X9pEHdAv1uLYhBB8uWu1-AfFbVZM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Aqueously+Cathodic+Deposition+of+ZIF%E2%80%908+Membranes+for+Superior+Propylene%2FPropane+Separation&rft.jtitle=Advanced+functional+materials&rft.au=Wei%2C+Ruicong&rft.au=Chi%2C+Heng%E2%80%90Yu&rft.au=Li%2C+Xiang&rft.au=Lu%2C+Dongwei&rft.date=2020-02-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=30&rft.issue=7&rft_id=info:doi/10.1002%2Fadfm.201907089&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adfm_201907089 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |