Aqueously Cathodic Deposition of ZIF‐8 Membranes for Superior Propylene/Propane Separation

Electrochemical deposition has emerged as a novel approach to fabricate metal–organic framework (MOF) films. Here, for the first time, an aqueously cathodic deposition (ACD) approach is developed to fabricate ZIF‐8 type of MOF membranes without addition of any supporting electrolyte or modulator. Th...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 30; no. 7
Main Authors Wei, Ruicong, Chi, Heng‐Yu, Li, Xiang, Lu, Dongwei, Wan, Yi, Yang, Chih‐Wen, Lai, Zhiping
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.02.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Electrochemical deposition has emerged as a novel approach to fabricate metal–organic framework (MOF) films. Here, for the first time, an aqueously cathodic deposition (ACD) approach is developed to fabricate ZIF‐8 type of MOF membranes without addition of any supporting electrolyte or modulator. The fabrication process uses 100% water as the sole solvent and a low‐defect density membrane is obtained in only 60 min under room temperature without any pre‐synthesis treatment. The membrane exhibits superior performance in C3H6/C3H8 separation with 182 GPU C3H6 permeance and 142 selectivity, making it sit at the upper bound of permeance versus selectivity graph, outperforming majority of the published data up to 2019. Notably, this approach uses an extremely low current density (0.13 mA cm−2) operated under an ultrafacile apparatus set‐up, enabling an attractive way for environmentally friendly, energy efficient, and easily scalable MOF membrane fabrications. This work demonstrates a great potential of aqueously electrochemical deposition of MOF membrane in the future research. An ultrathin ZIF‐8 membrane with ≈500 nm thickness is fabricated via a novel aqueous cathodic deposition method. The membrane shows superior C3H6/C3H8 separation performance with the permeance of C3H6 up to 182 GPU and a selectivity of C3H6 over C3H8 up to 142, which surpasses all the reported membrane performances prepared by conventional methods.
AbstractList Electrochemical deposition has emerged as a novel approach to fabricate metal–organic framework (MOF) films. Here, for the first time, an aqueously cathodic deposition (ACD) approach is developed to fabricate ZIF‐8 type of MOF membranes without addition of any supporting electrolyte or modulator. The fabrication process uses 100% water as the sole solvent and a low‐defect density membrane is obtained in only 60 min under room temperature without any pre‐synthesis treatment. The membrane exhibits superior performance in C3H6/C3H8 separation with 182 GPU C3H6 permeance and 142 selectivity, making it sit at the upper bound of permeance versus selectivity graph, outperforming majority of the published data up to 2019. Notably, this approach uses an extremely low current density (0.13 mA cm−2) operated under an ultrafacile apparatus set‐up, enabling an attractive way for environmentally friendly, energy efficient, and easily scalable MOF membrane fabrications. This work demonstrates a great potential of aqueously electrochemical deposition of MOF membrane in the future research. An ultrathin ZIF‐8 membrane with ≈500 nm thickness is fabricated via a novel aqueous cathodic deposition method. The membrane shows superior C3H6/C3H8 separation performance with the permeance of C3H6 up to 182 GPU and a selectivity of C3H6 over C3H8 up to 142, which surpasses all the reported membrane performances prepared by conventional methods.
Electrochemical deposition has emerged as a novel approach to fabricate metal–organic framework (MOF) films. Here, for the first time, an aqueously cathodic deposition (ACD) approach is developed to fabricate ZIF‐8 type of MOF membranes without addition of any supporting electrolyte or modulator. The fabrication process uses 100% water as the sole solvent and a low‐defect density membrane is obtained in only 60 min under room temperature without any pre‐synthesis treatment. The membrane exhibits superior performance in C 3 H 6 /C 3 H 8 separation with 182 GPU C 3 H 6 permeance and 142 selectivity, making it sit at the upper bound of permeance versus selectivity graph, outperforming majority of the published data up to 2019. Notably, this approach uses an extremely low current density (0.13 mA cm −2 ) operated under an ultrafacile apparatus set‐up, enabling an attractive way for environmentally friendly, energy efficient, and easily scalable MOF membrane fabrications. This work demonstrates a great potential of aqueously electrochemical deposition of MOF membrane in the future research.
Electrochemical deposition has emerged as a novel approach to fabricate metal–organic framework (MOF) films. Here, for the first time, an aqueously cathodic deposition (ACD) approach is developed to fabricate ZIF‐8 type of MOF membranes without addition of any supporting electrolyte or modulator. The fabrication process uses 100% water as the sole solvent and a low‐defect density membrane is obtained in only 60 min under room temperature without any pre‐synthesis treatment. The membrane exhibits superior performance in C3H6/C3H8 separation with 182 GPU C3H6 permeance and 142 selectivity, making it sit at the upper bound of permeance versus selectivity graph, outperforming majority of the published data up to 2019. Notably, this approach uses an extremely low current density (0.13 mA cm−2) operated under an ultrafacile apparatus set‐up, enabling an attractive way for environmentally friendly, energy efficient, and easily scalable MOF membrane fabrications. This work demonstrates a great potential of aqueously electrochemical deposition of MOF membrane in the future research.
Author Chi, Heng‐Yu
Yang, Chih‐Wen
Wei, Ruicong
Lu, Dongwei
Lai, Zhiping
Li, Xiang
Wan, Yi
Author_xml – sequence: 1
  givenname: Ruicong
  surname: Wei
  fullname: Wei, Ruicong
  organization: King Abdullah University of Science and Technology
– sequence: 2
  givenname: Heng‐Yu
  surname: Chi
  fullname: Chi, Heng‐Yu
  organization: King Abdullah University of Science and Technology
– sequence: 3
  givenname: Xiang
  surname: Li
  fullname: Li, Xiang
  organization: King Abdullah University of Science and Technology
– sequence: 4
  givenname: Dongwei
  surname: Lu
  fullname: Lu, Dongwei
  organization: King Abdullah University of Science and Technology
– sequence: 5
  givenname: Yi
  surname: Wan
  fullname: Wan, Yi
  organization: King Abdullah University of Science and Technology
– sequence: 6
  givenname: Chih‐Wen
  surname: Yang
  fullname: Yang, Chih‐Wen
  organization: King Abdullah University of Science and Technology
– sequence: 7
  givenname: Zhiping
  orcidid: 0000-0001-9555-6009
  surname: Lai
  fullname: Lai, Zhiping
  email: zhiping.lai@kaust.edu.sa
  organization: King Abdullah University of Science and Technology
BookMark eNqFkNFKwzAUhoNMcJveeh3wulvSdE1zOTangw2FKYgIJU1PsKNratIivfMRfEafxNbJBEG8OeeH_N85Of8A9QpTAELnlIwoIf5Ypno38gkVhJNIHKE-DWnoMeJHvYOmDydo4NyWEMo5C_roafpSg6ld3uCZrJ5Nmik8h9K4rMpMgY3Gj8vFx9t7hNewS6wswGFtLN7UJdisFbfWlE0OBYw71b7jDZTSyg4_Rcda5g7OvvsQ3S8u72bX3urmajmbrjwV-ER4gus0FMCJ5pHWoSIpVRQCmUQTohjzoa0SJE9TSQMuZQDJRAhJUpEEVGvFhuhiP7e0pj3HVfHW1LZoV8Y-mzAW0kj4rSvYu5Q1zlnQscqqr39WVmZ5TEnc5Rh3OcaHHFts9AsrbbaTtvkbEHvgNcuh-ccdT-eL9Q_7CR8Tio0
CitedBy_id crossref_primary_10_1021_acs_iecr_3c00795
crossref_primary_10_1002_adma_202002165
crossref_primary_10_1021_jacs_0c07481
crossref_primary_10_1002_anie_202502862
crossref_primary_10_1016_j_cej_2023_143048
crossref_primary_10_1002_smll_202401594
crossref_primary_10_1002_anie_202017089
crossref_primary_10_1016_j_ccr_2023_215101
crossref_primary_10_1016_j_seppur_2024_128586
crossref_primary_10_1021_acsabm_1c00473
crossref_primary_10_1002_anie_202309095
crossref_primary_10_1002_chem_202401868
crossref_primary_10_1016_j_est_2023_109786
crossref_primary_10_1021_acs_energyfuels_2c01427
crossref_primary_10_1002_advs_202001398
crossref_primary_10_1002_smll_202208177
crossref_primary_10_1002_anie_202300262
crossref_primary_10_1002_ange_202502862
crossref_primary_10_1016_j_seppur_2021_119044
crossref_primary_10_1021_acsami_3c19491
crossref_primary_10_1021_acs_iecr_3c02048
crossref_primary_10_1063_5_0169507
crossref_primary_10_3934_matersci_2022012
crossref_primary_10_1021_acsmaterialslett_0c00560
crossref_primary_10_1039_D0TA03749D
crossref_primary_10_1080_10643389_2020_1849893
crossref_primary_10_1039_D1TA08705C
crossref_primary_10_1002_adfm_202208064
crossref_primary_10_4019_bjscc_83_28
crossref_primary_10_1016_j_scib_2020_07_010
crossref_primary_10_1002_ange_202108485
crossref_primary_10_1002_ange_202017089
crossref_primary_10_1021_acsami_4c13500
crossref_primary_10_1039_D3EW00852E
crossref_primary_10_1016_j_pmatsci_2025_101432
crossref_primary_10_1016_j_memsci_2021_119175
crossref_primary_10_1002_ange_202008943
crossref_primary_10_1002_smll_202301460
crossref_primary_10_1016_j_jechem_2021_09_009
crossref_primary_10_1016_j_seppur_2023_124751
crossref_primary_10_1021_acsami_3c01936
crossref_primary_10_1021_acs_langmuir_2c01317
crossref_primary_10_1038_s41563_023_01669_z
crossref_primary_10_1002_aic_17410
crossref_primary_10_1002_ange_202300262
crossref_primary_10_1021_acsmaterialslett_2c00294
crossref_primary_10_1016_j_seppur_2023_123987
crossref_primary_10_1021_acsami_1c21077
crossref_primary_10_3390_polym15081950
crossref_primary_10_1016_j_seppur_2021_120045
crossref_primary_10_1021_acsmaterialslett_2c00119
crossref_primary_10_1021_acs_energyfuels_3c00212
crossref_primary_10_1016_j_cej_2024_157192
crossref_primary_10_1039_D0CS00552E
crossref_primary_10_3390_membranes13090782
crossref_primary_10_1016_j_colsurfa_2021_127950
crossref_primary_10_1002_aic_18385
crossref_primary_10_1002_smtd_202300278
crossref_primary_10_1002_ange_202309095
crossref_primary_10_1002_anie_202108485
crossref_primary_10_1002_adma_202201423
crossref_primary_10_1002_adfm_202105577
crossref_primary_10_1039_D2TA00226D
crossref_primary_10_1080_10643389_2021_1975444
crossref_primary_10_1016_j_cej_2024_155773
crossref_primary_10_1126_sciadv_abm6741
crossref_primary_10_1002_aic_17889
crossref_primary_10_1149_1945_7111_abc6c6
crossref_primary_10_1002_anie_202404058
crossref_primary_10_1002_smll_202107108
crossref_primary_10_1021_acsmaterialslett_1c00815
crossref_primary_10_1002_adfm_202303447
crossref_primary_10_1039_D3CS00131H
crossref_primary_10_1002_aic_18455
crossref_primary_10_1039_D0CS00786B
crossref_primary_10_3390_membranes12121205
crossref_primary_10_1021_acs_iecr_1c04986
crossref_primary_10_1002_anie_202008943
crossref_primary_10_1021_acsmaterialslett_5c00361
crossref_primary_10_1126_sciadv_ads6315
crossref_primary_10_1021_acs_analchem_2c05668
crossref_primary_10_3390_membranes11050310
crossref_primary_10_1016_j_seppur_2021_119109
crossref_primary_10_1002_aenm_202402441
crossref_primary_10_1039_D4AY00691G
crossref_primary_10_1146_annurev_chembioeng_092320_120148
crossref_primary_10_1002_ange_202404058
crossref_primary_10_1021_acs_jpclett_1c01834
crossref_primary_10_1021_acsapm_4c02014
crossref_primary_10_1021_acsomega_1c05126
crossref_primary_10_3390_membranes12111062
crossref_primary_10_1039_D3TC04366E
crossref_primary_10_1021_acssuschemeng_4c05575
crossref_primary_10_1002_adfm_202314683
crossref_primary_10_1039_D0TA00406E
crossref_primary_10_1016_j_jcis_2024_03_181
Cites_doi 10.1039/C1CE06002C
10.1021/acs.jpclett.5b02683
10.1038/nmat4509
10.1039/C7TA06049A
10.1021/cm103571y
10.1039/c0cc05002d
10.1126/science.aat4123
10.1021/jz300855a
10.1002/anie.201808465
10.1016/j.memsci.2011.11.024
10.1021/ja9039983
10.1021/ja2041546
10.1021/acs.jpcc.6b09778
10.1002/adfm.201707427
10.1039/C5RA17024A
10.1039/C5CP02230D
10.1039/C4TA05116E
10.1039/C6TA07860E
10.1021/jp401367k
10.1016/j.coche.2018.03.002
10.1016/j.memsci.2015.06.019
10.1021/acs.jpclett.5b01135
10.1021/cm900069f
10.1039/C5CS00292C
10.1073/pnas.0602439103
10.1006/jssc.1998.8284
10.1016/j.solidstatesciences.2017.05.002
10.1039/C7CS00315C
10.1002/celc.201402429
10.1039/C6TA02118B
10.1021/cm504806p
ContentType Journal Article
Copyright 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.201907089
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList
CrossRef
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 10_1002_adfm_201907089
ADFM201907089
Genre article
GrantInformation_xml – fundername: KAUST
  funderid: URF/1/3435
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
AAHHS
AANHP
AAYXX
ACBWZ
ACCFJ
ACRPL
ACYXJ
ADNMO
ADZOD
AEEZP
AEQDE
AGQPQ
AIWBW
AJBDE
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
HF~
HVGLF
LW6
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-c4209-97fd69e70f78ff6c0d1c1e4ab850c332e0c3aea7dda147aa4eb599a0d9b41ffc3
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Fri Jul 25 04:14:00 EDT 2025
Tue Jul 01 04:12:06 EDT 2025
Thu Apr 24 23:12:23 EDT 2025
Sun Jul 06 04:45:00 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4209-97fd69e70f78ff6c0d1c1e4ab850c332e0c3aea7dda147aa4eb599a0d9b41ffc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9555-6009
PQID 2353361892
PQPubID 2045204
PageCount 7
ParticipantIDs proquest_journals_2353361892
crossref_citationtrail_10_1002_adfm_201907089
crossref_primary_10_1002_adfm_201907089
wiley_primary_10_1002_adfm_201907089_ADFM201907089
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-02-01
PublicationDateYYYYMMDD 2020-02-01
PublicationDate_xml – month: 02
  year: 2020
  text: 2020-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2015; 493
2016; 4
2015; 2
2018; 28
2012; 3
2009; 21
2011 2018; 133 4
2015; 3
2015; 44
2015 2012; 27 14
2017 2018; 46 361
2013; 117
1999; 146
2012; 390–391
2011; 23
2009; 131
2011; 47
2016 2019; 15 58
2018; 20
2017 2015; 5 5
2006; 103
2017 2017; 5 69
2015 2016; 17 120
2016 2015; 7 6
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_8_2
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_2
e_1_2_7_19_1
e_1_2_7_17_2
e_1_2_7_18_1
e_1_2_7_17_1
Zhou S. (e_1_2_7_12_2) 2018; 4
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_14_2
e_1_2_7_15_1
e_1_2_7_1_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_24_2
e_1_2_7_23_2
e_1_2_7_24_1
e_1_2_7_22_2
e_1_2_7_23_1
e_1_2_7_22_1
e_1_2_7_21_1
e_1_2_7_20_1
References_xml – volume: 15 58
  start-page: 304 1123
  year: 2016 2019
  publication-title: Nat. Mater. Angew. Chem., Int. Ed.
– volume: 46 361
  start-page: 5730 1008
  year: 2017 2018
  publication-title: Chem. Soc. Rev. Science
– volume: 4
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 21
  start-page: 2580
  year: 2009
  publication-title: Chem. Mater.
– volume: 47
  start-page: 2071
  year: 2011
  publication-title: Chem. Commun.
– volume: 2
  start-page: 462
  year: 2015
  publication-title: ChemElectroChem
– volume: 20
  start-page: 78
  year: 2018
  publication-title: Curr. Opin. Chem. Eng.
– volume: 133 4
  year: 2011 2018
  publication-title: J. Am. Chem. Soc. Sci. Avd.
– volume: 27 14
  start-page: 1801 492
  year: 2015 2012
  publication-title: Chem. Mater. CrystEngComm
– volume: 146
  start-page: 13
  year: 1999
  publication-title: J. Solid State Chem.
– volume: 131
  year: 2009
  publication-title: J. Am. Chem. Soc.
– volume: 23
  start-page: 2130
  year: 2011
  publication-title: Chem. Mater.
– volume: 3
  start-page: 2130
  year: 2012
  publication-title: J. Phys. Chem. Lett.
– volume: 5 5
  year: 2017 2015
  publication-title: J. Mater. Chem. A RSC Adv.
– volume: 103
  year: 2006
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 390–391
  start-page: 93
  year: 2012
  publication-title: J. Membr. Sci.
– volume: 117
  start-page: 7565
  year: 2013
  publication-title: J. Phys. Chem. C
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 44
  start-page: 7128
  year: 2015
  publication-title: Chem. Soc. Rev.
– volume: 17 120
  year: 2015 2016
  publication-title: Phys. Chem. Chem. Phys. J. Phys. Chem. C
– volume: 5 69
  start-page: 952 13
  year: 2017 2017
  publication-title: J. Mater. Chem. A Solid State Sci.
– volume: 7 6
  start-page: 459 3437
  year: 2016 2015
  publication-title: J. Phys. Chem. Lett. J. Phys. Chem. Lett.
– volume: 493
  start-page: 88
  year: 2015
  publication-title: J. Membr. Sci.
– volume: 3
  start-page: 2999
  year: 2015
  publication-title: J. Mater. Chem. A
– ident: e_1_2_7_14_2
  doi: 10.1039/C1CE06002C
– ident: e_1_2_7_24_1
  doi: 10.1021/acs.jpclett.5b02683
– ident: e_1_2_7_17_1
  doi: 10.1038/nmat4509
– ident: e_1_2_7_22_1
  doi: 10.1039/C7TA06049A
– ident: e_1_2_7_16_1
  doi: 10.1021/cm103571y
– ident: e_1_2_7_15_1
  doi: 10.1039/c0cc05002d
– ident: e_1_2_7_8_2
  doi: 10.1126/science.aat4123
– ident: e_1_2_7_5_1
  doi: 10.1021/jz300855a
– ident: e_1_2_7_17_2
  doi: 10.1002/anie.201808465
– ident: e_1_2_7_6_1
  doi: 10.1016/j.memsci.2011.11.024
– ident: e_1_2_7_4_1
  doi: 10.1021/ja9039983
– ident: e_1_2_7_12_1
  doi: 10.1021/ja2041546
– ident: e_1_2_7_23_2
  doi: 10.1021/acs.jpcc.6b09778
– ident: e_1_2_7_13_1
  doi: 10.1002/adfm.201707427
– ident: e_1_2_7_22_2
  doi: 10.1039/C5RA17024A
– ident: e_1_2_7_23_1
  doi: 10.1039/C5CP02230D
– ident: e_1_2_7_18_1
  doi: 10.1039/C4TA05116E
– ident: e_1_2_7_19_1
  doi: 10.1039/C6TA07860E
– ident: e_1_2_7_21_1
  doi: 10.1021/jp401367k
– ident: e_1_2_7_2_1
  doi: 10.1016/j.coche.2018.03.002
– ident: e_1_2_7_7_1
  doi: 10.1016/j.memsci.2015.06.019
– ident: e_1_2_7_24_2
  doi: 10.1021/acs.jpclett.5b01135
– ident: e_1_2_7_11_1
  doi: 10.1021/cm900069f
– volume: 4
  start-page: eaau1393
  year: 2018
  ident: e_1_2_7_12_2
  publication-title: Sci. Avd.
– ident: e_1_2_7_1_1
  doi: 10.1039/C5CS00292C
– ident: e_1_2_7_3_1
  doi: 10.1073/pnas.0602439103
– ident: e_1_2_7_20_1
  doi: 10.1006/jssc.1998.8284
– ident: e_1_2_7_19_2
  doi: 10.1016/j.solidstatesciences.2017.05.002
– ident: e_1_2_7_8_1
  doi: 10.1039/C7CS00315C
– ident: e_1_2_7_10_1
  doi: 10.1002/celc.201402429
– ident: e_1_2_7_9_1
  doi: 10.1039/C6TA02118B
– ident: e_1_2_7_14_1
  doi: 10.1021/cm504806p
SSID ssj0017734
Score 2.6209671
Snippet Electrochemical deposition has emerged as a novel approach to fabricate metal–organic framework (MOF) films. Here, for the first time, an aqueously cathodic...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms aqueous
Deposition
electrochemical
Low currents
Materials science
Membranes
Metal-organic frameworks
MOF membrane
Propylene
propylene/propane separation
Reluctance
Room temperature
Selectivity
Separation
Upper bounds
ZIF‐8
Title Aqueously Cathodic Deposition of ZIF‐8 Membranes for Superior Propylene/Propane Separation
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201907089
https://www.proquest.com/docview/2353361892
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA4yX_TBuzgvIw-CT3VNmjbN43AOFSfiFIYIJVcQdZVdHuaTP8Hf6C8xadduE0TQl5LSpJzmnJPztT3nCwCHFrRJFiDjBUoRz1pI4HEZS4_HioZhZDQTWZbvVXR2Ry66YXemij_nhyg_uDnPyNZr5-BcDOpT0lCujKsktwGN-rGr4HMJWw4V3ZT8UYjS_LdyhFyCF-oWrI0-rs8Pn49KU6g5C1iziNNaBbyQNU80eToeDcWxfPtG4_ifh1kDKxM4Chu5_ayDBd3bAMszJIWb4KFhpUxHg-cxdOWCqXqUsKmLZC-YGnh_3vp8_4hhW79YGezaCS0Shp2RI1G2jet--jq2wU3XXctehx2dM46nvS1w1zq9PTnzJnsyeJJgn3mMGhUxTX1DY2Mi6SskkSZcxKEvgwBre-SaU6U4IpRzokXIGPcVEwQZI4NtUOmlPb0DoLBQLBJck1BKEioqCDOBYwDDkoZK-1XgFTpJ5ISw3O2b8ZzkVMs4cbOWlLNWBUdl_9ecquPHnvuFipOJyw4SHFjkG6GY4SrAma5-uUvSaLba5dnuXwbtgSXs3t-zLPB9UBn2R_rAgpyhqIHFRrN92allBv0F6_P3SA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NTtwwEB5ROLQ9tPRP3ZYfH1r1FDZ2nDg-9LBiWe0WFlUFpFVVKfhXqoANYndVLSceoa_SV-EReBLs_AGVqkqVOPQSOYpjxZ4Zz-fJ-DPAOwfaFI-wDSKtaeA0JAqESlUgUs3iOLGGyyLLdzfpH9BPo3i0AL_qvTAlP0QTcPOWUczX3sB9QLp9wxoqtPVbyZ1HY2HKq7zKbTP_4VZtk4-DrhPxe0J6W_ub_aA6WCBQlIQ84MzqhBsWWpZam6hQY4UNFTKNQxVFxLirMIJpLTBlQlAjY85FqLmk2FoVuXYfwJI_RtzT9Xe_NIxVmLHyR3aCfUoZHtU8kSFp3_3eu37wBtzehsiFj-s9hct6dMrUlqON2VRuqPPfiCP_q-FbhicV4kad0kSewYIZP4fHt3gYX8C3jhuWfDY5niO_IzLX3xXqmjqfDeUWfR30ri5-pmhoTlynnXtADuyjvZnniXaFz2f56dz5b9P2Jfcc7ZmSVD0fv4SDe-neK1gc52PzGpB0aDORwtBYKRprJim3kSc5I4rF2oQtCGolyFTFye6PBjnOSjZpknkpZY2UWvChqX9aspH8seZKrVNZNStNMhI5cJ_glJMWkEI5_tJK1un2hs3dm395aR0e9veHO9nOYHf7LTwiPlxRJL2vwOL0bGZWHaabyrXCihAc3rfeXQNglVbk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3dahQxFD7UCqIX_ourVXOheDXdJJOZTC68WDoOXWtLsRYWEcb8glh3lu4usl75CD6Kr-Ir9ElM5q-tIILQC2-GDJMJk5xzcr5kTr4D8NSDNi1i4qLYGBZ5DYkjqTMdyczwJEmdFaqO8t1Ltw_Zq0kyWYMf3VmYhh-i33ALllHP18HAZ8YNT0lDpXHhJLl3aBxnog2r3LGrL37RNn8xzr2En1FavHy7tR21eQUizSgWkeDOpMJy7HjmXKqxIZpYJlWWYB3H1PqrtJIbIwnjUjKrEiEkNkIx4pyOfbuX4DJLsQjJIvI3PWEV4bz5j52SEFFGJh1NJKbD89973g2eYtuzCLl2ccUN-NkNThPZ8mlzuVCb-utvvJH_0-jdhOst3kajxkBuwZqd3oZrZ1gY78D7kR-Vajk_WqFwHrIyHzXKbRfNhiqH3o2Lk2_fM7RrP_s-e-eAPNRHB8vAEu0L-8fVbOW9tx2Gkn-ODmxDqV5N78LhhXTvHqxPq6m9D0h5rJkqaVmiNUsMV0y4OFCcUc0TY_EAok4HSt0ysofEIEdlwyVNyyClspfSAJ739WcNF8kfa250KlW2c9K8pLGH9inJBB0ArXXjL62Uo7zY7e8e_MtLT-DKfl6Ur8d7Ow_hKg17FXXE-wasL46X9pEHdAv1uLYhBB8uWu1-AfFbVZM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Aqueously+Cathodic+Deposition+of+ZIF%E2%80%908+Membranes+for+Superior+Propylene%2FPropane+Separation&rft.jtitle=Advanced+functional+materials&rft.au=Wei%2C+Ruicong&rft.au=Chi%2C+Heng%E2%80%90Yu&rft.au=Li%2C+Xiang&rft.au=Lu%2C+Dongwei&rft.date=2020-02-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=30&rft.issue=7&rft_id=info:doi/10.1002%2Fadfm.201907089&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adfm_201907089
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon