Injectable and Tunable Gelatin Hydrogels Enhance Stem Cell Retention and Improve Cutaneous Wound Healing
Stem cells have shown substantial promise for various diseases in preclinical and clinical trials. However, low cell engraftment rates significantly limit the clinical translation of stem cell therapeutics. Numerous injectable hydrogels have been developed to enhance cell retention. Yet, the design...
Saved in:
Published in | Advanced functional materials Vol. 27; no. 24 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
27.06.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Stem cells have shown substantial promise for various diseases in preclinical and clinical trials. However, low cell engraftment rates significantly limit the clinical translation of stem cell therapeutics. Numerous injectable hydrogels have been developed to enhance cell retention. Yet, the design of an ideal material with tunable properties that can mimic different tissue niches and regulate stem cell behaviors remains an unfulfilled promise. Here, an injectable poly(ethylene glycol) (PEG)–gelatin hydrogel is designed with highly tunable properties, from a multifunctional PEG‐based hyperbranched polymer and a commercially available thiolated gelatin. Spontaneous gelation occurs within about 2 min under the physiological condition. Murine adipose‐derived stem cells (ASCs) can be easily encapsulated into the hydrogel, which supports ASC growth and maintains their stemness. The hydrogel mechanical properties, biodegradability, and cellular responses can be finely controlled by changing hydrogel formulation and cell seeding densities. An animal study shows that the in situ formed hydrogel significantly improves cell retention, enhances angiogenesis, and accelerates wound closure using a murine wound healing model. These data suggest that injectable PEG–gelatin hydrogel can be used for regulating stem cell behaviors in 3D culture, delivering cells for wound healing and other tissue regeneration applications.
An injectable poly(ethylene glycol) (PEG)–gelatin hydrogel is designed from a multifunctional PEG‐based hyperbranched polymer and a commercially available thiolated gelatin. Spontaneous gelation occurs within 2 min under the physiological condition, with finely controlled hydrogel properties. The in situ formed hydrogel significantly improves cell retention, enhances angiogenesis, and accelerates wound closure in a murine wound model. |
---|---|
AbstractList | Stem cells have shown substantial promise for various diseases in preclinical and clinical trials. However, low cell engraftment rates significantly limit the clinical translation of stem cell therapeutics. Numerous injectable hydrogels have been developed to enhance cell retention. Yet, the design of an ideal material with tunable properties that can mimic different tissue niches and regulate stem cell behaviors remains an unfulfilled promise. Here, an injectable poly(ethylene glycol) (PEG)–gelatin hydrogel is designed with highly tunable properties, from a multifunctional PEG‐based hyperbranched polymer and a commercially available thiolated gelatin. Spontaneous gelation occurs within about 2 min under the physiological condition. Murine adipose‐derived stem cells (ASCs) can be easily encapsulated into the hydrogel, which supports ASC growth and maintains their stemness. The hydrogel mechanical properties, biodegradability, and cellular responses can be finely controlled by changing hydrogel formulation and cell seeding densities. An animal study shows that the in situ formed hydrogel significantly improves cell retention, enhances angiogenesis, and accelerates wound closure using a murine wound healing model. These data suggest that injectable PEG–gelatin hydrogel can be used for regulating stem cell behaviors in 3D culture, delivering cells for wound healing and other tissue regeneration applications.
An injectable poly(ethylene glycol) (PEG)–gelatin hydrogel is designed from a multifunctional PEG‐based hyperbranched polymer and a commercially available thiolated gelatin. Spontaneous gelation occurs within 2 min under the physiological condition, with finely controlled hydrogel properties. The in situ formed hydrogel significantly improves cell retention, enhances angiogenesis, and accelerates wound closure in a murine wound model. Stem cells have shown substantial promise for various diseases in preclinical and clinical trials. However, low cell engraftment rates significantly limit the clinical translation of stem cell therapeutics. Numerous injectable hydrogels have been developed to enhance cell retention. Yet, the design of an ideal material with tunable properties that can mimic different tissue niches and regulate stem cell behaviors remains an unfulfilled promise. Here, an injectable poly(ethylene glycol) (PEG)-gelatin hydrogel is designed with highly tunable properties, from a multifunctional PEG-based hyperbranched polymer and a commercially available thiolated gelatin. Spontaneous gelation occurs within about 2 min under the physiological condition. Murine adipose-derived stem cells (ASCs) can be easily encapsulated into the hydrogel, which supports ASC growth and maintains their stemness. The hydrogel mechanical properties, biodegradability, and cellular responses can be finely controlled by changing hydrogel formulation and cell seeding densities. An animal study shows that the in situ formed hydrogel significantly improves cell retention, enhances angiogenesis, and accelerates wound closure using a murine wound healing model. These data suggest that injectable PEG-gelatin hydrogel can be used for regulating stem cell behaviors in 3D culture, delivering cells for wound healing and other tissue regeneration applications. |
Author | Kwon, Sun H. Rodrigues, Melanie Gurtner, Geoffrey C. Khong, Sacha Wang, Wenxin Li, Xiaolin Kosaric, Nina A, Sigen Dong, Yixiao Gao, Yongsheng |
Author_xml | – sequence: 1 givenname: Yixiao surname: Dong fullname: Dong, Yixiao email: yixiaod@stanford.edu organization: University College Dublin – sequence: 2 givenname: Sigen surname: A fullname: A, Sigen organization: University College Dublin – sequence: 3 givenname: Melanie surname: Rodrigues fullname: Rodrigues, Melanie organization: Stanford University School of Medicine – sequence: 4 givenname: Xiaolin surname: Li fullname: Li, Xiaolin organization: University College Dublin – sequence: 5 givenname: Sun H. surname: Kwon fullname: Kwon, Sun H. organization: Stanford University School of Medicine – sequence: 6 givenname: Nina surname: Kosaric fullname: Kosaric, Nina organization: Stanford University School of Medicine – sequence: 7 givenname: Sacha surname: Khong fullname: Khong, Sacha organization: Stanford University School of Medicine – sequence: 8 givenname: Yongsheng surname: Gao fullname: Gao, Yongsheng organization: University College Dublin – sequence: 9 givenname: Wenxin surname: Wang fullname: Wang, Wenxin organization: University College Dublin – sequence: 10 givenname: Geoffrey C. surname: Gurtner fullname: Gurtner, Geoffrey C. email: ggurtner@stanford.edu organization: Stanford University School of Medicine |
BookMark | eNqFkN1LwzAUxYNMcE5ffQ743Jmkado8jrovmAg60beQtrdbR5rONlX239ttMkEQn-7hcn7341yinq0sIHRDyZASwu50lpdDRqggQlB5hvpUUOH5hEW9k6ZvF-iyaTaE0DD0eR-t53YDqdOJAaxthpetPegpGO0Ki2e7rK5WYBo8tmttU8DPDkocgzH4CRxYV1T2QM7LbV19AI5bpy1UbYNfq7brz0Cbwq6u0HmuTQPX33WAXibjZTzzFo_TeTxaeClnRHo8YCHzc5EQzYSWWRrmBIiIMgiZCCDRQRDkPPK7fi54zqjIiAwlTX2fcJlwf4Buj3O7a95baJzaVG1tu5WKSkY4DSMadi5-dKV11TQ15CotnN7_4mpdGEWJ2meq9pmqU6YdNvyFbeui1PXub0Aegc_CwO4ftxrdTx5-2C8pOYum |
CitedBy_id | crossref_primary_10_1007_s40495_024_00352_4 crossref_primary_10_1016_j_carbpol_2021_117808 crossref_primary_10_3389_fbioe_2022_813805 crossref_primary_10_1089_ten_teb_2016_0442 crossref_primary_10_1016_j_ijbiomac_2024_134424 crossref_primary_10_1155_2019_7135974 crossref_primary_10_1038_s41570_020_0170_7 crossref_primary_10_1186_s13287_020_01901_6 crossref_primary_10_1016_j_ijbiomac_2021_10_180 crossref_primary_10_1039_C8BM01579A crossref_primary_10_3390_molecules27207003 crossref_primary_10_1016_j_cej_2021_129335 crossref_primary_10_1016_j_jddst_2021_102415 crossref_primary_10_1021_acsami_9b22062 crossref_primary_10_1021_acsami_1c09889 crossref_primary_10_1039_D2BM00907B crossref_primary_10_1016_j_msec_2019_109930 crossref_primary_10_1021_acsomega_8b00308 crossref_primary_10_1002_adhm_202202309 crossref_primary_10_1007_s00396_019_04498_2 crossref_primary_10_1002_smll_202105997 crossref_primary_10_1016_j_cej_2024_152513 crossref_primary_10_1016_j_actbio_2019_01_001 crossref_primary_10_1016_j_biomaterials_2021_120838 crossref_primary_10_1016_j_bbrc_2021_08_026 crossref_primary_10_1080_15583724_2021_1897995 crossref_primary_10_1016_j_ijpharm_2020_119219 crossref_primary_10_3390_gels7040207 crossref_primary_10_1002_adma_202208622 crossref_primary_10_3390_gels10020097 crossref_primary_10_1016_j_bioadv_2023_213640 crossref_primary_10_1039_D3TB02105J crossref_primary_10_1016_j_cej_2021_133860 crossref_primary_10_1021_acsomega_9b00291 crossref_primary_10_1007_s42765_023_00364_7 crossref_primary_10_1002_adhm_202001571 crossref_primary_10_1016_j_cjche_2020_12_005 crossref_primary_10_1016_j_mce_2020_111039 crossref_primary_10_3390_pharmaceutics17010003 crossref_primary_10_18632_aging_202773 crossref_primary_10_1039_D2SM01158A crossref_primary_10_1021_acsnano_1c04206 crossref_primary_10_1016_j_jconrel_2020_04_014 crossref_primary_10_3390_molecules29204952 crossref_primary_10_1186_s13287_020_02132_5 crossref_primary_10_1016_j_cclet_2021_11_001 crossref_primary_10_1016_j_jconrel_2023_09_013 crossref_primary_10_1002_adhm_202201594 crossref_primary_10_1016_j_ijbiomac_2023_124540 crossref_primary_10_1016_j_cclet_2021_01_048 crossref_primary_10_1016_j_cej_2019_121999 crossref_primary_10_1021_acsabm_9b01215 crossref_primary_10_1016_j_fshw_2020_04_007 crossref_primary_10_1016_j_fshw_2020_04_002 crossref_primary_10_1088_1748_605X_ad0d85 crossref_primary_10_1002_EXP_20210036 crossref_primary_10_3390_gels10060408 crossref_primary_10_1002_adhm_202202737 crossref_primary_10_1016_j_ijpharm_2019_118648 crossref_primary_10_1016_j_giant_2023_100185 crossref_primary_10_1021_acsapm_1c00419 crossref_primary_10_3390_polym13172959 crossref_primary_10_1002_adfm_202001820 crossref_primary_10_1016_j_biomaterials_2018_08_044 crossref_primary_10_1016_j_apsb_2018_12_005 crossref_primary_10_3390_biomedicines9111694 crossref_primary_10_1016_j_actbio_2018_08_029 crossref_primary_10_1021_cbe_4c00173 crossref_primary_10_34133_bmr_0032 crossref_primary_10_1016_j_ijbiomac_2024_135149 crossref_primary_10_1016_j_actbio_2019_04_027 crossref_primary_10_1016_j_addr_2022_114298 crossref_primary_10_2174_0113816128295935240425101509 crossref_primary_10_1002_admi_202200063 crossref_primary_10_1039_D0BM00910E crossref_primary_10_1016_j_bioactmat_2022_01_038 crossref_primary_10_1039_D1QM00489A crossref_primary_10_1016_j_eurpolymj_2017_12_008 crossref_primary_10_1016_j_mtadv_2022_100269 crossref_primary_10_1016_j_foodhyd_2020_106259 crossref_primary_10_1016_j_carbpol_2023_120681 crossref_primary_10_1016_j_addr_2019_04_007 crossref_primary_10_1002_advs_201900520 crossref_primary_10_1016_j_ccr_2024_216330 crossref_primary_10_1021_acs_biomac_8b00819 crossref_primary_10_1021_acs_molpharmaceut_4c00595 crossref_primary_10_34133_2022_9850743 crossref_primary_10_1002_adhm_202000041 crossref_primary_10_1021_acsami_1c04967 crossref_primary_10_1038_s41428_022_00739_4 crossref_primary_10_1039_C8TB03341B crossref_primary_10_1039_D3TB02941G crossref_primary_10_1002_adfm_202208521 crossref_primary_10_1016_j_compositesb_2022_109806 crossref_primary_10_1002_adfm_201807560 crossref_primary_10_1039_D2TB01044E crossref_primary_10_1016_j_ijbiomac_2023_125029 crossref_primary_10_1016_j_jconrel_2020_12_037 crossref_primary_10_1016_j_ijbiomac_2024_131207 crossref_primary_10_1016_j_mtadv_2022_100271 crossref_primary_10_1021_acsabm_3c00378 crossref_primary_10_1038_s41467_024_45703_3 crossref_primary_10_1021_acsapm_3c01926 crossref_primary_10_1002_adhm_202001122 crossref_primary_10_1021_acsabm_0c00294 crossref_primary_10_1016_j_cej_2024_154435 crossref_primary_10_1002_adhm_202301885 crossref_primary_10_1007_s11033_024_09750_9 crossref_primary_10_1016_j_biomaterials_2021_121026 crossref_primary_10_1021_acsabm_8b00349 crossref_primary_10_1002_mame_201800664 crossref_primary_10_1016_j_compositesb_2022_110469 crossref_primary_10_1039_D1TB01320C crossref_primary_10_1186_s12951_022_01634_z crossref_primary_10_1021_acs_biomac_4c01051 crossref_primary_10_1021_acsbiomaterials_8b00230 crossref_primary_10_1016_j_lfs_2020_118381 crossref_primary_10_1021_acsabm_4c01001 crossref_primary_10_1039_C7CC06733J crossref_primary_10_1002_adfm_201808820 crossref_primary_10_1016_j_ijbiomac_2021_06_119 crossref_primary_10_1002_adfm_201907102 crossref_primary_10_1016_j_foodhyd_2019_04_052 crossref_primary_10_1016_j_bioactmat_2023_05_001 crossref_primary_10_1016_j_ijpharm_2021_121074 crossref_primary_10_1186_s13287_022_03115_4 crossref_primary_10_1021_acsami_1c19151 crossref_primary_10_1016_j_bioadv_2022_212776 crossref_primary_10_1039_C8BM00668G crossref_primary_10_1002_adfm_201910748 crossref_primary_10_1002_adhm_202201286 crossref_primary_10_1016_j_compositesb_2022_110239 crossref_primary_10_3390_gels8010056 crossref_primary_10_3390_gels8120821 crossref_primary_10_1002_anbr_202100070 crossref_primary_10_1002_mba2_11 crossref_primary_10_1080_00914037_2024_2383412 crossref_primary_10_3389_fphar_2025_1510508 crossref_primary_10_3390_ijms23062955 crossref_primary_10_1016_j_actbio_2020_03_035 crossref_primary_10_1039_D1TC01601F crossref_primary_10_1016_j_carbpol_2024_122717 crossref_primary_10_1039_D1BM00904D crossref_primary_10_1016_j_addr_2023_115120 crossref_primary_10_1016_j_smaim_2021_11_004 crossref_primary_10_1016_j_ejps_2021_106031 crossref_primary_10_1088_1748_605X_ab9d6f crossref_primary_10_1016_j_msec_2021_112556 crossref_primary_10_1039_D1BM00482D crossref_primary_10_1016_j_foodchem_2019_125597 crossref_primary_10_1002_smll_202310241 crossref_primary_10_1016_j_jconrel_2024_11_041 crossref_primary_10_1101_cshperspect_a041242 crossref_primary_10_1039_C7TB02532G crossref_primary_10_1016_j_ijbiomac_2024_135577 crossref_primary_10_1002_cam4_6521 crossref_primary_10_1007_s00289_022_04527_1 crossref_primary_10_34172_apb_2022_059 crossref_primary_10_1016_j_medj_2021_10_001 crossref_primary_10_1002_adfm_202008515 crossref_primary_10_1021_acsabm_2c00500 crossref_primary_10_1007_s40898_017_0003_8 crossref_primary_10_1002_adbi_202300349 crossref_primary_10_1016_j_ejps_2021_106021 crossref_primary_10_35556_idr_2024_2_107_18_27 crossref_primary_10_1016_j_actbio_2020_03_040 crossref_primary_10_1016_j_ijbiomac_2022_05_065 crossref_primary_10_1016_j_actbio_2021_04_027 crossref_primary_10_1002_anbr_202300088 crossref_primary_10_1021_acsmaterialslett_3c01546 crossref_primary_10_1002_adhm_201900409 crossref_primary_10_1021_acsami_8b11362 crossref_primary_10_1007_s00441_023_03849_4 crossref_primary_10_1016_j_ijbiomac_2024_129453 crossref_primary_10_1002_advs_201802077 crossref_primary_10_1016_j_jcis_2024_05_090 crossref_primary_10_1002_adfm_202207466 crossref_primary_10_1016_j_nantod_2021_101290 crossref_primary_10_3389_fbioe_2021_660145 crossref_primary_10_1016_j_cej_2019_01_028 crossref_primary_10_1002_adhm_201800432 crossref_primary_10_1007_s11426_022_1322_5 crossref_primary_10_1016_j_ijbiomac_2019_07_191 crossref_primary_10_1002_admt_202300411 crossref_primary_10_1016_j_bioadv_2022_213150 crossref_primary_10_1016_j_cej_2024_151342 crossref_primary_10_1021_acsami_7b18927 crossref_primary_10_1039_D3CC00250K crossref_primary_10_1186_s13036_023_00401_4 crossref_primary_10_3390_gels7040263 crossref_primary_10_1016_j_biomaterials_2018_09_003 crossref_primary_10_1016_j_ijbiomac_2024_130780 crossref_primary_10_1021_acs_biomac_4c00313 crossref_primary_10_1016_j_bioactmat_2021_11_032 crossref_primary_10_1016_j_bioactmat_2022_03_039 crossref_primary_10_1021_acsami_2c10088 crossref_primary_10_1002_adma_202006362 crossref_primary_10_1016_j_jddst_2023_104596 crossref_primary_10_1039_D1PY00560J crossref_primary_10_1002_mame_202400402 crossref_primary_10_1088_1361_665X_ab3232 crossref_primary_10_1080_14712598_2019_1596257 crossref_primary_10_1016_j_ijbiomac_2022_12_265 crossref_primary_10_1016_j_biomaterials_2018_12_034 crossref_primary_10_1021_acsami_2c02725 crossref_primary_10_2147_IJN_S461342 crossref_primary_10_1016_j_mser_2020_100543 crossref_primary_10_1016_j_carbpol_2020_117574 crossref_primary_10_1016_j_jcis_2021_10_131 crossref_primary_10_1039_D4TB00608A crossref_primary_10_1016_j_ijbiomac_2022_01_057 crossref_primary_10_1016_j_colsurfb_2022_112987 crossref_primary_10_1016_j_mtbio_2025_101602 crossref_primary_10_1039_C9BM01161G crossref_primary_10_1021_acs_biomac_0c01329 crossref_primary_10_1002_adhm_202101504 crossref_primary_10_3390_ijms252111773 crossref_primary_10_1016_j_mseb_2023_116597 crossref_primary_10_1016_j_eurpolymj_2021_110784 crossref_primary_10_3390_pharmaceutics16040524 crossref_primary_10_1016_j_bioadv_2023_213570 crossref_primary_10_1007_s40195_021_01335_w crossref_primary_10_1002_adhm_202301597 crossref_primary_10_1016_j_biomaterials_2024_122507 crossref_primary_10_1039_C8BM00056E crossref_primary_10_1039_C7TB01108C crossref_primary_10_1002_pol_20240646 crossref_primary_10_1007_s00441_020_03321_7 crossref_primary_10_1021_acs_chemmater_0c02030 crossref_primary_10_1016_j_actbio_2018_05_039 crossref_primary_10_1016_j_carbpol_2022_119202 crossref_primary_10_3390_ph14040291 crossref_primary_10_1016_j_mattod_2019_04_020 crossref_primary_10_1016_j_apmt_2021_100967 crossref_primary_10_1016_j_jddst_2022_103290 crossref_primary_10_1016_j_ijbiomac_2023_128019 crossref_primary_10_1021_acsomega_9b00878 crossref_primary_10_1039_D0TB02480E crossref_primary_10_1039_D3TB00478C crossref_primary_10_1039_D4BM00164H crossref_primary_10_3390_polym15010120 crossref_primary_10_1016_j_actbio_2021_01_038 crossref_primary_10_1016_j_actbio_2023_04_021 crossref_primary_10_3390_ijms25189948 crossref_primary_10_1007_s00289_021_03629_6 crossref_primary_10_1016_j_bioactmat_2020_08_026 crossref_primary_10_1166_jbt_2022_2860 crossref_primary_10_1021_acsnano_3c02273 crossref_primary_10_1002_hsr2_2251 crossref_primary_10_1016_j_isci_2019_03_008 crossref_primary_10_1021_acsami_3c12845 crossref_primary_10_1016_j_colsurfb_2022_112722 crossref_primary_10_1007_s10439_018_02186_w crossref_primary_10_1016_j_carbpol_2021_118506 crossref_primary_10_1002_EXP_20210083 crossref_primary_10_1016_j_actbio_2019_07_035 |
Cites_doi | 10.1016/j.stem.2014.07.012 10.1371/journal.pone.0001886 10.1021/jp808145x 10.1002/adma.201302958 10.1039/b713009k 10.1039/C3BM60149H 10.1039/C1CS15203C 10.1161/CIRCRESAHA.109.208991 10.1186/1471-2121-12-12 10.3390/ma3031746 10.1163/156856200743670 10.1002/jcp.20571 10.1016/j.biomaterials.2009.09.057 10.1016/j.jdermsci.2007.05.018 10.1039/C5PY00678C 10.1039/c0sm00448k 10.1039/c3py01513k 10.1073/pnas.0812334106 10.1371/journal.pone.0055640 10.1073/pnas.0803873105 10.22203/eCM.v025a12 10.1021/ma0480650 10.1016/j.jconrel.2005.09.023 10.1016/j.actbio.2013.12.045 10.1163/156856201744461 10.1111/j.1067-1927.2004.12404.x 10.1016/j.cell.2008.01.038 10.1016/j.biomaterials.2010.08.103 10.1161/ATVBAHA.108.178962 10.1016/j.advenzreg.2006.12.012 10.5966/sctm.2011-0024 10.1186/s13287-015-0083-4 10.1038/nbt1327 10.1002/jps.21210 10.1111/j.1524-475X.2009.00499.x 10.1002/jbm.a.10476 10.1016/j.biomaterials.2015.08.045 10.1016/j.biomaterials.2007.10.053 10.1038/ncomms11945 10.1111/j.1600-0625.2009.00942.x 10.1016/j.biomaterials.2010.08.093 10.1161/CIRCRESAHA.116.303614 10.1089/ten.2006.0278 10.1517/17425247.2013.739156 10.1016/j.biomaterials.2011.09.041 10.1016/j.biomaterials.2004.06.047 10.1016/j.biomaterials.2014.06.053 10.1126/science.3041594 10.1002/adhm.201500757 10.1111/j.1600-0560.2006.00472.x 10.1016/j.jconrel.2014.04.014 10.1038/nm1075 10.1016/j.biomaterials.2010.03.064 10.1089/ten.tea.2011.0391 10.1111/j.1524-475X.2007.00221.x 10.2174/1574888X11308040007 10.1016/j.bbrc.2007.05.054 10.1002/adfm.201101662 10.1016/j.actbio.2016.04.030 10.1002/jemt.10249 10.1016/j.yexcr.2010.05.009 10.1016/j.biomaterials.2011.09.031 10.1016/j.actbio.2015.07.042 10.1016/j.biomaterials.2013.03.095 10.1016/S0142-9612(98)00180-X 10.1126/science.1110542 |
ContentType | Journal Article |
Copyright | 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.201606619 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adfm_201606619 ADFM201606619 |
Genre | article |
GrantInformation_xml | – fundername: NIH funderid: RO1 DK074095 – fundername: Irish Research Council funderid: ELEVATEPD/2014/61 – fundername: DoD funderid: W81XWH‐08‐2‐0033 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ AAHHS AANHP AAYXX ACBWZ ACCFJ ACRPL ACYXJ ADNMO ADZOD AEEZP AEQDE AGQPQ AIWBW AJBDE ASPBG AVWKF AZFZN CITATION FEDTE HF~ HVGLF 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
ID | FETCH-LOGICAL-c4209-452723f6b0a26a9dc7f0e068de7265eba555f483c7ff64f216d09791c33049b43 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Mon Jul 14 08:58:27 EDT 2025 Thu Apr 24 23:12:24 EDT 2025 Tue Jul 01 04:11:39 EDT 2025 Wed Aug 20 07:26:23 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 24 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#am http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4209-452723f6b0a26a9dc7f0e068de7265eba555f483c7ff64f216d09791c33049b43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 1920417817 |
PQPubID | 2045204 |
PageCount | 12 |
ParticipantIDs | proquest_journals_1920417817 crossref_citationtrail_10_1002_adfm_201606619 crossref_primary_10_1002_adfm_201606619 wiley_primary_10_1002_adfm_201606619_ADFM201606619 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 27, 2017 |
PublicationDateYYYYMMDD | 2017-06-27 |
PublicationDate_xml | – month: 06 year: 2017 text: June 27, 2017 day: 27 |
PublicationDecade | 2010 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2017 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2010; 31 2015 2014 2012; 116 15 1 2015; 6 2013 2014; 34 26 2015; 73 2014 2009 2010; 2 106 31 2006 2008; 311 132 2008 2007 2012; 105 13 18 2011; 32 2012 2009 2007 2013 2007 2008; 1 18 15 8 48 34 2008; 3 2011 2007 2006 2009; 12 358 207 17 2008; 97 2001 1999 2000 2016 2003; 12 20 11 38 65A 2005; 26 2005 2014; 109 190 2012; 33 2006 1988; 33 241 2014; 5 2010 2007; 106 25 2013 2010 2008; 10 3 37 2012 2012; 33 47 2010; 316 2013 2013; 25 8 2008; 29 2004; 12 2009 2011 2004; 113 32 10 2014; 35 2003; 60 2005; 38 2009 2016; 29 7 2012; 22 2010; 6 2012; 41 2014; 10 2015 2016; 25 5 e_1_2_7_5_2 e_1_2_7_5_1 e_1_2_7_1_3 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_2 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_17_1 e_1_2_7_1_2 e_1_2_7_15_1 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_11_1 e_1_2_7_26_1 e_1_2_7_26_2 e_1_2_7_26_3 e_1_2_7_28_1 e_1_2_7_28_2 e_1_2_7_28_3 e_1_2_7_25_4 e_1_2_7_25_3 e_1_2_7_25_2 e_1_2_7_23_3 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_23_2 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_21_2 e_1_2_7_33_2 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_35_2 e_1_2_7_37_1 e_1_2_7_6_1 e_1_2_7_4_2 e_1_2_7_4_1 Park B.‐S. (e_1_2_7_29_6) 2008; 34 e_1_2_7_8_2 e_1_2_7_6_3 e_1_2_7_8_1 e_1_2_7_6_2 e_1_2_7_18_1 e_1_2_7_16_2 e_1_2_7_12_5 e_1_2_7_16_1 e_1_2_7_2_1 e_1_2_7_12_4 e_1_2_7_14_2 e_1_2_7_12_3 e_1_2_7_14_1 e_1_2_7_12_2 e_1_2_7_12_1 e_1_2_7_10_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_29_2 e_1_2_7_29_3 e_1_2_7_29_4 e_1_2_7_29_5 e_1_2_7_30_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_20_1 e_1_2_7_36_1 |
References_xml | – volume: 10 3 37 start-page: 59 1746 1473 year: 2013 2010 2008 publication-title: Expert Opin. Drug Delivery Materials Chem. Soc. Rev. – volume: 311 132 start-page: 1880 598 year: 2006 2008 publication-title: Science Cell – volume: 29 7 start-page: 503 11945 year: 2009 2016 publication-title: Arterioscler., Thromb., Vasc. Biol. Nat. Commun. – volume: 106 25 start-page: 479 1015 year: 2010 2007 publication-title: Circ. Res. Nat. Biotechnol. – volume: 316 start-page: 2213 year: 2010 publication-title: Exp. Cell Res. – volume: 33 241 start-page: 465 708 year: 2006 1988 publication-title: J. Cutaneous Pathol. Science – volume: 35 start-page: 8757 year: 2014 publication-title: Biomaterials – volume: 113 32 10 start-page: 3512 107 858 year: 2009 2011 2004 publication-title: J. Phys. Chem. B Biomaterials Nat. Med. – volume: 1 18 15 8 48 34 start-page: 44 921 S18 e55640 15 1323 year: 2012 2009 2007 2013 2007 2008 publication-title: Stem Cells Transl. Med. Exp. Dermatol. Wound Repair Regener. PLoS One J. Dermatol. Sci. Dermatol. Surg. – volume: 12 20 11 38 65A start-page: 77 409 225 59 271 year: 2001 1999 2000 2016 2003 publication-title: J. Biomater. Sci., Polym. Ed. Biomaterials J. Biomater. Sci., Polym. Ed. Acta Biomater. J. Biomed. Mater. Res., Part A – volume: 25 8 start-page: 167 313 year: 2013 2013 publication-title: Eur. Cells Mater. Curr. Stem Cell Res. Ther. – volume: 73 start-page: 254 year: 2015 publication-title: Biomaterials – volume: 6 start-page: 103 year: 2015 publication-title: Stem Cell Res. Ther. – volume: 6 start-page: 6182 year: 2015 publication-title: Polym. Chem. – volume: 25 5 start-page: 291 541 year: 2015 2016 publication-title: Acta Biomater. Adv. Healthcare Mater. – volume: 109 190 start-page: 256 210 year: 2005 2014 publication-title: J. Controlled Release J. Controlled Release – volume: 34 26 start-page: 5521 125 year: 2013 2014 publication-title: Biomaterials Adv. Mater. – volume: 60 start-page: 107 year: 2003 publication-title: Microsc. Res. Tech. – volume: 12 358 207 17 start-page: 12 948 331 540 year: 2011 2007 2006 2009 publication-title: BMC Cell Biol. Biochem. Biophys. Res. Commun. J. Cell. Physiol. Wound Repair Regener. – volume: 38 start-page: 3129 year: 2005 publication-title: Macromolecules – volume: 6 start-page: 4988 year: 2010 publication-title: Soft Matter – volume: 31 start-page: 5536 year: 2010 publication-title: Biomaterials – volume: 2 106 31 start-page: 352 18587 385 year: 2014 2009 2010 publication-title: Biomater. Sci. Proc. Natl. Acad. Sci. USA Biomaterials – volume: 33 47 start-page: 48 196 year: 2012 2012 publication-title: Biomaterials Adv. Enzyme Regul. – volume: 33 start-page: 80 year: 2012 publication-title: Biomaterials – volume: 26 start-page: 2467 year: 2005 publication-title: Biomaterials – volume: 116 15 1 start-page: 1413 123 44 year: 2015 2014 2012 publication-title: Circ. Res. Cell Stem Cell Stem Cell Trans. Med. – volume: 22 start-page: 2027 year: 2012 publication-title: Adv. Funct. Mater. – volume: 5 start-page: 1838 year: 2014 publication-title: Polym. Chem. – volume: 3 start-page: e1886 year: 2008 publication-title: PLoS One – volume: 29 start-page: 857 year: 2008 publication-title: Biomaterials – volume: 41 start-page: 2193 year: 2012 publication-title: Chem. Soc. Rev. – volume: 97 start-page: 2892 year: 2008 publication-title: J. Pharm. Sci. – volume: 105 13 18 start-page: 14347 1299 806 year: 2008 2007 2012 publication-title: Proc. Natl. Acad. Sci. USA Tissue Eng. Tissue Eng., Part A – volume: 12 start-page: 485 year: 2004 publication-title: Wound Repair Regener. – volume: 32 start-page: 39 year: 2011 publication-title: Biomaterials – volume: 10 start-page: 2076 year: 2014 publication-title: Acta Biomater. – ident: e_1_2_7_1_2 doi: 10.1016/j.stem.2014.07.012 – ident: e_1_2_7_27_1 doi: 10.1371/journal.pone.0001886 – ident: e_1_2_7_26_1 doi: 10.1021/jp808145x – ident: e_1_2_7_5_2 doi: 10.1002/adma.201302958 – ident: e_1_2_7_6_3 doi: 10.1039/b713009k – ident: e_1_2_7_23_1 doi: 10.1039/C3BM60149H – ident: e_1_2_7_2_1 doi: 10.1039/C1CS15203C – ident: e_1_2_7_4_1 doi: 10.1161/CIRCRESAHA.109.208991 – ident: e_1_2_7_25_1 doi: 10.1186/1471-2121-12-12 – ident: e_1_2_7_6_2 doi: 10.3390/ma3031746 – ident: e_1_2_7_12_3 doi: 10.1163/156856200743670 – ident: e_1_2_7_25_3 doi: 10.1002/jcp.20571 – ident: e_1_2_7_23_3 doi: 10.1016/j.biomaterials.2009.09.057 – ident: e_1_2_7_29_5 doi: 10.1016/j.jdermsci.2007.05.018 – ident: e_1_2_7_13_1 doi: 10.1039/C5PY00678C – ident: e_1_2_7_3_1 doi: 10.1039/c0sm00448k – ident: e_1_2_7_18_1 doi: 10.1039/c3py01513k – ident: e_1_2_7_23_2 doi: 10.1073/pnas.0812334106 – ident: e_1_2_7_29_4 doi: 10.1371/journal.pone.0055640 – ident: e_1_2_7_28_1 doi: 10.1073/pnas.0803873105 – ident: e_1_2_7_16_1 doi: 10.22203/eCM.v025a12 – ident: e_1_2_7_36_1 doi: 10.1021/ma0480650 – ident: e_1_2_7_8_1 doi: 10.1016/j.jconrel.2005.09.023 – ident: e_1_2_7_20_1 doi: 10.1016/j.actbio.2013.12.045 – ident: e_1_2_7_12_1 doi: 10.1163/156856201744461 – ident: e_1_2_7_37_1 doi: 10.1111/j.1067-1927.2004.12404.x – ident: e_1_2_7_7_2 doi: 10.1016/j.cell.2008.01.038 – ident: e_1_2_7_15_1 doi: 10.1016/j.biomaterials.2010.08.103 – ident: e_1_2_7_35_1 doi: 10.1161/ATVBAHA.108.178962 – ident: e_1_2_7_14_2 doi: 10.1016/j.advenzreg.2006.12.012 – ident: e_1_2_7_1_3 doi: 10.5966/sctm.2011-0024 – ident: e_1_2_7_17_1 doi: 10.1186/s13287-015-0083-4 – ident: e_1_2_7_4_2 doi: 10.1038/nbt1327 – ident: e_1_2_7_31_1 doi: 10.1002/jps.21210 – ident: e_1_2_7_25_4 doi: 10.1111/j.1524-475X.2009.00499.x – ident: e_1_2_7_12_5 doi: 10.1002/jbm.a.10476 – ident: e_1_2_7_11_1 doi: 10.1016/j.biomaterials.2015.08.045 – ident: e_1_2_7_32_1 doi: 10.1016/j.biomaterials.2007.10.053 – ident: e_1_2_7_35_2 doi: 10.1038/ncomms11945 – ident: e_1_2_7_29_2 doi: 10.1111/j.1600-0625.2009.00942.x – ident: e_1_2_7_26_2 doi: 10.1016/j.biomaterials.2010.08.093 – ident: e_1_2_7_1_1 doi: 10.1161/CIRCRESAHA.116.303614 – ident: e_1_2_7_28_2 doi: 10.1089/ten.2006.0278 – ident: e_1_2_7_6_1 doi: 10.1517/17425247.2013.739156 – ident: e_1_2_7_24_1 doi: 10.1016/j.biomaterials.2011.09.041 – ident: e_1_2_7_22_1 doi: 10.1016/j.biomaterials.2004.06.047 – ident: e_1_2_7_19_1 doi: 10.1016/j.biomaterials.2014.06.053 – ident: e_1_2_7_33_2 doi: 10.1126/science.3041594 – ident: e_1_2_7_21_2 doi: 10.1002/adhm.201500757 – ident: e_1_2_7_33_1 doi: 10.1111/j.1600-0560.2006.00472.x – ident: e_1_2_7_8_2 doi: 10.1016/j.jconrel.2014.04.014 – ident: e_1_2_7_26_3 doi: 10.1038/nm1075 – ident: e_1_2_7_9_1 doi: 10.1016/j.biomaterials.2010.03.064 – ident: e_1_2_7_28_3 doi: 10.1089/ten.tea.2011.0391 – ident: e_1_2_7_29_3 doi: 10.1111/j.1524-475X.2007.00221.x – volume: 34 start-page: 1323 year: 2008 ident: e_1_2_7_29_6 publication-title: Dermatol. Surg. – ident: e_1_2_7_16_2 doi: 10.2174/1574888X11308040007 – ident: e_1_2_7_25_2 doi: 10.1016/j.bbrc.2007.05.054 – ident: e_1_2_7_10_1 doi: 10.1002/adfm.201101662 – ident: e_1_2_7_12_4 doi: 10.1016/j.actbio.2016.04.030 – ident: e_1_2_7_34_1 doi: 10.1002/jemt.10249 – ident: e_1_2_7_30_1 doi: 10.1016/j.yexcr.2010.05.009 – ident: e_1_2_7_14_1 doi: 10.1016/j.biomaterials.2011.09.031 – ident: e_1_2_7_21_1 doi: 10.1016/j.actbio.2015.07.042 – ident: e_1_2_7_5_1 doi: 10.1016/j.biomaterials.2013.03.095 – ident: e_1_2_7_29_1 doi: 10.5966/sctm.2011-0024 – ident: e_1_2_7_12_2 doi: 10.1016/S0142-9612(98)00180-X – ident: e_1_2_7_7_1 doi: 10.1126/science.1110542 |
SSID | ssj0017734 |
Score | 2.626494 |
Snippet | Stem cells have shown substantial promise for various diseases in preclinical and clinical trials. However, low cell engraftment rates significantly limit the... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Biodegradability Encapsulation gelatin Gelation Hydrogels hyperbranched polymers injectable hydrogels Materials science Mechanical properties Medical research Polyethylene glycol Regeneration Stem cells Tissue engineering Wound healing |
Title | Injectable and Tunable Gelatin Hydrogels Enhance Stem Cell Retention and Improve Cutaneous Wound Healing |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201606619 https://www.proquest.com/docview/1920417817 |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYQLDDwRpSXPCAxBWLHcZKx6oOCKEMfolvkxDaVKCmizQC_Hp-ThoKEkGBM5IsT31385XL3HULnIvJEJJjxb60gWhVGTqIZcyRRihi4ITxblda9550hux35o6Uq_oIfogq4gWfY9zU4uEhmV5-koUJqqCQngMAt7yckbAEq6lX8UWay4rcyJ5DgRUYL1kaXXn0V_7orfULNZcBqd5z2FhKLey0STZ4u83lymb5_o3H8z8Nso80SjuJ6YT87aEVlu2hjiaRwD41vMojVQIkVFpnEg9yWW-Frm0aX4c6bfJ0-mi0Wt7Ix2BDuz9UzbqjJBPcAkoPqrWQRwFC4kRtEqqb5DD9AUycMpVBmqn00bLcGjY5T9mdwUkahOZ1PA-ppnriCchHJNNCucnkoVUC5rxLh-75moWfOa840JVy6URCRFGIoUcK8A7SaTTN1iLABVcI15mQ0Jc03WBB6KtSakNSgpUhyUUPOQj9xWpKXQw-NSVzQLtMYVjCuVrCGLqrxLwVtx48jTxbqjkv3ncUG9rqMBCEJaohavf1ylbjebHero6O_CB2jdQqQweUODU7Q6vw1V6cG8MyTM7RWb3bv-mfWuD8AXs34EQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NTtwwEB5ROLQc2tIfsYW2PoB6CsSO48QHDmiXZRdYDnRR95Y6sV2kbrMVu1EFb8Wr9InqyR9QqapUiUOPiWIntmfsbyYz3wBsKRkoqbjTb2vQWxVLL7Wce5oaQx3cUEGZlTY6FYNzfjQJJ0tw0-TCVPwQrcMNNaPcr1HB0SG9e8saqrTFVHKKEJzKOq7y2Fz9cFbbfG_Yc0u8zVj_YNwdeHVhAS_jDKuqhSxigRWpr5hQUmeR9Y0vYm0iJkKTqjAMLY8Dd98KbhkV2peRpBka_zLlgev3EaxgGXGk6--dtYxVbnjVj2xBMaSMThqeSJ_t3v_e--fgLbi9C5HLM67_DH42s1OFtnzdKRbpTnb9G3HkfzV9z-FpjbjJfqUia7Bk8heweoeH8SVcDHN0R2EWGVG5JuOizCgjh2WkYE4GV_py9sWhCHKQX6CakI8L8410zXRKztDqQOkuW1Y-GkO6hQPdZlbMySesW0Uw28u96hWcP8hQX8NyPsvNOhCHG5XvNMaJhnZmZhQHJraW0swBQqmF6oDXCESS1fzsWCZkmlTM0izBFUvaFevAh_b57xUzyR-f3GzkK6l3qHnikL3PaRTTqAOsFJS_9JLs9_qj9urNvzR6D48H49FJcjI8Pd6AJwwRki88Fm3C8uKyMG8dvluk70qNIvD5oWXwFxHNUjo |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VIiE4UH7FQgEfQJzS2o7jxAcO1W6XXUorVFqxt9SJbSp1m626G6HyVH2VvlE9-WuLhJCQeuCYKHZie8b-ZjLzDcA7rUKttPD67Sx6qxIVZE6IwDBrmYcbOqyy0rZ35GhffJ5EkyU4b3Nhan6IzuGGmlHt16jgJ8atX5GGauMwk5whAmeqCavcsmc_vdE2_zge-BV-z_lwc68_Cpq6AkEuOBZVi3jMQyczqrnUyuSxo5bKxNiYy8hmOooiJ5LQ33dSOM6koSpWLEfbX2Ui9P3egbtCUoXFIga7HWGVH139H1syjChjk5YmkvL1m9978xi8wrbXEXJ1xA1X4KKdnDqy5WitXGRr-a_feCP_p9l7BA8bvE02agV5DEu2eAIPrrEwPoXDcYHOKMwhI7owZK-s8snIpypOsCCjM3M6--ExBNksDlFJyLeFPSZ9O52SXbQ5ULarlrWHxpJ-6SG3nZVz8h2rVhHM9fKvegb7tzLU57BczAr7AohHjZp6ffGSYbyRGSehTZxjLPdwUBmpexC08pDmDTs7FgmZpjWvNE9xxdJuxXrwoXv-pOYl-eOTq614pc3-NE89rqeCxQmLe8ArOflLL-nGYLjdXb38l0Zv4d7XwTD9Mt7ZegX3OcIjKgMer8Ly4rS0rz24W2RvKn0icHDbIngJnE1Q6Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Injectable+and+Tunable+Gelatin+Hydrogels+Enhance+Stem+Cell+Retention+and+Improve+Cutaneous+Wound+Healing&rft.jtitle=Advanced+functional+materials&rft.au=Dong%2C+Yixiao&rft.au=A%2C+Sigen&rft.au=Rodrigues%2C+Melanie&rft.au=Li%2C+Xiaolin&rft.date=2017-06-27&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=27&rft.issue=24&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadfm.201606619&rft.externalDBID=10.1002%252Fadfm.201606619&rft.externalDocID=ADFM201606619 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |