Porous Iron–Cobalt Alloy/Nitrogen‐Doped Carbon Cages Synthesized via Pyrolysis of Complex Metal–Organic Framework Hybrids for Oxygen Reduction
Efficient and stable nonprecious metal electrocatalysts for oxygen reduction are of great significance in some important electrochemical energy storage and conversion systems. As a unique class of porous hybrid materials, metal–organic frameworks (MOFs) and their composites are recently considered a...
Saved in:
Published in | Advanced functional materials Vol. 28; no. 10 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
07.03.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Efficient and stable nonprecious metal electrocatalysts for oxygen reduction are of great significance in some important electrochemical energy storage and conversion systems. As a unique class of porous hybrid materials, metal–organic frameworks (MOFs) and their composites are recently considered as promising precursors to derive advanced functional materials with controlled structures and compositions. Here, an “MOF‐in‐MOF hybrid” confined pyrolysis strategy is developed for the synthesis of porous Fe–Co alloy/N‐doped carbon cages. A unique “MOF‐in‐MOF hybrid” architecture constructed from a Zn‐based MOF core and a Co‐based MOF hybrid shell encapsulated with FeOOH nanorods is first prepared, followed by a pyrolysis process to obtain a cage‐shaped hybrid material consisting of Fe–Co alloy nanocrystallites evenly distributed inside a porous N‐doped carbon microshell. Of note, this strategy can be extended to synthesize many other multifunctional “nanosubstrate‐in‐MOF hybrid” core–shelled structures. Benefiting from the structural and compositional advantages, the as‐derived hybrid cages exhibit superior electrocatalytic performance for the oxygen reduction reaction in alkaline solution. The present approach may provide some insight in design and synthesis of complex MOF hybrid structures and their derived functional materials for energy storage and conversion applications.
A metal–organic frameworks (MOF)‐in‐MOF hybrid confined pyrolysis strategy is developed to synthesize porous Fe–Co alloy/N‐doped carbon cages. With the structural and compositional advantages, these unique hybrid materials exhibit superior electrocatalytic performance for oxygen reduction reactions in alkaline electrolytes. |
---|---|
AbstractList | Efficient and stable nonprecious metal electrocatalysts for oxygen reduction are of great significance in some important electrochemical energy storage and conversion systems. As a unique class of porous hybrid materials, metal–organic frameworks (MOFs) and their composites are recently considered as promising precursors to derive advanced functional materials with controlled structures and compositions. Here, an “MOF‐in‐MOF hybrid” confined pyrolysis strategy is developed for the synthesis of porous Fe–Co alloy/N‐doped carbon cages. A unique “MOF‐in‐MOF hybrid” architecture constructed from a Zn‐based MOF core and a Co‐based MOF hybrid shell encapsulated with FeOOH nanorods is first prepared, followed by a pyrolysis process to obtain a cage‐shaped hybrid material consisting of Fe–Co alloy nanocrystallites evenly distributed inside a porous N‐doped carbon microshell. Of note, this strategy can be extended to synthesize many other multifunctional “nanosubstrate‐in‐MOF hybrid” core–shelled structures. Benefiting from the structural and compositional advantages, the as‐derived hybrid cages exhibit superior electrocatalytic performance for the oxygen reduction reaction in alkaline solution. The present approach may provide some insight in design and synthesis of complex MOF hybrid structures and their derived functional materials for energy storage and conversion applications. Efficient and stable nonprecious metal electrocatalysts for oxygen reduction are of great significance in some important electrochemical energy storage and conversion systems. As a unique class of porous hybrid materials, metal–organic frameworks (MOFs) and their composites are recently considered as promising precursors to derive advanced functional materials with controlled structures and compositions. Here, an “MOF‐in‐MOF hybrid” confined pyrolysis strategy is developed for the synthesis of porous Fe–Co alloy/N‐doped carbon cages. A unique “MOF‐in‐MOF hybrid” architecture constructed from a Zn‐based MOF core and a Co‐based MOF hybrid shell encapsulated with FeOOH nanorods is first prepared, followed by a pyrolysis process to obtain a cage‐shaped hybrid material consisting of Fe–Co alloy nanocrystallites evenly distributed inside a porous N‐doped carbon microshell. Of note, this strategy can be extended to synthesize many other multifunctional “nanosubstrate‐in‐MOF hybrid” core–shelled structures. Benefiting from the structural and compositional advantages, the as‐derived hybrid cages exhibit superior electrocatalytic performance for the oxygen reduction reaction in alkaline solution. The present approach may provide some insight in design and synthesis of complex MOF hybrid structures and their derived functional materials for energy storage and conversion applications. A metal–organic frameworks (MOF)‐in‐MOF hybrid confined pyrolysis strategy is developed to synthesize porous Fe–Co alloy/N‐doped carbon cages. With the structural and compositional advantages, these unique hybrid materials exhibit superior electrocatalytic performance for oxygen reduction reactions in alkaline electrolytes. |
Author | Lou, Xiong Wen (David) Guan, Bu Yuan Wu, Minghong Lu, Yan Wang, Yong |
Author_xml | – sequence: 1 givenname: Bu Yuan surname: Guan fullname: Guan, Bu Yuan organization: Nanyang Technological University – sequence: 2 givenname: Yan surname: Lu fullname: Lu, Yan organization: Nanyang Technological University – sequence: 3 givenname: Yong surname: Wang fullname: Wang, Yong organization: School of Environmental and Chemical Engineering Shanghai University – sequence: 4 givenname: Minghong surname: Wu fullname: Wu, Minghong email: mhwu@staff.shu.edu.cn organization: School of Environmental and Chemical Engineering Shanghai University – sequence: 5 givenname: Xiong Wen (David) orcidid: 0000-0002-5557-4437 surname: Lou fullname: Lou, Xiong Wen (David) email: xwlou@ntu.edu.sg organization: Nanyang Technological University |
BookMark | eNqFkMFO3DAQhi1EpQLl2rOlnnexncTJHlehC0jQRQWk3iInniym3sx2nC2kpz5CJXjCPkm92gqkShWnsWf-75_Rv892O-yAsfdSjKUQ6sjYdjlWQuZC50mxw_aklnqUCFXsPr_ll7dsP4Q7EWV5ku6xp0skXAd-Rtj9_vlYYm18z6fe43D0yfWEC4j9X8e4AstLQzV2sSwg8Kuh628huB9x8N0ZfjkQ-iG4wLHlJS5XHh74BfTGR985LUznGj4js4R7pK_8dKjJ2cBbJD5_GOIa_hnsuukddu_Ym9b4AId_6wG7mX28Lk9H5_OTs3J6PmpSJYqRUWlqbSPrXMMkz1IoJJgs0daAgiz-ayu1TdRkInVbZHkKWoMSdSGzXEArkgP2Yeu7Ivy2htBXd7imLq6sYo4i0dFMRVW6VTWEIRC0VeN6s7mzJ-N8JUW1yb_a5F895x-x8T_YitzS0PB_YLIF7p2H4RV1NT2eXbywfwAYGZ_z |
CitedBy_id | crossref_primary_10_1021_acs_energyfuels_3c04956 crossref_primary_10_1002_aenm_202002762 crossref_primary_10_1002_smll_202008165 crossref_primary_10_3390_nano12091416 crossref_primary_10_1002_celc_201900709 crossref_primary_10_3389_fenrg_2021_673923 crossref_primary_10_1039_D4TA05404K crossref_primary_10_1016_j_enchem_2022_100083 crossref_primary_10_1016_j_apcatb_2020_119247 crossref_primary_10_1016_j_jelechem_2023_117394 crossref_primary_10_1007_s11664_020_08425_y crossref_primary_10_1016_j_cis_2022_102668 crossref_primary_10_1039_C9NJ01534E crossref_primary_10_1016_j_cej_2021_132199 crossref_primary_10_1016_j_diamond_2020_107695 crossref_primary_10_1016_j_seppur_2024_126520 crossref_primary_10_1039_D3TA05478K crossref_primary_10_1002_asia_201801776 crossref_primary_10_1016_j_nanoen_2019_01_011 crossref_primary_10_1016_j_electacta_2022_140938 crossref_primary_10_1016_j_poly_2024_117267 crossref_primary_10_3390_polym15214315 crossref_primary_10_1021_acsaem_2c03831 crossref_primary_10_1002_adma_201901796 crossref_primary_10_1021_acscatal_8b04609 crossref_primary_10_1016_j_jece_2024_113417 crossref_primary_10_1016_j_ccr_2022_215011 crossref_primary_10_1016_j_mcat_2021_111614 crossref_primary_10_1021_acssuschemeng_0c01729 crossref_primary_10_1088_2053_1591_ab63fc crossref_primary_10_1002_aenm_202100514 crossref_primary_10_1002_anie_201810175 crossref_primary_10_1016_j_ccr_2022_214839 crossref_primary_10_1002_asia_201900748 crossref_primary_10_1016_j_apsusc_2022_153786 crossref_primary_10_1016_j_electacta_2020_137522 crossref_primary_10_1021_acsami_2c09271 crossref_primary_10_1039_D0QM00671H crossref_primary_10_1016_j_nanoen_2021_106073 crossref_primary_10_1016_j_jallcom_2022_166680 crossref_primary_10_1039_D1TA00772F crossref_primary_10_1021_acsami_9b03682 crossref_primary_10_1021_acssuschemeng_8b06634 crossref_primary_10_1016_j_apsusc_2019_05_014 crossref_primary_10_1016_j_ijhydene_2021_09_222 crossref_primary_10_1016_j_mattod_2022_04_002 crossref_primary_10_1016_j_cej_2021_132410 crossref_primary_10_1039_C8DT02250J crossref_primary_10_1063_1674_0068_cjcp2304033 crossref_primary_10_1007_s11581_019_03355_0 crossref_primary_10_1039_D2TA03744K crossref_primary_10_1016_j_jpowsour_2020_227899 crossref_primary_10_1016_j_jcis_2020_06_057 crossref_primary_10_1002_smll_201906782 crossref_primary_10_1016_j_cej_2020_127569 crossref_primary_10_1039_C9CY00746F crossref_primary_10_3390_catal13081161 crossref_primary_10_1002_cssc_201800489 crossref_primary_10_1007_s10854_023_09885_8 crossref_primary_10_1016_j_ijhydene_2020_11_210 crossref_primary_10_1016_j_jallcom_2022_165482 crossref_primary_10_1016_j_apcatb_2019_04_027 crossref_primary_10_1021_acsenergylett_9b00893 crossref_primary_10_1039_C8EE02779J crossref_primary_10_1021_acsami_9b09311 crossref_primary_10_3390_recycling8030048 crossref_primary_10_1002_cssc_201902232 crossref_primary_10_1016_j_ijhydene_2019_07_091 crossref_primary_10_1016_j_renene_2021_08_008 crossref_primary_10_1016_j_apsusc_2019_144380 crossref_primary_10_1016_j_jece_2022_107758 crossref_primary_10_1142_S1793604721300164 crossref_primary_10_1016_j_electacta_2019_135360 crossref_primary_10_1039_D3YA00561E crossref_primary_10_1360_SSPMA_2023_0061 crossref_primary_10_1021_acsami_8b13290 crossref_primary_10_1002_adfm_201910274 crossref_primary_10_1016_j_carbon_2023_04_006 crossref_primary_10_1016_j_apcatb_2019_118224 crossref_primary_10_1016_j_apcatb_2020_118633 crossref_primary_10_1021_acs_inorgchem_9b00463 crossref_primary_10_1039_C9QI01020C crossref_primary_10_1002_ange_201810175 crossref_primary_10_1002_chem_201801572 crossref_primary_10_1016_j_jcis_2019_04_029 crossref_primary_10_3390_en16134950 crossref_primary_10_1002_aic_17785 crossref_primary_10_1021_acs_chemrev_9b00685 crossref_primary_10_1016_j_ijhydene_2024_05_228 crossref_primary_10_1016_j_cej_2019_03_163 crossref_primary_10_1039_C8NJ01281D crossref_primary_10_1039_D3EE04513G crossref_primary_10_1007_s40843_019_1190_3 crossref_primary_10_1039_D4TC02771J crossref_primary_10_1039_C8TA01078A crossref_primary_10_1021_acssuschemeng_9b00264 crossref_primary_10_1016_j_cej_2018_06_140 crossref_primary_10_1039_D0TA05510G crossref_primary_10_1002_adfm_201807418 crossref_primary_10_1016_j_cis_2025_103449 crossref_primary_10_1002_advs_201802373 crossref_primary_10_1016_j_jhazmat_2021_127593 crossref_primary_10_1039_D0TA08311A crossref_primary_10_1002_batt_201900052 crossref_primary_10_1002_celc_202001289 crossref_primary_10_1016_j_apcatb_2019_03_013 crossref_primary_10_1002_aenm_201900375 crossref_primary_10_1039_C8TA05554H crossref_primary_10_1149_2_0131812jes crossref_primary_10_1016_j_matlet_2019_02_124 crossref_primary_10_1039_D2CY01213H crossref_primary_10_1039_D2DT00906D crossref_primary_10_1016_j_nanoen_2018_12_009 crossref_primary_10_1039_D2TA06818D crossref_primary_10_1002_batt_201800093 crossref_primary_10_1002_smll_202106532 crossref_primary_10_1016_j_ensm_2020_01_016 crossref_primary_10_1002_smll_201800423 crossref_primary_10_1002_smll_202004142 crossref_primary_10_1002_smll_201805324 crossref_primary_10_1016_j_cej_2023_141751 crossref_primary_10_1016_j_ijhydene_2023_03_013 crossref_primary_10_1039_D2TA08943B crossref_primary_10_1039_C8TA11704G crossref_primary_10_1002_smll_202401146 crossref_primary_10_1016_j_joule_2019_12_014 crossref_primary_10_1002_asia_202000913 crossref_primary_10_1016_j_ccr_2020_213214 crossref_primary_10_1039_C9DT04930D crossref_primary_10_1016_j_jece_2023_110624 crossref_primary_10_1016_j_jelechem_2024_118178 crossref_primary_10_1002_asia_201901616 crossref_primary_10_1002_celc_201800813 crossref_primary_10_1021_acs_energyfuels_2c03812 crossref_primary_10_1002_smll_202004398 crossref_primary_10_1016_j_ijhydene_2019_08_190 crossref_primary_10_1021_acsanm_2c05302 crossref_primary_10_1002_celc_202200677 crossref_primary_10_1016_j_carbon_2019_05_073 crossref_primary_10_1016_j_jcis_2020_07_055 crossref_primary_10_1016_j_jallcom_2024_175227 crossref_primary_10_1016_j_jece_2021_106452 crossref_primary_10_1039_D0NJ06174C crossref_primary_10_1002_aenm_201803628 crossref_primary_10_1002_agt2_189 crossref_primary_10_1002_er_8567 crossref_primary_10_1016_j_cej_2020_128358 crossref_primary_10_1039_D0NJ04365F crossref_primary_10_1016_j_cej_2020_127267 crossref_primary_10_1088_2053_1591_abaa8d crossref_primary_10_1007_s40843_020_1587_3 crossref_primary_10_1021_acs_inorgchem_1c00946 crossref_primary_10_1039_D0NR09156A crossref_primary_10_1021_acssuschemeng_8b01332 crossref_primary_10_1007_s11051_019_4678_z crossref_primary_10_1039_C8TA01247D crossref_primary_10_1016_j_ijhydene_2023_08_122 crossref_primary_10_1016_j_jcis_2020_02_005 crossref_primary_10_1007_s40820_021_00656_w crossref_primary_10_1021_acsami_1c08720 crossref_primary_10_1039_C9CS00906J crossref_primary_10_1039_C9TB00797K crossref_primary_10_1016_j_envres_2024_118499 crossref_primary_10_3390_catal9030264 crossref_primary_10_3390_catal9090762 crossref_primary_10_1021_acssuschemeng_9b07781 crossref_primary_10_1080_07388551_2023_2230518 crossref_primary_10_1039_D0RA08750E crossref_primary_10_1007_s41918_018_0024_x crossref_primary_10_3390_app12136659 crossref_primary_10_1002_smtd_202000494 crossref_primary_10_1016_j_apcatb_2022_121272 crossref_primary_10_1016_j_jallcom_2024_177308 crossref_primary_10_1021_acs_inorgchem_9b00288 crossref_primary_10_1002_adhm_202301316 crossref_primary_10_1007_s40820_018_0197_1 crossref_primary_10_1002_admi_201900273 crossref_primary_10_1016_j_cej_2020_127961 crossref_primary_10_1016_j_jechem_2022_01_042 crossref_primary_10_1016_j_enchem_2020_100027 crossref_primary_10_1002_smll_202500109 crossref_primary_10_1002_smll_202205638 crossref_primary_10_1039_C9DT02301A crossref_primary_10_1016_j_ccr_2019_02_021 crossref_primary_10_1007_s11581_024_05767_z crossref_primary_10_1016_j_jcis_2023_07_101 crossref_primary_10_1039_C9CC03727F crossref_primary_10_1039_C8TA08577C crossref_primary_10_1016_j_jmst_2022_03_033 crossref_primary_10_1039_D0TA00073F crossref_primary_10_1016_j_cej_2021_131614 crossref_primary_10_1002_adma_201804903 crossref_primary_10_1016_j_jpowsour_2020_227883 crossref_primary_10_1002_adfm_201806720 crossref_primary_10_1002_anie_201910309 crossref_primary_10_1016_j_materresbull_2019_02_029 crossref_primary_10_1021_acsami_9b00589 crossref_primary_10_1039_C9TA09104A crossref_primary_10_1016_j_ccr_2023_215464 crossref_primary_10_1021_acsami_8b14536 crossref_primary_10_1016_j_jpowsour_2019_227512 crossref_primary_10_1016_j_ensm_2022_12_002 crossref_primary_10_1016_j_carbon_2019_02_061 crossref_primary_10_1016_j_jallcom_2021_159970 crossref_primary_10_1002_advs_202000747 crossref_primary_10_1016_j_apsadv_2022_100233 crossref_primary_10_1039_C9CS00379G crossref_primary_10_1016_j_cej_2023_147915 crossref_primary_10_1039_C8TA11976G crossref_primary_10_1016_j_jallcom_2021_159965 crossref_primary_10_1039_C9TA08016C crossref_primary_10_1021_acs_langmuir_8b03921 crossref_primary_10_1002_cssc_201802163 crossref_primary_10_1016_j_cej_2020_127776 crossref_primary_10_1021_acscatal_2c03683 crossref_primary_10_1016_j_jechem_2020_04_066 crossref_primary_10_1016_j_apsusc_2018_09_232 crossref_primary_10_1002_adma_202301836 crossref_primary_10_1039_D0QI01037E crossref_primary_10_1039_D2TA02076A crossref_primary_10_1016_j_jcis_2020_04_093 crossref_primary_10_1007_s11581_021_03963_9 crossref_primary_10_1021_acsaem_1c03008 crossref_primary_10_1002_ange_201910309 crossref_primary_10_1021_acssuschemeng_9b05567 crossref_primary_10_1039_C8NR04068K crossref_primary_10_1016_j_nanoen_2023_108415 crossref_primary_10_1007_s12678_019_00527_4 crossref_primary_10_1039_D1CC01989A crossref_primary_10_1021_acs_energyfuels_3c00801 crossref_primary_10_1021_acs_chemrev_1c00331 crossref_primary_10_1021_acsami_2c00643 crossref_primary_10_1016_j_carbon_2018_07_013 crossref_primary_10_1016_j_gee_2020_11_023 crossref_primary_10_1021_acsnano_9b05978 crossref_primary_10_1007_s10853_018_03255_0 crossref_primary_10_1002_smll_202100607 crossref_primary_10_1016_j_jaap_2022_105710 |
Cites_doi | 10.1016/j.electacta.2015.08.021 10.1038/ncomms7512 10.1126/science.1200832 10.1126/science.290.5496.1588 10.1002/anie.201611804 10.1021/cm103571y 10.1038/nchem.1272 10.1002/adma.201603622 10.1021/cr020730k 10.1039/C4CS00015C 10.1038/ncomms10141 10.1002/adma.201605083 10.1002/adma.201200469 10.1002/smtd.201700158 10.1039/C6EE02171A 10.1126/sciadv.1501554 10.1021/acsenergylett.6b00686 10.1038/nnano.2015.48 10.1021/cr500054y 10.1038/ncomms9618 10.1002/adma.201605902 10.1021/jacs.6b06558 10.1002/anie.201604802 10.1002/adma.201203923 10.1039/c4ee00517a 10.1002/advs.201700247 10.1016/j.joule.2017.08.008 10.1038/ncomms3904 10.1002/anie.199623391 10.1021/cr020724o 10.1021/jacs.5b02465 10.1039/C4CS00484A 10.1021/ja106217u 10.1002/adma.201604898 10.1039/C6NR08057J 10.1002/adma.201605051 10.1039/C5CS00670H 10.1007/BF01554752 10.1021/nn505582e 10.1002/adma.201202146 10.1021/jacs.5b10484 10.1039/C5NR00055F 10.1039/C6NR06961D 10.1016/j.nanoen.2016.11.033 10.1038/nenergy.2015.6 10.1039/c2cs35129c 10.1021/ja01539a017 |
ContentType | Journal Article |
Copyright | 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.201706738 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adfm_201706738 ADFM201706738 |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 41430644; 21671131 – fundername: Program for Changjiang Scholars and Innovative Research Team in University funderid: IRT13078 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ AAHHS AANHP AAYXX ACBWZ ACCFJ ACRPL ACYXJ ADNMO ADZOD AEEZP AEQDE AGQPQ AIWBW AJBDE ASPBG AVWKF AZFZN CITATION FEDTE HF~ HVGLF 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
ID | FETCH-LOGICAL-c4208-a244ddc1b76e9754e81ea536dae2e554ebd16d329916f8574e66e20b81570ef03 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Fri Jul 25 07:28:16 EDT 2025 Tue Jul 01 04:11:44 EDT 2025 Thu Apr 24 22:53:59 EDT 2025 Wed Aug 20 07:26:27 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4208-a244ddc1b76e9754e81ea536dae2e554ebd16d329916f8574e66e20b81570ef03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-5557-4437 |
PQID | 2010365362 |
PQPubID | 2045204 |
PageCount | 10 |
ParticipantIDs | proquest_journals_2010365362 crossref_citationtrail_10_1002_adfm_201706738 crossref_primary_10_1002_adfm_201706738 wiley_primary_10_1002_adfm_201706738_ADFM201706738 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 7, 2018 |
PublicationDateYYYYMMDD | 2018-03-07 |
PublicationDate_xml | – month: 03 year: 2018 text: March 7, 2018 day: 07 |
PublicationDecade | 2010 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2018 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 1 2015; 6 2004; 104 2017; 2 2013; 25 2013; 4 2017; 4 2015; 10 2017; 29 1996; 35 2015; 7 2014; 114 2011; 332 2014; 43 2000; 290 2016; 55 2017; 31 2016; 7 2016; 1 2016; 2 2015; 137 2015; 178 2015; 44 2017; 56 2010; 132 2016; 138 2011; 23 1958; 80 1974; 252 2012; 24 2016; 28 2014; 8 2014; 7 2012; 4 2016; 8 2016; 9 2016; 45 2012; 41 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_1_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_37_1 e_1_2_7_38_1 e_1_2_7_39_1 |
References_xml | – volume: 290 start-page: 1588 year: 2000 publication-title: Science – volume: 31 start-page: 331 year: 2017 publication-title: Nano Energy – volume: 7 start-page: 2071 year: 2014 publication-title: Energy Environ. Sci. – volume: 24 start-page: 1903 year: 2012 publication-title: Adv. Mater. – volume: 29 start-page: 1605051 year: 2017 publication-title: Adv. Mater. – volume: 2 start-page: e1501554 year: 2016 publication-title: Sci. Adv. – volume: 8 start-page: 12660 year: 2014 publication-title: ACS Nano – volume: 178 start-page: 287 year: 2015 publication-title: Electrochim. Acta – volume: 25 start-page: 998 year: 2013 publication-title: Adv. Mater. – volume: 43 start-page: 5257 year: 2014 publication-title: Chem. Soc. Rev. – volume: 332 start-page: 443 year: 2011 publication-title: Science – volume: 29 start-page: 1605902 year: 2017 publication-title: Adv. Mater. – volume: 56 start-page: 2386 year: 2017 publication-title: Angew. Chem., Int. Ed. – volume: 8 start-page: 20048 year: 2016 publication-title: Nanoscale – volume: 1 start-page: 1700158 year: 2017 publication-title: Small Methods – volume: 24 start-page: 5166 year: 2012 publication-title: Adv. Mater. – volume: 8 start-page: 18507 year: 2016 publication-title: Nanoscale – volume: 28 start-page: 9596 year: 2016 publication-title: Adv. Mater. – volume: 45 start-page: 517 year: 2016 publication-title: Chem. Soc. Rev. – volume: 104 start-page: 4245 year: 2004 publication-title: Chem. Rev. – volume: 29 start-page: 1604898 year: 2017 publication-title: Adv. Mater. – volume: 252 start-page: 464 year: 1974 publication-title: Colloid Polym. Sci. – volume: 80 start-page: 1339 year: 1958 publication-title: J. Am. Chem. Soc. – volume: 6 start-page: 8618 year: 2015 publication-title: Nat. Commun. – volume: 1 start-page: 15006 year: 2016 publication-title: Nat. Energy – volume: 4 start-page: 2904 year: 2013 publication-title: Nat. Commun. – volume: 137 start-page: 5590 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 138 start-page: 11306 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 41 start-page: 6931 year: 2012 publication-title: Chem. Soc. Rev. – volume: 44 start-page: 2168 year: 2015 publication-title: Chem. Soc. Rev. – volume: 2 start-page: 504 year: 2017 publication-title: ACS Energy Lett. – volume: 55 start-page: 10800 year: 2016 publication-title: Angew. Chem., Int. Ed. – volume: 132 start-page: 17056 year: 2010 publication-title: J. Am. Chem. Soc. – volume: 9 start-page: 3092 year: 2016 publication-title: Energy Environ. Sci. – volume: 23 start-page: 2130 year: 2011 publication-title: Chem. Mater. – volume: 1 start-page: 77 year: 2017 publication-title: Joule – volume: 104 start-page: 4791 year: 2004 publication-title: Chem. Rev. – volume: 4 start-page: 1700247 year: 2017 publication-title: Adv. Sci. – volume: 35 start-page: 2339 year: 1996 publication-title: Angew. Chem., Int. Ed. – volume: 6 start-page: 6512 year: 2015 publication-title: Nat. Commun. – volume: 4 start-page: 310 year: 2012 publication-title: Nat. Chem. – volume: 7 start-page: 10141 year: 2016 publication-title: Nat. Commun. – volume: 138 start-page: 3623 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 7 start-page: 9174 year: 2015 publication-title: Nanoscale – volume: 10 start-page: 444 year: 2015 publication-title: Nat. Nanotechnol. – volume: 29 start-page: 1605083 year: 2017 publication-title: Adv. Mater. – volume: 114 start-page: 11721 year: 2014 publication-title: Chem. Rev. – ident: e_1_2_7_17_1 doi: 10.1016/j.electacta.2015.08.021 – ident: e_1_2_7_39_1 doi: 10.1038/ncomms7512 – ident: e_1_2_7_21_1 doi: 10.1126/science.1200832 – ident: e_1_2_7_29_1 doi: 10.1126/science.290.5496.1588 – ident: e_1_2_7_13_1 doi: 10.1002/anie.201611804 – ident: e_1_2_7_43_1 doi: 10.1021/cm103571y – ident: e_1_2_7_42_1 doi: 10.1038/nchem.1272 – ident: e_1_2_7_14_1 doi: 10.1002/adma.201603622 – ident: e_1_2_7_5_1 doi: 10.1021/cr020730k – ident: e_1_2_7_10_1 doi: 10.1039/C4CS00015C – ident: e_1_2_7_22_1 doi: 10.1038/ncomms10141 – ident: e_1_2_7_20_1 doi: 10.1002/adma.201605083 – ident: e_1_2_7_3_1 doi: 10.1002/adma.201200469 – ident: e_1_2_7_34_1 doi: 10.1002/smtd.201700158 – ident: e_1_2_7_36_1 doi: 10.1039/C6EE02171A – ident: e_1_2_7_6_1 doi: 10.1126/sciadv.1501554 – ident: e_1_2_7_16_1 doi: 10.1021/acsenergylett.6b00686 – ident: e_1_2_7_8_1 doi: 10.1038/nnano.2015.48 – ident: e_1_2_7_9_1 doi: 10.1021/cr500054y – ident: e_1_2_7_19_1 doi: 10.1038/ncomms9618 – ident: e_1_2_7_38_1 doi: 10.1002/adma.201605902 – ident: e_1_2_7_7_1 doi: 10.1021/jacs.6b06558 – ident: e_1_2_7_25_1 doi: 10.1002/anie.201604802 – ident: e_1_2_7_26_1 doi: 10.1002/adma.201203923 – ident: e_1_2_7_41_1 doi: 10.1039/c4ee00517a – ident: e_1_2_7_12_1 doi: 10.1002/advs.201700247 – ident: e_1_2_7_1_1 doi: 10.1016/j.joule.2017.08.008 – ident: e_1_2_7_30_1 doi: 10.1038/ncomms3904 – ident: e_1_2_7_33_1 doi: 10.1002/anie.199623391 – ident: e_1_2_7_2_1 doi: 10.1021/cr020724o – ident: e_1_2_7_35_1 doi: 10.1021/jacs.5b02465 – ident: e_1_2_7_11_1 doi: 10.1039/C4CS00484A – ident: e_1_2_7_28_1 doi: 10.1021/ja106217u – ident: e_1_2_7_40_1 doi: 10.1002/adma.201604898 – ident: e_1_2_7_24_1 doi: 10.1039/C6NR08057J – ident: e_1_2_7_37_1 doi: 10.1002/adma.201605051 – ident: e_1_2_7_15_1 doi: 10.1039/C5CS00670H – ident: e_1_2_7_45_1 doi: 10.1007/BF01554752 – ident: e_1_2_7_46_1 doi: 10.1021/nn505582e – ident: e_1_2_7_4_1 doi: 10.1002/adma.201202146 – ident: e_1_2_7_31_1 doi: 10.1021/jacs.5b10484 – ident: e_1_2_7_44_1 doi: 10.1039/C5NR00055F – ident: e_1_2_7_23_1 doi: 10.1039/C6NR06961D – ident: e_1_2_7_18_1 doi: 10.1016/j.nanoen.2016.11.033 – ident: e_1_2_7_27_1 doi: 10.1038/nenergy.2015.6 – ident: e_1_2_7_32_1 doi: 10.1039/c2cs35129c – ident: e_1_2_7_47_1 doi: 10.1021/ja01539a017 |
SSID | ssj0017734 |
Score | 2.6350205 |
Snippet | Efficient and stable nonprecious metal electrocatalysts for oxygen reduction are of great significance in some important electrochemical energy storage and... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Cages Carbon Cobalt composites Conversion Coordination compounds electrocatalysis Electrocatalysts Energy storage Ferrous alloys hollow structures Hybrid structures iron cobalt alloys Materials science Metal-organic frameworks MOFs Nanorods Nitrogen Oxygen reduction reactions Porous materials Pyrolysis Solid oxide fuel cells Synthesis |
Title | Porous Iron–Cobalt Alloy/Nitrogen‐Doped Carbon Cages Synthesized via Pyrolysis of Complex Metal–Organic Framework Hybrids for Oxygen Reduction |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201706738 https://www.proquest.com/docview/2010365362 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1db9MwFLXQ9gIPML5EYUx-QOIpa-IkdvJYtVTdRMe0MalvkZ3YqKKKpyRFy572E5DgF-6XcG_SZB0SQoKnJPJHYvte-yS-54SQdwZQsR9n0jEmiJ0gktxRkTDwlqKE62Yejxqd7vkJn10Ex4twscXib_Uh-g9u6BnNfI0OLlU5vBMNlZlBJjnKvwgf2b4YsIWo6KzXj_KEaLeVuYcBXt6iU2102fB-8fur0h3U3AaszYozfUJk96xtoMnXw3WlDtPr32Qc_6cxe-TxBo7SUWs_T8kDnT8jj7ZECp-Tn6e2sOuSHhU2v735MUYBkYqOVitbD0-WVWHBBG9vvk_spc7oWBbK5nD4okt6XucAL8vlNSR8W0p6Whe2UUCh1lCciFb6is41wH-otyWFpnTaRYvRWY1sspICrKafrmq4DT1DoVk0pRfkYvrh83jmbP7l4KS4ge9IgBFZloIFcB2LMNCRp2Xo80xqpgHSaAV2kfkM4aqJQhFozjVzVeSFwtXG9V-Sndzm-hWyzJmXahUHxogA0EjEA65Y7BlYQ7grzYA43Vgm6UboHP-3sUpaiWaWYG8nfW8PyPs-_2Ur8fHHnPudaSQbVy8xFVAANIUNCGvG-C-1JKPJdN5fvf6XQm_IQzhvuJGu2Cc7VbHWbwEcVeqA7I4m84_nB40j_AIg1AyU |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELagHIAD_4iFAj4gcUo3cRI7Oa52WW2hu1SllXqL7MSuVqziKsmipqc-AhI8YZ-EmWSTtkgICU5R4r_YnrE_2zOfCXlnABX7cSYdY4LYCSLJHRUJA6sUJVw383jU8HTPF3x2FHw8DjtrQvSFafkh-g031IxmvEYFxw3p4RVrqMwMupIj_4vwo9vkDl7rjfT5k4OeQcoToj1Y5h6aeHnHHW-jy4Y309-cl67A5nXI2sw504dEdX_bmpp83VlXaic9_43I8b-q84g82CBSOmpF6DG5pfMn5P41nsKn5Oe-Ley6pLuFzS8vfoyRQ6Sio9XK1sPFsiosSOHlxfeJPdUZHctC2RweJ7qkX-ocEGa5PIeAb0tJ9-vCNiQo1BqKY9FKn9G5hhUA5Nv6haZ02hmM0VmNDmUlBWRNP5_VUAw9QK5ZlKZn5Gj64XA8czbXOTgpnuE7EpBElqUgBFzHIgx05GkZ-jyTmmlANVqBaGQ-Q8RqolAEmnPNXBV5oXC1cf3nZCu3uX6BjubMS7WKA2NEAIAk4gFXLPYMTCPclWZAnK4zk3TDdY5XbqySlqWZJdjaSd_aA_K-j3_asnz8MeZ2JxvJRttLDAUgAFVhA8KaTv5LLsloMp33by__JdFbcnd2ON9L9nYXn16Re_C9cZV0xTbZqoq1fg1YqVJvGm34BWEaDxw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1Nb9MwGMctGBKCA--Ijm34gMQpa14cOzlWLVEHtFSDSb1FTmxPFVVcJem07LSPgMQ-4T7JHidN1iEhJDhFie0kth_b_8R-fkbovQJV7IWCW0qR0CIBp1YSMAVfKQmzbeHQoOZ0T6Z0fEI-zf35lhd_w4fofriZllH316aBr4Tq30JDuVDGk9zgX5gX3EcPCLVDs3nD6LgDSDmMNfPK1DErvJx5i2203f7d9HeHpVutua1Y6yEneop4-7LNSpMfh-syOUwvfuM4_k9unqEnGz2KB40BPUf3ZPYCPd6iFL5EVzOd63WBj3KdXV_-GhqCSIkHy6Wu-tNFmWuwwevLnyO9kgIPeZ7oDA6nssDfqgz0ZbG4gICzBcezKtc1AgVrhU1PtJTneCJB_8N9G6_QFEftcjE8row7WYFBV-Ov5xU8Bh8b0qyxpVfoJPr4fTi2Nps5WKmZwbc46AghUjABKkPmExk4kvseFVy6EjSNTMAwhOcavaoCnxFJqXTtJHB8Zktle6_RTqYz-ca4mbtOKpOQKMUIyJGAEpq4oaNgEKE2Vz1ktXUZpxvSudlwYxk3jGY3NqUdd6XdQx-6-KuG8fHHmHutacSbtl6YUJABkBW3h9y6jv9yl3gwiibd2e6_JHqHHs5GUfzlaPr5LXoEl2s_SZvtoZ0yX8t9EEplclC3hRsvCw3L |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Porous+Iron%E2%80%93Cobalt+Alloy%2FNitrogen%E2%80%90Doped+Carbon+Cages+Synthesized+via+Pyrolysis+of+Complex+Metal%E2%80%93Organic+Framework+Hybrids+for+Oxygen+Reduction&rft.jtitle=Advanced+functional+materials&rft.au=Bu+Yuan+Guan&rft.au=Lu%2C+Yan&rft.au=Wang%2C+Yong&rft.au=Wu%2C+Minghong&rft.date=2018-03-07&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=28&rft.issue=10&rft_id=info:doi/10.1002%2Fadfm.201706738&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |