Porous Iron–Cobalt Alloy/Nitrogen‐Doped Carbon Cages Synthesized via Pyrolysis of Complex Metal–Organic Framework Hybrids for Oxygen Reduction

Efficient and stable nonprecious metal electrocatalysts for oxygen reduction are of great significance in some important electrochemical energy storage and conversion systems. As a unique class of porous hybrid materials, metal–organic frameworks (MOFs) and their composites are recently considered a...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 28; no. 10
Main Authors Guan, Bu Yuan, Lu, Yan, Wang, Yong, Wu, Minghong, Lou, Xiong Wen (David)
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 07.03.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Efficient and stable nonprecious metal electrocatalysts for oxygen reduction are of great significance in some important electrochemical energy storage and conversion systems. As a unique class of porous hybrid materials, metal–organic frameworks (MOFs) and their composites are recently considered as promising precursors to derive advanced functional materials with controlled structures and compositions. Here, an “MOF‐in‐MOF hybrid” confined pyrolysis strategy is developed for the synthesis of porous Fe–Co alloy/N‐doped carbon cages. A unique “MOF‐in‐MOF hybrid” architecture constructed from a Zn‐based MOF core and a Co‐based MOF hybrid shell encapsulated with FeOOH nanorods is first prepared, followed by a pyrolysis process to obtain a cage‐shaped hybrid material consisting of Fe–Co alloy nanocrystallites evenly distributed inside a porous N‐doped carbon microshell. Of note, this strategy can be extended to synthesize many other multifunctional “nanosubstrate‐in‐MOF hybrid” core–shelled structures. Benefiting from the structural and compositional advantages, the as‐derived hybrid cages exhibit superior electrocatalytic performance for the oxygen reduction reaction in alkaline solution. The present approach may provide some insight in design and synthesis of complex MOF hybrid structures and their derived functional materials for energy storage and conversion applications. A metal–organic frameworks (MOF)‐in‐MOF hybrid confined pyrolysis strategy is developed to synthesize porous Fe–Co alloy/N‐doped carbon cages. With the structural and compositional advantages, these unique hybrid materials exhibit superior electrocatalytic performance for oxygen reduction reactions in alkaline electrolytes.
AbstractList Efficient and stable nonprecious metal electrocatalysts for oxygen reduction are of great significance in some important electrochemical energy storage and conversion systems. As a unique class of porous hybrid materials, metal–organic frameworks (MOFs) and their composites are recently considered as promising precursors to derive advanced functional materials with controlled structures and compositions. Here, an “MOF‐in‐MOF hybrid” confined pyrolysis strategy is developed for the synthesis of porous Fe–Co alloy/N‐doped carbon cages. A unique “MOF‐in‐MOF hybrid” architecture constructed from a Zn‐based MOF core and a Co‐based MOF hybrid shell encapsulated with FeOOH nanorods is first prepared, followed by a pyrolysis process to obtain a cage‐shaped hybrid material consisting of Fe–Co alloy nanocrystallites evenly distributed inside a porous N‐doped carbon microshell. Of note, this strategy can be extended to synthesize many other multifunctional “nanosubstrate‐in‐MOF hybrid” core–shelled structures. Benefiting from the structural and compositional advantages, the as‐derived hybrid cages exhibit superior electrocatalytic performance for the oxygen reduction reaction in alkaline solution. The present approach may provide some insight in design and synthesis of complex MOF hybrid structures and their derived functional materials for energy storage and conversion applications.
Efficient and stable nonprecious metal electrocatalysts for oxygen reduction are of great significance in some important electrochemical energy storage and conversion systems. As a unique class of porous hybrid materials, metal–organic frameworks (MOFs) and their composites are recently considered as promising precursors to derive advanced functional materials with controlled structures and compositions. Here, an “MOF‐in‐MOF hybrid” confined pyrolysis strategy is developed for the synthesis of porous Fe–Co alloy/N‐doped carbon cages. A unique “MOF‐in‐MOF hybrid” architecture constructed from a Zn‐based MOF core and a Co‐based MOF hybrid shell encapsulated with FeOOH nanorods is first prepared, followed by a pyrolysis process to obtain a cage‐shaped hybrid material consisting of Fe–Co alloy nanocrystallites evenly distributed inside a porous N‐doped carbon microshell. Of note, this strategy can be extended to synthesize many other multifunctional “nanosubstrate‐in‐MOF hybrid” core–shelled structures. Benefiting from the structural and compositional advantages, the as‐derived hybrid cages exhibit superior electrocatalytic performance for the oxygen reduction reaction in alkaline solution. The present approach may provide some insight in design and synthesis of complex MOF hybrid structures and their derived functional materials for energy storage and conversion applications. A metal–organic frameworks (MOF)‐in‐MOF hybrid confined pyrolysis strategy is developed to synthesize porous Fe–Co alloy/N‐doped carbon cages. With the structural and compositional advantages, these unique hybrid materials exhibit superior electrocatalytic performance for oxygen reduction reactions in alkaline electrolytes.
Author Lou, Xiong Wen (David)
Guan, Bu Yuan
Wu, Minghong
Lu, Yan
Wang, Yong
Author_xml – sequence: 1
  givenname: Bu Yuan
  surname: Guan
  fullname: Guan, Bu Yuan
  organization: Nanyang Technological University
– sequence: 2
  givenname: Yan
  surname: Lu
  fullname: Lu, Yan
  organization: Nanyang Technological University
– sequence: 3
  givenname: Yong
  surname: Wang
  fullname: Wang, Yong
  organization: School of Environmental and Chemical Engineering Shanghai University
– sequence: 4
  givenname: Minghong
  surname: Wu
  fullname: Wu, Minghong
  email: mhwu@staff.shu.edu.cn
  organization: School of Environmental and Chemical Engineering Shanghai University
– sequence: 5
  givenname: Xiong Wen (David)
  orcidid: 0000-0002-5557-4437
  surname: Lou
  fullname: Lou, Xiong Wen (David)
  email: xwlou@ntu.edu.sg
  organization: Nanyang Technological University
BookMark eNqFkMFO3DAQhi1EpQLl2rOlnnexncTJHlehC0jQRQWk3iInniym3sx2nC2kpz5CJXjCPkm92gqkShWnsWf-75_Rv892O-yAsfdSjKUQ6sjYdjlWQuZC50mxw_aklnqUCFXsPr_ll7dsP4Q7EWV5ku6xp0skXAd-Rtj9_vlYYm18z6fe43D0yfWEC4j9X8e4AstLQzV2sSwg8Kuh628huB9x8N0ZfjkQ-iG4wLHlJS5XHh74BfTGR985LUznGj4js4R7pK_8dKjJ2cBbJD5_GOIa_hnsuukddu_Ym9b4AId_6wG7mX28Lk9H5_OTs3J6PmpSJYqRUWlqbSPrXMMkz1IoJJgs0daAgiz-ayu1TdRkInVbZHkKWoMSdSGzXEArkgP2Yeu7Ivy2htBXd7imLq6sYo4i0dFMRVW6VTWEIRC0VeN6s7mzJ-N8JUW1yb_a5F895x-x8T_YitzS0PB_YLIF7p2H4RV1NT2eXbywfwAYGZ_z
CitedBy_id crossref_primary_10_1021_acs_energyfuels_3c04956
crossref_primary_10_1002_aenm_202002762
crossref_primary_10_1002_smll_202008165
crossref_primary_10_3390_nano12091416
crossref_primary_10_1002_celc_201900709
crossref_primary_10_3389_fenrg_2021_673923
crossref_primary_10_1039_D4TA05404K
crossref_primary_10_1016_j_enchem_2022_100083
crossref_primary_10_1016_j_apcatb_2020_119247
crossref_primary_10_1016_j_jelechem_2023_117394
crossref_primary_10_1007_s11664_020_08425_y
crossref_primary_10_1016_j_cis_2022_102668
crossref_primary_10_1039_C9NJ01534E
crossref_primary_10_1016_j_cej_2021_132199
crossref_primary_10_1016_j_diamond_2020_107695
crossref_primary_10_1016_j_seppur_2024_126520
crossref_primary_10_1039_D3TA05478K
crossref_primary_10_1002_asia_201801776
crossref_primary_10_1016_j_nanoen_2019_01_011
crossref_primary_10_1016_j_electacta_2022_140938
crossref_primary_10_1016_j_poly_2024_117267
crossref_primary_10_3390_polym15214315
crossref_primary_10_1021_acsaem_2c03831
crossref_primary_10_1002_adma_201901796
crossref_primary_10_1021_acscatal_8b04609
crossref_primary_10_1016_j_jece_2024_113417
crossref_primary_10_1016_j_ccr_2022_215011
crossref_primary_10_1016_j_mcat_2021_111614
crossref_primary_10_1021_acssuschemeng_0c01729
crossref_primary_10_1088_2053_1591_ab63fc
crossref_primary_10_1002_aenm_202100514
crossref_primary_10_1002_anie_201810175
crossref_primary_10_1016_j_ccr_2022_214839
crossref_primary_10_1002_asia_201900748
crossref_primary_10_1016_j_apsusc_2022_153786
crossref_primary_10_1016_j_electacta_2020_137522
crossref_primary_10_1021_acsami_2c09271
crossref_primary_10_1039_D0QM00671H
crossref_primary_10_1016_j_nanoen_2021_106073
crossref_primary_10_1016_j_jallcom_2022_166680
crossref_primary_10_1039_D1TA00772F
crossref_primary_10_1021_acsami_9b03682
crossref_primary_10_1021_acssuschemeng_8b06634
crossref_primary_10_1016_j_apsusc_2019_05_014
crossref_primary_10_1016_j_ijhydene_2021_09_222
crossref_primary_10_1016_j_mattod_2022_04_002
crossref_primary_10_1016_j_cej_2021_132410
crossref_primary_10_1039_C8DT02250J
crossref_primary_10_1063_1674_0068_cjcp2304033
crossref_primary_10_1007_s11581_019_03355_0
crossref_primary_10_1039_D2TA03744K
crossref_primary_10_1016_j_jpowsour_2020_227899
crossref_primary_10_1016_j_jcis_2020_06_057
crossref_primary_10_1002_smll_201906782
crossref_primary_10_1016_j_cej_2020_127569
crossref_primary_10_1039_C9CY00746F
crossref_primary_10_3390_catal13081161
crossref_primary_10_1002_cssc_201800489
crossref_primary_10_1007_s10854_023_09885_8
crossref_primary_10_1016_j_ijhydene_2020_11_210
crossref_primary_10_1016_j_jallcom_2022_165482
crossref_primary_10_1016_j_apcatb_2019_04_027
crossref_primary_10_1021_acsenergylett_9b00893
crossref_primary_10_1039_C8EE02779J
crossref_primary_10_1021_acsami_9b09311
crossref_primary_10_3390_recycling8030048
crossref_primary_10_1002_cssc_201902232
crossref_primary_10_1016_j_ijhydene_2019_07_091
crossref_primary_10_1016_j_renene_2021_08_008
crossref_primary_10_1016_j_apsusc_2019_144380
crossref_primary_10_1016_j_jece_2022_107758
crossref_primary_10_1142_S1793604721300164
crossref_primary_10_1016_j_electacta_2019_135360
crossref_primary_10_1039_D3YA00561E
crossref_primary_10_1360_SSPMA_2023_0061
crossref_primary_10_1021_acsami_8b13290
crossref_primary_10_1002_adfm_201910274
crossref_primary_10_1016_j_carbon_2023_04_006
crossref_primary_10_1016_j_apcatb_2019_118224
crossref_primary_10_1016_j_apcatb_2020_118633
crossref_primary_10_1021_acs_inorgchem_9b00463
crossref_primary_10_1039_C9QI01020C
crossref_primary_10_1002_ange_201810175
crossref_primary_10_1002_chem_201801572
crossref_primary_10_1016_j_jcis_2019_04_029
crossref_primary_10_3390_en16134950
crossref_primary_10_1002_aic_17785
crossref_primary_10_1021_acs_chemrev_9b00685
crossref_primary_10_1016_j_ijhydene_2024_05_228
crossref_primary_10_1016_j_cej_2019_03_163
crossref_primary_10_1039_C8NJ01281D
crossref_primary_10_1039_D3EE04513G
crossref_primary_10_1007_s40843_019_1190_3
crossref_primary_10_1039_D4TC02771J
crossref_primary_10_1039_C8TA01078A
crossref_primary_10_1021_acssuschemeng_9b00264
crossref_primary_10_1016_j_cej_2018_06_140
crossref_primary_10_1039_D0TA05510G
crossref_primary_10_1002_adfm_201807418
crossref_primary_10_1016_j_cis_2025_103449
crossref_primary_10_1002_advs_201802373
crossref_primary_10_1016_j_jhazmat_2021_127593
crossref_primary_10_1039_D0TA08311A
crossref_primary_10_1002_batt_201900052
crossref_primary_10_1002_celc_202001289
crossref_primary_10_1016_j_apcatb_2019_03_013
crossref_primary_10_1002_aenm_201900375
crossref_primary_10_1039_C8TA05554H
crossref_primary_10_1149_2_0131812jes
crossref_primary_10_1016_j_matlet_2019_02_124
crossref_primary_10_1039_D2CY01213H
crossref_primary_10_1039_D2DT00906D
crossref_primary_10_1016_j_nanoen_2018_12_009
crossref_primary_10_1039_D2TA06818D
crossref_primary_10_1002_batt_201800093
crossref_primary_10_1002_smll_202106532
crossref_primary_10_1016_j_ensm_2020_01_016
crossref_primary_10_1002_smll_201800423
crossref_primary_10_1002_smll_202004142
crossref_primary_10_1002_smll_201805324
crossref_primary_10_1016_j_cej_2023_141751
crossref_primary_10_1016_j_ijhydene_2023_03_013
crossref_primary_10_1039_D2TA08943B
crossref_primary_10_1039_C8TA11704G
crossref_primary_10_1002_smll_202401146
crossref_primary_10_1016_j_joule_2019_12_014
crossref_primary_10_1002_asia_202000913
crossref_primary_10_1016_j_ccr_2020_213214
crossref_primary_10_1039_C9DT04930D
crossref_primary_10_1016_j_jece_2023_110624
crossref_primary_10_1016_j_jelechem_2024_118178
crossref_primary_10_1002_asia_201901616
crossref_primary_10_1002_celc_201800813
crossref_primary_10_1021_acs_energyfuels_2c03812
crossref_primary_10_1002_smll_202004398
crossref_primary_10_1016_j_ijhydene_2019_08_190
crossref_primary_10_1021_acsanm_2c05302
crossref_primary_10_1002_celc_202200677
crossref_primary_10_1016_j_carbon_2019_05_073
crossref_primary_10_1016_j_jcis_2020_07_055
crossref_primary_10_1016_j_jallcom_2024_175227
crossref_primary_10_1016_j_jece_2021_106452
crossref_primary_10_1039_D0NJ06174C
crossref_primary_10_1002_aenm_201803628
crossref_primary_10_1002_agt2_189
crossref_primary_10_1002_er_8567
crossref_primary_10_1016_j_cej_2020_128358
crossref_primary_10_1039_D0NJ04365F
crossref_primary_10_1016_j_cej_2020_127267
crossref_primary_10_1088_2053_1591_abaa8d
crossref_primary_10_1007_s40843_020_1587_3
crossref_primary_10_1021_acs_inorgchem_1c00946
crossref_primary_10_1039_D0NR09156A
crossref_primary_10_1021_acssuschemeng_8b01332
crossref_primary_10_1007_s11051_019_4678_z
crossref_primary_10_1039_C8TA01247D
crossref_primary_10_1016_j_ijhydene_2023_08_122
crossref_primary_10_1016_j_jcis_2020_02_005
crossref_primary_10_1007_s40820_021_00656_w
crossref_primary_10_1021_acsami_1c08720
crossref_primary_10_1039_C9CS00906J
crossref_primary_10_1039_C9TB00797K
crossref_primary_10_1016_j_envres_2024_118499
crossref_primary_10_3390_catal9030264
crossref_primary_10_3390_catal9090762
crossref_primary_10_1021_acssuschemeng_9b07781
crossref_primary_10_1080_07388551_2023_2230518
crossref_primary_10_1039_D0RA08750E
crossref_primary_10_1007_s41918_018_0024_x
crossref_primary_10_3390_app12136659
crossref_primary_10_1002_smtd_202000494
crossref_primary_10_1016_j_apcatb_2022_121272
crossref_primary_10_1016_j_jallcom_2024_177308
crossref_primary_10_1021_acs_inorgchem_9b00288
crossref_primary_10_1002_adhm_202301316
crossref_primary_10_1007_s40820_018_0197_1
crossref_primary_10_1002_admi_201900273
crossref_primary_10_1016_j_cej_2020_127961
crossref_primary_10_1016_j_jechem_2022_01_042
crossref_primary_10_1016_j_enchem_2020_100027
crossref_primary_10_1002_smll_202500109
crossref_primary_10_1002_smll_202205638
crossref_primary_10_1039_C9DT02301A
crossref_primary_10_1016_j_ccr_2019_02_021
crossref_primary_10_1007_s11581_024_05767_z
crossref_primary_10_1016_j_jcis_2023_07_101
crossref_primary_10_1039_C9CC03727F
crossref_primary_10_1039_C8TA08577C
crossref_primary_10_1016_j_jmst_2022_03_033
crossref_primary_10_1039_D0TA00073F
crossref_primary_10_1016_j_cej_2021_131614
crossref_primary_10_1002_adma_201804903
crossref_primary_10_1016_j_jpowsour_2020_227883
crossref_primary_10_1002_adfm_201806720
crossref_primary_10_1002_anie_201910309
crossref_primary_10_1016_j_materresbull_2019_02_029
crossref_primary_10_1021_acsami_9b00589
crossref_primary_10_1039_C9TA09104A
crossref_primary_10_1016_j_ccr_2023_215464
crossref_primary_10_1021_acsami_8b14536
crossref_primary_10_1016_j_jpowsour_2019_227512
crossref_primary_10_1016_j_ensm_2022_12_002
crossref_primary_10_1016_j_carbon_2019_02_061
crossref_primary_10_1016_j_jallcom_2021_159970
crossref_primary_10_1002_advs_202000747
crossref_primary_10_1016_j_apsadv_2022_100233
crossref_primary_10_1039_C9CS00379G
crossref_primary_10_1016_j_cej_2023_147915
crossref_primary_10_1039_C8TA11976G
crossref_primary_10_1016_j_jallcom_2021_159965
crossref_primary_10_1039_C9TA08016C
crossref_primary_10_1021_acs_langmuir_8b03921
crossref_primary_10_1002_cssc_201802163
crossref_primary_10_1016_j_cej_2020_127776
crossref_primary_10_1021_acscatal_2c03683
crossref_primary_10_1016_j_jechem_2020_04_066
crossref_primary_10_1016_j_apsusc_2018_09_232
crossref_primary_10_1002_adma_202301836
crossref_primary_10_1039_D0QI01037E
crossref_primary_10_1039_D2TA02076A
crossref_primary_10_1016_j_jcis_2020_04_093
crossref_primary_10_1007_s11581_021_03963_9
crossref_primary_10_1021_acsaem_1c03008
crossref_primary_10_1002_ange_201910309
crossref_primary_10_1021_acssuschemeng_9b05567
crossref_primary_10_1039_C8NR04068K
crossref_primary_10_1016_j_nanoen_2023_108415
crossref_primary_10_1007_s12678_019_00527_4
crossref_primary_10_1039_D1CC01989A
crossref_primary_10_1021_acs_energyfuels_3c00801
crossref_primary_10_1021_acs_chemrev_1c00331
crossref_primary_10_1021_acsami_2c00643
crossref_primary_10_1016_j_carbon_2018_07_013
crossref_primary_10_1016_j_gee_2020_11_023
crossref_primary_10_1021_acsnano_9b05978
crossref_primary_10_1007_s10853_018_03255_0
crossref_primary_10_1002_smll_202100607
crossref_primary_10_1016_j_jaap_2022_105710
Cites_doi 10.1016/j.electacta.2015.08.021
10.1038/ncomms7512
10.1126/science.1200832
10.1126/science.290.5496.1588
10.1002/anie.201611804
10.1021/cm103571y
10.1038/nchem.1272
10.1002/adma.201603622
10.1021/cr020730k
10.1039/C4CS00015C
10.1038/ncomms10141
10.1002/adma.201605083
10.1002/adma.201200469
10.1002/smtd.201700158
10.1039/C6EE02171A
10.1126/sciadv.1501554
10.1021/acsenergylett.6b00686
10.1038/nnano.2015.48
10.1021/cr500054y
10.1038/ncomms9618
10.1002/adma.201605902
10.1021/jacs.6b06558
10.1002/anie.201604802
10.1002/adma.201203923
10.1039/c4ee00517a
10.1002/advs.201700247
10.1016/j.joule.2017.08.008
10.1038/ncomms3904
10.1002/anie.199623391
10.1021/cr020724o
10.1021/jacs.5b02465
10.1039/C4CS00484A
10.1021/ja106217u
10.1002/adma.201604898
10.1039/C6NR08057J
10.1002/adma.201605051
10.1039/C5CS00670H
10.1007/BF01554752
10.1021/nn505582e
10.1002/adma.201202146
10.1021/jacs.5b10484
10.1039/C5NR00055F
10.1039/C6NR06961D
10.1016/j.nanoen.2016.11.033
10.1038/nenergy.2015.6
10.1039/c2cs35129c
10.1021/ja01539a017
ContentType Journal Article
Copyright 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.201706738
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 10_1002_adfm_201706738
ADFM201706738
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 41430644; 21671131
– fundername: Program for Changjiang Scholars and Innovative Research Team in University
  funderid: IRT13078
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
AAHHS
AANHP
AAYXX
ACBWZ
ACCFJ
ACRPL
ACYXJ
ADNMO
ADZOD
AEEZP
AEQDE
AGQPQ
AIWBW
AJBDE
ASPBG
AVWKF
AZFZN
CITATION
FEDTE
HF~
HVGLF
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-c4208-a244ddc1b76e9754e81ea536dae2e554ebd16d329916f8574e66e20b81570ef03
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Fri Jul 25 07:28:16 EDT 2025
Tue Jul 01 04:11:44 EDT 2025
Thu Apr 24 22:53:59 EDT 2025
Wed Aug 20 07:26:27 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4208-a244ddc1b76e9754e81ea536dae2e554ebd16d329916f8574e66e20b81570ef03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5557-4437
PQID 2010365362
PQPubID 2045204
PageCount 10
ParticipantIDs proquest_journals_2010365362
crossref_citationtrail_10_1002_adfm_201706738
crossref_primary_10_1002_adfm_201706738
wiley_primary_10_1002_adfm_201706738_ADFM201706738
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 7, 2018
PublicationDateYYYYMMDD 2018-03-07
PublicationDate_xml – month: 03
  year: 2018
  text: March 7, 2018
  day: 07
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 1
2015; 6
2004; 104
2017; 2
2013; 25
2013; 4
2017; 4
2015; 10
2017; 29
1996; 35
2015; 7
2014; 114
2011; 332
2014; 43
2000; 290
2016; 55
2017; 31
2016; 7
2016; 1
2016; 2
2015; 137
2015; 178
2015; 44
2017; 56
2010; 132
2016; 138
2011; 23
1958; 80
1974; 252
2012; 24
2016; 28
2014; 8
2014; 7
2012; 4
2016; 8
2016; 9
2016; 45
2012; 41
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_1_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_37_1
e_1_2_7_38_1
e_1_2_7_39_1
References_xml – volume: 290
  start-page: 1588
  year: 2000
  publication-title: Science
– volume: 31
  start-page: 331
  year: 2017
  publication-title: Nano Energy
– volume: 7
  start-page: 2071
  year: 2014
  publication-title: Energy Environ. Sci.
– volume: 24
  start-page: 1903
  year: 2012
  publication-title: Adv. Mater.
– volume: 29
  start-page: 1605051
  year: 2017
  publication-title: Adv. Mater.
– volume: 2
  start-page: e1501554
  year: 2016
  publication-title: Sci. Adv.
– volume: 8
  start-page: 12660
  year: 2014
  publication-title: ACS Nano
– volume: 178
  start-page: 287
  year: 2015
  publication-title: Electrochim. Acta
– volume: 25
  start-page: 998
  year: 2013
  publication-title: Adv. Mater.
– volume: 43
  start-page: 5257
  year: 2014
  publication-title: Chem. Soc. Rev.
– volume: 332
  start-page: 443
  year: 2011
  publication-title: Science
– volume: 29
  start-page: 1605902
  year: 2017
  publication-title: Adv. Mater.
– volume: 56
  start-page: 2386
  year: 2017
  publication-title: Angew. Chem., Int. Ed.
– volume: 8
  start-page: 20048
  year: 2016
  publication-title: Nanoscale
– volume: 1
  start-page: 1700158
  year: 2017
  publication-title: Small Methods
– volume: 24
  start-page: 5166
  year: 2012
  publication-title: Adv. Mater.
– volume: 8
  start-page: 18507
  year: 2016
  publication-title: Nanoscale
– volume: 28
  start-page: 9596
  year: 2016
  publication-title: Adv. Mater.
– volume: 45
  start-page: 517
  year: 2016
  publication-title: Chem. Soc. Rev.
– volume: 104
  start-page: 4245
  year: 2004
  publication-title: Chem. Rev.
– volume: 29
  start-page: 1604898
  year: 2017
  publication-title: Adv. Mater.
– volume: 252
  start-page: 464
  year: 1974
  publication-title: Colloid Polym. Sci.
– volume: 80
  start-page: 1339
  year: 1958
  publication-title: J. Am. Chem. Soc.
– volume: 6
  start-page: 8618
  year: 2015
  publication-title: Nat. Commun.
– volume: 1
  start-page: 15006
  year: 2016
  publication-title: Nat. Energy
– volume: 4
  start-page: 2904
  year: 2013
  publication-title: Nat. Commun.
– volume: 137
  start-page: 5590
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 138
  start-page: 11306
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 41
  start-page: 6931
  year: 2012
  publication-title: Chem. Soc. Rev.
– volume: 44
  start-page: 2168
  year: 2015
  publication-title: Chem. Soc. Rev.
– volume: 2
  start-page: 504
  year: 2017
  publication-title: ACS Energy Lett.
– volume: 55
  start-page: 10800
  year: 2016
  publication-title: Angew. Chem., Int. Ed.
– volume: 132
  start-page: 17056
  year: 2010
  publication-title: J. Am. Chem. Soc.
– volume: 9
  start-page: 3092
  year: 2016
  publication-title: Energy Environ. Sci.
– volume: 23
  start-page: 2130
  year: 2011
  publication-title: Chem. Mater.
– volume: 1
  start-page: 77
  year: 2017
  publication-title: Joule
– volume: 104
  start-page: 4791
  year: 2004
  publication-title: Chem. Rev.
– volume: 4
  start-page: 1700247
  year: 2017
  publication-title: Adv. Sci.
– volume: 35
  start-page: 2339
  year: 1996
  publication-title: Angew. Chem., Int. Ed.
– volume: 6
  start-page: 6512
  year: 2015
  publication-title: Nat. Commun.
– volume: 4
  start-page: 310
  year: 2012
  publication-title: Nat. Chem.
– volume: 7
  start-page: 10141
  year: 2016
  publication-title: Nat. Commun.
– volume: 138
  start-page: 3623
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 7
  start-page: 9174
  year: 2015
  publication-title: Nanoscale
– volume: 10
  start-page: 444
  year: 2015
  publication-title: Nat. Nanotechnol.
– volume: 29
  start-page: 1605083
  year: 2017
  publication-title: Adv. Mater.
– volume: 114
  start-page: 11721
  year: 2014
  publication-title: Chem. Rev.
– ident: e_1_2_7_17_1
  doi: 10.1016/j.electacta.2015.08.021
– ident: e_1_2_7_39_1
  doi: 10.1038/ncomms7512
– ident: e_1_2_7_21_1
  doi: 10.1126/science.1200832
– ident: e_1_2_7_29_1
  doi: 10.1126/science.290.5496.1588
– ident: e_1_2_7_13_1
  doi: 10.1002/anie.201611804
– ident: e_1_2_7_43_1
  doi: 10.1021/cm103571y
– ident: e_1_2_7_42_1
  doi: 10.1038/nchem.1272
– ident: e_1_2_7_14_1
  doi: 10.1002/adma.201603622
– ident: e_1_2_7_5_1
  doi: 10.1021/cr020730k
– ident: e_1_2_7_10_1
  doi: 10.1039/C4CS00015C
– ident: e_1_2_7_22_1
  doi: 10.1038/ncomms10141
– ident: e_1_2_7_20_1
  doi: 10.1002/adma.201605083
– ident: e_1_2_7_3_1
  doi: 10.1002/adma.201200469
– ident: e_1_2_7_34_1
  doi: 10.1002/smtd.201700158
– ident: e_1_2_7_36_1
  doi: 10.1039/C6EE02171A
– ident: e_1_2_7_6_1
  doi: 10.1126/sciadv.1501554
– ident: e_1_2_7_16_1
  doi: 10.1021/acsenergylett.6b00686
– ident: e_1_2_7_8_1
  doi: 10.1038/nnano.2015.48
– ident: e_1_2_7_9_1
  doi: 10.1021/cr500054y
– ident: e_1_2_7_19_1
  doi: 10.1038/ncomms9618
– ident: e_1_2_7_38_1
  doi: 10.1002/adma.201605902
– ident: e_1_2_7_7_1
  doi: 10.1021/jacs.6b06558
– ident: e_1_2_7_25_1
  doi: 10.1002/anie.201604802
– ident: e_1_2_7_26_1
  doi: 10.1002/adma.201203923
– ident: e_1_2_7_41_1
  doi: 10.1039/c4ee00517a
– ident: e_1_2_7_12_1
  doi: 10.1002/advs.201700247
– ident: e_1_2_7_1_1
  doi: 10.1016/j.joule.2017.08.008
– ident: e_1_2_7_30_1
  doi: 10.1038/ncomms3904
– ident: e_1_2_7_33_1
  doi: 10.1002/anie.199623391
– ident: e_1_2_7_2_1
  doi: 10.1021/cr020724o
– ident: e_1_2_7_35_1
  doi: 10.1021/jacs.5b02465
– ident: e_1_2_7_11_1
  doi: 10.1039/C4CS00484A
– ident: e_1_2_7_28_1
  doi: 10.1021/ja106217u
– ident: e_1_2_7_40_1
  doi: 10.1002/adma.201604898
– ident: e_1_2_7_24_1
  doi: 10.1039/C6NR08057J
– ident: e_1_2_7_37_1
  doi: 10.1002/adma.201605051
– ident: e_1_2_7_15_1
  doi: 10.1039/C5CS00670H
– ident: e_1_2_7_45_1
  doi: 10.1007/BF01554752
– ident: e_1_2_7_46_1
  doi: 10.1021/nn505582e
– ident: e_1_2_7_4_1
  doi: 10.1002/adma.201202146
– ident: e_1_2_7_31_1
  doi: 10.1021/jacs.5b10484
– ident: e_1_2_7_44_1
  doi: 10.1039/C5NR00055F
– ident: e_1_2_7_23_1
  doi: 10.1039/C6NR06961D
– ident: e_1_2_7_18_1
  doi: 10.1016/j.nanoen.2016.11.033
– ident: e_1_2_7_27_1
  doi: 10.1038/nenergy.2015.6
– ident: e_1_2_7_32_1
  doi: 10.1039/c2cs35129c
– ident: e_1_2_7_47_1
  doi: 10.1021/ja01539a017
SSID ssj0017734
Score 2.6350205
Snippet Efficient and stable nonprecious metal electrocatalysts for oxygen reduction are of great significance in some important electrochemical energy storage and...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Cages
Carbon
Cobalt
composites
Conversion
Coordination compounds
electrocatalysis
Electrocatalysts
Energy storage
Ferrous alloys
hollow structures
Hybrid structures
iron cobalt alloys
Materials science
Metal-organic frameworks
MOFs
Nanorods
Nitrogen
Oxygen reduction reactions
Porous materials
Pyrolysis
Solid oxide fuel cells
Synthesis
Title Porous Iron–Cobalt Alloy/Nitrogen‐Doped Carbon Cages Synthesized via Pyrolysis of Complex Metal–Organic Framework Hybrids for Oxygen Reduction
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201706738
https://www.proquest.com/docview/2010365362
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1db9MwFLXQ9gIPML5EYUx-QOIpa-IkdvJYtVTdRMe0MalvkZ3YqKKKpyRFy572E5DgF-6XcG_SZB0SQoKnJPJHYvte-yS-54SQdwZQsR9n0jEmiJ0gktxRkTDwlqKE62Yejxqd7vkJn10Ex4twscXib_Uh-g9u6BnNfI0OLlU5vBMNlZlBJjnKvwgf2b4YsIWo6KzXj_KEaLeVuYcBXt6iU2102fB-8fur0h3U3AaszYozfUJk96xtoMnXw3WlDtPr32Qc_6cxe-TxBo7SUWs_T8kDnT8jj7ZECp-Tn6e2sOuSHhU2v735MUYBkYqOVitbD0-WVWHBBG9vvk_spc7oWBbK5nD4okt6XucAL8vlNSR8W0p6Whe2UUCh1lCciFb6is41wH-otyWFpnTaRYvRWY1sspICrKafrmq4DT1DoVk0pRfkYvrh83jmbP7l4KS4ge9IgBFZloIFcB2LMNCRp2Xo80xqpgHSaAV2kfkM4aqJQhFozjVzVeSFwtXG9V-Sndzm-hWyzJmXahUHxogA0EjEA65Y7BlYQ7grzYA43Vgm6UboHP-3sUpaiWaWYG8nfW8PyPs-_2Ur8fHHnPudaSQbVy8xFVAANIUNCGvG-C-1JKPJdN5fvf6XQm_IQzhvuJGu2Cc7VbHWbwEcVeqA7I4m84_nB40j_AIg1AyU
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELagHIAD_4iFAj4gcUo3cRI7Oa52WW2hu1SllXqL7MSuVqziKsmipqc-AhI8YZ-EmWSTtkgICU5R4r_YnrE_2zOfCXlnABX7cSYdY4LYCSLJHRUJA6sUJVw383jU8HTPF3x2FHw8DjtrQvSFafkh-g031IxmvEYFxw3p4RVrqMwMupIj_4vwo9vkDl7rjfT5k4OeQcoToj1Y5h6aeHnHHW-jy4Y309-cl67A5nXI2sw504dEdX_bmpp83VlXaic9_43I8b-q84g82CBSOmpF6DG5pfMn5P41nsKn5Oe-Ley6pLuFzS8vfoyRQ6Sio9XK1sPFsiosSOHlxfeJPdUZHctC2RweJ7qkX-ocEGa5PIeAb0tJ9-vCNiQo1BqKY9FKn9G5hhUA5Nv6haZ02hmM0VmNDmUlBWRNP5_VUAw9QK5ZlKZn5Gj64XA8czbXOTgpnuE7EpBElqUgBFzHIgx05GkZ-jyTmmlANVqBaGQ-Q8RqolAEmnPNXBV5oXC1cf3nZCu3uX6BjubMS7WKA2NEAIAk4gFXLPYMTCPclWZAnK4zk3TDdY5XbqySlqWZJdjaSd_aA_K-j3_asnz8MeZ2JxvJRttLDAUgAFVhA8KaTv5LLsloMp33by__JdFbcnd2ON9L9nYXn16Re_C9cZV0xTbZqoq1fg1YqVJvGm34BWEaDxw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1Nb9MwGMctGBKCA--Ijm34gMQpa14cOzlWLVEHtFSDSb1FTmxPFVVcJem07LSPgMQ-4T7JHidN1iEhJDhFie0kth_b_8R-fkbovQJV7IWCW0qR0CIBp1YSMAVfKQmzbeHQoOZ0T6Z0fEI-zf35lhd_w4fofriZllH316aBr4Tq30JDuVDGk9zgX5gX3EcPCLVDs3nD6LgDSDmMNfPK1DErvJx5i2203f7d9HeHpVutua1Y6yEneop4-7LNSpMfh-syOUwvfuM4_k9unqEnGz2KB40BPUf3ZPYCPd6iFL5EVzOd63WBj3KdXV_-GhqCSIkHy6Wu-tNFmWuwwevLnyO9kgIPeZ7oDA6nssDfqgz0ZbG4gICzBcezKtc1AgVrhU1PtJTneCJB_8N9G6_QFEftcjE8row7WYFBV-Ov5xU8Bh8b0qyxpVfoJPr4fTi2Nps5WKmZwbc46AghUjABKkPmExk4kvseFVy6EjSNTMAwhOcavaoCnxFJqXTtJHB8Zktle6_RTqYz-ca4mbtOKpOQKMUIyJGAEpq4oaNgEKE2Vz1ktXUZpxvSudlwYxk3jGY3NqUdd6XdQx-6-KuG8fHHmHutacSbtl6YUJABkBW3h9y6jv9yl3gwiibd2e6_JHqHHs5GUfzlaPr5LXoEl2s_SZvtoZ0yX8t9EEplclC3hRsvCw3L
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Porous+Iron%E2%80%93Cobalt+Alloy%2FNitrogen%E2%80%90Doped+Carbon+Cages+Synthesized+via+Pyrolysis+of+Complex+Metal%E2%80%93Organic+Framework+Hybrids+for+Oxygen+Reduction&rft.jtitle=Advanced+functional+materials&rft.au=Bu+Yuan+Guan&rft.au=Lu%2C+Yan&rft.au=Wang%2C+Yong&rft.au=Wu%2C+Minghong&rft.date=2018-03-07&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=28&rft.issue=10&rft_id=info:doi/10.1002%2Fadfm.201706738&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon