Ectomycorrhizas and tipping points in forest ecosystems
The resilience of forests is compromised by human-induced environmental influences pushing them towards tipping points and resulting in major shifts in ecosystem state that might be difficult to reverse, are difficult to predict and manage, and can have vast ecological, economic and social consequen...
Saved in:
Published in | The New phytologist Vol. 231; no. 5; pp. 1700 - 1707 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Lancaster
Wiley
01.09.2021
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The resilience of forests is compromised by human-induced environmental influences pushing them towards tipping points and resulting in major shifts in ecosystem state that might be difficult to reverse, are difficult to predict and manage, and can have vast ecological, economic and social consequences. The literature on tipping points has grown rapidly, but almost exclusively based on aquatic and aboveground systems. So far little effort has been made to make links to soil systems, where change is not as drastically apparent, timescales may differ and recovery may be slower. Predicting belowground ecosystem state transitions and recovery, and their impacts on aboveground systems, remains a major scientific, practical and policy challenge. Recently observed major changes in aboveground tree condition across European forests are probably causally linked to ectomycorrhizal (EM) fungal changes belowground. Based on recent breakthroughs in data collection and analysis, we apply tipping point theory to forests, including their belowground component, focusing on EM fungi; link environmental thresholds for EM fungi with nutrient imbalances in forest trees; explore the role of phenotypic plasticity in EM fungal adaptation to, and recovery from, environmental change; and propose major positive feedback mechanisms to understand, address and predict forest ecosystem tipping points. |
---|---|
AbstractList | The resilience of forests is compromised by human-induced environmental influences pushing them towards tipping points and resulting in major shifts in ecosystem state that might be difficult to reverse, are difficult to predict and manage, and can have vast ecological, economic and social consequences. The literature on tipping points has grown rapidly, but almost exclusively based on aquatic and aboveground systems. So far little effort has been made to make links to soil systems, where change is not as drastically apparent, timescales may differ and recovery may be slower. Predicting belowground ecosystem state transitions and recovery, and their impacts on aboveground systems, remains a major scientific, practical and policy challenge. Recently observed major changes in aboveground tree condition across European forests are probably causally linked to ectomycorrhizal (EM) fungal changes belowground. Based on recent breakthroughs in data collection and analysis, we apply tipping point theory to forests, including their belowground component, focusing on EM fungi; link environmental thresholds for EM fungi with nutrient imbalances in forest trees; explore the role of phenotypic plasticity in EM fungal adaptation to, and recovery from, environmental change; and propose major positive feedback mechanisms to understand, address and predict forest ecosystem tipping points.The resilience of forests is compromised by human-induced environmental influences pushing them towards tipping points and resulting in major shifts in ecosystem state that might be difficult to reverse, are difficult to predict and manage, and can have vast ecological, economic and social consequences. The literature on tipping points has grown rapidly, but almost exclusively based on aquatic and aboveground systems. So far little effort has been made to make links to soil systems, where change is not as drastically apparent, timescales may differ and recovery may be slower. Predicting belowground ecosystem state transitions and recovery, and their impacts on aboveground systems, remains a major scientific, practical and policy challenge. Recently observed major changes in aboveground tree condition across European forests are probably causally linked to ectomycorrhizal (EM) fungal changes belowground. Based on recent breakthroughs in data collection and analysis, we apply tipping point theory to forests, including their belowground component, focusing on EM fungi; link environmental thresholds for EM fungi with nutrient imbalances in forest trees; explore the role of phenotypic plasticity in EM fungal adaptation to, and recovery from, environmental change; and propose major positive feedback mechanisms to understand, address and predict forest ecosystem tipping points. The resilience of forests is compromised by human‐induced environmental influences pushing them towards tipping points and resulting in major shifts in ecosystem state that might be difficult to reverse, are difficult to predict and manage, and can have vast ecological, economic and social consequences. The literature on tipping points has grown rapidly, but almost exclusively based on aquatic and aboveground systems. So far little effort has been made to make links to soil systems, where change is not as drastically apparent, timescales may differ and recovery may be slower. Predicting belowground ecosystem state transitions and recovery, and their impacts on aboveground systems, remains a major scientific, practical and policy challenge. Recently observed major changes in aboveground tree condition across European forests are probably causally linked to ectomycorrhizal (EM) fungal changes belowground. Based on recent breakthroughs in data collection and analysis, we apply tipping point theory to forests, including their belowground component, focusing on EM fungi; link environmental thresholds for EM fungi with nutrient imbalances in forest trees; explore the role of phenotypic plasticity in EM fungal adaptation to, and recovery from, environmental change; and propose major positive feedback mechanisms to understand, address and predict forest ecosystem tipping points. Summary The resilience of forests is compromised by human‐induced environmental influences pushing them towards tipping points and resulting in major shifts in ecosystem state that might be difficult to reverse, are difficult to predict and manage, and can have vast ecological, economic and social consequences. The literature on tipping points has grown rapidly, but almost exclusively based on aquatic and aboveground systems. So far little effort has been made to make links to soil systems, where change is not as drastically apparent, timescales may differ and recovery may be slower. Predicting belowground ecosystem state transitions and recovery, and their impacts on aboveground systems, remains a major scientific, practical and policy challenge. Recently observed major changes in aboveground tree condition across European forests are probably causally linked to ectomycorrhizal (EM) fungal changes belowground. Based on recent breakthroughs in data collection and analysis, we apply tipping point theory to forests, including their belowground component, focusing on EM fungi; link environmental thresholds for EM fungi with nutrient imbalances in forest trees; explore the role of phenotypic plasticity in EM fungal adaptation to, and recovery from, environmental change; and propose major positive feedback mechanisms to understand, address and predict forest ecosystem tipping points. |
Author | Suz, Laura M. Bidartondo, Martin I. Kuyper, Thomas W. van der Linde, Sietse |
Author_xml | – sequence: 1 givenname: Laura M. surname: Suz fullname: Suz, Laura M. – sequence: 2 givenname: Martin I. surname: Bidartondo fullname: Bidartondo, Martin I. – sequence: 3 givenname: Sietse surname: van der Linde fullname: van der Linde, Sietse – sequence: 4 givenname: Thomas W. surname: Kuyper fullname: Kuyper, Thomas W. |
BookMark | eNqFkE1LxDAQhoMouKse_AFCwYseujtJm0x6FPELFvWg4K1k21SzdJOaZJH6662uehDFuczleV5m3jHZtM5qQvYpTOgwU9s9TSjyHDfIiOaiSCXNcJOMAJhMRS4etsk4hAUAFFywEcGzKrplXznvn8yrComydRJN1xn7mHTO2BgSY5PGeR1ioisX-hD1MuySrUa1Qe997h1yf352d3qZzm4urk5PZmmVM8BUYw0NZTXP6xqkROQAeo60ovNaigY1NgVygagoL2pgvJYKFJWUo9DNXGU75Gid23n3vBpuKJcmVLptldVuFUomsuGrjDL8H-VZISVlGR3Qwx_owq28HR4ZKI6FhJy_U9M1VXkXgtdNWZmoonE2emXakkL53nk5dF5-dD4Yxz-Mzpul8v2v7Gf6i2l1_zdYXt9efhkHa2MRovPfBkPgwChkbxJ6mtw |
CitedBy_id | crossref_primary_10_1016_j_funeco_2024_101409 crossref_primary_10_1111_gcb_16768 crossref_primary_10_5194_bg_20_1443_2023 crossref_primary_10_1016_j_earscirev_2024_104789 crossref_primary_10_1016_j_tplants_2024_03_008 crossref_primary_10_1111_1462_2920_16040 crossref_primary_10_1111_nph_19280 crossref_primary_10_1038_s41396_021_01159_7 crossref_primary_10_1016_j_soilbio_2024_109348 crossref_primary_10_3390_f13101657 crossref_primary_10_1111_oik_08827 crossref_primary_10_1111_nph_18516 crossref_primary_10_1111_nph_18679 crossref_primary_10_1016_j_funeco_2023_101300 crossref_primary_10_1016_j_scitotenv_2023_166570 crossref_primary_10_1080_12298093_2024_2360750 crossref_primary_10_1111_gcb_17530 crossref_primary_10_1111_rec_14096 crossref_primary_10_1186_s43170_023_00145_7 crossref_primary_10_1007_s00344_023_11115_8 crossref_primary_10_1111_1365_2435_13985 crossref_primary_10_1111_nph_19509 crossref_primary_10_1111_mec_17725 crossref_primary_10_1146_annurev_environ_112621_090937 crossref_primary_10_1016_j_geoderma_2024_116982 crossref_primary_10_1016_j_apsoil_2024_105576 crossref_primary_10_3390_f14030467 crossref_primary_10_1016_j_agrformet_2023_109669 crossref_primary_10_1111_ele_14330 crossref_primary_10_1016_j_chnaes_2022_12_007 crossref_primary_10_3389_ffgc_2021_742392 crossref_primary_10_3390_ijpb15020028 |
Cites_doi | 10.1111/j.1461-0248.2007.01113.x 10.1111/nph.12538 10.1126/science.aai9214 10.1111/nph.17058 10.1016/j.envpol.2018.11.074 10.1016/j.envpol.2009.11.030 10.1016/j.foreco.2019.117762 10.1111/nph.12840 10.1007/s13595-010-0005-7 10.1016/j.scitotenv.2017.06.142 10.1038/s41467-019-13019-2 10.1038/s41586-019-1128-0 10.1016/j.funeco.2010.09.008 10.1002/fee.1528 10.1111/ele.13735 10.1111/gcb.13928 10.1111/ele.13401 10.1111/1365-2745.12918 10.1007/s005720100108 10.3390/f10070554 10.1111/gcb.14368 10.1515/forj-2017-0037 10.1111/j.1461-0248.2010.01494.x 10.1111/j.1526-100X.2012.00914.x 10.1126/sciadv.aav6358 10.1111/1365-2745.12342 10.1111/j.2041-210X.2009.00007.x 10.1515/9781400833276 10.1007/s13595-014-0447-4 10.1038/s41586-018-0189-9 10.1002/(SICI)1099-1646(199901/06)15:1/3<43::AID-RRR535>3.0.CO;2-Q 10.1111/1467-8306.00090 10.1016/j.funeco.2013.10.006 10.1111/nph.15524 10.1016/j.tree.2013.01.016 10.1002/9781118951446.ch21 10.1016/j.soilbio.2008.01.025 10.3389/fpls.2018.00463 10.1046/j.1365-2435.2002.00664.x 10.1016/j.funeco.2018.05.008 10.1002/ecm.1288 10.1038/s41559-019-0797-2 10.1038/nature12901 10.1890/0012-9658(2007)88[119:NLISED]2.0.CO;2 10.1007/s11104-009-0032-z 10.1016/j.tplants.2019.06.004 10.1046/j.1469-8137.1997.00842.x 10.1007/s10533-013-9931-4 10.1111/ele.13737 10.3389/ffgc.2019.00073 10.1038/s41586-021-03306-8 10.1016/j.envpol.2018.09.101 10.1016/j.soilbio.2013.01.004 10.1111/gcb.12657 10.1111/ele.12193 10.1111/j.1469-8137.2012.04298.x 10.1111/1365-2664.12944 10.1016/B978-0-12-804312-7.00020-6 10.1111/nph.12665 10.1111/mec.12947 10.1111/j.1469-8137.2010.03485.x 10.1111/ele.13746 10.1899/09-144.1 10.1111/gcb.14722 |
ContentType | Journal Article |
Copyright | 2021 The Authors © 2021 New Phytologist Foundation 2021 The Authors © 2021 New Phytologist Foundation 2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021 The Authors New Phytologist © 2021 New Phytologist Foundation. |
Copyright_xml | – notice: 2021 The Authors © 2021 New Phytologist Foundation – notice: 2021 The Authors © 2021 New Phytologist Foundation – notice: 2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021 The Authors New Phytologist © 2021 New Phytologist Foundation. |
DBID | 24P AAYXX CITATION 7QO 7SN 8FD C1K F1W FR3 H95 L.G M7N P64 RC3 7X8 7S9 L.6 |
DOI | 10.1111/nph.17547 |
DatabaseName | Wiley Online Library Open Access CrossRef Biotechnology Research Abstracts Ecology Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Genetics Abstracts Biotechnology Research Abstracts Technology Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Ecology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany Economics |
EISSN | 1469-8137 |
EndPage | 1707 |
ExternalDocumentID | 10_1111_nph_17547 NPH17547 27050210 |
Genre | article |
GrantInformation_xml | – fundername: Marie Curie postdoctoral fellowship funderid: FP7‐PEOPLE‐2009‐IEF‐253036 – fundername: Regulation (EC) funderid: 2152/2003 – fundername: Natural Environment Research Council funderid: NE/ K006339/1 – fundername: Hugh E. M. Osmond through Kew Foundation funderid: 11415‐101 |
GroupedDBID | --- -~X .3N .GA 05W 0R~ 10A 123 1OC 29N 2WC 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5VS 66C 702 79B 7PT 8-0 8-1 8-3 8-4 8-5 85S 8UM 930 A03 AAESR AAEVG AAHBH AAHKG AAHQN AAKGQ AAMMB AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABLJU ABPLY ABPVW ABTLG ABVKB ACAHQ ACCZN ACFBH ACGFS ACNCT ACPOU ACSCC ACSTJ ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFAZZ AFBPY AFEBI AFFPM AFGKR AFWVQ AFZJQ AGHNM AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DIK DPXWK DR2 DRFUL DRSTM E3Z EBS ECGQY F00 F01 F04 F5P G-S G.N GODZA H.T H.X HGLYW HZI HZ~ IHE IX1 J0M JBS JLS JST K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 P2P P2W P2X P4D Q.N Q11 QB0 R.K RIG ROL RX1 SUPJJ TN5 TR2 UB1 W8V W99 WBKPD WIH WIK WIN WNSPC WOHZO WQJ WXSBR WYISQ XG1 YNT YQT ZZTAW ~02 ~IA ~KM ~WT .Y3 24P 31~ AAHHS AAISJ AASGY AASVR ABBHK ABEFU ABEML ABXSQ ACCFJ ACHIC ACQPF ADULT AEEZP AEQDE AEUPB AEUQT AFPWT AHXOZ AILXY AIWBW AJBDE AQVQM AS~ CAG CBGCD COF CUYZI DEVKO DOOOF EJD ESX FIJ GTFYD HF~ HGD HQ2 HTVGU IPNFZ IPSME JAAYA JBMMH JEB JENOY JHFFW JKQEH JLXEF JPM JSODD LPU LW6 MVM NEJ RCA SA0 WHG WRC XOL YXE ZCG AAYXX ABGDZ ABSQW ADXHL AGUYK CITATION 7QO 7SN 8FD C1K F1W FR3 H95 L.G M7N P64 RC3 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c4207-e7d0f12d54dd08877500eb71c1bd86f7e7f975677a159d025d8a0a181576efba3 |
IEDL.DBID | DR2 |
ISSN | 0028-646X 1469-8137 |
IngestDate | Fri Jul 11 18:38:52 EDT 2025 Thu Jul 10 23:27:52 EDT 2025 Sun Jul 13 03:09:06 EDT 2025 Thu Apr 24 22:59:56 EDT 2025 Tue Jul 01 02:28:38 EDT 2025 Wed Jan 22 16:28:40 EST 2025 Thu Jul 03 21:34:23 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4207-e7d0f12d54dd08877500eb71c1bd86f7e7f975677a159d025d8a0a181576efba3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-3172-3036 0000-0002-3896-4943 0000-0003-4742-572X 0000-0002-1255-8963 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.17547 |
PQID | 2557980451 |
PQPubID | 2026848 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2636463127 proquest_miscellaneous_2539881231 proquest_journals_2557980451 crossref_citationtrail_10_1111_nph_17547 crossref_primary_10_1111_nph_17547 wiley_primary_10_1111_nph_17547_NPH17547 jstor_primary_27050210 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210901 September 2021 2021-09-00 |
PublicationDateYYYYMMDD | 2021-09-01 |
PublicationDate_xml | – month: 9 year: 2021 text: 20210901 day: 1 |
PublicationDecade | 2020 |
PublicationPlace | Lancaster |
PublicationPlace_xml | – name: Lancaster |
PublicationTitle | The New phytologist |
PublicationYear | 2021 |
Publisher | Wiley Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley – name: Wiley Subscription Services, Inc |
References | 2002; 16 2021; 24 2013; 28 2010; 13 2015; 103 2019; 10 2015; 72 2019; 246 2019; 569 2018; 88 2017; 355 2014; 23 2019; 244 2018; 9 2013; 59 2010; 1 2010; 29 2010; 158 2019; 24 2019; 25 2021; 591 2020; 458 2011; 68 2014; 17 2001; 11 2012; 21 2014; 202 2014; 203 2014; 10 2014; 201 2001; 413 1997; 137 2014; 117 2019; 3 2019; 5 2010; 327 2018; 106 2019; 2 2021; 229 2006; 9 2009 2011; 4 2007; 10 2018; 64 2019; 222 2018; 24 2012; 196 2017; 605–606 2019; 40 2014; 505 2017; 15 2020 2018; 558 1984; 5 2015; 21 2017 2016 2020; 23 2008; 40 2018; 55 2007; 88 2011; 189 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_68_1 Krüger I (e_1_2_8_38_1) 2020 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_62_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_15_1 e_1_2_8_57_1 Berendse F (e_1_2_8_8_1) 1984; 5 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_67_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_65_1 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_61_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_58_1 Duke G (e_1_2_8_18_1) 2020 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_52_1 e_1_2_8_50_1 |
References_xml | – volume: 202 start-page: 422 year: 2014 end-page: 430 article-title: Exploring continental‐scale stand health – N : P ratio relationships for European forests publication-title: New Phytologist – volume: 21 start-page: 418 year: 2015 end-page: 430 article-title: Tree mineral nutrition is deteriorating in Europe publication-title: Global Change Biology – year: 2009 – volume: 88 start-page: 119 year: 2007 end-page: 130 article-title: Nutrient limitation in soils exhibiting differing nitrogen availabilities: what lies beyond nitrogen saturation? publication-title: Ecology – start-page: 357 year: 2017 end-page: 374 – volume: 11 start-page: 107 year: 2001 end-page: 114 article-title: Exploration types of ectomycorrhizae – a proposal to classify ectomycorrhizal mycelial systems according to their patterns of differentiation and putative ecological importance publication-title: Mycorrhiza – volume: 605–606 start-page: 1083 year: 2017 end-page: 1096 article-title: Nitrogen deposition changes ectomycorrhizal communities in Swiss beech forests publication-title: Science of The Total Environment – volume: 137 start-page: 433 year: 1997 end-page: 440 article-title: Growth and mycorrhizal colonization of three North American tree species under elevated atmospheric CO publication-title: New Phytologist – volume: 229 start-page: 2611 year: 2021 end-page: 2624 article-title: Carbohydrate depletion in roots impedes phosphorus nutrition in young forest trees publication-title: New Phytologist – volume: 327 start-page: 71 year: 2010 end-page: 83 article-title: Nitrogen isotopes in ectomycorrhizal sporocarps correspond to belowground exploration types publication-title: Plant and Soil – volume: 591 start-page: 599 year: 2021 end-page: 603 article-title: A trade‐off between plant and soil carbon storage under elevated CO publication-title: Nature – volume: 40 start-page: 20 year: 2019 end-page: 31 article-title: Ectomycorrhizal community composition and function in a spruce forest transitioning between nitrogen and phosphorus limitation publication-title: Fungal Ecology – volume: 5 start-page: 3 year: 1984 end-page: 14 article-title: Competition between L. and (L.) Moench as affected by the availability of nutrients publication-title: Acta Ecologia/Ecologia Plantarum – volume: 2 start-page: 73 year: 2019 article-title: Resistant soil microbial communities show signs of increasing phosphorus limitation in two temperate forests after long‐term nitrogen addition publication-title: Frontiers in Forests and Global Change – volume: 103 start-page: 1 year: 2015 end-page: 4 article-title: Forest resilience, tipping points and global change processes publication-title: Journal of Ecology – volume: 40 start-page: 1662 year: 2008 end-page: 1669 article-title: Ectomycorrhizal community and extracellular enzyme activity following simulated atmospheric N deposition publication-title: Soil Biology and Biochemistry – volume: 68 start-page: 33 year: 2011 end-page: 43 article-title: Diversity in phosphorus mobilisation and uptake in ectomycorrhizal fungi publication-title: Annals of Forest Science – volume: 458 start-page: 117762 year: 2020 article-title: Nitrogen deposition is the most important environmental driver of growth of pure, even‐aged and managed European forests publication-title: Forest Ecology and Management – volume: 201 start-page: 433 year: 2014 end-page: 439 article-title: Determining place and process: functional traits of ectomycorrhizal fungi that affect both community structure and ecosystem function publication-title: New Phytologist – volume: 55 start-page: 290 year: 2018 end-page: 298 article-title: Woodland ectomycorrhizal fungi benefit from large‐scale reduction in nitrogen deposition in the Netherlands publication-title: Journal of Applied Ecology – volume: 4 start-page: 174 year: 2011 end-page: 183 article-title: Conservation of ectomycorrhizal fungi: exploring the linkages between functional and taxonomic responses to anthropogenic N deposition publication-title: Fungal Ecology – volume: 558 start-page: 243 year: 2018 end-page: 248 article-title: Environment and host as large‐scale controls of ectomycorrhizal fungi publication-title: Nature – volume: 10 start-page: 20 year: 2014 end-page: 33 article-title: Climate variation effects on fungal fruiting publication-title: Fungal Ecology – volume: 29 start-page: 998 year: 2010 end-page: 1008 article-title: Considerations for analyzing ecological community thresholds in response to anthropogenic environmental gradients publication-title: Journal of the North American Benthological Society – volume: 569 start-page: 404 year: 2019 end-page: 408 article-title: Climatic controls of decomposition drive the global biogeography of forest–tree symbioses publication-title: Nature – volume: 3 start-page: 355 year: 2019 end-page: 362 article-title: Ecosystem tipping points in an evolving world publication-title: Nature Ecology & Evolution – volume: 25 start-page: 2900 year: 2019 end-page: 2914 article-title: Anthropogenic nitrogen enrichment enhances soil carbon accumulation by impacting saprotrophs rather than ectomycorrhizal fungal activity publication-title: Global Change Biology – volume: 117 start-page: 241 year: 2014 end-page: 253 article-title: Mycorrhizal associations of dominant trees influence nitrate leaching responses to N deposition publication-title: Biogeochemistry – volume: 10 start-page: 1135 year: 2007 end-page: 1142 article-title: Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems publication-title: Ecology Letters – volume: 203 start-page: 657 year: 2014 end-page: 666 article-title: Forests trapped in nitrogen limitation – an ecological market perspective on ectomycorrhizal symbiosis publication-title: New Phytologist – volume: 59 start-page: 38 year: 2013 end-page: 48 article-title: Growth of ectomycorrhizal fungal mycelium along a Norway spruce forest nitrogen deposition gradient and its effect on nitrogen leakage publication-title: Soil Biology and Biochemistry – volume: 16 start-page: 545 year: 2002 end-page: 556 article-title: Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail publication-title: Functional Ecology – volume: 246 start-page: 148 year: 2019 end-page: 162 article-title: Atmospheric nitrogen deposition impacts on the structure and function of forest mycorrhizal communities: a review publication-title: Environmental Pollution – volume: 9 start-page: 463 year: 2018 article-title: Forest soil phosphorus resources and fertilization affect ectomycorrhizal community composition, Beech P uptake efficiency, and photosynthesis publication-title: Frontiers in Plant Science – volume: 17 start-page: 125‐e1 year: 2014 article-title: Beyond realism in climate change experiments: gradient approaches identify thresholds and tipping points publication-title: Ecology Letters – volume: 106 start-page: 524 year: 2018 end-page: 535 article-title: Association of ectomycorrhizal trees with high carbon‐to‐nitrogen ratio soils across temperate forests is driven by smaller nitrogen not larger carbon stocks publication-title: Journal of Ecology – volume: 88 start-page: 225 year: 2018 end-page: 244 article-title: Anthropogenic N deposition increases soil C storage by reducing the relative abundance of ligninolytic fungi publication-title: Ecological Monographs – volume: 72 start-page: 877 year: 2015 end-page: 885 article-title: Monitoring ectomycorrhizal fungi at large scales for science, forest management, fungal conservation and environmental policy publication-title: Annals of Forest Science – volume: 189 start-page: 515 year: 2011 end-page: 525 article-title: Recovery of ectomycorrhiza after ‘nitrogen saturation’ of a conifer forest publication-title: New Phytologist – volume: 244 start-page: 980 year: 2019 end-page: 994 article-title: Responses of forest ecosystems in Europe to decreasing nitrogen deposition publication-title: Environmental Pollution – volume: 24 start-page: 4544 year: 2018 end-page: 4553 article-title: Continental‐scale nitrogen pollution is shifting forest mycorrhizal associations and soil carbon stocks publication-title: Global Change Biology – volume: 10 start-page: 554 year: 2019 article-title: Phosphorus mobilizing enzymes of ‐associated ectomycorrhizal fungi in an Alaskan Boreal Floodplain publication-title: Forests – volume: 13 start-page: 1103 year: 2010 end-page: 1113 article-title: Nitrogen availability is a primary determinant of conifer mycorrhizas across complex environmental gradients publication-title: Ecology Letters – volume: 413 start-page: 591 year: 2001 end-page: 596 article-title: Catastrophic shifts in ecosystems publication-title: Nature – volume: 24 start-page: 1341 year: 2021 end-page: 1351 article-title: A group of ectomycorrhizal fungi restricts organic matter accumulation in boreal forest publication-title: Ecology Letters – volume: 24 start-page: 794 year: 2019 end-page: 801 article-title: Phosphorus transport in mycorrhiza: how far are we? publication-title: Trends in Plant Science – volume: 196 start-page: 681 year: 2012 end-page: 694 article-title: Phylogenetic niche conservatism: what are the underlying evolutionary and ecological causes? publication-title: New Phytologist – volume: 23 start-page: 5628 year: 2014 end-page: 5644 article-title: Environmental drivers of ectomycorrhizal communities in Europe’s temperate oak forests publication-title: Molecular Ecology – start-page: 387 year: 2016 end-page: 404 – volume: 28 start-page: 396 year: 2013 end-page: 401 article-title: Does the terrestrial biosphere have planetary tipping points? publication-title: Trends in Ecology & Evolution – volume: 24 start-page: 1193 year: 2021 end-page: 1204 article-title: A tipping point in carbon storage when forest expands into tundra is related to mycorrhizal recycling of nitrogen publication-title: Ecology Letters – volume: 24 start-page: 1215 year: 2021 end-page: 1224 article-title: The mycorrhizal tragedy of the commons publication-title: Ecology Letters – volume: 1 start-page: 25 year: 2010 end-page: 37 article-title: A new method for detecting and interpreting biodiversity and ecological community thresholds publication-title: Methods in Ecology and Evolution – volume: 355 year: 2017 article-title: Biodiversity redistribution under climate change: impacts on ecosystems and human well‐being publication-title: Science – volume: 21 start-page: 431 year: 2012 end-page: 438 article-title: Nitrogen retention by soil biota; a key role in the rehabilitation of natural grasslands? publication-title: Restoration Ecology – volume: 10 start-page: 1 year: 2019 end-page: 10 article-title: Global mycorrhizal plant distribution linked to terrestrial carbon stocks publication-title: Nature Communications – volume: 15 start-page: 431 year: 2017 end-page: 436 article-title: Nitrogen deposition and plant biodiversity: past, present, and future publication-title: Frontiers in Ecology and the Environment – volume: 64 start-page: 79 year: 2018 end-page: 95 article-title: Towards understanding the role of ectomycorrhizal fungi in forest phosphorus cycling: a modelling approach publication-title: Central European Forestry Journal – year: 2020 – volume: 222 start-page: 556 year: 2019 end-page: 564 article-title: Leaf litter decay rates differ between mycorrhizal groups in temperate, but not tropical, forests publication-title: New Phytologist – volume: 24 start-page: 972 year: 2018 end-page: 986 article-title: Tipping point in plant–fungal interactions under severe drought causes abrupt rise in peatland ecosystem respiration publication-title: Global Change Biology – volume: 505 start-page: 543 year: 2014 end-page: 545 article-title: Mycorrhiza‐mediated competition between plants and decomposers drives soil carbon storage publication-title: Nature – volume: 9 start-page: 1 year: 2006 end-page: 13 article-title: Ecological thresholds: the key to successful environmental management or an important concept with no practical application? publication-title: Ecosystems – volume: 5 year: 2019 article-title: Shifts in dominant tree mycorrhizal associations in response to anthropogenic impacts publication-title: Science Advances – volume: 23 start-page: 2 year: 2020 end-page: 15 article-title: Foreseeing the future of mutualistic communities beyond collapse publication-title: Ecology Letters – volume: 158 start-page: 2043 year: 2010 end-page: 2052 article-title: Does nitrogen deposition increase forest production? The role of phosphorus publication-title: Environmental Pollution – ident: e_1_2_8_19_1 doi: 10.1111/j.1461-0248.2007.01113.x – ident: e_1_2_8_36_1 doi: 10.1111/nph.12538 – ident: e_1_2_8_51_1 doi: 10.1126/science.aai9214 – ident: e_1_2_8_13_1 doi: 10.1111/nph.17058 – ident: e_1_2_8_43_1 doi: 10.1016/j.envpol.2018.11.074 – ident: e_1_2_8_11_1 doi: 10.1016/j.envpol.2009.11.030 – volume-title: Demystifying tipping points and other forms of abrupt ecosystem change year: 2020 ident: e_1_2_8_18_1 – ident: e_1_2_8_21_1 doi: 10.1016/j.foreco.2019.117762 – ident: e_1_2_8_23_1 doi: 10.1111/nph.12840 – ident: e_1_2_8_53_1 doi: 10.1007/s13595-010-0005-7 – ident: e_1_2_8_66_1 doi: 10.1016/j.scitotenv.2017.06.142 – ident: e_1_2_8_59_1 doi: 10.1038/s41467-019-13019-2 – ident: e_1_2_8_60_1 doi: 10.1038/s41586-019-1128-0 – ident: e_1_2_8_42_1 doi: 10.1016/j.funeco.2010.09.008 – ident: e_1_2_8_50_1 doi: 10.1002/fee.1528 – volume-title: ICP Forests Brief No.4: Increased evidence of nutrient imbalances in forest trees across Europe year: 2020 ident: e_1_2_8_38_1 – ident: e_1_2_8_14_1 doi: 10.1111/ele.13735 – ident: e_1_2_8_30_1 doi: 10.1111/gcb.13928 – ident: e_1_2_8_41_1 doi: 10.1111/ele.13401 – ident: e_1_2_8_68_1 doi: 10.1111/1365-2745.12918 – ident: e_1_2_8_2_1 doi: 10.1007/s005720100108 – ident: e_1_2_8_55_1 doi: 10.3390/f10070554 – ident: e_1_2_8_4_1 doi: 10.1111/gcb.14368 – ident: e_1_2_8_10_1 doi: 10.1515/forj-2017-0037 – ident: e_1_2_8_15_1 doi: 10.1111/j.1461-0248.2010.01494.x – ident: e_1_2_8_34_1 doi: 10.1111/j.1526-100X.2012.00914.x – ident: e_1_2_8_31_1 doi: 10.1126/sciadv.aav6358 – ident: e_1_2_8_54_1 doi: 10.1111/1365-2745.12342 – ident: e_1_2_8_7_1 doi: 10.1111/j.2041-210X.2009.00007.x – ident: e_1_2_8_56_1 doi: 10.1515/9781400833276 – ident: e_1_2_8_63_1 doi: 10.1007/s13595-014-0447-4 – ident: e_1_2_8_46_1 doi: 10.1038/s41586-018-0189-9 – ident: e_1_2_8_57_1 doi: 10.1002/(SICI)1099-1646(199901/06)15:1/3<43::AID-RRR535>3.0.CO;2-Q – ident: e_1_2_8_26_1 doi: 10.1111/1467-8306.00090 – ident: e_1_2_8_9_1 doi: 10.1016/j.funeco.2013.10.006 – ident: e_1_2_8_33_1 doi: 10.1111/nph.15524 – ident: e_1_2_8_12_1 doi: 10.1016/j.tree.2013.01.016 – ident: e_1_2_8_44_1 doi: 10.1002/9781118951446.ch21 – volume: 5 start-page: 3 year: 1984 ident: e_1_2_8_8_1 article-title: Competition between Erica tetralix L. and Molinia caerulea (L.) Moench as affected by the availability of nutrients publication-title: Acta Ecologia/Ecologia Plantarum – ident: e_1_2_8_47_1 doi: 10.1016/j.soilbio.2008.01.025 – ident: e_1_2_8_67_1 doi: 10.3389/fpls.2018.00463 – ident: e_1_2_8_40_1 doi: 10.1046/j.1365-2435.2002.00664.x – ident: e_1_2_8_3_1 doi: 10.1016/j.funeco.2018.05.008 – ident: e_1_2_8_20_1 doi: 10.1002/ecm.1288 – ident: e_1_2_8_17_1 doi: 10.1038/s41559-019-0797-2 – ident: e_1_2_8_5_1 doi: 10.1038/nature12901 – ident: e_1_2_8_25_1 doi: 10.1890/0012-9658(2007)88[119:NLISED]2.0.CO;2 – ident: e_1_2_8_28_1 doi: 10.1007/s11104-009-0032-z – ident: e_1_2_8_52_1 doi: 10.1016/j.tplants.2019.06.004 – ident: e_1_2_8_24_1 doi: 10.1046/j.1469-8137.1997.00842.x – ident: e_1_2_8_49_1 doi: 10.1007/s10533-013-9931-4 – ident: e_1_2_8_27_1 doi: 10.1111/ele.13737 – ident: e_1_2_8_22_1 doi: 10.3389/ffgc.2019.00073 – ident: e_1_2_8_64_1 doi: 10.1038/s41586-021-03306-8 – ident: e_1_2_8_58_1 doi: 10.1016/j.envpol.2018.09.101 – ident: e_1_2_8_6_1 doi: 10.1016/j.soilbio.2013.01.004 – ident: e_1_2_8_32_1 doi: 10.1111/gcb.12657 – ident: e_1_2_8_37_1 doi: 10.1111/ele.12193 – ident: e_1_2_8_16_1 doi: 10.1111/j.1469-8137.2012.04298.x – ident: e_1_2_8_61_1 doi: 10.1111/1365-2664.12944 – ident: e_1_2_8_39_1 doi: 10.1016/B978-0-12-804312-7.00020-6 – ident: e_1_2_8_65_1 doi: 10.1111/nph.12665 – ident: e_1_2_8_62_1 doi: 10.1111/mec.12947 – ident: e_1_2_8_29_1 doi: 10.1111/j.1469-8137.2010.03485.x – ident: e_1_2_8_45_1 doi: 10.1111/ele.13746 – ident: e_1_2_8_35_1 doi: 10.1899/09-144.1 – ident: e_1_2_8_48_1 doi: 10.1111/gcb.14722 |
SSID | ssj0009562 |
Score | 2.550155 |
SecondaryResourceType | review_article |
Snippet | The resilience of forests is compromised by human-induced environmental influences pushing them towards tipping points and resulting in major shifts in... Summary The resilience of forests is compromised by human‐induced environmental influences pushing them towards tipping points and resulting in major shifts in... The resilience of forests is compromised by human‐induced environmental influences pushing them towards tipping points and resulting in major shifts in... |
SourceID | proquest crossref wiley jstor |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1700 |
SubjectTerms | Data collection Economics Ecosystem recovery Ecosystems ectomycorrhizae Ectomycorrhizas Environmental changes foliar N : P ratios Forest ecosystems Forests Fungi hysteresis issues and policy Man-induced effects nitrogen deposition Phenotypic plasticity phosphorus limitation Positive feedback positive feedbacks Recovery Research review Terrestrial ecosystems tipping points |
Title | Ectomycorrhizas and tipping points in forest ecosystems |
URI | https://www.jstor.org/stable/27050210 https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.17547 https://www.proquest.com/docview/2557980451 https://www.proquest.com/docview/2539881231 https://www.proquest.com/docview/2636463127 |
Volume | 231 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS-QwFH64gwcvq-sPdnSUKnvw0qFNMkmDp11RhgVFZIU5CCVpMjqo7WA7B_3rfUl_MC7usuyt0Fea5uXlfV_68gXgG2WMKW1omMlEhYxmNEwSLUOpJbEm4Zjj3TrkxSUf37Cfk9FkBU7avTC1PkS34OYiw8_XLsCVLpeCPJ_fDzH3MbeT3NVqOUB0TZYEdzlpFZg545NGVchV8XRPvstFdTniO6C5DFd9vjlfh9u2pXWZycNwUelh9vqbiON_fsoGfG5waPC9HjhfYMXmm7D6o0Cs-LIF4iyriqcXZKbP97NXVQYqN0HltRzugnkxy6symOUBAl78ggAZbC0IXW7DzfnZr9Nx2ByxEGaMRCK0wkTTmJgRM8bNN4gfIqtFnMUaHTUVVkylGHEhFMIeg_jIJCpSiAqQptipVnQHenmR268QCPSuFFKLJM4YZ1bqyCC3jNGK2zimfThuOzvNGv1xdwzGY9ryEOyG1HdDH44603ktuvGR0Y73WGdBRDRyDLYPg9aFaROQZYrMScjEien04bC7jaHk_o-o3BYLZ0NlgoCH_s2GUxxNNCb4_mPv0z-3ML28GvuL3X833YM14qpmfBXbAHrV88LuI-yp9AF8IuzqwI_yN7lX_J8 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VgkQv5bdiSwGDQOolq8T22vGBA9BWW9quEGqlvQU79tJV22TVZIW2z8Sr8E6M86ctAsSlB26RMkpG4xnPN87kG4DXjHOujWVBqmIdcJayII6NCpRR1NlYYI7355BHIzE84R_Hg_EKfG__han5IboDNx8Z1X7tA9wfSC9FeTY77WPy47JpqTxwi29YsBVv93dwdd9Qurd7_GEYNDMFgpTTUAZO2nASUTvg1voAw4QZOiOjNDKo2UQ6OVFyIKTUmOctAgIb61BjGkRc7iZGM3zuLbjtJ4h7pv6dz3SJ4lfQlvNZcDFueIx831Cn6rXsVzdAXoO2ywC5ynB79-BHa5u6seWsPy9NP736hTbyfzHefVhvoDZ5V8fGA1hx2UO48z5HOLx4BHI3LfOLBRbfl6fTK10QnVlSVnQVX8ksn2ZlQaYZQUyPJiNYpNec18VjOLkRpTdgNcsz9wSIRAdWUhkZRykX3CkTWiyfI5QSLopYD7bb1U3ShmLdT_o4T9pSC82eVGbvwatOdFbzivxOaKNykU6CynDgi_QebLU-kzR7TpFgcShV7PmCevCyu427hf8EpDOXz70MUzFiOvY3GcHQfVlE8f3blRP9WcNk9GlYXWz-u-gLuDs8PjpMDvdHB09hjfomoappbwtWy8u5e4YorzTPq-Ai8OWmHfInz8RYpQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2VghAXVD4qFlowCKReghLba8eHHgrtakthtQcq7S3YsUNXgmTVpELLX-JPMnY-tJUAcektUkaxNePJvBdPngFeM865NpZFuUp1xFnOojQ1KlJGUWdTgTXef4f8NBPTc_5hMV5swa_-X5hWH2L44OYzI7yvfYKvbLGR5OXq4i3WPi67jsozt_6BfK0-PD3G4L6hdHLy-f006o4UiHJOYxk5aeMioXbMrfX5hfUydkYmeWJwYoV0slByLKTUWOYt4gGb6lhjFURY7gqjGT73Ftz2m4u-f4zy-YbCr6C95LPgYtHJGPm2oWGq14pf2_94Ddlu4uNQ4CY7cL9DpuSoXUoPYMuVD-HOuwrR4_oRyJO8qb6vkateXix_6pro0pImqDt8JatqWTY1WZYEITAOQZDTthLR9WM4vxEP7cJ2WZXuCRCJ8VZSGZkmORfcKRNbZJsJWgmXJGwEB703srxTJPcHY3zLemaCjsuC40bwajBdtTIcfzLaDS4dLKiMx57TjmCv93HWpWidIZeSKvXyOiN4OdzG5PI7Jrp01ZW3YSpFCMT-ZSMYhpslFMc_CPH7-wyz2XwaLp7-v-kLuDs_nmQfT2dnz-Ae9S01ocVtD7abyyu3j5ioMc_DWiTw5aYX_2-2lRdw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ectomycorrhizas+and+tipping+points+in+forest+ecosystems&rft.jtitle=The+New+phytologist&rft.au=Suz%2C+Laura+M.&rft.au=Bidartondo%2C+Martin+I.&rft.au=van+der+Linde%2C+Sietse&rft.au=Kuyper%2C+Thomas+W.&rft.date=2021-09-01&rft.pub=Wiley&rft.issn=0028-646X&rft.eissn=1469-8137&rft.volume=231&rft.issue=5&rft.spage=1700&rft.epage=1707&rft_id=info:doi/10.1111%2Fnph.17547&rft.externalDocID=27050210 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-646X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-646X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-646X&client=summon |