Ultrathin 2D‐Layered Cyclodextrin Membranes for High‐ Performance Organic Solvent Nanofiltration

Synthetic membranes with a high selectivity for demanding molecular separations and high permeance have a large potential for the reduction of energy consumption in separation processes. Herein, for the first time, the fabrication of an ultrathin layered macrocycle membrane for molecular separation...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 30; no. 4
Main Authors Huang, Tiefan, Puspasari, Tiara, Nunes, Suzana P., Peinemann, Klaus‐Viktor
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.01.2020
Subjects
Online AccessGet full text
ISSN1616-301X
1616-3028
DOI10.1002/adfm.201906797

Cover

Loading…
Abstract Synthetic membranes with a high selectivity for demanding molecular separations and high permeance have a large potential for the reduction of energy consumption in separation processes. Herein, for the first time, the fabrication of an ultrathin layered macrocycle membrane for molecular separation in organic solvent nanofiltration using per‐6‐amino‐β‐cyclodextrin as a monomer for membrane manufacturing by interfacial polymerization is reported. Compared to a regular nonfunctionalized cyclodextrin, a higher reactivity is observed, enabling a very fast membrane formation under mild conditions. The formed membrane is composed of a layered structure of polymerized cyclodextrin, which shows high stability in different organic solvents. The membrane exhibits excellent separation performance for organic solvent nanofiltration, both with nonpolar and polar solvents. Most importantly, this new membrane type can discriminate between molecules with nearly identical molecular weights but different shapes. The unmatched high permeance and shape selectivity of the membranes can be attributed to the ultralow thickness, controlled microporosity, as well as the layered macrocycle structure, which makes the membranes promising for high‐performance molecular separation in the chemical and biochemistry industry. Ultrathin 2D‐layered polymeric macrocycle membranes consisting of amino‐cyclodextrin are prepared via interfacial polymerization in mild condition. The membrane is chemically robust and exhibits excellent separation performance for organic solvent nanofiltration, both with nonpolar and polar solvents. Interestingly, this new membrane type can discriminate between molecules with nearly identical molecular weights but different shapes.
AbstractList Synthetic membranes with a high selectivity for demanding molecular separations and high permeance have a large potential for the reduction of energy consumption in separation processes. Herein, for the first time, the fabrication of an ultrathin layered macrocycle membrane for molecular separation in organic solvent nanofiltration using per‐6‐amino‐β‐cyclodextrin as a monomer for membrane manufacturing by interfacial polymerization is reported. Compared to a regular nonfunctionalized cyclodextrin, a higher reactivity is observed, enabling a very fast membrane formation under mild conditions. The formed membrane is composed of a layered structure of polymerized cyclodextrin, which shows high stability in different organic solvents. The membrane exhibits excellent separation performance for organic solvent nanofiltration, both with nonpolar and polar solvents. Most importantly, this new membrane type can discriminate between molecules with nearly identical molecular weights but different shapes. The unmatched high permeance and shape selectivity of the membranes can be attributed to the ultralow thickness, controlled microporosity, as well as the layered macrocycle structure, which makes the membranes promising for high‐performance molecular separation in the chemical and biochemistry industry. Ultrathin 2D‐layered polymeric macrocycle membranes consisting of amino‐cyclodextrin are prepared via interfacial polymerization in mild condition. The membrane is chemically robust and exhibits excellent separation performance for organic solvent nanofiltration, both with nonpolar and polar solvents. Interestingly, this new membrane type can discriminate between molecules with nearly identical molecular weights but different shapes.
Synthetic membranes with a high selectivity for demanding molecular separations and high permeance have a large potential for the reduction of energy consumption in separation processes. Herein, for the first time, the fabrication of an ultrathin layered macrocycle membrane for molecular separation in organic solvent nanofiltration using per‐6‐amino‐β‐cyclodextrin as a monomer for membrane manufacturing by interfacial polymerization is reported. Compared to a regular nonfunctionalized cyclodextrin, a higher reactivity is observed, enabling a very fast membrane formation under mild conditions. The formed membrane is composed of a layered structure of polymerized cyclodextrin, which shows high stability in different organic solvents. The membrane exhibits excellent separation performance for organic solvent nanofiltration, both with nonpolar and polar solvents. Most importantly, this new membrane type can discriminate between molecules with nearly identical molecular weights but different shapes. The unmatched high permeance and shape selectivity of the membranes can be attributed to the ultralow thickness, controlled microporosity, as well as the layered macrocycle structure, which makes the membranes promising for high‐performance molecular separation in the chemical and biochemistry industry.
Author Peinemann, Klaus‐Viktor
Nunes, Suzana P.
Huang, Tiefan
Puspasari, Tiara
Author_xml – sequence: 1
  givenname: Tiefan
  orcidid: 0000-0003-3704-013X
  surname: Huang
  fullname: Huang, Tiefan
  organization: King Abdullah University of Science and Technology (KAUST)
– sequence: 2
  givenname: Tiara
  orcidid: 0000-0003-4272-8334
  surname: Puspasari
  fullname: Puspasari, Tiara
  organization: King Abdullah University of Science and Technology (KAUST)
– sequence: 3
  givenname: Suzana P.
  orcidid: 0000-0002-3669-138X
  surname: Nunes
  fullname: Nunes, Suzana P.
  email: suzana.nunes@kaust.edu.sa
  organization: King Abdullah University of Science and Technology (KAUST)
– sequence: 4
  givenname: Klaus‐Viktor
  orcidid: 0000-0003-0309-9598
  surname: Peinemann
  fullname: Peinemann, Klaus‐Viktor
  email: klausviktor.peinemann@kaust.edu.sa
  organization: King Abdullah University of Science and Technology (KAUST)
BookMark eNqFkMFKAzEQhoMo2FavngOetybZ7Gb3WFprhdYKWvAWstmkTdlNanar9uYj-Iw-idtWKgjiaWaY_5vh_9vg2DqrALjAqIsRIlci12WXIJyimKXsCLRwjOMgRCQ5PvT46RS0q2qJEGYspC2Qz4rai3phLCSDz_ePsdgor3LY38jC5eqt9s1mosrMC6sqqJ2HIzNfNEp4r3wzlsJKBad-LqyR8MEVL8rW8E5Yp83utHH2DJxoUVTq_Lt2wGx4_dgfBePpzW2_Nw4kJYgFUkgWEyFYhhShCc20jpJIY5JEAkmSRQTlqdJZThurYcoixBSmWKIkyUIWZ2EHXO7vrrx7Xquq5ku39rZ5yUlIKQnDJMGNqrtXSe-qyivNV96Uwm84RnybJN8myQ9JNgD9BUhT74w1_kzxN5busVdTqM0_T3hvMJz8sF8JZI3O
CitedBy_id crossref_primary_10_1002_cplu_202100473
crossref_primary_10_1039_D4SC04793A
crossref_primary_10_1016_j_memsci_2023_121711
crossref_primary_10_1016_j_cej_2022_138057
crossref_primary_10_1016_j_memsci_2022_120583
crossref_primary_10_1021_acsapm_0c00896
crossref_primary_10_1021_acs_nanolett_0c03632
crossref_primary_10_1016_j_memsci_2022_120466
crossref_primary_10_1016_j_memsci_2022_120862
crossref_primary_10_1016_j_memsci_2025_123859
crossref_primary_10_1039_D0SC00056F
crossref_primary_10_1016_j_jhazmat_2023_133059
crossref_primary_10_1016_j_memsci_2021_119123
crossref_primary_10_1002_adfm_202406430
crossref_primary_10_1007_s11814_021_1048_1
crossref_primary_10_1021_acs_nanolett_4c02483
crossref_primary_10_1016_j_jwpe_2024_105777
crossref_primary_10_1002_marc_202300064
crossref_primary_10_1016_j_cej_2022_137013
crossref_primary_10_1016_j_seppur_2023_125282
crossref_primary_10_1002_anie_202212816
crossref_primary_10_1039_D2RA01491B
crossref_primary_10_1016_j_seppur_2022_121985
crossref_primary_10_1016_j_memsci_2020_118667
crossref_primary_10_1021_acsami_1c07584
crossref_primary_10_1016_j_seppur_2023_124406
crossref_primary_10_1038_s41893_024_01371_1
crossref_primary_10_1016_j_apsusc_2020_148708
crossref_primary_10_1016_j_compositesb_2021_109537
crossref_primary_10_1002_ange_202212816
crossref_primary_10_3390_membranes13050528
crossref_primary_10_1007_s10008_025_06229_w
crossref_primary_10_1126_science_adh2404
crossref_primary_10_1002_anie_202207559
crossref_primary_10_1021_acs_nanolett_0c00344
crossref_primary_10_1016_j_memsci_2023_122197
crossref_primary_10_1016_j_seppur_2025_131428
crossref_primary_10_1002_anie_202416050
crossref_primary_10_1039_D4GC00466C
crossref_primary_10_1007_s10118_023_3012_5
crossref_primary_10_1038_s41467_024_47083_0
crossref_primary_10_1016_j_desal_2023_116611
crossref_primary_10_1021_acsami_4c00305
crossref_primary_10_1016_j_seppur_2022_121884
crossref_primary_10_1039_D0TA02150D
crossref_primary_10_1002_adma_202404164
crossref_primary_10_1016_j_memsci_2024_123504
crossref_primary_10_1088_1361_6528_acbf56
crossref_primary_10_1016_j_memsci_2024_122411
crossref_primary_10_1038_s41467_020_19182_1
crossref_primary_10_1126_sciadv_adg6134
crossref_primary_10_1016_j_cej_2022_135658
crossref_primary_10_1021_acs_est_3c04773
crossref_primary_10_1016_j_seppur_2023_124376
crossref_primary_10_1016_j_seppur_2023_124497
crossref_primary_10_1039_D3CS00382E
crossref_primary_10_1002_adfm_202305815
crossref_primary_10_1016_j_memsci_2020_118968
crossref_primary_10_1016_j_seppur_2023_124898
crossref_primary_10_1016_j_seppur_2022_120833
crossref_primary_10_1016_j_seppur_2023_125747
crossref_primary_10_1021_acsami_0c16831
crossref_primary_10_1002_ange_202416050
crossref_primary_10_1039_D2CC06562B
crossref_primary_10_1016_j_memsci_2024_122605
crossref_primary_10_1039_D0TA10632A
crossref_primary_10_1016_j_jcis_2021_12_037
crossref_primary_10_1126_science_abm7686
crossref_primary_10_1016_j_cej_2024_152165
crossref_primary_10_1016_j_seppur_2024_126560
crossref_primary_10_1016_j_advmem_2022_100027
crossref_primary_10_1039_D1GC03318B
crossref_primary_10_1002_aic_17144
crossref_primary_10_1039_D3MH00957B
crossref_primary_10_1016_j_desal_2022_116198
crossref_primary_10_1039_D3CC04171A
crossref_primary_10_1016_j_desal_2022_115941
crossref_primary_10_1021_acs_est_2c06397
crossref_primary_10_1039_D2TA05880D
crossref_primary_10_1016_j_seppur_2024_127539
crossref_primary_10_1021_acsami_4c19244
crossref_primary_10_1021_acssuschemeng_0c02320
crossref_primary_10_1038_s41586_022_05032_1
crossref_primary_10_1016_j_cej_2021_130015
crossref_primary_10_1002_ange_202207559
crossref_primary_10_1002_smll_202405285
crossref_primary_10_1007_s13738_023_02748_3
crossref_primary_10_1016_j_ces_2020_116001
crossref_primary_10_1002_aic_18346
crossref_primary_10_1002_aic_17896
crossref_primary_10_1016_j_memsci_2021_119216
crossref_primary_10_1021_acs_nanolett_2c05105
crossref_primary_10_1039_D3MH01571H
crossref_primary_10_1016_j_eehl_2024_02_002
crossref_primary_10_1002_adfm_202425244
crossref_primary_10_1016_j_seppur_2021_120322
crossref_primary_10_1039_D3CP02924G
crossref_primary_10_1039_D0CS00552E
crossref_primary_10_1038_s41467_020_19404_6
crossref_primary_10_1038_s41467_024_51548_7
crossref_primary_10_46909_journalalse_2021_007
crossref_primary_10_1021_acsami_3c05074
crossref_primary_10_1021_acsami_3c09390
crossref_primary_10_1021_acs_langmuir_2c03261
crossref_primary_10_1126_sciadv_abm5899
crossref_primary_10_1021_acs_jpcb_4c02263
crossref_primary_10_1016_j_seppur_2024_127755
crossref_primary_10_1016_j_memsci_2021_119224
crossref_primary_10_1002_adma_202108457
crossref_primary_10_1021_acsami_4c14283
crossref_primary_10_1002_admi_202001671
crossref_primary_10_1038_s41598_020_78091_x
crossref_primary_10_3390_chemistry6040029
crossref_primary_10_1039_D1MA00373A
crossref_primary_10_1016_j_seppur_2022_121166
crossref_primary_10_1016_j_seppur_2021_120295
crossref_primary_10_1021_acsami_0c14825
crossref_primary_10_1126_sciadv_adr9260
crossref_primary_10_1016_j_memsci_2025_123964
crossref_primary_10_1016_j_memsci_2024_122463
crossref_primary_10_1002_aic_17517
crossref_primary_10_1007_s12274_024_6560_1
crossref_primary_10_1016_j_memsci_2024_123151
crossref_primary_10_1016_j_seppur_2023_124177
crossref_primary_10_1038_s41467_023_38728_7
crossref_primary_10_1126_sciadv_adl1455
crossref_primary_10_1039_D3QM00217A
crossref_primary_10_1016_j_seppur_2023_123884
crossref_primary_10_1038_s41467_023_41169_x
crossref_primary_10_1002_adfm_202006949
crossref_primary_10_1016_j_seppur_2021_120336
crossref_primary_10_3390_separations9110344
Cites_doi 10.1038/s41557-018-0093-9
10.1039/C7SM02202F
10.1016/j.memsci.2017.11.037
10.1021/ja407665w
10.1021/jo951396d
10.1038/s41467-017-01586-1
10.1039/C5TA01315A
10.1039/B610848M
10.1002/adma.201606641
10.1038/356325a0
10.1021/cr500006j
10.1021/jacs.8b10334
10.1016/j.memsci.2018.11.005
10.1081/SS-100100150
10.1126/science.1232714
10.1016/j.memsci.2015.07.049
10.1002/smll.201601253
10.1021/acs.est.7b04056
10.1039/C8TA05687K
10.1038/nmat4638
10.1016/j.jiec.2012.09.019
10.1002/chem.201000198
10.1126/science.aaa5058
10.1039/C8CC04080J
10.1021/ja907435c
10.1016/j.memsci.2018.06.040
10.1002/adfm.201400400
10.1039/C8TA11372F
10.1039/C8CC03306D
10.1126/sciadv.aav4489
10.1016/j.memsci.2013.09.014
10.1016/j.memsci.2017.11.051
10.1002/adma.201705973
ContentType Journal Article
Copyright 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.201906797
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList
Materials Research Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 10_1002_adfm_201906797
ADFM201906797
Genre article
GrantInformation_xml – fundername: KAUST
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
AANHP
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
HF~
HVGLF
LW6
7SP
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
ID FETCH-LOGICAL-c4207-cac762aa7b0e2484bff585f1285a0c2b520d9efbd4adf397507e141c088b376b3
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Fri Jul 25 05:05:18 EDT 2025
Thu Apr 24 22:59:49 EDT 2025
Tue Jul 01 04:12:06 EDT 2025
Wed Jan 22 16:35:10 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4207-cac762aa7b0e2484bff585f1285a0c2b520d9efbd4adf397507e141c088b376b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3704-013X
0000-0003-0309-9598
0000-0003-4272-8334
0000-0002-3669-138X
PQID 2344233881
PQPubID 2045204
PageCount 8
ParticipantIDs proquest_journals_2344233881
crossref_primary_10_1002_adfm_201906797
crossref_citationtrail_10_1002_adfm_201906797
wiley_primary_10_1002_adfm_201906797_ADFM201906797
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-01-01
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2019; 7
2010; 16
2015; 3
2019; 5
2018; 548
2018; 563
2008; 37
2014; 24
2018; 549
2017; 29
2015; 348
2009; 131
2019; 141
2016; 15
2014; 450
2014; 114
2016; 12
2017; 51
2013; 19
2018; 6
2018; 9
2013; 339
2000; 35
1992; 356
2015; 494
1996; 61
2013; 135
2018; 30
2018; 10
2018; 54
2018; 14
2019; 572
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_1_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_21_1
e_1_2_7_20_1
References_xml – volume: 450
  start-page: 249
  year: 2014
  publication-title: J. Membr. Sci.
– volume: 3
  start-page: 9668
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 6
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 54
  start-page: 7362
  year: 2018
  publication-title: Chem. Commun.
– volume: 9
  start-page: 8
  year: 2018
  publication-title: Nat. Commun.
– volume: 10
  start-page: 961
  year: 2018
  publication-title: Nat. Chem.
– volume: 7
  start-page: 3170
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 14
  start-page: 3870
  year: 2018
  publication-title: Soft Matter
– volume: 339
  start-page: 284
  year: 2013
  publication-title: Science
– volume: 24
  start-page: 4729
  year: 2014
  publication-title: Adv. Funct. Mater.
– volume: 19
  start-page: 375
  year: 2013
  publication-title: J. Ind. Eng. Chem.
– volume: 114
  year: 2014
  publication-title: Chem. Rev.
– volume: 563
  start-page: 938
  year: 2018
  publication-title: J. Membr. Sci.
– volume: 61
  start-page: 903
  year: 1996
  publication-title: J. Org. Chem.
– volume: 15
  start-page: 760
  year: 2016
  publication-title: Nat. Mater.
– volume: 549
  start-page: 1
  year: 2018
  publication-title: J. Membr. Sci.
– volume: 141
  start-page: 1807
  year: 2019
  publication-title: J. Am. Chem. Soc.
– volume: 16
  start-page: 8062
  year: 2010
  publication-title: Chem. ‐ Eur. J.
– volume: 548
  start-page: 319
  year: 2018
  publication-title: J. Membr. Sci.
– volume: 51
  year: 2017
  publication-title: Environ. Sci. Technol.
– volume: 135
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 54
  start-page: 6284
  year: 2018
  publication-title: Chem. Commun.
– volume: 356
  start-page: 325
  year: 1992
  publication-title: Nature
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 35
  start-page: 169
  year: 2000
  publication-title: Sep. Sci. Technol.
– volume: 131
  year: 2009
  publication-title: J. Am. Chem. Soc.
– volume: 348
  start-page: 1347
  year: 2015
  publication-title: Science
– volume: 12
  start-page: 5034
  year: 2016
  publication-title: Small
– volume: 37
  start-page: 365
  year: 2008
  publication-title: Chem. Soc. Rev.
– volume: 572
  start-page: 520
  year: 2019
  publication-title: J. Membr. Sci.
– volume: 5
  year: 2019
  publication-title: Sci. Adv.
– volume: 494
  start-page: 92
  year: 2015
  publication-title: J. Membr. Sci.
– ident: e_1_2_7_9_1
  doi: 10.1038/s41557-018-0093-9
– ident: e_1_2_7_23_1
  doi: 10.1039/C7SM02202F
– ident: e_1_2_7_21_1
  doi: 10.1016/j.memsci.2017.11.037
– ident: e_1_2_7_14_1
  doi: 10.1021/ja407665w
– ident: e_1_2_7_27_1
  doi: 10.1021/jo951396d
– ident: e_1_2_7_12_1
  doi: 10.1038/s41467-017-01586-1
– ident: e_1_2_7_15_1
  doi: 10.1039/C5TA01315A
– ident: e_1_2_7_2_1
  doi: 10.1039/B610848M
– ident: e_1_2_7_26_1
  doi: 10.1002/adma.201606641
– ident: e_1_2_7_32_1
  doi: 10.1038/356325a0
– ident: e_1_2_7_1_1
  doi: 10.1021/cr500006j
– ident: e_1_2_7_31_1
  doi: 10.1021/jacs.8b10334
– ident: e_1_2_7_18_1
  doi: 10.1016/j.memsci.2018.11.005
– ident: e_1_2_7_33_1
  doi: 10.1081/SS-100100150
– ident: e_1_2_7_8_1
  doi: 10.1126/science.1232714
– ident: e_1_2_7_24_1
  doi: 10.1016/j.memsci.2015.07.049
– ident: e_1_2_7_6_1
  doi: 10.1002/smll.201601253
– ident: e_1_2_7_13_1
  doi: 10.1021/acs.est.7b04056
– ident: e_1_2_7_5_1
  doi: 10.1039/C8TA05687K
– ident: e_1_2_7_7_1
  doi: 10.1038/nmat4638
– ident: e_1_2_7_17_1
  doi: 10.1016/j.jiec.2012.09.019
– ident: e_1_2_7_30_1
  doi: 10.1002/chem.201000198
– ident: e_1_2_7_3_1
  doi: 10.1126/science.aaa5058
– ident: e_1_2_7_11_1
  doi: 10.1039/C8CC04080J
– ident: e_1_2_7_25_1
  doi: 10.1021/ja907435c
– ident: e_1_2_7_16_1
  doi: 10.1016/j.memsci.2018.06.040
– ident: e_1_2_7_10_1
  doi: 10.1002/adfm.201400400
– ident: e_1_2_7_19_1
  doi: 10.1039/C8TA11372F
– ident: e_1_2_7_29_1
  doi: 10.1039/C8CC03306D
– ident: e_1_2_7_28_1
  doi: 10.1126/sciadv.aav4489
– ident: e_1_2_7_20_1
  doi: 10.1016/j.memsci.2013.09.014
– ident: e_1_2_7_22_1
  doi: 10.1016/j.memsci.2017.11.051
– ident: e_1_2_7_4_1
  doi: 10.1002/adma.201705973
SSID ssj0017734
Score 2.6316931
Snippet Synthetic membranes with a high selectivity for demanding molecular separations and high permeance have a large potential for the reduction of energy...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms 2D structure
cyclodextrin films
Cyclodextrins
Energy consumption
Materials science
Membranes
Microporosity
Nanofiltration
Organic chemistry
organic solvent nanofiltration
Polymerization
Reluctance
Selectivity
Separation
shape selectivity
Solvents
Thickness
Title Ultrathin 2D‐Layered Cyclodextrin Membranes for High‐ Performance Organic Solvent Nanofiltration
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201906797
https://www.proquest.com/docview/2344233881
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTsJAEN4YTnrw34ii2YOJp0K73XbLkYCEGDFGJeHW7G53oxHBCBzw5CP4jD6JM20pYGJM9Nhkdtv9m_l2OvMNIWeJ7yslBXesZyOHm8R3okALx-iQR0YoYRL0d3Svw06PX_aD_lIWf8YPUTjc8GSk-hoPuFTj2oI0VCYWM8nBoIWijunkGLCFqOi24I_yhMh-K4ceBnh5_Tlro8tqq81XrdICai4D1tTitLeInH9rFmjyVJ1OVFW_faNx_M9gtslmDkdpI9s_O2TNDHfJxhJJ4R5JegNksH14HFLW-nz_uJIzrO9JmzM9wHz4CYjRrnmG14PapACCKQaPgCS9WWQl0CzpU9O70QBDLCmodawWnrP27pNe--K-2XHy2gyO5swVjpYa1KiUQrmG8Ygra-HiYcHaBdLVTAXMTerGqoTD0ADzAOw0Hvc0KDUFOk35B6Q0HA3NIaFgDy3AQG6VH3AVaIkkhwxMKnTHubZl4szXJtY5cTnWzxjEGeUyi3H24mL2yuS8kH_JKDt-lKzMlzrOj-44Zj4HiOlHkVcmLF2zX3qJG612t3g6-kujY7LO8B6funYqpDR5nZoTADsTdZpu6C82nPkD
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB2xHIADO6KsPiBxCiSOU4cjaqkKtAhBK_UWxY4tEKUgKAc48Ql8I1_CTLYCEkKCY6SxE28zz5OZNwA7ie8rFUvhWM-GjjCJ74SBlo7RVREaqaRJyN_RPqs2u-KkFxTRhJQLk_FDlA43OhmpvqYDTg7p_RFraJxYSiVHi1aVB3IcJqmsd3qruigZpDwpsx_LVY9CvLxewdvo8v2v7b_apRHY_AxZU5vTmANVfG0WanKz9zRUe_rlG5Hjv4YzD7M5ImWH2RZagDEzWISZTzyFS5B0-0Rie3U9YLz-_vrWip-pxCerPes-pcQPUYy1zS2-HzUnQxzMKH4EJdn5KDGBZXmfml3e9SnKkqFmp4LhOXHvMnQbR51a08nLMzhacFc6OtaoSeNYKtdwEQplLd49LBq8IHY1VwF3kwNjVSJwaAh7EHkaT3ga9ZpCtab8FZgY3A3MKjA0iRaRoLDKD4QKdEw8hxytKnYnhLYVcIrFiXTOXU4lNPpRxrrMI5q9qJy9CuyW8vcZa8ePkhvFWkf56X2MuC8QZfph6FWAp4v2Sy_RYb3RLp_W_tJoG6aanXYrah2fna7DNKdrferp2YCJ4cOT2UTsM1Rb6e7-AMZk_R4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB2xSAgO7Iiy-oDEKSVxnDg9VpSKrVUFVOotsh1bIEqLoBzgxCfwjXwJ4yRNWySEBMdIYyfeZp4nM28ADhLfl1Jw5hjPRA7Tie9EgeKOViGLNJdcJ9bf0WiGp2123gk6Y1n8GT9E4XCzJyPV1_aAPybmaEQaKhJjM8nRoIW8wqdhloVuZPd17aogkPI4z_4rh56N8PI6Q9pGlx5Ntp80SyOsOY5YU5NTXwIx_Ngs0uS-_DKQZfX2jcfxP6NZhsUcj5JqtoFWYEr3VmFhjKVwDZJ211LY3t71CK19vn9cildb4JMcv6quTYgfoBhp6Ad8PepNgiiY2OgRlCStUVoCybI-Fbnud22MJUG9bsuF57S969Cun9wcnzp5cQZHMepyRwmFelQILl1NWcSkMXjzMGjuAuEqKgPqJhVtZMJwaAh6EHdqj3kKtZpEpSb9DZjp9Xt6EwgaRIM4kBnpB0wGSliWQ4o2FbtjTJkSOMO1iVXOXG4LaHTjjHOZxnb24mL2SnBYyD9mnB0_Su4MlzrOz-5zTH2GGNOPIq8ENF2zX3qJq7V6o3ja-kujfZhr1erx5VnzYhvmqb3Tp26eHZgZPL3oXQQ-A7mX7u0v7DL71g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ultrathin+2D%E2%80%90Layered+Cyclodextrin+Membranes+for+High%E2%80%90+Performance+Organic+Solvent+Nanofiltration&rft.jtitle=Advanced+functional+materials&rft.au=Huang%2C+Tiefan&rft.au=Puspasari%2C+Tiara&rft.au=Nunes%2C+Suzana+P&rft.au=Klaus%E2%80%90Viktor+Peinemann&rft.date=2020-01-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=30&rft.issue=4&rft_id=info:doi/10.1002%2Fadfm.201906797&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon