Resolving the Intricate Effects of Multiple Global Change Drivers on Root Litter Decomposition

ABSTRACT Plant roots represent about a quarter of global plant biomass and constitute a primary source of soil organic carbon (C). Yet, considerable uncertainty persists regarding root litter decomposition and their responses to global change factors (GCFs). Much of this uncertainty stems from a lim...

Full description

Saved in:
Bibliographic Details
Published inGlobal change biology Vol. 30; no. 10; pp. e17547 - n/a
Main Authors Zhao, Qingzhou, Freschet, Grégoire T., Tao, Tingting, Smith, Gabriel Reuben, Wang, Peng, Hu, Lingyan, Ma, Miaojun, Johnson, David, Crowther, Thomas W., Hu, Shuijin
Format Journal Article
LanguageEnglish
Published England Blackwell Publishing Ltd 01.10.2024
Wiley
Subjects
Online AccessGet full text
ISSN1354-1013
1365-2486
1365-2486
DOI10.1111/gcb.17547

Cover

Abstract ABSTRACT Plant roots represent about a quarter of global plant biomass and constitute a primary source of soil organic carbon (C). Yet, considerable uncertainty persists regarding root litter decomposition and their responses to global change factors (GCFs). Much of this uncertainty stems from a limited understanding of the multifactorial effects of GCFs and it remains unclear how these effects are mediated by litter quality, soil conditions and microbial functionality. Using complementary field decomposition and laboratory incubation approaches, we assessed the relative controls of GCF‐mediated changes in root litter traits and soil and microbial properties on fine‐root decomposition under warming, nitrogen (N) enrichment, and precipitation alteration. We found that warming and N enrichment accelerated fine‐root decomposition by over 10%, and their combination showed an additive effect, while precipitation reduction suppressed decomposition overall by 12%, with the suppressive effect being most significant under warming‐alone and N enrichment‐alone conditions. Significantly, changes in litter quality played a dominant role and accelerated fine‐root decomposition by 15% ~ 18% under warming and N enrichment, while changes in soil and microbial properties were predominant and reduced decomposition by 7% ~ 10% under precipitation reduction and the combined warming and N enrichment. Examining only the decomposition environment or litter properties in isolation can distort global change effects on root decomposition, underestimating precipitation reduction impacts by 38% and overstating warming and N effects by up to 73%. These findings highlight that the net impact of GCFs on root litter decomposition hinges on the interplay between GCF‐modulated root decomposability and decomposition environment, as well as on the synergistic or antagonistic relationships among GCFs themselves. Our study emphasizes that integrating the legacy effects of multiple GCFs on root traits, soil conditions and microbial functionality would improve our prediction of C and nutrient cycling under interactive global change scenarios. Plant roots represent a major part of alpine plant biomass and constitute a primary source of soil organic carbon, while global change impacts on root litter decomposition remain largely uncertain. Global change factors (GCFs) can influence root litter decomposition mainly by changing root litter quality and decomposition environments. This study emphasizes that integrating the legacy effects of multiple GCFs on root traits, soil conditions and microbial functionality would improve our prediction of litter C and nutrient cycling under interactive global change scenarios.
AbstractList Plant roots represent about a quarter of global plant biomass and constitute a primary source of soil organic carbon (C). Yet, considerable uncertainty persists regarding root litter decomposition and their responses to global change factors (GCFs). Much of this uncertainty stems from a limited understanding of the multifactorial effects of GCFs and it remains unclear how these effects are mediated by litter quality, soil conditions and microbial functionality. Using complementary field decomposition and laboratory incubation approaches, we assessed the relative controls of GCF‐mediated changes in root litter traits and soil and microbial properties on fine‐root decomposition under warming, nitrogen (N) enrichment, and precipitation alteration. We found that warming and N enrichment accelerated fine‐root decomposition by over 10%, and their combination showed an additive effect, while precipitation reduction suppressed decomposition overall by 12%, with the suppressive effect being most significant under warming‐alone and N enrichment‐alone conditions. Significantly, changes in litter quality played a dominant role and accelerated fine‐root decomposition by 15% ~ 18% under warming and N enrichment, while changes in soil and microbial properties were predominant and reduced decomposition by 7% ~ 10% under precipitation reduction and the combined warming and N enrichment. Examining only the decomposition environment or litter properties in isolation can distort global change effects on root decomposition, underestimating precipitation reduction impacts by 38% and overstating warming and N effects by up to 73%. These findings highlight that the net impact of GCFs on root litter decomposition hinges on the interplay between GCF‐modulated root decomposability and decomposition environment, as well as on the synergistic or antagonistic relationships among GCFs themselves. Our study emphasizes that integrating the legacy effects of multiple GCFs on root traits, soil conditions and microbial functionality would improve our prediction of C and nutrient cycling under interactive global change scenarios.
Plant roots represent about a quarter of global plant biomass and constitute a primary source of soil organic carbon (C). Yet, considerable uncertainty persists regarding root litter decomposition and their responses to global change factors (GCFs). Much of this uncertainty stems from a limited understanding of the multifactorial effects of GCFs and it remains unclear how these effects are mediated by litter quality, soil conditions and microbial functionality. Using complementary field decomposition and laboratory incubation approaches, we assessed the relative controls of GCF-mediated changes in root litter traits and soil and microbial properties on fine-root decomposition under warming, nitrogen (N) enrichment, and precipitation alteration. We found that warming and N enrichment accelerated fine-root decomposition by over 10%, and their combination showed an additive effect, while precipitation reduction suppressed decomposition overall by 12%, with the suppressive effect being most significant under warming-alone and N enrichment-alone conditions. Significantly, changes in litter quality played a dominant role and accelerated fine-root decomposition by 15% ~ 18% under warming and N enrichment, while changes in soil and microbial properties were predominant and reduced decomposition by 7% ~ 10% under precipitation reduction and the combined warming and N enrichment. Examining only the decomposition environment or litter properties in isolation can distort global change effects on root decomposition, underestimating precipitation reduction impacts by 38% and overstating warming and N effects by up to 73%. These findings highlight that the net impact of GCFs on root litter decomposition hinges on the interplay between GCF-modulated root decomposability and decomposition environment, as well as on the synergistic or antagonistic relationships among GCFs themselves. Our study emphasizes that integrating the legacy effects of multiple GCFs on root traits, soil conditions and microbial functionality would improve our prediction of C and nutrient cycling under interactive global change scenarios.Plant roots represent about a quarter of global plant biomass and constitute a primary source of soil organic carbon (C). Yet, considerable uncertainty persists regarding root litter decomposition and their responses to global change factors (GCFs). Much of this uncertainty stems from a limited understanding of the multifactorial effects of GCFs and it remains unclear how these effects are mediated by litter quality, soil conditions and microbial functionality. Using complementary field decomposition and laboratory incubation approaches, we assessed the relative controls of GCF-mediated changes in root litter traits and soil and microbial properties on fine-root decomposition under warming, nitrogen (N) enrichment, and precipitation alteration. We found that warming and N enrichment accelerated fine-root decomposition by over 10%, and their combination showed an additive effect, while precipitation reduction suppressed decomposition overall by 12%, with the suppressive effect being most significant under warming-alone and N enrichment-alone conditions. Significantly, changes in litter quality played a dominant role and accelerated fine-root decomposition by 15% ~ 18% under warming and N enrichment, while changes in soil and microbial properties were predominant and reduced decomposition by 7% ~ 10% under precipitation reduction and the combined warming and N enrichment. Examining only the decomposition environment or litter properties in isolation can distort global change effects on root decomposition, underestimating precipitation reduction impacts by 38% and overstating warming and N effects by up to 73%. These findings highlight that the net impact of GCFs on root litter decomposition hinges on the interplay between GCF-modulated root decomposability and decomposition environment, as well as on the synergistic or antagonistic relationships among GCFs themselves. Our study emphasizes that integrating the legacy effects of multiple GCFs on root traits, soil conditions and microbial functionality would improve our prediction of C and nutrient cycling under interactive global change scenarios.
ABSTRACT Plant roots represent about a quarter of global plant biomass and constitute a primary source of soil organic carbon (C). Yet, considerable uncertainty persists regarding root litter decomposition and their responses to global change factors (GCFs). Much of this uncertainty stems from a limited understanding of the multifactorial effects of GCFs and it remains unclear how these effects are mediated by litter quality, soil conditions and microbial functionality. Using complementary field decomposition and laboratory incubation approaches, we assessed the relative controls of GCF‐mediated changes in root litter traits and soil and microbial properties on fine‐root decomposition under warming, nitrogen (N) enrichment, and precipitation alteration. We found that warming and N enrichment accelerated fine‐root decomposition by over 10%, and their combination showed an additive effect, while precipitation reduction suppressed decomposition overall by 12%, with the suppressive effect being most significant under warming‐alone and N enrichment‐alone conditions. Significantly, changes in litter quality played a dominant role and accelerated fine‐root decomposition by 15% ~ 18% under warming and N enrichment, while changes in soil and microbial properties were predominant and reduced decomposition by 7% ~ 10% under precipitation reduction and the combined warming and N enrichment. Examining only the decomposition environment or litter properties in isolation can distort global change effects on root decomposition, underestimating precipitation reduction impacts by 38% and overstating warming and N effects by up to 73%. These findings highlight that the net impact of GCFs on root litter decomposition hinges on the interplay between GCF‐modulated root decomposability and decomposition environment, as well as on the synergistic or antagonistic relationships among GCFs themselves. Our study emphasizes that integrating the legacy effects of multiple GCFs on root traits, soil conditions and microbial functionality would improve our prediction of C and nutrient cycling under interactive global change scenarios. Plant roots represent a major part of alpine plant biomass and constitute a primary source of soil organic carbon, while global change impacts on root litter decomposition remain largely uncertain. Global change factors (GCFs) can influence root litter decomposition mainly by changing root litter quality and decomposition environments. This study emphasizes that integrating the legacy effects of multiple GCFs on root traits, soil conditions and microbial functionality would improve our prediction of litter C and nutrient cycling under interactive global change scenarios.
Plant roots represent about a quarter of global plant biomass and constitute a primary source of soil organic carbon (C). Yet, considerable uncertainty persists regarding root litter decomposition and their responses to global change factors (GCFs). Much of this uncertainty stems from a limited understanding of the multifactorial effects of GCFs and it remains unclear how these effects are mediated by litter quality, soil conditions and microbial functionality. Using complementary field decomposition and laboratory incubation approaches, we assessed the relative controls of GCFs-mediated changes in root litter traits and soil and microbial properties on fine-root decomposition under warming, nitrogen (N) enrichment, and precipitation alteration. We found that warming and N enrichment accelerated fine-root decomposition by over 10%, and their combination showed an additive effect, while precipitation reduction suppressed decomposition overall by 12%, particularly under warming-alone or N enrichment-alone conditions. Significantly, changes in litter quality played a dominant role and accelerated fine-root decomposition by 15~18% under warming and N enrichment, while changes in soil and microbial properties were predominant and reduced decomposition by 7~10% under precipitation reduction and the combined warming and N enrichment. These findings highlight that the net impact of GCFs on root litter decomposition hinges on the interplay between GCF-modulated root decomposability and decomposition environment, as well as on the synergistic or antagonistic relationships among GCFs themselves. Our study emphasizes that integrating the legacy effects of multiple global change factors on root traits, soil conditions and microbial functionality would improve our prediction of C and nutrient cycling under interactive global change scenarios.
Author Wang, Peng
Zhao, Qingzhou
Crowther, Thomas W.
Johnson, David
Freschet, Grégoire T.
Ma, Miaojun
Tao, Tingting
Smith, Gabriel Reuben
Hu, Lingyan
Hu, Shuijin
Author_xml – sequence: 1
  givenname: Qingzhou
  orcidid: 0000-0002-5425-137X
  surname: Zhao
  fullname: Zhao, Qingzhou
  organization: ETH Zurich
– sequence: 2
  givenname: Grégoire T.
  surname: Freschet
  fullname: Freschet, Grégoire T.
  organization: Theoretical and Experimental Ecology Station, CNRS
– sequence: 3
  givenname: Tingting
  surname: Tao
  fullname: Tao, Tingting
  organization: The University of Manchester
– sequence: 4
  givenname: Gabriel Reuben
  surname: Smith
  fullname: Smith, Gabriel Reuben
  organization: ETH Zurich
– sequence: 5
  givenname: Peng
  surname: Wang
  fullname: Wang, Peng
  email: peng.wang@njau.edu.cn
  organization: Nanjing Agricultural University
– sequence: 6
  givenname: Lingyan
  surname: Hu
  fullname: Hu, Lingyan
  organization: Nanjing Agricultural University
– sequence: 7
  givenname: Miaojun
  surname: Ma
  fullname: Ma, Miaojun
  organization: Lanzhou University
– sequence: 8
  givenname: David
  surname: Johnson
  fullname: Johnson, David
  organization: The University of Manchester
– sequence: 9
  givenname: Thomas W.
  surname: Crowther
  fullname: Crowther, Thomas W.
  organization: ETH Zurich
– sequence: 10
  givenname: Shuijin
  orcidid: 0000-0002-3225-5126
  surname: Hu
  fullname: Hu, Shuijin
  email: shuijin_hu@ncsu.edu, shuijin_hu@hotmail.com
  organization: North Carolina State University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39466204$$D View this record in MEDLINE/PubMed
https://hal.science/hal-04720058$$DView record in HAL
BookMark eNqN0c9rFDEUB_AgFduuHvwHJOBFD9Pm12Rmj-223RZWhKJXQ5J52U3JTtYks9L_3tluW6GgmEtC-LyQ977H6KCPPSD0npITOq7TpTUntKlF8wodUS7riolWHuzOtagoofwQHed8RwjhjMg36JBPhZSMiCP04xZyDFvfL3FZAb7pS_JWF8CXzoEtGUeHvwyh-E0APA_R6IBnK90vAV8kv4U0ih7fxljwwpcCCV-AjetNzL742L9Fr50OGd497hP0_ery2-y6Wnyd38zOFpUVjDSVZrTRXc0co0IyM9Wdga7j3EjdaEObqXVTVhtLnGFuyg1xXWvrmuiWtYRJ4BP0ef_uSge1SX6t072K2qvrs4Xa3RHRMELqdktH-2lvNyn-HCAXtfbZQgi6hzhkxWnNW0oFkf9BGWUtb8fBTtDHF_QuDqkfm35QQlLBxag-PKrBrKF7_upTIH8asSnmnMA9E0rULmw1hq0ewh7t6QtrfdG7sZekffhXxS8f4P7vT6v57Hxf8RsIjrfI
CitedBy_id crossref_primary_10_1016_j_agee_2025_109557
Cites_doi 10.1126/science.1224304
10.1111/1365‐2745.14246
10.1111/ele.12137
10.1111/1365‐2435.14261
10.1038/s41598‐019‐53450‐5
10.1111/1365‐2435.14012
10.1016/j.soilbio.2017.04.011
10.1126/sciadv.abe9256
10.1111/nph.12845
10.1111/j.1461‐0248.2008.01219.x
10.2134/agronmonogr9.2.c22
10.1111/j.1365‐2745.2011.01943.x
10.1111/nph.17572
10.1016/0038‐0717(87)90052‐6
10.1016/0038‐0717(93)90140‐7
10.1111/gcb.16627
10.1111/nph.15066
10.1016/j.soilbio.2013.01.002
10.1073/pnas.1716595115
10.1111/gcb.13923
10.1046/j.1469‐8137.2000.00681.x
10.1126/science.aay2832
10.1034/j.1600‐0706.2002.990212.x
10.1073/pnas.94.14.7362
10.1007/s004420100740
10.1007/978-1-4419-9504-9
10.1111/2041‐210X.12512
10.1007/s10021‐016‐0016‐9
10.1016/j.soilbio.2020.108107
10.1016/j.soilbio.2022.108588
10.1073/pnas.1811269115
10.1038/s41558‐024‐02019‐w
10.1073/pnas.1502956112
10.1016/j.soilbio.2013.07.003
10.1038/35051576
10.1111/gcb.15945
10.1038/ncomms15378
10.3318/bioe.2017.03
10.1016/j.scitotenv.2019.135450
10.1111/1365‐2435.13560
10.1038/s41559‐021‐01485‐1
10.1111/1365‐2745.13516
10.1111/1365‐2745.12507
10.1038/s41559‐022‐01948‐z
10.1111/j.1365‐2486.2012.02685.x
10.1016/j.tree.2014.10.006
10.1016/j.scitotenv.2020.138106
10.1016/0038‐0717(85)90144‐0
10.1016/j.geoderma.2023.116432
10.1111/nph.19900
10.1111/j.1365‐2486.2008.01656.x
10.1038/s41467‐018‐06050‐2
10.1111/ele.13248
10.1016/j.soilbio.2008.12.022
10.1104/pp.111.174581
10.1111/ele.13723
10.1038/s41561‐019‐0352‐4
10.1016/j.ejsobi.2020.103190
10.1016/j.soilbio.2008.03.006
10.1038/s41558‐023‐01627‐2
10.1016/j.fmre.2022.09.028
10.1111/ele.13474
10.1111/nph.17279
10.1016/j.envint.2020.105795
10.1073/pnas.2401398121
10.18637/jss.v067.i01
10.1007/s002489900015
10.1111/nph.19115
10.1111/ele.13083
10.1038/nature12901
10.1016/j.soilbio.2021.108278
10.1016/j.soilbio.2023.108992
10.1111/gcb.13033
10.1016/j.envpol.2020.115016
ContentType Journal Article
Copyright 2024 John Wiley & Sons Ltd.
2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2024 John Wiley & Sons Ltd.
– notice: 2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SN
7UA
C1K
F1W
H97
L.G
7X8
7S9
L.6
1XC
VOOES
DOI 10.1111/gcb.17547
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Ecology Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Aquatic Science & Fisheries Abstracts (ASFA) Professional
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Ecology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
ASFA: Aquatic Sciences and Fisheries Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic


Aquatic Science & Fisheries Abstracts (ASFA) Professional
MEDLINE
AGRICOLA
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Biology
Environmental Sciences
EISSN 1365-2486
EndPage n/a
ExternalDocumentID oai_HAL_hal_04720058v1
39466204
10_1111_gcb_17547
GCB17547
Genre researchArticle
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 32171646
– fundername: Swiss National Science Foundation
  funderid: PZ00P3_216194
– fundername: National Natural Science Foundation of China
  grantid: 32171646
– fundername: Swiss National Science Foundation
  grantid: PZ00P3_216194
GroupedDBID -DZ
.3N
.GA
.Y3
05W
0R~
10A
1OB
1OC
24P
29I
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEFU
ABEML
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHEFC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-E
D-F
DC6
DCZOG
DDYGU
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
ESX
F00
F01
F04
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OVD
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TEORI
UB1
UQL
VOH
W8V
W99
WBKPD
WIH
WIK
WNSPC
WOHZO
WQJ
WRC
WUP
WXSBR
WYISQ
XG1
Y6R
ZZTAW
~02
~IA
~KM
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SN
7UA
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
F1W
H97
L.G
7X8
7S9
L.6
1XC
VOOES
ID FETCH-LOGICAL-c4207-a217ad52f21462b9adbedd33b6a7ab179cf925bc0fb2f93b0fd8c550a828026e3
IEDL.DBID DR2
ISSN 1354-1013
1365-2486
IngestDate Fri Jul 04 06:43:37 EDT 2025
Fri Jul 11 10:33:25 EDT 2025
Thu Jul 10 21:35:58 EDT 2025
Fri Jul 25 19:32:51 EDT 2025
Thu Apr 03 07:07:06 EDT 2025
Tue Jul 01 05:24:44 EDT 2025
Thu Apr 24 23:06:23 EDT 2025
Wed Jan 22 17:13:15 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords root traits
plant functional traits
root decomposition
microbial respiration
global change factors
nutrient cycling
litter decomposition climate change plant functional traits microbial activity warming nutrient cycling
warming
litter decomposition
microbial activity
climate change
Language English
License Attribution-NonCommercial-NoDerivs
2024 John Wiley & Sons Ltd.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4207-a217ad52f21462b9adbedd33b6a7ab179cf925bc0fb2f93b0fd8c550a828026e3
Notes This work was supported by the National Natural Science Foundation of China (32171646) and the Swiss National Science Foundation (PZ00P3_216194).
Funding
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-3225-5126
0000-0002-5425-137X
0000-0002-8830-3860
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgcb.17547
PMID 39466204
PQID 3121461434
PQPubID 30327
PageCount 15
ParticipantIDs hal_primary_oai_HAL_hal_04720058v1
proquest_miscellaneous_3153811406
proquest_miscellaneous_3121283800
proquest_journals_3121461434
pubmed_primary_39466204
crossref_primary_10_1111_gcb_17547
crossref_citationtrail_10_1111_gcb_17547
wiley_primary_10_1111_gcb_17547_GCB17547
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2024
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: October 2024
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle Global change biology
PublicationTitleAlternate Glob Chang Biol
PublicationYear 2024
Publisher Blackwell Publishing Ltd
Wiley
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley
References 1993; 25
2021; 24
2017; 8
2009; 41
2013; 66
2023; 37
2023; 7
2021; 28
2019; 12
2002; 99
2019; 366
2020; 723
2012; 18
2014; 29
2016; 104
2020; 98
2023; 3
2024
2017; 112
2011; 156
2022; 167
1985; 17
2018; 9
2013; 59
1997; 94
2013; 16
2023; 29
2018; 218
2019; 22
2021; 158
2023; 179
2022; 36
2021; 230
2021; 153
2024; 112
2021; 232
2012; 337
2014; 203
2021; 109
2021; 7
2019; 9
2021; 5
2023; 13
2012; 100
2016; 19
2011
2023; 240
2020; 141
2021; 229
2008; 14
2024; 121
2001; 409
2024; 243
2008; 11
2020; 34
2020; 265
2024; 14
2001; 129
1987; 19
2018; 21
2018; 24
2020; 704
2015; 67
2016; 7
2014; 505
1997; 33
2000; 147
2022
2021
2015; 112
2018; 115
2015; 21
1965
2017; 117B
2023; 433
2020; 23
2008; 40
e_1_2_9_75_1
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_73_1
e_1_2_9_79_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_77_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
e_1_2_9_71_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_58_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_60_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_74_1
e_1_2_9_51_1
e_1_2_9_72_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_78_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_76_1
e_1_2_9_70_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_61_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_67_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_65_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_69_1
e_1_2_9_29_1
References_xml – year: 2011
– volume: 36
  start-page: 1230
  year: 2022
  end-page: 1242
  article-title: Nitrogen Enrichment and Warming Shift Community Functional Composition via Distinct Mechanisms: The Role of Intraspecific Trait Variability and Species Turnover
  publication-title: Functional Ecology
– volume: 14
  start-page: 740
  year: 2024
  end-page: 745
  article-title: Increasing Numbers of Global Change Stressors Reduce Soil Carbon Worldwide
  publication-title: Nature Climate Change
– volume: 34
  start-page: 1485
  year: 2020
  end-page: 1496
  article-title: Decomposition Disentangled: A Test of the Multiple Mechanisms by Which Nitrogen Enrichment Alters Litter Decomposition
  publication-title: Functional Ecology
– volume: 7
  start-page: 214
  year: 2023
  end-page: 223
  article-title: Resolving the Intricate Role of Climate in Litter Decomposition
  publication-title: Nature Ecology & Evolution
– volume: 5
  start-page: 1110
  year: 2021
  end-page: 1122
  article-title: The Global Distribution and Environmental Drivers of Aboveground Versus Belowground Plant Biomass
  publication-title: Nature Ecology & Evolution
– volume: 179
  year: 2023
  article-title: Nitrogen Addition Stimulates Litter Decomposition Rate: From the Perspective of the Combined Effect of Soil Environment and Litter Quality
  publication-title: Soil Biology and Biochemistry
– volume: 11
  start-page: 1065
  year: 2008
  end-page: 1071
  article-title: Plant Species Traits Are the Predominant Control on Litter Decomposition Rates Within Biomes Worldwide
  publication-title: Ecology Letters
– volume: 230
  start-page: 1856
  year: 2021
  end-page: 1867
  article-title: Fine‐Root Functional Trait Responses to Experimental Warming: A Global Meta‐Analysis
  publication-title: New Phytologist
– volume: 240
  start-page: 1802
  year: 2023
  end-page: 1816
  article-title: Experimental Warming Altered Plant Functional Traits and Their Coordination in a Permafrost Ecosystem
  publication-title: New Phytologist
– volume: 117B
  start-page: 1
  year: 2017
  end-page: 13
  article-title: Plant Trait‐Based Approaches for Interrogating Belowground Function
  publication-title: Biology and Environment: Proceedings of the Royal Irish Academy
– volume: 23
  start-page: 701
  year: 2020
  end-page: 710
  article-title: Alpine Grassland Plants Grow Earlier and Faster but Biomass Remains Unchanged Over 35 Years of Climate Change
  publication-title: Ecology Letters
– volume: 218
  start-page: 1450
  year: 2018
  end-page: 1461
  article-title: Nitrogen Deposition Increases Root Production and Turnover but Slows Root Decomposition in Pinus Elliottii Plantations
  publication-title: New Phytologist
– year: 2021
– volume: 59
  start-page: 72
  year: 2013
  end-page: 85
  article-title: Responses of Soil Heterotrophic Respiration to Moisture Availability: An Exploration of Processes and Models
  publication-title: Soil Biology and Biochemistry
– volume: 13
  start-page: 478
  year: 2023
  end-page: 483
  article-title: Increasing the Number of Stressors Reduces Soil Ecosystem Services Worldwide
  publication-title: Nature Climate Change
– volume: 129
  start-page: 407
  year: 2001
  end-page: 419
  article-title: Global Patterns in Root Decomposition: Comparisons of Climate and Litter Quality Effects
  publication-title: Oecologia
– year: 2024
– volume: 29
  start-page: 692
  year: 2014
  end-page: 699
  article-title: Going Underground: Root Traits as Drivers of Ecosystem Processes
  publication-title: Trends in Ecology & Evolution
– volume: 121
  year: 2024
  article-title: General Reversal of N‐Decomposition Relationship During Long‐Term Decomposition in Boreal and Temperate Forests
  publication-title: Proceedings of the National Academy of Sciences
– volume: 243
  start-page: 909
  year: 2024
  end-page: 921
  article-title: Temperate Trees Locally Engineer Decomposition and Litter‐Bound Microbiomes Through Differential Litter Deposits and Species‐Specific Soil Conditioning
  publication-title: New Phytologist
– volume: 203
  start-page: 851
  year: 2014
  end-page: 862
  article-title: Root Traits Predict Decomposition Across a Landscape‐Scale Grazing Experiment
  publication-title: New Phytologist
– volume: 19
  start-page: 1460
  year: 2016
  end-page: 1477
  article-title: Temperature Dependence of Soil Respiration Modulated by Thresholds in Soil Water Availability Across European Shrubland Ecosystems
  publication-title: Ecosystems
– volume: 98
  year: 2020
  article-title: Litter Composition Has Stronger Influence on the Structure of Soil Fungal Than Bacterial Communities
  publication-title: European Journal of Soil Biology
– volume: 505
  start-page: 543
  year: 2014
  end-page: 545
  article-title: Mycorrhiza‐Mediated Competition Between Plants and Decomposers Drives Soil Carbon Storage
  publication-title: Nature
– volume: 409
  start-page: 188
  year: 2001
  end-page: 191
  article-title: Nitrogen Limitation of Microbial Decomposition in a Grassland Under Elevated CO
  publication-title: Nature
– volume: 21
  start-page: 1162
  year: 2018
  end-page: 1173
  article-title: Reconciling Multiple Impacts of Nitrogen Enrichment on Soil Carbon: Plant, Microbial and Geochemical Controls
  publication-title: Ecology Letters
– volume: 24
  start-page: 1018
  year: 2021
  end-page: 1028
  article-title: Soil Carbon Persistence Governed by Plant Input and Mineral Protection at Regional and Global Scales
  publication-title: Ecology Letters
– volume: 337
  start-page: 1084
  year: 2012
  end-page: 1087
  article-title: Arbuscular Mycorrhizal Fungi Increase Organic Carbon Decomposition Under Elevated CO
  publication-title: Science
– volume: 8
  year: 2017
  article-title: Climate Warming Reduces the Temporal Stability of Plant Community Biomass Production
  publication-title: Nature Communications
– volume: 29
  start-page: 2608
  year: 2023
  end-page: 2626
  article-title: Nitrogen Availability Mediates Soil Carbon Cycling Response to Climate Warming: A Meta‐Analysis
  publication-title: Global Change Biology
– volume: 7
  year: 2021
  article-title: Warming and Elevated Ozone Induce Tradeoffs Between Fine Roots and Mycorrhizal Fungi and Stimulate Organic Carbon Decomposition. Science
  publication-title: Advances
– volume: 115
  start-page: 10392
  year: 2018
  end-page: 10397
  article-title: Contrasting Dynamics and Trait Controls in First‐Order Root Compared With Leaf Litter Decomposition
  publication-title: Proceedings of the National Academy of Sciences
– volume: 66
  start-page: 119
  year: 2013
  end-page: 129
  article-title: Seasonal Patterns of Microbial Extracellular Enzyme Activities in an Arctic Tundra Soil: Identifying Direct and Indirect Effects of Long‐Term Summer Warming
  publication-title: Soil Biology and Biochemistry
– volume: 147
  start-page: 13
  year: 2000
  end-page: 31
  article-title: Global Patterns of Root Turnover for Terrestrial Ecosystems
  publication-title: New Phytologist
– year: 1965
– volume: 141
  year: 2020
  article-title: Simulated Warming Enhances the Responses of Microbial N Transformations to Reactive N Input in a Tibetan Alpine Meadow
  publication-title: Environment International
– year: 2022
– volume: 7
  start-page: 573
  year: 2016
  end-page: 579
  article-title: piecewiseSEM: Piecewise Structural Equation Modelling in r for Ecology, Evolution, and Systematics
  publication-title: Methods in Ecology and Evolution
– volume: 9
  start-page: 1
  year: 2019
  end-page: 8
  article-title: Effects of Global Change Factors and Living Roots on Root Litter Decomposition in a Qinghai‐Tibet Alpine Meadow
  publication-title: Scientific Reports
– volume: 3
  start-page: 209
  year: 2023
  end-page: 218
  article-title: The Grassland Carbon Cycle: Mechanisms, Responses to Global Changes, and Potential Contribution to Carbon Neutrality
  publication-title: Fundamental Research
– volume: 723
  year: 2020
  article-title: Impacts of Drought and Nitrogen Enrichment on Leaf Nutrient Resorption and Root Nutrient Allocation in Four Tibetan Plant Species
  publication-title: Science of the Total Environment
– volume: 37
  start-page: 1044
  year: 2023
  end-page: 1054
  article-title: Drought Effects on Root and Shoot Traits and Their Decomposability
  publication-title: Functional Ecology
– volume: 9
  start-page: 3640
  year: 2018
  article-title: Tropical Peatland Carbon Storage Linked to Global Latitudinal Trends in Peat Recalcitrance
  publication-title: Nature Communications
– volume: 112
  start-page: 501
  year: 2024
  end-page: 513
  article-title: Nitrogen Redistribution and Seasonal Trait Fluctuation Facilitate Plant N Conservation and Ecosystem N Retention
  publication-title: Journal of Ecology
– volume: 104
  start-page: 229
  year: 2016
  end-page: 238
  article-title: Understanding the Dominant Controls on Litter Decomposition
  publication-title: Journal of Ecology
– volume: 112
  start-page: 24
  year: 2017
  end-page: 34
  article-title: Chronic Nitrogen Deposition Influences the Chemical Dynamics of Leaf Litter and Fine Roots During Decomposition
  publication-title: Soil Biology & Biochemistry
– volume: 167
  year: 2022
  article-title: Predominant Role of Air Warming in Regulating Litter Decomposition in a Tibetan Alpine Meadow: A Multi‐Factor Global Change Experiment
  publication-title: Soil Biology and Biochemistry
– volume: 21
  start-page: 4177
  year: 2015
  end-page: 4195
  article-title: Warming and Drought Differentially Influence the Production and Resorption of Elemental and Metabolic Nitrogen Pools in Quercus Rubra
  publication-title: Global Change Biology
– volume: 156
  start-page: 1050
  year: 2011
  end-page: 1057
  article-title: Roles of Arbuscular Mycorrhizas in Plant Phosphorus Nutrition: Interactions Between Pathways of Phosphorus Uptake in Arbuscular Mycorrhizal Roots Have Important Implications for Understanding and Manipulating Plant Phosphorus Acquisition
  publication-title: Plant Physiology
– volume: 229
  start-page: 284
  year: 2021
  end-page: 295
  article-title: Mycorrhizal and Environmental Controls Over Root Trait–Decomposition Linkage of Woody Trees
  publication-title: New Phytologist
– volume: 704
  year: 2020
  article-title: Combination of Warming and N Inputs Increases the Temperature Sensitivity of Soil N O Emission in a Tibetan Alpine Meadow
  publication-title: Science of the Total Environment
– volume: 14
  start-page: 2304
  year: 2008
  end-page: 2316
  article-title: Warming and Drought Alter C and N Concentration, Allocation and Accumulation in a Mediterranean Shrubland
  publication-title: Global Change Biology
– volume: 109
  start-page: 447
  year: 2021
  end-page: 458
  article-title: Relative Effects of Climate and Litter Traits on Decomposition Change With Time, Climate and Trait Variability
  publication-title: Journal of Ecology
– volume: 232
  start-page: 973
  year: 2021
  end-page: 1122
  article-title: A Starting Guide to Root Ecology: Strengthening Ecological Concepts and Standardising Root Classification, Sampling, Processing and Trait Measurements
  publication-title: New Phytologist
– volume: 16
  start-page: 1045
  year: 2013
  end-page: 1053
  article-title: Climate and Litter Quality Differently Modulate the Effects of Soil Fauna on Litter Decomposition Across Biomes
  publication-title: Ecology Letters
– volume: 99
  start-page: 317
  year: 2002
  end-page: 323
  article-title: Microbiota, Fauna, and Mesh Size Interactions in Litter Decomposition
  publication-title: Oikos
– volume: 153
  year: 2021
  article-title: Nitrogen‐Induced Acidification Plays a Vital Role Driving Ecosystem Functions: Insights From a 6‐Year Nitrogen Enrichment Experiment in a Tibetan Alpine Meadow
  publication-title: Soil Biology and Biochemistry
– volume: 94
  start-page: 7362
  year: 1997
  end-page: 7366
  article-title: A Global Budget for Fine Root Biomass, Surface Area, and Nutrient Contents
  publication-title: Proceedings of the National Academy of Sciences
– volume: 366
  start-page: 886
  year: 2019
  end-page: 890
  article-title: The Role of Multiple Global Change Factors in Driving Soil Functions and Microbial Biodiversity
  publication-title: Science
– volume: 28
  start-page: 1147
  year: 2021
  end-page: 1161
  article-title: Climate Warming Promotes Deterministic Assembly of Arbuscular Mycorrhizal Fungal Communities
  publication-title: Global Change Biology
– volume: 100
  start-page: 619
  year: 2012
  end-page: 630
  article-title: Multiple Mechanisms for Trait Effects on Litter Decomposition: Moving Beyond Home‐Field Advantage With a New Hypothesis
  publication-title: Journal of Ecology
– volume: 158
  year: 2021
  article-title: Climate Change Drivers Alter Root Controls Over Litter Decomposition in a Semi‐Arid Grassland
  publication-title: Soil Biology and Biochemistry
– volume: 41
  start-page: 606
  year: 2009
  end-page: 610
  article-title: Home‐Field Advantage Accelerates Leaf Litter Decomposition in Forests
  publication-title: Soil Biology and Biochemistry
– volume: 17
  start-page: 837
  year: 1985
  end-page: 842
  article-title: Chloroform Fumigation and the Release of Soil Nitrogen: A Rapid Direct Extraction Method to Measure Microbial Biomass Nitrogen in Soil
  publication-title: Soil Biology and Biochemistry
– volume: 22
  start-page: 946
  year: 2019
  end-page: 953
  article-title: Global Patterns in Fine Root Decomposition: Climate, Chemistry, Mycorrhizal Association and Woodiness
  publication-title: Ecology Letters
– volume: 67
  start-page: 1
  year: 2015
  end-page: 48
  article-title: Fitting Linear Mixed‐Effects Models Using lme4
  publication-title: Journal of Statistical Software
– volume: 115
  start-page: 11994
  year: 2018
  end-page: 11999
  article-title: Decomposition Responses to Climate Depend on Microbial Community Composition
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 40
  start-page: 1823
  year: 2008
  end-page: 1835
  article-title: Effect of Litter Quality and Soil Fungi on Macroaggregate Dynamics and Associated Partitioning of Litter Carbon and Nitrogen
  publication-title: Soil Biology and Biochemistry
– volume: 25
  start-page: 393
  year: 1993
  end-page: 395
  article-title: The Metabolic Quotient for CO (qCO ) as a Specific Activity Parameter to Assess the Effects of Environmental Conditions, Such as Ph, on the Microbial Biomass of Forest Soils
  publication-title: Soil Biology and Biochemistry
– volume: 12
  start-page: 424
  year: 2019
  end-page: 429
  article-title: Stabilization of Atmospheric Nitrogen Deposition in China Over the Past Decade
  publication-title: Nature Geoscience
– volume: 265
  year: 2020
  article-title: Soil Acidification Alters Root Morphology, Increases Root Biomass but Reduces Root Decomposition in an Alpine Grassland
  publication-title: Environmental Pollution
– volume: 112
  start-page: 7033
  year: 2015
  end-page: 7038
  article-title: Biotic Interactions Mediate Soil Microbial Feedbacks to Climate Change
  publication-title: Proceedings of the National Academy of Sciences
– volume: 33
  start-page: 134
  year: 1997
  end-page: 143
  article-title: Microbial Dynamics Associated With Multiphasic Decomposition of 14 C‐Labeled Cellulose in Soil
  publication-title: Microbial Ecology
– volume: 19
  start-page: 703
  year: 1987
  end-page: 707
  article-title: An Extraction Method for Measuring Soil Microbial Biomass C
  publication-title: Soil Biology and Biochemistry
– volume: 24
  start-page: 1428
  year: 2018
  end-page: 1451
  article-title: Decoupling the Direct and Indirect Effects of Climate on Plant Litter Decomposition: Accounting for Stress‐Induced Modifications in Plant Chemistry
  publication-title: Global Change Biology
– volume: 433
  year: 2023
  article-title: Interannual Variation in Precipitation Predominantly Controls Mineral‐Associated Organic Carbon Dynamics in a Tibetan Alpine Meadow
  publication-title: Geoderma
– volume: 18
  start-page: 2617
  year: 2012
  end-page: 2625
  article-title: The Effect of Experimental Warming and Precipitation Change on Proteolytic Enzyme Activity: Positive Feedbacks to Nitrogen Availability Are Not Universal
  publication-title: Global Change Biology
– ident: e_1_2_9_16_1
  doi: 10.1126/science.1224304
– ident: e_1_2_9_79_1
  doi: 10.1111/1365‐2745.14246
– ident: e_1_2_9_21_1
  doi: 10.1111/ele.12137
– ident: e_1_2_9_44_1
  doi: 10.1111/1365‐2435.14261
– ident: e_1_2_9_50_1
  doi: 10.1038/s41598‐019‐53450‐5
– ident: e_1_2_9_64_1
  doi: 10.1111/1365‐2435.14012
– ident: e_1_2_9_67_1
  doi: 10.1016/j.soilbio.2017.04.011
– ident: e_1_2_9_43_1
  doi: 10.1126/sciadv.abe9256
– ident: e_1_2_9_54_1
  doi: 10.1111/nph.12845
– ident: e_1_2_9_17_1
  doi: 10.1111/j.1461‐0248.2008.01219.x
– ident: e_1_2_9_41_1
  doi: 10.2134/agronmonogr9.2.c22
– ident: e_1_2_9_19_1
  doi: 10.1111/j.1365‐2745.2011.01943.x
– ident: e_1_2_9_20_1
  doi: 10.1111/nph.17572
– ident: e_1_2_9_60_1
  doi: 10.1016/0038‐0717(87)90052‐6
– ident: e_1_2_9_2_1
  doi: 10.1016/0038‐0717(93)90140‐7
– ident: e_1_2_9_5_1
  doi: 10.1111/gcb.16627
– ident: e_1_2_9_32_1
  doi: 10.1111/nph.15066
– ident: e_1_2_9_39_1
  doi: 10.1016/j.soilbio.2013.01.002
– ident: e_1_2_9_56_1
  doi: 10.1073/pnas.1716595115
– ident: e_1_2_9_57_1
  doi: 10.1111/gcb.13923
– ident: e_1_2_9_22_1
  doi: 10.1046/j.1469‐8137.2000.00681.x
– ident: e_1_2_9_45_1
  doi: 10.1126/science.aay2832
– ident: e_1_2_9_10_1
  doi: 10.1034/j.1600‐0706.2002.990212.x
– ident: e_1_2_9_29_1
  doi: 10.1073/pnas.94.14.7362
– ident: e_1_2_9_51_1
  doi: 10.1007/s004420100740
– ident: e_1_2_9_14_1
  doi: 10.1007/978-1-4419-9504-9
– ident: e_1_2_9_33_1
  doi: 10.1111/2041‐210X.12512
– ident: e_1_2_9_34_1
  doi: 10.1007/s10021‐016‐0016‐9
– ident: e_1_2_9_69_1
  doi: 10.1016/j.soilbio.2020.108107
– ident: e_1_2_9_72_1
  doi: 10.1016/j.soilbio.2022.108588
– ident: e_1_2_9_23_1
  doi: 10.1073/pnas.1811269115
– ident: e_1_2_9_47_1
  doi: 10.1038/s41558‐024‐02019‐w
– ident: e_1_2_9_18_1
  doi: 10.1073/pnas.1502956112
– ident: e_1_2_9_52_1
  doi: 10.1016/j.soilbio.2013.07.003
– ident: e_1_2_9_28_1
  doi: 10.1038/35051576
– ident: e_1_2_9_68_1
  doi: 10.1111/gcb.15945
– ident: e_1_2_9_38_1
  doi: 10.1038/ncomms15378
– ident: e_1_2_9_6_1
  doi: 10.3318/bioe.2017.03
– ident: e_1_2_9_75_1
  doi: 10.1016/j.scitotenv.2019.135450
– ident: e_1_2_9_42_1
  doi: 10.1111/1365‐2435.13560
– ident: e_1_2_9_59_1
– ident: e_1_2_9_30_1
  doi: 10.1073/pnas.94.14.7362
– ident: e_1_2_9_37_1
  doi: 10.1038/s41559‐021‐01485‐1
– ident: e_1_2_9_13_1
  doi: 10.1111/1365‐2745.13516
– ident: e_1_2_9_9_1
  doi: 10.1111/1365‐2745.12507
– ident: e_1_2_9_31_1
  doi: 10.1038/s41559‐022‐01948‐z
– ident: e_1_2_9_12_1
  doi: 10.1111/j.1365‐2486.2012.02685.x
– ident: e_1_2_9_7_1
  doi: 10.1016/j.tree.2014.10.006
– ident: e_1_2_9_78_1
  doi: 10.1016/j.scitotenv.2020.138106
– ident: e_1_2_9_11_1
  doi: 10.1016/0038‐0717(85)90144‐0
– ident: e_1_2_9_73_1
  doi: 10.1016/j.geoderma.2023.116432
– ident: e_1_2_9_70_1
  doi: 10.1111/nph.19900
– ident: e_1_2_9_48_1
  doi: 10.1111/j.1365‐2486.2008.01656.x
– ident: e_1_2_9_26_1
  doi: 10.1038/s41467‐018‐06050‐2
– ident: e_1_2_9_49_1
  doi: 10.1111/ele.13248
– ident: e_1_2_9_4_1
  doi: 10.1016/j.soilbio.2008.12.022
– ident: e_1_2_9_53_1
  doi: 10.1104/pp.111.174581
– ident: e_1_2_9_15_1
  doi: 10.1111/ele.13723
– ident: e_1_2_9_40_1
– ident: e_1_2_9_77_1
– ident: e_1_2_9_74_1
  doi: 10.1038/s41561‐019‐0352‐4
– ident: e_1_2_9_24_1
  doi: 10.1016/j.ejsobi.2020.103190
– ident: e_1_2_9_25_1
  doi: 10.1016/j.soilbio.2008.03.006
– ident: e_1_2_9_46_1
  doi: 10.1038/s41558‐023‐01627‐2
– ident: e_1_2_9_36_1
  doi: 10.1016/j.fmre.2022.09.028
– ident: e_1_2_9_61_1
  doi: 10.1111/ele.13474
– ident: e_1_2_9_62_1
  doi: 10.1111/nph.17279
– ident: e_1_2_9_76_1
  doi: 10.1016/j.envint.2020.105795
– ident: e_1_2_9_55_1
  doi: 10.1073/pnas.2401398121
– ident: e_1_2_9_8_1
  doi: 10.18637/jss.v067.i01
– ident: e_1_2_9_27_1
  doi: 10.1007/s002489900015
– ident: e_1_2_9_65_1
  doi: 10.1111/nph.19115
– ident: e_1_2_9_71_1
  doi: 10.1111/ele.13083
– ident: e_1_2_9_3_1
  doi: 10.1038/nature12901
– ident: e_1_2_9_35_1
  doi: 10.1016/j.soilbio.2021.108278
– ident: e_1_2_9_66_1
  doi: 10.1016/j.soilbio.2023.108992
– ident: e_1_2_9_58_1
  doi: 10.1111/gcb.13033
– ident: e_1_2_9_63_1
  doi: 10.1016/j.envpol.2020.115016
SSID ssj0003206
Score 2.4864428
Snippet ABSTRACT Plant roots represent about a quarter of global plant biomass and constitute a primary source of soil organic carbon (C). Yet, considerable...
Plant roots represent about a quarter of global plant biomass and constitute a primary source of soil organic carbon (C). Yet, considerable uncertainty...
SourceID hal
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e17547
SubjectTerms additive effect
Carbon - analysis
Carbon - metabolism
Climate Change
Decomposition
Enrichment
Environmental Sciences
fine roots
global change
global change factors
Litter
microbial respiration
Microorganisms
Nitrogen
Nitrogen - analysis
Nitrogen - metabolism
Nitrogen enrichment
Nutrient cycles
nutrient cycling
Organic carbon
phytomass
Plant biomass
plant functional traits
Plant roots
Plant Roots - growth & development
Plant Roots - metabolism
Precipitation
prediction
Rain
root decomposition
root traits
Soil
Soil - chemistry
Soil conditions
Soil improvement
Soil Microbiology
soil organic carbon
Soil properties
Soils
Uncertainty
Title Resolving the Intricate Effects of Multiple Global Change Drivers on Root Litter Decomposition
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgcb.17547
https://www.ncbi.nlm.nih.gov/pubmed/39466204
https://www.proquest.com/docview/3121461434
https://www.proquest.com/docview/3121283800
https://www.proquest.com/docview/3153811406
https://hal.science/hal-04720058
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED9tk5B4YVAYZIzJIIR4SdXEjtuKp9FuFLQhNDFpD4jIdmw2rUpQmyJtfz13dpIxvoR4a5qLFCf38bv47ncAz6XEsCKEjjOVyVjwIomVEcPYGYTjxjqMML7K972cnYh3p9npGrxqe2ECP0T3wY0sw_trMnCllz8Y-Rej-xj7BHWSJ1wSb_70-Jo6iqd-rmbCM4GuJuENqxBV8XRX3ohF62dUCfkrzLyJWn3YOdiET-0Nh2qTi_6q1n1z9ROX43-u6C7caeAo2wv6cw_WbNmDW2FA5WUPtvav--BQrHEEyx5ERwi2q4UXYy_YZH6OyNcf3YfPtCUwpw8VDNEle1vWfhSRZYEpeckqx46aOkYWZg6w0OTApgtfJsKqkh1XVc0Oz6nZiE0tVb435WUP4ORg_-NkFjdjHGIj0sEwVpj1qCJLHc0QT_VYFdoWBedaqqHS6BCMG6eZNgOnUzfmeuCKkcHESWEyiBmi5VuwUValfQQMNUcmMktGQ8RxxJSmqJHf0dYtHxUmi-Bl-0Jz03Cc06iNed7mOviMc_-MI3jWiX4NxB6_FUKt6M4TFfds7zCn_4hlk2Yyfksi2GmVJm8cwDLniZ-YLriI4Gl3Gk2X9mNUaatVkEF0h5D9bzIYkTBnHcgIHgaF7G6H02wAtDRctVerP68jfzN57X9s_7voY7idIoALhYs7sFEvVvYJArBa78J6Kj7senv7DlUVKSo
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB6lRRVcUEkpGAIsCCEurmLv2k6kXkL6SEpSIdRKPWHtrndppciu8qjUf8_MrmOIeIhbEo8lO-PZ-Wb9zXwA79MU04oQKkxkkoaCF1EotchCqxGOa2MxwziW73k6uhRnV8lVCw7XvTB-PkSz4UaR4dZrCnDakP4lyr9rdYDJT2Rb8EAgLidCXyy-NOswj52yZsQTgYtNxOu5QsTjaU7dyEZb18SF_B1obuJWl3hOduFxjRjZwLv4CbRM2YYdryF534b945-tamhWx-qiDcEU8XA1d2bsAxvObhCcum978I127We0l8AQALJxuXRqQYb5YcYLVlk2ramGzMsCMN-HwI7mjsnBqpJ9raolm9xQPxA7MkROrxlgT-Hy5PhiOAprpYVQi7ibhRILE1kksSWZ71j1ZaFMUXCuUplJhTGrbT9OlO5aFds-V11b9DTWNhLrNSziDN-H7bIqzXNg6Nw0SpOolyHUomFmknrtLb1d5b1CJwF8XP_jua7HkJMaxixflyPonNw5J4B3jemtn73xRyN0W3OcpmWPBpOcfqNBmCSbeBcF0Fl7Na9jdJHzyImaCy4CeNscxuiiVyayNNXK2yAAQ1T9LxtMGlhWdtMAnvknprkcTuP7MRjwrt0j9Pf7yE-Hn9yHF_9v-gYeji6mk3wyPv_8Eh7FiLc8z7AD28v5yrxCvLRUr11Y_AB6FQvJ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED9tQyBe-CgMAgMMQoiXVE3sOK14Gu1KB92EJibtARHZTgwTVTK1KRL89dzZScb4EuKtaS5SnNzH7-K73wE8lRLDihA6TFQiQ8HzKFRGpKE1CMdNYTHCuCrfQzk7Fq9PkpMNeNH2wnh-iO6DG1mG89dk4Ge5_cHIPxrdx9gn0k24JCQiCUJER-fcUTx2gzUjngj0NRFvaIWojKe79EIw2vxEpZC_4syLsNXFnel1eN_esS83-dxf17pvvv1E5vifS7oB1xo8yna9At2EjaLswWU_ofJrD7b3zhvhUKzxBKseBAeItqulE2PP2HhxitDXHd2CD7QnsKAvFQzhJdsvazeLqGCeKnnFKssOmkJG5ocOMN_lwCZLVyfCqpIdVVXN5qfUbcQmBZW-N_Vlt-F4uvduPAubOQ6hEfEgDRWmPSpPYktDxGM9Urku8pxzLVWqNHoEY0dxos3A6tiOuB7YfGgwc1KYDWKKWPBt2CqrsrgLDFVHRjKJhikCOaJKU9TJb2nvlg9zkwTwvH2hmWlIzmnWxiJrkx18xpl7xgE86UTPPLPHb4VQK7rzxMU9251n9B_RbNJQxi9RADut0mSNB1hlPHIj0wUXATzuTqPt0oaMKotq7WUQ3iFm_5sMhiRMWgcygDteIbvb4TQcAE0NV-3U6s_ryF6NX7of9_5d9BFceTuZZvP9wzf34WqMYM4XMe7AVr1cFw8QjNX6oTO67zQnKyE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Resolving+the+Intricate+Effects+of+Multiple+Global+Change+Drivers+on+Root+Litter+Decomposition&rft.jtitle=Global+change+biology&rft.au=Zhao%2C+Qingzhou&rft.au=Freschet%2C+Gr%C3%A9goire%C2%A0T.&rft.au=Tao%2C+Tingting&rft.au=Smith%2C+Gabriel%C2%A0Reuben&rft.date=2024-10-01&rft.issn=1354-1013&rft.eissn=1365-2486&rft.volume=30&rft.issue=10&rft.epage=n%2Fa&rft_id=info:doi/10.1111%2Fgcb.17547&rft.externalDBID=10.1111%252Fgcb.17547&rft.externalDocID=GCB17547
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1354-1013&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1354-1013&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1354-1013&client=summon