Heterogeneous/Homogeneous Mediators for High‐Energy‐Density Lithium–Sulfur Batteries: Progress and Prospects
Lithium–sulfur (Li–S) batteries deliver a high theoretical energy density of 2600 Wh kg−1, and hold great promise to serve as a next‐generation high‐energy‐density battery system. Great progress has been achieved in cathode design to deal with the intrinsic problems of sulfur cathodes, including low...
Saved in:
Published in | Advanced functional materials Vol. 28; no. 38 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
19.09.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Lithium–sulfur (Li–S) batteries deliver a high theoretical energy density of 2600 Wh kg−1, and hold great promise to serve as a next‐generation high‐energy‐density battery system. Great progress has been achieved in cathode design to deal with the intrinsic problems of sulfur cathodes, including low conductivity, the dissolution of polysulfide intermediate, and volume fluctuation. However, aiming at the practical applications of Li–S batteries, the weight percentage of sulfur in cathode materials and the overall areal sulfur loading need to be significantly increased, which inevitably complicate the process and cause heavy shuttle effect, slow redox kinetics, and more undesirable reaction pathways. Recently, rationally designing efficient mediators, as well as incorporating them into a working battery, emerges to be a promising method to construct high‐energy‐density Li–S batteries. The influence of mediators on Li–S batteries appears to be the enhancement in redox kinetics and the increase in reaction efficiency. In this feature article, the mechanistic understanding of redox kinetics in Li–S reactions is discussed, and then a comprehensive analysis of the recent advances in both heterogeneous and homogeneous mediator design is provided. A mediator perspective in building high‐energy‐density Li–S batteries is also included.
Mediators in lithium–sulfur batteries can enhance the redox kinetics and increase the reaction efficiency, which benefit the practical applications requiring a high sulfur content and a high areal loading amount. This feature article discusses the mechanism of redox kinetics, and reviews the recent advances in heterogeneous/homogeneous mediator design in lithium–sulfur batteries. |
---|---|
AbstractList | Lithium–sulfur (Li–S) batteries deliver a high theoretical energy density of 2600 Wh kg−1, and hold great promise to serve as a next‐generation high‐energy‐density battery system. Great progress has been achieved in cathode design to deal with the intrinsic problems of sulfur cathodes, including low conductivity, the dissolution of polysulfide intermediate, and volume fluctuation. However, aiming at the practical applications of Li–S batteries, the weight percentage of sulfur in cathode materials and the overall areal sulfur loading need to be significantly increased, which inevitably complicate the process and cause heavy shuttle effect, slow redox kinetics, and more undesirable reaction pathways. Recently, rationally designing efficient mediators, as well as incorporating them into a working battery, emerges to be a promising method to construct high‐energy‐density Li–S batteries. The influence of mediators on Li–S batteries appears to be the enhancement in redox kinetics and the increase in reaction efficiency. In this feature article, the mechanistic understanding of redox kinetics in Li–S reactions is discussed, and then a comprehensive analysis of the recent advances in both heterogeneous and homogeneous mediator design is provided. A mediator perspective in building high‐energy‐density Li–S batteries is also included.
Mediators in lithium–sulfur batteries can enhance the redox kinetics and increase the reaction efficiency, which benefit the practical applications requiring a high sulfur content and a high areal loading amount. This feature article discusses the mechanism of redox kinetics, and reviews the recent advances in heterogeneous/homogeneous mediator design in lithium–sulfur batteries. Lithium–sulfur (Li–S) batteries deliver a high theoretical energy density of 2600 Wh kg −1 , and hold great promise to serve as a next‐generation high‐energy‐density battery system. Great progress has been achieved in cathode design to deal with the intrinsic problems of sulfur cathodes, including low conductivity, the dissolution of polysulfide intermediate, and volume fluctuation. However, aiming at the practical applications of Li–S batteries, the weight percentage of sulfur in cathode materials and the overall areal sulfur loading need to be significantly increased, which inevitably complicate the process and cause heavy shuttle effect, slow redox kinetics, and more undesirable reaction pathways. Recently, rationally designing efficient mediators, as well as incorporating them into a working battery, emerges to be a promising method to construct high‐energy‐density Li–S batteries. The influence of mediators on Li–S batteries appears to be the enhancement in redox kinetics and the increase in reaction efficiency. In this feature article, the mechanistic understanding of redox kinetics in Li–S reactions is discussed, and then a comprehensive analysis of the recent advances in both heterogeneous and homogeneous mediator design is provided. A mediator perspective in building high‐energy‐density Li–S batteries is also included. Lithium–sulfur (Li–S) batteries deliver a high theoretical energy density of 2600 Wh kg−1, and hold great promise to serve as a next‐generation high‐energy‐density battery system. Great progress has been achieved in cathode design to deal with the intrinsic problems of sulfur cathodes, including low conductivity, the dissolution of polysulfide intermediate, and volume fluctuation. However, aiming at the practical applications of Li–S batteries, the weight percentage of sulfur in cathode materials and the overall areal sulfur loading need to be significantly increased, which inevitably complicate the process and cause heavy shuttle effect, slow redox kinetics, and more undesirable reaction pathways. Recently, rationally designing efficient mediators, as well as incorporating them into a working battery, emerges to be a promising method to construct high‐energy‐density Li–S batteries. The influence of mediators on Li–S batteries appears to be the enhancement in redox kinetics and the increase in reaction efficiency. In this feature article, the mechanistic understanding of redox kinetics in Li–S reactions is discussed, and then a comprehensive analysis of the recent advances in both heterogeneous and homogeneous mediator design is provided. A mediator perspective in building high‐energy‐density Li–S batteries is also included. |
Author | Zhao, Meng Huang, Jia‐Qi Peng, Hong‐Jie Zhang, Ze‐Wen |
Author_xml | – sequence: 1 givenname: Ze‐Wen surname: Zhang fullname: Zhang, Ze‐Wen organization: Department of Chemical Engineering Tsinghua University – sequence: 2 givenname: Hong‐Jie orcidid: 0000-0002-4183-703X surname: Peng fullname: Peng, Hong‐Jie organization: Department of Chemical Engineering Tsinghua University – sequence: 3 givenname: Meng surname: Zhao fullname: Zhao, Meng organization: Beijing Institute of Technology – sequence: 4 givenname: Jia‐Qi orcidid: 0000-0001-7394-9186 surname: Huang fullname: Huang, Jia‐Qi email: jqhuang@bit.edu.cn organization: Beijing Institute of Technology |
BookMark | eNqFkM1Kw0AUhQepYFvdug64bntn0ubHXe2PEVoUVHAXJslNOyXJ1JkJkl0fQfAN-yQmVCsI4uqey5zv3OF0SKuQBRJySaFPAdiAJ2neZ0BdcEe2c0La1KFOzwbmtY6avpyRjtYbqG2uPWwTFaBBJVdYoCz1IJD5t7aWmAhupNJWKpUViNV6v3ufFahWVS2mWGhhKmshzFqU-X738VhmaamsG27qRIH62nqogxVqbfEiaRa9xdjoc3Ka8kzjxdfskuf57GkS9Bb3t3eT8aIXDxk4PXTsyGdpTD2a-BwcCj5SGEaxx7g94oA-5eCm1OOJ73kuc7iP9qh-ixjHyGV2l1wdcrdKvpaoTbiRpSrqkyGjMAJwPda4-gdXXP9PK0zDrRI5V1VIIWx6DZtew2OvNTD8BcTCcCNkYRQX2d-Yf8DeRIbVP0fC8XS-_GE_ARfXk_c |
CitedBy_id | crossref_primary_10_1016_j_ensm_2020_05_002 crossref_primary_10_1007_s10854_022_08342_2 crossref_primary_10_1002_adfm_202209360 crossref_primary_10_1002_advs_202106004 crossref_primary_10_1002_cssc_202100216 crossref_primary_10_1039_C9EE01257E crossref_primary_10_1515_revce_2023_0059 crossref_primary_10_1002_smll_202302249 crossref_primary_10_1016_j_jechem_2020_06_009 crossref_primary_10_1002_adfm_202313107 crossref_primary_10_1051_metal_2022048 crossref_primary_10_1088_2515_7655_abd5c4 crossref_primary_10_26599_NRE_2024_9120116 crossref_primary_10_1002_ente_201900574 crossref_primary_10_1002_adma_202003845 crossref_primary_10_1039_C9TA12137D crossref_primary_10_1021_jacs_8b12973 crossref_primary_10_1038_s41467_024_51647_5 crossref_primary_10_1002_adfm_201906661 crossref_primary_10_1039_D1TA06249B crossref_primary_10_1002_adma_202004920 crossref_primary_10_1002_smll_202306140 crossref_primary_10_1002_adfm_202213966 crossref_primary_10_1002_anie_201909339 crossref_primary_10_1002_adfm_202405358 crossref_primary_10_1016_j_ensm_2018_12_005 crossref_primary_10_1007_s11581_022_04781_3 crossref_primary_10_1016_j_apt_2021_03_031 crossref_primary_10_1039_D1TA00772F crossref_primary_10_1002_er_8025 crossref_primary_10_1007_s11837_023_05817_3 crossref_primary_10_1002_cjce_24723 crossref_primary_10_1002_aenm_202303389 crossref_primary_10_1021_acsaem_9b00343 crossref_primary_10_1002_chem_202003807 crossref_primary_10_1016_j_cej_2021_133629 crossref_primary_10_1016_j_jcis_2021_09_120 crossref_primary_10_1002_aenm_202403092 crossref_primary_10_1016_j_ccr_2024_215836 crossref_primary_10_1039_D0TA10714J crossref_primary_10_1080_21870764_2022_2129483 crossref_primary_10_1021_acsnano_1c06067 crossref_primary_10_1039_D0NR05199C crossref_primary_10_1039_D1TA03608D crossref_primary_10_1002_aenm_201803477 crossref_primary_10_1021_acs_iecr_0c04960 crossref_primary_10_1021_acsnano_2c01390 crossref_primary_10_1002_smll_202404171 crossref_primary_10_1021_acs_nanolett_0c00618 crossref_primary_10_1016_j_matt_2021_01_012 crossref_primary_10_1016_j_jechem_2020_07_057 crossref_primary_10_1039_C8QM00645H crossref_primary_10_1016_j_mtener_2021_100941 crossref_primary_10_1002_cctc_202300569 crossref_primary_10_1039_D1TA03425A crossref_primary_10_1021_acsaem_0c00509 crossref_primary_10_1002_adma_202003012 crossref_primary_10_1016_j_cej_2020_126823 crossref_primary_10_1002_adma_201901125 crossref_primary_10_1016_j_cej_2020_124404 crossref_primary_10_1007_s12274_024_6481_0 crossref_primary_10_1002_eom2_12115 crossref_primary_10_1016_j_jechem_2020_06_054 crossref_primary_10_1021_acsaem_2c01459 crossref_primary_10_1002_cssc_202000648 crossref_primary_10_1039_C8CS00324F crossref_primary_10_1039_D0TA11624F crossref_primary_10_1002_eem2_12257 crossref_primary_10_1016_j_jechem_2020_05_014 crossref_primary_10_1002_adma_202007298 crossref_primary_10_1016_j_nanoen_2018_12_020 crossref_primary_10_1016_j_mattod_2022_05_017 crossref_primary_10_1021_acsaem_9b02502 crossref_primary_10_1039_D0TA11919A crossref_primary_10_1002_aenm_201901935 crossref_primary_10_1021_acsenergylett_0c01564 crossref_primary_10_1016_j_cej_2023_141898 crossref_primary_10_1039_D0SE00594K crossref_primary_10_3389_fchem_2020_572563 crossref_primary_10_1016_j_cej_2022_135790 crossref_primary_10_34133_energymatadv_0010 crossref_primary_10_1021_acs_chemrev_3c00919 crossref_primary_10_1039_C8TA07220E crossref_primary_10_1002_adma_202211168 crossref_primary_10_1016_j_cej_2019_122852 crossref_primary_10_1016_j_jechem_2022_10_012 crossref_primary_10_1002_adma_201906357 crossref_primary_10_1016_j_cej_2019_121977 crossref_primary_10_1021_acsami_4c20169 crossref_primary_10_1007_s40820_019_0275_z crossref_primary_10_1016_j_cej_2019_122701 crossref_primary_10_1039_C9NR07249G crossref_primary_10_1039_D0TA05927G crossref_primary_10_1021_acsnano_9b09371 crossref_primary_10_1002_adfm_202212796 crossref_primary_10_1002_celc_202001259 crossref_primary_10_1016_j_electacta_2020_135991 crossref_primary_10_1021_acsami_9b11419 crossref_primary_10_1039_D3DT00390F crossref_primary_10_1007_s10853_021_06395_y crossref_primary_10_1016_j_jallcom_2020_155790 crossref_primary_10_1039_C9TA10301E crossref_primary_10_1002_smll_202300089 crossref_primary_10_1007_s12274_019_2536_z crossref_primary_10_1021_acs_nanolett_2c00642 crossref_primary_10_1002_ente_201900111 crossref_primary_10_1021_acscentsci_0c00449 crossref_primary_10_1021_acsenergylett_2c02179 crossref_primary_10_1002_cssc_201900929 crossref_primary_10_1016_j_diamond_2024_111287 crossref_primary_10_1002_admi_201802046 crossref_primary_10_1039_D3NJ01031G crossref_primary_10_1002_adfm_202102314 crossref_primary_10_1002_chem_201806231 crossref_primary_10_1016_j_carbon_2021_02_073 crossref_primary_10_1039_C9NH00663J crossref_primary_10_1002_smtd_201900344 crossref_primary_10_1016_j_flatc_2020_100209 crossref_primary_10_1021_acsami_2c13543 crossref_primary_10_1016_j_est_2023_108423 crossref_primary_10_1007_s12221_022_4953_y crossref_primary_10_1002_aenm_201802107 crossref_primary_10_1002_slct_201901830 crossref_primary_10_1016_j_electacta_2019_135287 crossref_primary_10_1021_acsami_9b11561 crossref_primary_10_1002_cssc_202300507 crossref_primary_10_1149_1945_7111_ac6e8c crossref_primary_10_1021_acsami_9b02844 crossref_primary_10_1016_j_nanoen_2019_03_023 crossref_primary_10_1002_inf2_12056 crossref_primary_10_1016_j_jechem_2023_03_046 crossref_primary_10_1039_C9TA03227D crossref_primary_10_1016_j_cej_2019_123457 crossref_primary_10_1021_acssuschemeng_0c01791 crossref_primary_10_1002_eom2_12020 crossref_primary_10_1021_acsami_8b22014 crossref_primary_10_1039_D1TA06863F crossref_primary_10_1002_adma_202405790 crossref_primary_10_1002_adsu_202300192 crossref_primary_10_1002_adma_202303520 crossref_primary_10_1021_acsami_0c14287 crossref_primary_10_26599_NRE_2022_9120012 crossref_primary_10_1007_s12274_022_4453_9 crossref_primary_10_3390_nano12234341 crossref_primary_10_1002_smll_202406613 crossref_primary_10_1016_j_jechem_2021_06_025 crossref_primary_10_1016_j_jcis_2021_12_003 crossref_primary_10_1039_D2GC01503J crossref_primary_10_1002_smll_202301545 crossref_primary_10_1007_s40820_019_0313_x crossref_primary_10_1002_ange_202003136 crossref_primary_10_1016_j_mtener_2022_101033 crossref_primary_10_1002_aenm_202303893 crossref_primary_10_1039_C9TA01500K crossref_primary_10_1021_acsami_2c11667 crossref_primary_10_1002_smll_201802516 crossref_primary_10_1016_j_micromeso_2021_111355 crossref_primary_10_1039_D0CC03224G crossref_primary_10_1016_j_nanoen_2019_104356 crossref_primary_10_1002_aesr_202100157 crossref_primary_10_1002_ente_201900164 crossref_primary_10_26599_NRE_2022_9120001 crossref_primary_10_1002_smll_202102962 crossref_primary_10_1039_C8CC06924G crossref_primary_10_1007_s40820_023_01037_1 crossref_primary_10_1016_j_carbon_2020_09_094 crossref_primary_10_1016_j_joule_2018_12_018 crossref_primary_10_1002_ange_202108343 crossref_primary_10_3390_nano10040705 crossref_primary_10_1002_sus2_42 crossref_primary_10_1002_adfm_202001201 crossref_primary_10_1002_eem2_12236 crossref_primary_10_1039_D0TA04910G crossref_primary_10_1007_s11581_019_03299_5 crossref_primary_10_1002_admi_201900393 crossref_primary_10_1007_s12274_022_5215_4 crossref_primary_10_1039_C9TA13999K crossref_primary_10_1021_acsnano_4c09892 crossref_primary_10_1039_D0NR02429E crossref_primary_10_1007_s40820_019_0249_1 crossref_primary_10_1016_j_nanoen_2019_03_060 crossref_primary_10_1002_adfm_202309345 crossref_primary_10_1021_acsnano_0c08652 crossref_primary_10_1002_adfm_202306990 crossref_primary_10_1021_acs_nanolett_3c00787 crossref_primary_10_1016_j_cej_2021_134306 crossref_primary_10_1016_j_nanoen_2020_104680 crossref_primary_10_1016_j_cej_2020_126076 crossref_primary_10_1039_D4QM00180J crossref_primary_10_1039_D2TA04095F crossref_primary_10_1039_C9CC02134E crossref_primary_10_1002_adma_201808392 crossref_primary_10_1002_anie_202108343 crossref_primary_10_1002_adfm_202107136 crossref_primary_10_1002_adma_202401263 crossref_primary_10_1039_D3TA00210A crossref_primary_10_1002_ente_201800898 crossref_primary_10_1088_1361_648X_ac08b9 crossref_primary_10_1016_j_nanoen_2020_104555 crossref_primary_10_1002_aenm_202403439 crossref_primary_10_1021_acsami_9b13533 crossref_primary_10_1002_adma_202008784 crossref_primary_10_1016_j_cej_2020_128284 crossref_primary_10_1016_j_jelechem_2022_117113 crossref_primary_10_1016_j_jechem_2021_11_004 crossref_primary_10_1016_j_cej_2021_132836 crossref_primary_10_1016_j_jelechem_2019_04_047 crossref_primary_10_1360_TB_2022_0050 crossref_primary_10_1002_adma_202008654 crossref_primary_10_1021_acsnano_1c02047 crossref_primary_10_1021_acsnano_3c09919 crossref_primary_10_1002_ange_201909339 crossref_primary_10_1016_j_jallcom_2019_07_145 crossref_primary_10_1039_D1TA07201C crossref_primary_10_1016_j_cej_2022_139199 crossref_primary_10_1002_adfm_201901051 crossref_primary_10_1002_inf2_12304 crossref_primary_10_1016_j_carbon_2019_04_108 crossref_primary_10_1002_adfm_202111084 crossref_primary_10_1002_smll_202304618 crossref_primary_10_1016_j_jpowsour_2019_01_029 crossref_primary_10_1002_adma_202411197 crossref_primary_10_1016_j_cej_2020_128153 crossref_primary_10_1002_aenm_201803137 crossref_primary_10_1016_j_jechem_2021_05_023 crossref_primary_10_1002_admi_201901420 crossref_primary_10_1021_acsnano_2c00882 crossref_primary_10_1039_D4TA01278J crossref_primary_10_1149_1945_7111_ab8408 crossref_primary_10_1002_smtd_201900864 crossref_primary_10_1021_acssuschemeng_0c02477 crossref_primary_10_1021_acssuschemeng_1c05959 crossref_primary_10_1002_adma_202209233 crossref_primary_10_1016_j_eng_2018_10_008 crossref_primary_10_1080_09276440_2022_2044108 crossref_primary_10_1021_acsami_0c01640 crossref_primary_10_1039_D4NJ02046D crossref_primary_10_1016_j_jechem_2023_07_003 crossref_primary_10_1002_anie_201812062 crossref_primary_10_1002_anie_202003136 crossref_primary_10_1002_advs_202102217 crossref_primary_10_1021_acsami_9b10049 crossref_primary_10_1039_C9QM00228F crossref_primary_10_1007_s10853_020_05511_8 crossref_primary_10_1016_j_flatc_2021_100236 crossref_primary_10_1021_acsaem_9b01007 crossref_primary_10_1007_s11244_022_01642_1 crossref_primary_10_1002_admt_202001136 crossref_primary_10_1002_aenm_201901075 crossref_primary_10_1016_j_cej_2020_127769 crossref_primary_10_1002_smll_202206126 crossref_primary_10_1021_acsenergylett_3c00826 crossref_primary_10_1016_j_jechem_2021_05_039 crossref_primary_10_1021_acsnano_9b07121 crossref_primary_10_1021_acsnano_0c04933 crossref_primary_10_1002_adfm_202203902 crossref_primary_10_1007_s11581_021_04052_7 crossref_primary_10_1021_acssuschemeng_9b00564 crossref_primary_10_1002_ange_201812062 crossref_primary_10_1039_C9TA08600E crossref_primary_10_1039_C9TA10560C crossref_primary_10_3390_polym15061460 crossref_primary_10_1007_s42864_020_00046_6 crossref_primary_10_1021_acsami_0c08027 |
Cites_doi | 10.1002/adfm.201304156 10.1002/chem.201702387 10.1021/acs.chemmater.5b02955 10.1021/acs.nanolett.7b04505 10.1002/advs.201600445 10.1039/C6TA01214K 10.1039/c4ta00779d 10.1021/acsami.5b10300 10.1038/ncomms1293 10.1126/science.1141483 10.1002/anie.201410174 10.1039/C6TA07864H 10.1039/C4CS00287C 10.1002/adma.201601382 10.1016/j.ensm.2017.11.007 10.1039/C7TA05120D 10.1002/anie.201411109 10.1038/ncomms4410 10.1039/C2TA00105E 10.1002/cnma.201600227 10.1021/acs.nanolett.5b01919 10.1002/anie.201511632 10.1002/adfm.201704865 10.1038/srep32433 10.1016/j.nanoen.2017.01.040 10.1039/C7EE01430A 10.1002/smll.201702104 10.1016/j.electacta.2017.07.164 10.1039/C5TA10307J 10.1002/aenm.201500165 10.1039/C7EE01047H 10.1038/ncomms8278 10.1038/451652a 10.1039/C4TA07101H 10.1039/C6GC00612D 10.1073/pnas.1615837114 10.1038/ncomms14627 10.1039/C6EE00104A 10.1038/s41467-017-02410-6 10.1016/j.nanoen.2017.09.018 10.1002/adfm.201606663 10.1016/j.ensm.2016.04.002 10.1002/adma.201602913 10.1002/aenm.201702337 10.1149/2.0041701jes 10.1021/jacs.7b11434 10.1002/adfm.201704294 10.1016/j.jpowsour.2016.06.002 10.1021/acsami.6b06565 10.1039/c3cc41875h 10.1021/ja409508q 10.1021/jz500222f 10.1038/ncomms6017 10.1016/j.electacta.2013.02.101 10.1038/ncomms4943 10.1002/admi.201500048 10.1149/1.1710895 10.1021/cm5044667 10.1002/smtd.201700279 10.1021/nl5020475 10.1002/anie.201506972 10.1002/anie.201511553 10.1002/aenm.201602543 10.1016/j.nanoen.2017.08.017 10.1039/C7TA08859K 10.1038/nenergy.2016.114 10.1039/C5CS00410A 10.1021/nl503730c 10.1021/acs.nanolett.6b04610 10.1016/j.ensm.2015.09.007 10.1021/acsnano.7b01945 10.1002/adma.201501559 10.1002/adma.201706643 10.1039/C5TA06348E 10.1038/35037553 10.1016/j.nanoen.2017.01.007 10.1002/adfm.201603704 10.1038/nphoton.2012.11 10.1002/adma.201506111 10.1021/acsnano.6b08627 10.1038/ncomms5759 10.1039/C6EE00194G 10.1021/acsenergylett.7b00465 10.1016/j.nanoen.2017.08.039 10.1021/acsnano.7b06061 10.1002/aenm.201402273 10.1038/nchem.1624 10.1002/aenm.201602567 10.1002/anie.201708746 10.1038/s41467-018-03116-z 10.1021/nl502331f 10.1016/j.mtener.2017.04.006 10.1016/j.nanoen.2017.05.009 10.1039/C6NR02345B 10.1021/jp500382s 10.1021/nn401228t 10.1021/nn203436j 10.1021/acscentsci.7b00123 10.1002/aenm.201700260 10.1021/nl403130h 10.1021/acsenergylett.6b00603 10.1002/aenm.201501636 10.1038/nmat2460 10.1002/adfm.201706391 10.1021/am501627f 10.1038/nmat4465 10.1039/C7TA04279E 10.1002/adfm.201401501 10.1016/j.nanoen.2016.04.053 10.1016/j.ensm.2017.08.005 10.1021/acsami.7b14685 10.1021/am400958x 10.1021/acs.nanolett.7b00417 10.1002/adfm.201702573 10.1002/anie.201501788 10.1016/j.ensm.2017.04.003 10.1021/jacs.6b08681 10.1002/anie.201701026 10.1038/nphoton.2014.134 10.1021/acsnano.6b05696 10.1021/acs.nanolett.5b04166 10.1002/anie.201511830 10.1016/j.nanoen.2017.05.064 10.1002/adma.201606802 10.1039/C7TA04937D 10.1039/C5MH00246J 10.1002/smtd.201700134 10.1038/s41598-017-11922-6 10.1039/C7TA00475C 10.1016/j.ensm.2017.07.015 10.1039/C6TA07202J 10.1016/j.carbon.2017.10.032 10.1002/adma.201303166 10.1038/ncomms9622 10.1038/nmat3191 10.1038/ncomms13065 10.1002/adma.201603835 10.1038/nnano.2017.16 10.1039/C7TA03236F 10.1002/adfm.201702524 10.1039/C5TA03062E 10.1021/jacs.6b12358 10.1149/2.015201eel 10.1038/nenergy.2016.132 10.1021/acsenergylett.7b00164 10.1002/adma.201502467 10.1002/adfm.201303296 10.1038/ncomms6682 10.1038/ncomms11203 10.1002/aenm.201502183 10.1002/aenm.201601843 10.1007/s12274-017-1655-7 10.1021/acsnano.6b07603 10.1016/j.nanoen.2013.05.003 10.1021/acsnano.5b07347 10.1021/ja3052206 10.1021/jacs.5b07071 10.1021/jp300950m 10.1002/adma.201602734 10.1021/acsami.6b03200 10.1002/adma.201705219 10.1007/s12274-017-1581-8 10.1021/ar5002846 10.1021/nn501226z 10.1021/acsnano.7b04442 10.1002/smll.201600809 10.1016/j.carbon.2016.08.050 10.1021/acs.nanolett.6b04433 10.1002/admi.201400227 10.1002/adma.201702707 10.1039/C6TA07411A 10.1039/C6TA04445J 10.1002/aenm.201502459 10.1016/j.nanoen.2017.10.032 10.1021/acs.nanolett.5b04189 10.1002/aenm.201501808 10.1039/C6EE01019A 10.1149/2.0051706jes 10.1002/adma.201603401 10.1021/acs.nanolett.7b02332 10.1021/acsenergylett.6b00245 10.1016/j.ensm.2017.05.009 10.1002/anie.201704324 10.1039/C6EE01662F 10.1002/adfm.201302631 10.1002/adma.201504765 10.1039/c3ta12634j 10.1002/anie.201603897 10.1016/j.jpowsour.2010.11.132 10.1002/adma.201506014 10.1038/ncomms8760 10.1002/anie.201605676 10.1126/science.1212741 10.1021/acsnano.5b03591 10.1039/C5EE03902A 10.3866/PKU.WHXB20041208 10.1021/jacs.5b04472 10.1002/aenm.201500408 10.1002/cssc.201300142 10.1002/adma.201603040 10.1002/adma.201103392 10.1021/acsami.6b05647 10.1021/cr500062v 10.1021/jz401763d |
ContentType | Journal Article |
Copyright | 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.201707536 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adfm_201707536 ADFM201707536 |
Genre | reviewArticle |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 21776019 – fundername: Young Elite Scientists Sponsorship Program funderid: 2015QNRC001 – fundername: National Key Research and Development Program funderid: 2016YFA0202500 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ AAHHS AANHP AAYXX ACBWZ ACCFJ ACRPL ACYXJ ADNMO ADZOD AEEZP AEQDE AGQPQ AIWBW AJBDE ASPBG AVWKF AZFZN CITATION FEDTE HF~ HVGLF 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
ID | FETCH-LOGICAL-c4206-e63b92fc181d9a06109e104bc82a35a0e91a07f18ad988726a9e352a3b2aeb723 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Mon Jul 14 08:13:14 EDT 2025 Tue Jul 01 04:11:49 EDT 2025 Thu Apr 24 23:06:04 EDT 2025 Wed Aug 20 07:26:41 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 38 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4206-e63b92fc181d9a06109e104bc82a35a0e91a07f18ad988726a9e352a3b2aeb723 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-4183-703X 0000-0001-7394-9186 |
PQID | 2105007822 |
PQPubID | 2045204 |
PageCount | 23 |
ParticipantIDs | proquest_journals_2105007822 crossref_primary_10_1002_adfm_201707536 crossref_citationtrail_10_1002_adfm_201707536 wiley_primary_10_1002_adfm_201707536_ADFM201707536 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 19, 2018 |
PublicationDateYYYYMMDD | 2018-09-19 |
PublicationDate_xml | – month: 09 year: 2018 text: September 19, 2018 day: 19 |
PublicationDecade | 2010 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2018 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 5 2017; 40 2017; 7 2016 2016; 55 28 2017; 8 2016 2016; 55 2 2004; 20 2017; 1 2017; 2 2013; 1 2017 2017; 5 2 2013; 2 2017 2017 2017; 17 41 13 2016 2015 2017 2017 2017; 1 5 8 12 4 2016 2017; 6 11 2016 2017; 4 164 2014; 24 2012 2013; 24 135 2011 2012; 196 116 2017 2017 2017; 3 56 17 2017 2017 2017; 139 7 7 2013; 5 2017; 114 2015 2016 2016 2013 2013 2014 2014 2014 2015 2015; 15 8 10 5 7 14 24 6 54 6 2017; 9 2008 2011; 451 334 2018; 9 2018; 8 2014; 5 2015 2015; 48 44 2012; 134 2015 2016 2016 2017; 3 26 4 23 2016 2016 2017; 12 25 56 2015; 137 2017; 33 2015 2017 2016 2017; 2 5 8 5 2016 2017 2018; 1 5 2 2014; 14 2016 2016 2016 2017 2017 2017; 5 109 10 17 7 11 2018; 30 2014; 8 2013 2016 2016; 25 6 28 2014 2016 2017; 14 8 10 2014; 118 2018; 28 2017 2018; 40 30 2018; 140 2013; 49 2015; 3 2012 2014; 6 8 2017; 27 2016 2017 2017 2017; 3 33 38 37 2015 2016; 27 16 2014 2016; 114 45 2013 2013 2015 2015; 4 6 5 5 2015; 54 2015 2016 2017 2017 2016; 5 6 40 5 6 2017 2018; 164 11 2016; 325 2017; 29 2017; 251 2015; 9 2015; 7 2015 2015 2016 2017; 6 54 9 27 2016; 15 2011 2013; 5 13 2017; 139 2016; 55 2016; 4 2018; 18 2000 2012; 407 11 2016; 7 2015; 27 2007; 317 2013 2014 2015 2016 2016 2016 2017 2017 2017; 1 2 6 55 1 9 29 7 56 2011 2016 2016; 2 28 18 2012; 1 2016 2016 2017; 28 4 2 2017; 17 2017; 11 2004; 151 2017; 10 2016 2016 2018; 7 9 126 2009; 8 2014 2015; 1 27 2014 2014 2014 2016 2016 2016; 24 24 5 28 28 2 2017 2017; 27 5 2018; 12 2018; 10 2015 2017; 6 8 2016; 8 2016; 9 2016 2013; 16 97 e_1_2_7_3_2 e_1_2_7_3_1 e_1_2_7_104_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_83_1 e_1_2_7_11_5 e_1_2_7_11_4 e_1_2_7_11_3 e_1_2_7_11_2 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_68_1 e_1_2_7_94_1 e_1_2_7_23_6 e_1_2_7_23_5 e_1_2_7_71_1 e_1_2_7_23_4 e_1_2_7_23_3 e_1_2_7_23_2 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_56_1 e_1_2_7_79_1 e_1_2_7_4_2 e_1_2_7_4_1 e_1_2_7_105_1 e_1_2_7_82_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_67_1 e_1_2_7_29_1 Wang W. K. (e_1_2_7_97_1) 2004; 20 e_1_2_7_93_2 e_1_2_7_70_1 e_1_2_7_93_1 e_1_2_7_70_2 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_78_1 e_1_2_7_106_1 e_1_2_7_9_2 e_1_2_7_9_1 e_1_2_7_81_1 e_1_2_7_1_2 e_1_2_7_1_1 e_1_2_7_13_2 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_89_1 e_1_2_7_28_1 e_1_2_7_9_3 e_1_2_7_92_2 e_1_2_7_110_1 e_1_2_7_92_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_77_1 e_1_2_7_54_2 e_1_2_7_54_1 e_1_2_7_39_1 e_1_2_7_2_2 e_1_2_7_107_1 e_1_2_7_80_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_88_1 e_1_2_7_65_1 e_1_2_7_27_1 e_1_2_7_27_2 e_1_2_7_27_3 e_1_2_7_86_10 e_1_2_7_91_1 e_1_2_7_111_1 e_1_2_7_91_2 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_76_1 e_1_2_7_99_1 e_1_2_7_53_2 e_1_2_7_99_5 e_1_2_7_99_4 e_1_2_7_99_3 e_1_2_7_99_2 e_1_2_7_38_1 e_1_2_7_99_9 e_1_2_7_38_2 e_1_2_7_99_8 e_1_2_7_38_3 e_1_2_7_99_7 e_1_2_7_38_4 e_1_2_7_99_6 e_1_2_7_108_1 e_1_2_7_108_2 e_1_2_7_7_4 e_1_2_7_7_3 e_1_2_7_7_2 e_1_2_7_7_1 e_1_2_7_100_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_87_1 e_1_2_7_87_2 e_1_2_7_64_3 e_1_2_7_64_2 e_1_2_7_87_3 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_7_6 e_1_2_7_7_5 e_1_2_7_108_3 e_1_2_7_108_4 e_1_2_7_90_1 e_1_2_7_112_1 e_1_2_7_52_2 e_1_2_7_75_2 e_1_2_7_52_1 e_1_2_7_98_1 e_1_2_7_75_1 e_1_2_7_37_1 e_1_2_7_37_2 e_1_2_7_109_1 e_1_2_7_8_2 e_1_2_7_8_1 e_1_2_7_101_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_86_2 e_1_2_7_63_1 e_1_2_7_86_3 e_1_2_7_86_1 e_1_2_7_86_6 e_1_2_7_86_7 e_1_2_7_86_4 e_1_2_7_48_1 e_1_2_7_86_5 e_1_2_7_48_2 e_1_2_7_86_8 e_1_2_7_86_9 e_1_2_7_109_2 e_1_2_7_109_3 e_1_2_7_113_1 e_1_2_7_51_1 e_1_2_7_74_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_59_2 e_1_2_7_5_1 e_1_2_7_102_3 e_1_2_7_102_1 e_1_2_7_102_2 e_1_2_7_17_3 e_1_2_7_17_2 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_62_3 e_1_2_7_85_3 e_1_2_7_62_2 e_1_2_7_85_4 e_1_2_7_85_1 e_1_2_7_85_2 e_1_2_7_47_1 e_1_2_7_47_2 e_1_2_7_114_5 e_1_2_7_114_4 e_1_2_7_114_3 e_1_2_7_114_2 e_1_2_7_114_1 e_1_2_7_73_1 e_1_2_7_50_2 e_1_2_7_50_1 e_1_2_7_50_4 e_1_2_7_50_3 e_1_2_7_96_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_35_2 e_1_2_7_58_2 e_1_2_7_35_3 e_1_2_7_58_1 e_1_2_7_58_4 e_1_2_7_58_3 e_1_2_7_6_1 e_1_2_7_103_2 e_1_2_7_103_1 e_1_2_7_18_1 e_1_2_7_84_1 e_1_2_7_61_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_69_1 e_1_2_7_72_1 e_1_2_7_95_1 e_1_2_7_72_2 e_1_2_7_72_3 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_57_2 |
References_xml | – volume: 48 44 start-page: 56 2664 year: 2015 2015 publication-title: Acc. Chem. Res. Chem. Soc. Rev. – volume: 9 start-page: 42836 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 15 start-page: 48 year: 2016 publication-title: Nat. Mater. – volume: 140 start-page: 1455 year: 2018 publication-title: J. Am. Chem. Soc. – volume: 27 start-page: 5203 year: 2015 publication-title: Adv. Mater. – volume: 24 135 start-page: 1176 16736 year: 2012 2013 publication-title: Adv. Mater. J. Am. Chem. Soc. – volume: 49 start-page: 4513 year: 2013 publication-title: Chem. Commun. – volume: 18 start-page: 1035 year: 2018 publication-title: Nano Lett. – volume: 8 start-page: 1702337 year: 2018 publication-title: Adv. Energy Mater. – volume: 24 start-page: 4156 year: 2014 publication-title: Adv. Funct. Mater. – volume: 8 start-page: 153 year: 2017 publication-title: Energy Storage Mater. – volume: 40 start-page: 655 year: 2017 publication-title: Nano Energy – volume: 1 27 start-page: 1400227 6021 year: 2014 2015 publication-title: Adv. Mater. Interfaces Adv. Mater. – volume: 5 start-page: 5017 year: 2014 publication-title: Nat. Commun. – volume: 10 start-page: 1694 year: 2017 publication-title: Energy Environ. Sci. – volume: 54 start-page: 12868 year: 2015 publication-title: Angew. Chem., Int. Ed. – volume: 3 26 4 23 start-page: 7870 8746 5993 12613 year: 2015 2016 2016 2017 publication-title: J. Mater. Chem. A Adv. Funct. Mater. J. Mater. Chem. A Chem. Eur. J. – volume: 164 11 start-page: A917 477 year: 2017 2018 publication-title: J. Electrochem. Soc. Nano Res. – volume: 25 6 28 start-page: 6547 1502459 9539 year: 2013 2016 2016 publication-title: Adv. Mater. Adv. Energy Mater. Adv. Mater. – volume: 2 5 8 5 start-page: 1500048 25187 13638 19613 year: 2015 2017 2016 2017 publication-title: Adv. Mater. Interfaces J. Mater. Chem. A Nanoscale J. Mater. Chem. A – volume: 7 start-page: 11203 year: 2016 publication-title: Nat. Commun. – volume: 10 start-page: 1 year: 2018 publication-title: Energy Storage Mater. – volume: 30 start-page: 1706643 year: 2018 publication-title: Adv. Mater. – volume: 3 56 17 start-page: 605 6192 3061 year: 2017 2017 2017 publication-title: ACS Cent. Sci. Angew. Chem., Int. Ed. Nano Lett. – volume: 28 4 2 start-page: 6926 17711 327 year: 2016 2016 2017 publication-title: Adv. Mater. J. Mater. Chem. A ACS Energy Lett. – volume: 139 7 7 start-page: 171 1601843 1602567 year: 2017 2017 2017 publication-title: J. Am. Chem. Soc. Adv. Energy Mater. Adv. Energy Mater. – volume: 137 start-page: 12946 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 151 start-page: A791 year: 2004 publication-title: J. Electrochem. Soc. – volume: 451 334 start-page: 652 928 year: 2008 2011 publication-title: Nature Science – volume: 5 start-page: 6447 year: 2017 publication-title: J. Mater. Chem. A – volume: 33 start-page: 306 year: 2017 publication-title: Nano Energy – volume: 55 start-page: 10027 year: 2016 publication-title: Angew. Chem., Int. Ed. – volume: 8 start-page: 500 year: 2009 publication-title: Nat. Mater. – volume: 9 start-page: 705 year: 2018 publication-title: Nat. Commun. – volume: 28 start-page: 1704294 year: 2018 publication-title: Adv. Funct. Mater. – volume: 29 start-page: 1702707 year: 2017 publication-title: Adv. Mater. – volume: 3 33 38 37 start-page: 130 124 239 7 year: 2016 2017 2017 2017 publication-title: Mater. Horiz. Nano Energy Nano Energy Nano Energy – volume: 251 start-page: 43 year: 2017 publication-title: Electrochim. Acta – volume: 54 start-page: 3907 year: 2015 publication-title: Angew. Chem., Int. Ed. – volume: 3 start-page: 19857 year: 2015 publication-title: J. Mater. Chem. A – volume: 29 start-page: 1606802 year: 2017 publication-title: Adv. Mater. – volume: 5 6 40 5 6 start-page: 1501808 1502183 240 15 32433 year: 2015 2016 2017 2017 2016 publication-title: Adv. Energy Mater. Adv. Energy Mater. Nano Energy Mater. Today Energy Sci. Rep. – volume: 118 start-page: 5733 year: 2014 publication-title: J. Phys. Chem. C – volume: 6 11 start-page: 1501636 2697 year: 2016 2017 publication-title: Adv. Energy Mater. ACS Nano – volume: 7 start-page: 27959 year: 2015 publication-title: ACS Appl. Mater. Interfaces – volume: 4 164 start-page: 4371 A6039 year: 2016 2017 publication-title: J. Mater. Chem. A J. Electrochem. Soc. – volume: 9 start-page: 1998 year: 2016 publication-title: Energy Environ. Sci. – volume: 8 start-page: 19550 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 27 start-page: 2048 year: 2015 publication-title: Chem. Mater. – volume: 137 start-page: 11542 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 17 start-page: 5064 year: 2017 publication-title: Nano Lett. – volume: 1 2 6 55 1 9 29 7 56 start-page: 13261 9280 7278 3106 566 2025 1603835 11386 15118 year: 2013 2014 2015 2016 2016 2016 2017 2017 2017 publication-title: J. Mater. Chem. A J. Mater. Chem. A Nat. Commun. Angew. Chem., Int. Ed. ACS Energy Lett. Energy Environ. Sci. Adv. Mater. Sci. Rep. Angew. Chem., Int. Ed. – volume: 5 start-page: 3943 year: 2014 publication-title: Nat. Commun. – volume: 55 28 start-page: 3982 9551 year: 2016 2016 publication-title: Angew. Chem., Int. Ed. Adv. Mater. – volume: 15 8 10 5 7 14 24 6 54 6 start-page: 5137 25193 4111 5630 5367 4821 1243 8789 4325 7760 year: 2015 2016 2016 2013 2013 2014 2014 2014 2015 2015 publication-title: Nano Lett. ACS Appl. Mater. Interfaces ACS Nano ACS Appl. Mater. Interfaces ACS Nano Nano Lett. Adv. Funct. Mater. ACS Appl. Mater. Interfaces Angew. Chem., Int. Ed. Nat. Commun. – volume: 4 6 5 5 start-page: 3227 1177 1500165 1500408 year: 2013 2013 2015 2015 publication-title: J. Phys. Chem. Lett. ChemSusChem Adv. Energy Mater. Adv. Energy Mater. – volume: 5 start-page: 17352 year: 2017 publication-title: J. Mater. Chem. A – volume: 27 5 start-page: 1702524 22120 year: 2017 2017 publication-title: Adv. Funct. Mater. J. Mater. Chem. A – volume: 9 start-page: 9507 year: 2015 publication-title: ACS Nano – volume: 10 start-page: 56 year: 2018 publication-title: Energy Storage Mater. – volume: 14 start-page: 5288 year: 2014 publication-title: Nano Lett. – volume: 5 13 start-page: 9187 5534 year: 2011 2013 publication-title: ACS Nano Nano Lett. – volume: 7 start-page: 1700260 year: 2017 publication-title: Adv. Energy Mater. – volume: 40 30 start-page: 360 1705219 year: 2017 2018 publication-title: Nano Energy Adv. Mater. – volume: 6 54 9 27 start-page: 5682 12886 2533 1606663 year: 2015 2015 2016 2017 publication-title: Nat. Commun. Angew. Chem., Int. Ed. Energy Environ. Sci. Adv. Funct. Mater. – volume: 20 start-page: 1440 year: 2004 publication-title: Acta Phys‐Chim. Sin. – volume: 17 41 13 start-page: 538 758 1702104 year: 2017 2017 2017 publication-title: Nano Lett. Nano Energy Small – volume: 11 start-page: 6031 year: 2017 publication-title: ACS Nano – volume: 3 start-page: 17106 year: 2015 publication-title: J. Mater. Chem. A – volume: 6 8 start-page: 8622 202 year: 2015 2017 publication-title: Nat. Commun. Energy Storage Mater. – volume: 8 start-page: 4033 year: 2014 publication-title: ACS Nano – volume: 5 start-page: 915 year: 2014 publication-title: J. Phys. Chem. Lett. – volume: 1 start-page: 295 year: 2013 publication-title: J. Mater. Chem. A – volume: 5 start-page: 4759 year: 2014 publication-title: Nat. Commun. – volume: 5 109 10 17 7 11 start-page: 223 719 10981 437 1602543 11417 year: 2016 2016 2016 2017 2017 2017 publication-title: Energy Storage Mater. Carbon ACS Nano Nano Lett. Adv. Energy Mater. ACS Nano – volume: 1 start-page: 1700134 year: 2017 publication-title: Small Methods – volume: 317 start-page: 100 year: 2007 publication-title: Science – volume: 1 start-page: A24 year: 2012 publication-title: ECS Electrochem. Lett. – volume: 11 start-page: 8488 year: 2017 publication-title: ACS Nano – volume: 9 start-page: 3230 year: 2016 publication-title: Energy Environ. Sci. – volume: 2 28 18 start-page: 325 3167 5169 year: 2011 2016 2016 publication-title: Nat. Commun. Adv. Mater. Green Chem. – volume: 27 16 start-page: 6765 549 year: 2015 2016 publication-title: Chem. Mater. Nano Lett. – volume: 10 start-page: 3698 year: 2017 publication-title: Nano Res. – volume: 114 45 start-page: 11751 5605 year: 2014 2016 publication-title: Chem. Rev. Chem. Soc. Rev. – volume: 1 5 8 12 4 start-page: 16114 1402273 14627 194 1600445 year: 2016 2015 2017 2017 2017 publication-title: Nat. Energy Adv. Energy Mater. Nat. Commun. Nat. Nanotechnol. Adv. Sci. – volume: 1 5 2 start-page: 16132 448 1700279 year: 2016 2017 2018 publication-title: Nat. Energy J. Mater. Chem. A Small Methods – volume: 28 start-page: 1706391 year: 2018 publication-title: Adv. Funct. Mater. – volume: 29 start-page: 1603040 year: 2017 publication-title: Adv. Mater. – volume: 12 start-page: 30 year: 2018 publication-title: Energy Storage Mater. – volume: 28 start-page: 1704865 year: 2018 publication-title: Adv. Funct. Mater. – volume: 407 11 start-page: 724 19 year: 2000 2012 publication-title: Nature Nat. Mater. – volume: 2 start-page: 1197 year: 2013 publication-title: Nano Energy – volume: 12 25 56 start-page: 3283 203 8178 year: 2016 2016 2017 publication-title: Small Nano Energy Angew. Chem., Int. Ed. – volume: 139 start-page: 8458 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 55 start-page: 4231 year: 2016 publication-title: Angew. Chem., Int. Ed. – volume: 114 start-page: 840 year: 2017 publication-title: Proc. Natl. Acad. Sci. USA – volume: 6 8 start-page: 153 506 year: 2012 2014 publication-title: Nat. Photonics Nat. Photonics – volume: 8 start-page: 2277 year: 2017 publication-title: Nat. Commun. – volume: 14 8 10 start-page: 7138 13437 1476 year: 2014 2016 2017 publication-title: Nano Lett. ACS Appl. Mater. Interfaces Energy Environ. Sci. – volume: 27 start-page: 1702573 year: 2017 publication-title: Adv. Funct. Mater. – volume: 5 start-page: 518 year: 2013 publication-title: Nat. Chem. – volume: 29 start-page: 1602734 year: 2017 publication-title: Adv. Mater. – volume: 5 2 start-page: 14519 1711 year: 2017 2017 publication-title: J. Mater. Chem. A ACS Energy Lett. – volume: 134 start-page: 15387 year: 2012 publication-title: J. Am. Chem. Soc. – volume: 11 start-page: 2209 year: 2017 publication-title: ACS Nano – volume: 5 start-page: 250 year: 2017 publication-title: J. Mater. Chem. A – volume: 196 116 start-page: 6951 8910 year: 2011 2012 publication-title: J. Power Sources J. Phys. Chem. C – volume: 16 97 start-page: 519 42 year: 2016 2013 publication-title: Nano Lett. Electrochim. Acta – volume: 2 start-page: 795 year: 2017 publication-title: ACS Energy Lett. – volume: 55 2 start-page: 12990 937 year: 2016 2016 publication-title: Angew. Chem., Int. Ed. ChemNanoMat – volume: 24 24 5 28 28 2 start-page: 2772 6105 3410 1603 3374 76 year: 2014 2014 2014 2016 2016 2016 publication-title: Adv. Funct. Mater. Adv. Funct. Mater. Nat. Commun. Adv. Mater. Adv. Mater. Energy Storage Mater. – volume: 7 9 126 start-page: 13065 1495 394 year: 2016 2016 2018 publication-title: Nat. Commun. Energy Environ. Sci. Carbon – volume: 325 start-page: 301 year: 2016 publication-title: J. Power Sources – volume: 4 start-page: 12858 year: 2016 publication-title: J. Mater. Chem. A – ident: e_1_2_7_19_1 doi: 10.1002/adfm.201304156 – ident: e_1_2_7_85_4 doi: 10.1002/chem.201702387 – ident: e_1_2_7_103_1 doi: 10.1021/acs.chemmater.5b02955 – ident: e_1_2_7_80_1 doi: 10.1021/acs.nanolett.7b04505 – ident: e_1_2_7_11_5 doi: 10.1002/advs.201600445 – ident: e_1_2_7_57_1 doi: 10.1039/C6TA01214K – ident: e_1_2_7_99_2 doi: 10.1039/c4ta00779d – ident: e_1_2_7_21_1 doi: 10.1021/acsami.5b10300 – ident: e_1_2_7_27_1 doi: 10.1038/ncomms1293 – ident: e_1_2_7_66_1 doi: 10.1126/science.1141483 – ident: e_1_2_7_83_1 doi: 10.1002/anie.201410174 – ident: e_1_2_7_17_2 doi: 10.1039/C6TA07864H – ident: e_1_2_7_54_2 doi: 10.1039/C4CS00287C – ident: e_1_2_7_72_1 doi: 10.1002/adma.201601382 – ident: e_1_2_7_101_1 doi: 10.1016/j.ensm.2017.11.007 – ident: e_1_2_7_44_1 doi: 10.1039/C7TA05120D – ident: e_1_2_7_86_9 doi: 10.1002/anie.201411109 – ident: e_1_2_7_7_3 doi: 10.1038/ncomms4410 – ident: e_1_2_7_26_1 doi: 10.1039/C2TA00105E – ident: e_1_2_7_70_2 doi: 10.1002/cnma.201600227 – ident: e_1_2_7_86_1 doi: 10.1021/acs.nanolett.5b01919 – ident: e_1_2_7_52_1 doi: 10.1002/anie.201511632 – ident: e_1_2_7_71_1 doi: 10.1002/adfm.201704865 – ident: e_1_2_7_114_5 doi: 10.1038/srep32433 – ident: e_1_2_7_41_1 doi: 10.1016/j.nanoen.2017.01.040 – ident: e_1_2_7_76_1 doi: 10.1039/C7EE01430A – ident: e_1_2_7_102_3 doi: 10.1002/smll.201702104 – ident: e_1_2_7_46_1 doi: 10.1016/j.electacta.2017.07.164 – ident: e_1_2_7_85_3 doi: 10.1039/C5TA10307J – ident: e_1_2_7_108_3 doi: 10.1002/aenm.201500165 – ident: e_1_2_7_62_3 doi: 10.1039/C7EE01047H – ident: e_1_2_7_99_3 doi: 10.1038/ncomms8278 – ident: e_1_2_7_1_1 doi: 10.1038/451652a – ident: e_1_2_7_85_1 doi: 10.1039/C4TA07101H – ident: e_1_2_7_27_3 doi: 10.1039/C6GC00612D – ident: e_1_2_7_68_1 doi: 10.1073/pnas.1615837114 – ident: e_1_2_7_11_3 doi: 10.1038/ncomms14627 – ident: e_1_2_7_22_1 doi: 10.1039/C6EE00104A – ident: e_1_2_7_95_1 doi: 10.1038/s41467-017-02410-6 – ident: e_1_2_7_73_1 doi: 10.1016/j.nanoen.2017.09.018 – ident: e_1_2_7_38_4 doi: 10.1002/adfm.201606663 – ident: e_1_2_7_23_1 doi: 10.1016/j.ensm.2016.04.002 – ident: e_1_2_7_9_3 doi: 10.1002/adma.201602913 – ident: e_1_2_7_61_1 doi: 10.1002/aenm.201702337 – ident: e_1_2_7_57_2 doi: 10.1149/2.0041701jes – ident: e_1_2_7_78_1 doi: 10.1021/jacs.7b11434 – ident: e_1_2_7_31_1 doi: 10.1002/adfm.201704294 – ident: e_1_2_7_24_1 doi: 10.1016/j.jpowsour.2016.06.002 – ident: e_1_2_7_65_1 doi: 10.1021/acsami.6b06565 – ident: e_1_2_7_18_1 doi: 10.1039/c3cc41875h – ident: e_1_2_7_91_2 doi: 10.1021/ja409508q – ident: e_1_2_7_113_1 doi: 10.1021/jz500222f – ident: e_1_2_7_56_1 doi: 10.1038/ncomms6017 – ident: e_1_2_7_13_2 doi: 10.1016/j.electacta.2013.02.101 – ident: e_1_2_7_36_1 doi: 10.1038/ncomms4943 – ident: e_1_2_7_50_1 doi: 10.1002/admi.201500048 – ident: e_1_2_7_25_1 doi: 10.1149/1.1710895 – ident: e_1_2_7_89_1 doi: 10.1021/cm5044667 – ident: e_1_2_7_17_3 doi: 10.1002/smtd.201700279 – ident: e_1_2_7_86_6 doi: 10.1021/nl5020475 – ident: e_1_2_7_38_2 doi: 10.1002/anie.201506972 – ident: e_1_2_7_99_4 doi: 10.1002/anie.201511553 – ident: e_1_2_7_23_5 doi: 10.1002/aenm.201602543 – ident: e_1_2_7_114_3 doi: 10.1016/j.nanoen.2017.08.017 – ident: e_1_2_7_50_2 doi: 10.1039/C7TA08859K – ident: e_1_2_7_11_1 doi: 10.1038/nenergy.2016.114 – ident: e_1_2_7_4_2 doi: 10.1039/C5CS00410A – ident: e_1_2_7_62_1 doi: 10.1021/nl503730c – ident: e_1_2_7_102_1 doi: 10.1021/acs.nanolett.6b04610 – ident: e_1_2_7_7_6 doi: 10.1016/j.ensm.2015.09.007 – ident: e_1_2_7_79_1 doi: 10.1021/acsnano.7b01945 – ident: e_1_2_7_14_1 doi: 10.1002/adma.201501559 – ident: e_1_2_7_100_1 doi: 10.1002/adma.201706643 – ident: e_1_2_7_60_1 doi: 10.1039/C5TA06348E – ident: e_1_2_7_3_1 doi: 10.1038/35037553 – ident: e_1_2_7_58_2 doi: 10.1016/j.nanoen.2017.01.007 – ident: e_1_2_7_85_2 doi: 10.1002/adfm.201603704 – ident: e_1_2_7_2_1 doi: 10.1038/nphoton.2012.11 – ident: e_1_2_7_27_2 doi: 10.1002/adma.201506111 – ident: e_1_2_7_112_1 doi: 10.1021/acsnano.6b08627 – ident: e_1_2_7_33_1 doi: 10.1038/ncomms5759 – ident: e_1_2_7_38_3 doi: 10.1039/C6EE00194G – ident: e_1_2_7_75_2 doi: 10.1021/acsenergylett.7b00465 – ident: e_1_2_7_53_1 doi: 10.1016/j.nanoen.2017.08.039 – ident: e_1_2_7_23_6 doi: 10.1021/acsnano.7b06061 – ident: e_1_2_7_11_2 doi: 10.1002/aenm.201402273 – ident: e_1_2_7_98_1 doi: 10.1038/nchem.1624 – ident: e_1_2_7_64_3 doi: 10.1002/aenm.201602567 – ident: e_1_2_7_99_9 doi: 10.1002/anie.201708746 – ident: e_1_2_7_104_1 doi: 10.1038/s41467-018-03116-z – ident: e_1_2_7_34_1 doi: 10.1021/nl502331f – ident: e_1_2_7_114_4 doi: 10.1016/j.mtener.2017.04.006 – ident: e_1_2_7_58_4 doi: 10.1016/j.nanoen.2017.05.009 – ident: e_1_2_7_50_3 doi: 10.1039/C6NR02345B – ident: e_1_2_7_12_1 doi: 10.1021/jp500382s – ident: e_1_2_7_86_5 doi: 10.1021/nn401228t – ident: e_1_2_7_93_1 doi: 10.1021/nn203436j – ident: e_1_2_7_109_1 doi: 10.1021/acscentsci.7b00123 – ident: e_1_2_7_10_1 doi: 10.1002/aenm.201700260 – ident: e_1_2_7_93_2 doi: 10.1021/nl403130h – ident: e_1_2_7_72_3 doi: 10.1021/acsenergylett.6b00603 – ident: e_1_2_7_48_1 doi: 10.1002/aenm.201501636 – ident: e_1_2_7_6_1 doi: 10.1038/nmat2460 – ident: e_1_2_7_81_1 doi: 10.1002/adfm.201706391 – ident: e_1_2_7_86_8 doi: 10.1021/am501627f – ident: e_1_2_7_67_1 doi: 10.1038/nmat4465 – ident: e_1_2_7_59_2 doi: 10.1039/C7TA04279E – ident: e_1_2_7_7_2 doi: 10.1002/adfm.201401501 – ident: e_1_2_7_87_2 doi: 10.1016/j.nanoen.2016.04.053 – ident: e_1_2_7_77_1 doi: 10.1016/j.ensm.2017.08.005 – ident: e_1_2_7_105_1 doi: 10.1021/acsami.7b14685 – ident: e_1_2_7_86_4 doi: 10.1021/am400958x – ident: e_1_2_7_109_3 doi: 10.1021/acs.nanolett.7b00417 – ident: e_1_2_7_28_1 doi: 10.1002/adfm.201702573 – ident: e_1_2_7_88_1 doi: 10.1002/anie.201501788 – ident: e_1_2_7_47_2 doi: 10.1016/j.ensm.2017.04.003 – ident: e_1_2_7_64_1 doi: 10.1021/jacs.6b08681 – ident: e_1_2_7_109_2 doi: 10.1002/anie.201701026 – ident: e_1_2_7_2_2 doi: 10.1038/nphoton.2014.134 – ident: e_1_2_7_23_3 doi: 10.1021/acsnano.6b05696 – ident: e_1_2_7_13_1 doi: 10.1021/acs.nanolett.5b04166 – ident: e_1_2_7_110_1 doi: 10.1002/anie.201511830 – ident: e_1_2_7_58_3 doi: 10.1016/j.nanoen.2017.05.064 – ident: e_1_2_7_94_1 doi: 10.1002/adma.201606802 – ident: e_1_2_7_50_4 doi: 10.1039/C7TA04937D – ident: e_1_2_7_58_1 doi: 10.1039/C5MH00246J – ident: e_1_2_7_5_1 doi: 10.1002/smtd.201700134 – ident: e_1_2_7_99_8 doi: 10.1038/s41598-017-11922-6 – ident: e_1_2_7_39_1 doi: 10.1039/C7TA00475C – ident: e_1_2_7_90_1 doi: 10.1016/j.ensm.2017.07.015 – ident: e_1_2_7_43_1 doi: 10.1039/C6TA07202J – ident: e_1_2_7_35_3 doi: 10.1016/j.carbon.2017.10.032 – ident: e_1_2_7_9_1 doi: 10.1002/adma.201303166 – ident: e_1_2_7_47_1 doi: 10.1038/ncomms9622 – ident: e_1_2_7_3_2 doi: 10.1038/nmat3191 – ident: e_1_2_7_35_1 doi: 10.1038/ncomms13065 – ident: e_1_2_7_99_7 doi: 10.1002/adma.201603835 – ident: e_1_2_7_11_4 doi: 10.1038/nnano.2017.16 – ident: e_1_2_7_75_1 doi: 10.1039/C7TA03236F – ident: e_1_2_7_59_1 doi: 10.1002/adfm.201702524 – ident: e_1_2_7_45_1 doi: 10.1039/C5TA03062E – ident: e_1_2_7_15_1 doi: 10.1021/jacs.6b12358 – ident: e_1_2_7_55_1 doi: 10.1149/2.015201eel – ident: e_1_2_7_17_1 doi: 10.1038/nenergy.2016.132 – ident: e_1_2_7_69_1 doi: 10.1021/acsenergylett.7b00164 – ident: e_1_2_7_8_2 doi: 10.1002/adma.201502467 – ident: e_1_2_7_7_1 doi: 10.1002/adfm.201303296 – ident: e_1_2_7_38_1 doi: 10.1038/ncomms6682 – ident: e_1_2_7_32_1 doi: 10.1038/ncomms11203 – ident: e_1_2_7_114_2 doi: 10.1002/aenm.201502183 – ident: e_1_2_7_64_2 doi: 10.1002/aenm.201601843 – ident: e_1_2_7_37_2 doi: 10.1007/s12274-017-1655-7 – ident: e_1_2_7_48_2 doi: 10.1021/acsnano.6b07603 – ident: e_1_2_7_29_1 doi: 10.1016/j.nanoen.2013.05.003 – ident: e_1_2_7_86_3 doi: 10.1021/acsnano.5b07347 – ident: e_1_2_7_16_1 doi: 10.1021/ja3052206 – ident: e_1_2_7_51_1 doi: 10.1021/jacs.5b07071 – ident: e_1_2_7_92_2 doi: 10.1021/jp300950m – ident: e_1_2_7_107_1 doi: 10.1002/adma.201602734 – ident: e_1_2_7_62_2 doi: 10.1021/acsami.6b03200 – ident: e_1_2_7_53_2 doi: 10.1002/adma.201705219 – ident: e_1_2_7_74_1 doi: 10.1007/s12274-017-1581-8 – ident: e_1_2_7_54_1 doi: 10.1021/ar5002846 – ident: e_1_2_7_106_1 doi: 10.1021/nn501226z – ident: e_1_2_7_63_1 doi: 10.1021/acsnano.7b04442 – ident: e_1_2_7_87_1 doi: 10.1002/smll.201600809 – ident: e_1_2_7_23_2 doi: 10.1016/j.carbon.2016.08.050 – ident: e_1_2_7_23_4 doi: 10.1021/acs.nanolett.6b04433 – ident: e_1_2_7_8_1 doi: 10.1002/admi.201400227 – ident: e_1_2_7_42_1 doi: 10.1002/adma.201702707 – ident: e_1_2_7_72_2 doi: 10.1039/C6TA07411A – ident: e_1_2_7_40_1 doi: 10.1039/C6TA04445J – ident: e_1_2_7_9_2 doi: 10.1002/aenm.201502459 – ident: e_1_2_7_102_2 doi: 10.1016/j.nanoen.2017.10.032 – ident: e_1_2_7_103_2 doi: 10.1021/acs.nanolett.5b04189 – ident: e_1_2_7_114_1 doi: 10.1002/aenm.201501808 – ident: e_1_2_7_99_6 doi: 10.1039/C6EE01019A – ident: e_1_2_7_37_1 doi: 10.1149/2.0051706jes – ident: e_1_2_7_52_2 doi: 10.1002/adma.201603401 – ident: e_1_2_7_96_1 doi: 10.1021/acs.nanolett.7b02332 – ident: e_1_2_7_99_5 doi: 10.1021/acsenergylett.6b00245 – ident: e_1_2_7_30_1 doi: 10.1016/j.ensm.2017.05.009 – ident: e_1_2_7_87_3 doi: 10.1002/anie.201704324 – ident: e_1_2_7_49_1 doi: 10.1039/C6EE01662F – ident: e_1_2_7_86_7 doi: 10.1002/adfm.201302631 – ident: e_1_2_7_7_4 doi: 10.1002/adma.201504765 – ident: e_1_2_7_99_1 doi: 10.1039/c3ta12634j – ident: e_1_2_7_111_1 doi: 10.1002/anie.201603897 – ident: e_1_2_7_92_1 doi: 10.1016/j.jpowsour.2010.11.132 – ident: e_1_2_7_7_5 doi: 10.1002/adma.201506014 – ident: e_1_2_7_86_10 doi: 10.1038/ncomms8760 – ident: e_1_2_7_70_1 doi: 10.1002/anie.201605676 – ident: e_1_2_7_1_2 doi: 10.1126/science.1212741 – ident: e_1_2_7_82_1 doi: 10.1021/acsnano.5b03591 – ident: e_1_2_7_35_2 doi: 10.1039/C5EE03902A – volume: 20 start-page: 1440 year: 2004 ident: e_1_2_7_97_1 publication-title: Acta Phys‐Chim. Sin. doi: 10.3866/PKU.WHXB20041208 – ident: e_1_2_7_20_1 doi: 10.1021/jacs.5b04472 – ident: e_1_2_7_108_4 doi: 10.1002/aenm.201500408 – ident: e_1_2_7_108_2 doi: 10.1002/cssc.201300142 – ident: e_1_2_7_84_1 doi: 10.1002/adma.201603040 – ident: e_1_2_7_91_1 doi: 10.1002/adma.201103392 – ident: e_1_2_7_86_2 doi: 10.1021/acsami.6b05647 – ident: e_1_2_7_4_1 doi: 10.1021/cr500062v – ident: e_1_2_7_108_1 doi: 10.1021/jz401763d |
SSID | ssj0017734 |
Score | 2.6713805 |
SecondaryResourceType | review_article |
Snippet | Lithium–sulfur (Li–S) batteries deliver a high theoretical energy density of 2600 Wh kg−1, and hold great promise to serve as a next‐generation... Lithium–sulfur (Li–S) batteries deliver a high theoretical energy density of 2600 Wh kg −1 , and hold great promise to serve as a next‐generation... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Cathodes Cathodic dissolution Dissolution Electrode materials Flux density high‐energy‐density Lithium Lithium sulfur batteries Low conductivity Materials science mediators Reaction kinetics redox kinetics Sulfur Variation Weight |
Title | Heterogeneous/Homogeneous Mediators for High‐Energy‐Density Lithium–Sulfur Batteries: Progress and Prospects |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201707536 https://www.proquest.com/docview/2105007822 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8MwGA6iFz34LU7nyEHw1K1Nv70NtzHEiTiF3UrSJShuraztQU_7CYL_cL_EN-nabYIIeksgKW3yJnne9HmfF6Fzx_CYEL6tWYKCg0JYqDFLCE2ALXjc94Snkvb1bp3uo3U9sAdLUfy5PkR54SZXhtqv5QKnLGksREPpUMhIcsOFQ8-UmtuSsCVR0X2pH2W4bv5b2TEkwcsYFKqNOmmsdl89lRZQcxmwqhOns4No8a450eSlnqWsHr5_k3H8z8fsou05HMXN3H720BqP9tHWkkjhAZp0JWMmBkPjcZY0uvG4KOOeyvMRTxIM0BdLyshs-tFW0YRQaElufPqGb57Tp-dsPJt-9rORyCY41_QEF_0S30l6GGy2mEZDWVGBn8kheuy0H6662jxTgxZaRHc07pjMJyIEuDD0qS4l3Dn4eSz0CDVtqnPfoLorDI8OfdjViEN9DsiPmoxQzlxiHqH1KI74McI246bwBA0BeFnUYuDl2pRLJMoEwBmngrRipoJwLmMus2mMglyAmQRyLINyLCvoomz_mgt4_NiyWkx8MF_ISQAesZ3DqAoiagZ_eUrQbHV6Ze3kL51O0SaUFSvF8KtoPZ1k_AygT8pqaKPZ6t30a8rMvwBW0QD_ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NTtwwEB4heqA9QH-oukBbH6h6Crtx_iv1gLqsAuyiqgVpb8HO2uoK2KBNooqeeIRKfZK-Sh-BJ-mM8wNUqpAqcejNjpwosWc83zgz3wBs-nYotY48y9UCHRQuU0u6WlsaZSFUUahDU7RvdODHR-7e2BsvwM8mF6bih2gP3EgzzH5NCk4H0t1r1lAx0ZRKbgdo9Ry_jqvcVxdf0WvL3-_2cYnfcD7YOfwQW3VhASt1OXrQyndkxHWK1m0SiR4xjit0S2QacuF4oqciW_QCbYdiEqEScl9ECoGKcCQXSgbEdYC7_gMqI050_f1PLWOVHQTVj2zfppAye9zwRPZ49_b73raD1-D2JkQ2Nm6wAr-a2alCW062ykJupd_-II78r6bvMSzXiJttVyryBBbU7Ck8usHD-AzmMQUFZahLKivzbpydNW02MqVMsnnOEN0zioq5uvy-YxImsdGn8P_igg2nxZdpeXZ1-eNzearLOatoS6cqf8c-UgQc2hMmZhPqmNzWfBWO7uWjn8PiLJupF8A8qRwdapEitnSFK9GR94QisC01Ija_A1YjGklaM7VTwZDTpOKY5gmtXdKuXQfetuPPK46Sv47caCQtqfeqPEGn36uQYge4EZk7npJs9wejtrf2Lze9hqX4cDRMhrsH--vwEK-bIBw72oDFYl6ql4j0CvnK6BaD4_uWxt8LMFvZ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3dStxAFD6IQmkvWu0Pbqt1Liq9iptMfkfohTQua3VF2gp7l84kM7ioG9kkiF75CIW-SF-lr-CT9MzkRy2UQsEL7zJhEpKZc-Z8J_nmOwDvAicSSjHf8hTHBIWK1BKeUpZCW4gki1RkivaN9oPhofdp7I_n4Ge7F6bWh-g-uGnPMOu1dvCzTPVvREN5pvROcifEoOcGDa1yV16cY9JWfNiJcYbXKR1sf_04tJq6AlbqUUygZeAKRlWKwS1j3NaC4xKzEpFGlLs-tyVzuB0qJ-IZQx-kAWcScQp3BeVShFrqABf9BS-wmS4WEX_uBKucMKz_YweOZpQ541Ym0qb9u897NwzeYNvbCNmEuMEz-NUOTs1sOd6oSrGRXv6hG_mQRm8RnjZ4m2zVDrIEc3L6HJ7cUmF8AbOhpgTl6Ekyr4r-MD9tj8nIFDLJZwVBbE80J-b66vu22S6JB7Em_5cXZG9SHk2q0-urH1-qE1XNSC1aOpHFJjnQ_DeMJoRPM90wO1uLl3B4Ly_9Cuan-VQuA_GFdFWkeIrI0uOewDTe51JDbaEQrwU9sFrLSNJGp12XCzlJaoVpmui5S7q568H7rv9ZrVDy154rraElzUpVJJjy-zVO7AE1FvOPuyRb8WDUtV7_z0Vr8OggHiR7O_u7b-AxnjYMHIetwHw5q-QqwrxSvDWeReDbfRvjb4GuWog |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Heterogeneous%2FHomogeneous+Mediators+for+High%E2%80%90Energy%E2%80%90Density+Lithium%E2%80%93Sulfur+Batteries%3A+Progress+and+Prospects&rft.jtitle=Advanced+functional+materials&rft.au=Zhang%2C+Ze%E2%80%90Wen&rft.au=Peng%2C+Hong%E2%80%90Jie&rft.au=Zhao%2C+Meng&rft.au=Huang%2C+Jia%E2%80%90Qi&rft.date=2018-09-19&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=28&rft.issue=38&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadfm.201707536&rft.externalDBID=10.1002%252Fadfm.201707536&rft.externalDocID=ADFM201707536 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |