Heterogeneous/Homogeneous Mediators for High‐Energy‐Density Lithium–Sulfur Batteries: Progress and Prospects

Lithium–sulfur (Li–S) batteries deliver a high theoretical energy density of 2600 Wh kg−1, and hold great promise to serve as a next‐generation high‐energy‐density battery system. Great progress has been achieved in cathode design to deal with the intrinsic problems of sulfur cathodes, including low...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 28; no. 38
Main Authors Zhang, Ze‐Wen, Peng, Hong‐Jie, Zhao, Meng, Huang, Jia‐Qi
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 19.09.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Lithium–sulfur (Li–S) batteries deliver a high theoretical energy density of 2600 Wh kg−1, and hold great promise to serve as a next‐generation high‐energy‐density battery system. Great progress has been achieved in cathode design to deal with the intrinsic problems of sulfur cathodes, including low conductivity, the dissolution of polysulfide intermediate, and volume fluctuation. However, aiming at the practical applications of Li–S batteries, the weight percentage of sulfur in cathode materials and the overall areal sulfur loading need to be significantly increased, which inevitably complicate the process and cause heavy shuttle effect, slow redox kinetics, and more undesirable reaction pathways. Recently, rationally designing efficient mediators, as well as incorporating them into a working battery, emerges to be a promising method to construct high‐energy‐density Li–S batteries. The influence of mediators on Li–S batteries appears to be the enhancement in redox kinetics and the increase in reaction efficiency. In this feature article, the mechanistic understanding of redox kinetics in Li–S reactions is discussed, and then a comprehensive analysis of the recent advances in both heterogeneous and homogeneous mediator design is provided. A mediator perspective in building high‐energy‐density Li–S batteries is also included. Mediators in lithium–sulfur batteries can enhance the redox kinetics and increase the reaction efficiency, which benefit the practical applications requiring a high sulfur content and a high areal loading amount. This feature article discusses the mechanism of redox kinetics, and reviews the recent advances in heterogeneous/homogeneous mediator design in lithium–sulfur batteries.
AbstractList Lithium–sulfur (Li–S) batteries deliver a high theoretical energy density of 2600 Wh kg−1, and hold great promise to serve as a next‐generation high‐energy‐density battery system. Great progress has been achieved in cathode design to deal with the intrinsic problems of sulfur cathodes, including low conductivity, the dissolution of polysulfide intermediate, and volume fluctuation. However, aiming at the practical applications of Li–S batteries, the weight percentage of sulfur in cathode materials and the overall areal sulfur loading need to be significantly increased, which inevitably complicate the process and cause heavy shuttle effect, slow redox kinetics, and more undesirable reaction pathways. Recently, rationally designing efficient mediators, as well as incorporating them into a working battery, emerges to be a promising method to construct high‐energy‐density Li–S batteries. The influence of mediators on Li–S batteries appears to be the enhancement in redox kinetics and the increase in reaction efficiency. In this feature article, the mechanistic understanding of redox kinetics in Li–S reactions is discussed, and then a comprehensive analysis of the recent advances in both heterogeneous and homogeneous mediator design is provided. A mediator perspective in building high‐energy‐density Li–S batteries is also included. Mediators in lithium–sulfur batteries can enhance the redox kinetics and increase the reaction efficiency, which benefit the practical applications requiring a high sulfur content and a high areal loading amount. This feature article discusses the mechanism of redox kinetics, and reviews the recent advances in heterogeneous/homogeneous mediator design in lithium–sulfur batteries.
Lithium–sulfur (Li–S) batteries deliver a high theoretical energy density of 2600 Wh kg −1 , and hold great promise to serve as a next‐generation high‐energy‐density battery system. Great progress has been achieved in cathode design to deal with the intrinsic problems of sulfur cathodes, including low conductivity, the dissolution of polysulfide intermediate, and volume fluctuation. However, aiming at the practical applications of Li–S batteries, the weight percentage of sulfur in cathode materials and the overall areal sulfur loading need to be significantly increased, which inevitably complicate the process and cause heavy shuttle effect, slow redox kinetics, and more undesirable reaction pathways. Recently, rationally designing efficient mediators, as well as incorporating them into a working battery, emerges to be a promising method to construct high‐energy‐density Li–S batteries. The influence of mediators on Li–S batteries appears to be the enhancement in redox kinetics and the increase in reaction efficiency. In this feature article, the mechanistic understanding of redox kinetics in Li–S reactions is discussed, and then a comprehensive analysis of the recent advances in both heterogeneous and homogeneous mediator design is provided. A mediator perspective in building high‐energy‐density Li–S batteries is also included.
Lithium–sulfur (Li–S) batteries deliver a high theoretical energy density of 2600 Wh kg−1, and hold great promise to serve as a next‐generation high‐energy‐density battery system. Great progress has been achieved in cathode design to deal with the intrinsic problems of sulfur cathodes, including low conductivity, the dissolution of polysulfide intermediate, and volume fluctuation. However, aiming at the practical applications of Li–S batteries, the weight percentage of sulfur in cathode materials and the overall areal sulfur loading need to be significantly increased, which inevitably complicate the process and cause heavy shuttle effect, slow redox kinetics, and more undesirable reaction pathways. Recently, rationally designing efficient mediators, as well as incorporating them into a working battery, emerges to be a promising method to construct high‐energy‐density Li–S batteries. The influence of mediators on Li–S batteries appears to be the enhancement in redox kinetics and the increase in reaction efficiency. In this feature article, the mechanistic understanding of redox kinetics in Li–S reactions is discussed, and then a comprehensive analysis of the recent advances in both heterogeneous and homogeneous mediator design is provided. A mediator perspective in building high‐energy‐density Li–S batteries is also included.
Author Zhao, Meng
Huang, Jia‐Qi
Peng, Hong‐Jie
Zhang, Ze‐Wen
Author_xml – sequence: 1
  givenname: Ze‐Wen
  surname: Zhang
  fullname: Zhang, Ze‐Wen
  organization: Department of Chemical Engineering Tsinghua University
– sequence: 2
  givenname: Hong‐Jie
  orcidid: 0000-0002-4183-703X
  surname: Peng
  fullname: Peng, Hong‐Jie
  organization: Department of Chemical Engineering Tsinghua University
– sequence: 3
  givenname: Meng
  surname: Zhao
  fullname: Zhao, Meng
  organization: Beijing Institute of Technology
– sequence: 4
  givenname: Jia‐Qi
  orcidid: 0000-0001-7394-9186
  surname: Huang
  fullname: Huang, Jia‐Qi
  email: jqhuang@bit.edu.cn
  organization: Beijing Institute of Technology
BookMark eNqFkM1Kw0AUhQepYFvdug64bntn0ubHXe2PEVoUVHAXJslNOyXJ1JkJkl0fQfAN-yQmVCsI4uqey5zv3OF0SKuQBRJySaFPAdiAJ2neZ0BdcEe2c0La1KFOzwbmtY6avpyRjtYbqG2uPWwTFaBBJVdYoCz1IJD5t7aWmAhupNJWKpUViNV6v3ufFahWVS2mWGhhKmshzFqU-X738VhmaamsG27qRIH62nqogxVqbfEiaRa9xdjoc3Ka8kzjxdfskuf57GkS9Bb3t3eT8aIXDxk4PXTsyGdpTD2a-BwcCj5SGEaxx7g94oA-5eCm1OOJ73kuc7iP9qh-ixjHyGV2l1wdcrdKvpaoTbiRpSrqkyGjMAJwPda4-gdXXP9PK0zDrRI5V1VIIWx6DZtew2OvNTD8BcTCcCNkYRQX2d-Yf8DeRIbVP0fC8XS-_GE_ARfXk_c
CitedBy_id crossref_primary_10_1016_j_ensm_2020_05_002
crossref_primary_10_1007_s10854_022_08342_2
crossref_primary_10_1002_adfm_202209360
crossref_primary_10_1002_advs_202106004
crossref_primary_10_1002_cssc_202100216
crossref_primary_10_1039_C9EE01257E
crossref_primary_10_1515_revce_2023_0059
crossref_primary_10_1002_smll_202302249
crossref_primary_10_1016_j_jechem_2020_06_009
crossref_primary_10_1002_adfm_202313107
crossref_primary_10_1051_metal_2022048
crossref_primary_10_1088_2515_7655_abd5c4
crossref_primary_10_26599_NRE_2024_9120116
crossref_primary_10_1002_ente_201900574
crossref_primary_10_1002_adma_202003845
crossref_primary_10_1039_C9TA12137D
crossref_primary_10_1021_jacs_8b12973
crossref_primary_10_1038_s41467_024_51647_5
crossref_primary_10_1002_adfm_201906661
crossref_primary_10_1039_D1TA06249B
crossref_primary_10_1002_adma_202004920
crossref_primary_10_1002_smll_202306140
crossref_primary_10_1002_adfm_202213966
crossref_primary_10_1002_anie_201909339
crossref_primary_10_1002_adfm_202405358
crossref_primary_10_1016_j_ensm_2018_12_005
crossref_primary_10_1007_s11581_022_04781_3
crossref_primary_10_1016_j_apt_2021_03_031
crossref_primary_10_1039_D1TA00772F
crossref_primary_10_1002_er_8025
crossref_primary_10_1007_s11837_023_05817_3
crossref_primary_10_1002_cjce_24723
crossref_primary_10_1002_aenm_202303389
crossref_primary_10_1021_acsaem_9b00343
crossref_primary_10_1002_chem_202003807
crossref_primary_10_1016_j_cej_2021_133629
crossref_primary_10_1016_j_jcis_2021_09_120
crossref_primary_10_1002_aenm_202403092
crossref_primary_10_1016_j_ccr_2024_215836
crossref_primary_10_1039_D0TA10714J
crossref_primary_10_1080_21870764_2022_2129483
crossref_primary_10_1021_acsnano_1c06067
crossref_primary_10_1039_D0NR05199C
crossref_primary_10_1039_D1TA03608D
crossref_primary_10_1002_aenm_201803477
crossref_primary_10_1021_acs_iecr_0c04960
crossref_primary_10_1021_acsnano_2c01390
crossref_primary_10_1002_smll_202404171
crossref_primary_10_1021_acs_nanolett_0c00618
crossref_primary_10_1016_j_matt_2021_01_012
crossref_primary_10_1016_j_jechem_2020_07_057
crossref_primary_10_1039_C8QM00645H
crossref_primary_10_1016_j_mtener_2021_100941
crossref_primary_10_1002_cctc_202300569
crossref_primary_10_1039_D1TA03425A
crossref_primary_10_1021_acsaem_0c00509
crossref_primary_10_1002_adma_202003012
crossref_primary_10_1016_j_cej_2020_126823
crossref_primary_10_1002_adma_201901125
crossref_primary_10_1016_j_cej_2020_124404
crossref_primary_10_1007_s12274_024_6481_0
crossref_primary_10_1002_eom2_12115
crossref_primary_10_1016_j_jechem_2020_06_054
crossref_primary_10_1021_acsaem_2c01459
crossref_primary_10_1002_cssc_202000648
crossref_primary_10_1039_C8CS00324F
crossref_primary_10_1039_D0TA11624F
crossref_primary_10_1002_eem2_12257
crossref_primary_10_1016_j_jechem_2020_05_014
crossref_primary_10_1002_adma_202007298
crossref_primary_10_1016_j_nanoen_2018_12_020
crossref_primary_10_1016_j_mattod_2022_05_017
crossref_primary_10_1021_acsaem_9b02502
crossref_primary_10_1039_D0TA11919A
crossref_primary_10_1002_aenm_201901935
crossref_primary_10_1021_acsenergylett_0c01564
crossref_primary_10_1016_j_cej_2023_141898
crossref_primary_10_1039_D0SE00594K
crossref_primary_10_3389_fchem_2020_572563
crossref_primary_10_1016_j_cej_2022_135790
crossref_primary_10_34133_energymatadv_0010
crossref_primary_10_1021_acs_chemrev_3c00919
crossref_primary_10_1039_C8TA07220E
crossref_primary_10_1002_adma_202211168
crossref_primary_10_1016_j_cej_2019_122852
crossref_primary_10_1016_j_jechem_2022_10_012
crossref_primary_10_1002_adma_201906357
crossref_primary_10_1016_j_cej_2019_121977
crossref_primary_10_1021_acsami_4c20169
crossref_primary_10_1007_s40820_019_0275_z
crossref_primary_10_1016_j_cej_2019_122701
crossref_primary_10_1039_C9NR07249G
crossref_primary_10_1039_D0TA05927G
crossref_primary_10_1021_acsnano_9b09371
crossref_primary_10_1002_adfm_202212796
crossref_primary_10_1002_celc_202001259
crossref_primary_10_1016_j_electacta_2020_135991
crossref_primary_10_1021_acsami_9b11419
crossref_primary_10_1039_D3DT00390F
crossref_primary_10_1007_s10853_021_06395_y
crossref_primary_10_1016_j_jallcom_2020_155790
crossref_primary_10_1039_C9TA10301E
crossref_primary_10_1002_smll_202300089
crossref_primary_10_1007_s12274_019_2536_z
crossref_primary_10_1021_acs_nanolett_2c00642
crossref_primary_10_1002_ente_201900111
crossref_primary_10_1021_acscentsci_0c00449
crossref_primary_10_1021_acsenergylett_2c02179
crossref_primary_10_1002_cssc_201900929
crossref_primary_10_1016_j_diamond_2024_111287
crossref_primary_10_1002_admi_201802046
crossref_primary_10_1039_D3NJ01031G
crossref_primary_10_1002_adfm_202102314
crossref_primary_10_1002_chem_201806231
crossref_primary_10_1016_j_carbon_2021_02_073
crossref_primary_10_1039_C9NH00663J
crossref_primary_10_1002_smtd_201900344
crossref_primary_10_1016_j_flatc_2020_100209
crossref_primary_10_1021_acsami_2c13543
crossref_primary_10_1016_j_est_2023_108423
crossref_primary_10_1007_s12221_022_4953_y
crossref_primary_10_1002_aenm_201802107
crossref_primary_10_1002_slct_201901830
crossref_primary_10_1016_j_electacta_2019_135287
crossref_primary_10_1021_acsami_9b11561
crossref_primary_10_1002_cssc_202300507
crossref_primary_10_1149_1945_7111_ac6e8c
crossref_primary_10_1021_acsami_9b02844
crossref_primary_10_1016_j_nanoen_2019_03_023
crossref_primary_10_1002_inf2_12056
crossref_primary_10_1016_j_jechem_2023_03_046
crossref_primary_10_1039_C9TA03227D
crossref_primary_10_1016_j_cej_2019_123457
crossref_primary_10_1021_acssuschemeng_0c01791
crossref_primary_10_1002_eom2_12020
crossref_primary_10_1021_acsami_8b22014
crossref_primary_10_1039_D1TA06863F
crossref_primary_10_1002_adma_202405790
crossref_primary_10_1002_adsu_202300192
crossref_primary_10_1002_adma_202303520
crossref_primary_10_1021_acsami_0c14287
crossref_primary_10_26599_NRE_2022_9120012
crossref_primary_10_1007_s12274_022_4453_9
crossref_primary_10_3390_nano12234341
crossref_primary_10_1002_smll_202406613
crossref_primary_10_1016_j_jechem_2021_06_025
crossref_primary_10_1016_j_jcis_2021_12_003
crossref_primary_10_1039_D2GC01503J
crossref_primary_10_1002_smll_202301545
crossref_primary_10_1007_s40820_019_0313_x
crossref_primary_10_1002_ange_202003136
crossref_primary_10_1016_j_mtener_2022_101033
crossref_primary_10_1002_aenm_202303893
crossref_primary_10_1039_C9TA01500K
crossref_primary_10_1021_acsami_2c11667
crossref_primary_10_1002_smll_201802516
crossref_primary_10_1016_j_micromeso_2021_111355
crossref_primary_10_1039_D0CC03224G
crossref_primary_10_1016_j_nanoen_2019_104356
crossref_primary_10_1002_aesr_202100157
crossref_primary_10_1002_ente_201900164
crossref_primary_10_26599_NRE_2022_9120001
crossref_primary_10_1002_smll_202102962
crossref_primary_10_1039_C8CC06924G
crossref_primary_10_1007_s40820_023_01037_1
crossref_primary_10_1016_j_carbon_2020_09_094
crossref_primary_10_1016_j_joule_2018_12_018
crossref_primary_10_1002_ange_202108343
crossref_primary_10_3390_nano10040705
crossref_primary_10_1002_sus2_42
crossref_primary_10_1002_adfm_202001201
crossref_primary_10_1002_eem2_12236
crossref_primary_10_1039_D0TA04910G
crossref_primary_10_1007_s11581_019_03299_5
crossref_primary_10_1002_admi_201900393
crossref_primary_10_1007_s12274_022_5215_4
crossref_primary_10_1039_C9TA13999K
crossref_primary_10_1021_acsnano_4c09892
crossref_primary_10_1039_D0NR02429E
crossref_primary_10_1007_s40820_019_0249_1
crossref_primary_10_1016_j_nanoen_2019_03_060
crossref_primary_10_1002_adfm_202309345
crossref_primary_10_1021_acsnano_0c08652
crossref_primary_10_1002_adfm_202306990
crossref_primary_10_1021_acs_nanolett_3c00787
crossref_primary_10_1016_j_cej_2021_134306
crossref_primary_10_1016_j_nanoen_2020_104680
crossref_primary_10_1016_j_cej_2020_126076
crossref_primary_10_1039_D4QM00180J
crossref_primary_10_1039_D2TA04095F
crossref_primary_10_1039_C9CC02134E
crossref_primary_10_1002_adma_201808392
crossref_primary_10_1002_anie_202108343
crossref_primary_10_1002_adfm_202107136
crossref_primary_10_1002_adma_202401263
crossref_primary_10_1039_D3TA00210A
crossref_primary_10_1002_ente_201800898
crossref_primary_10_1088_1361_648X_ac08b9
crossref_primary_10_1016_j_nanoen_2020_104555
crossref_primary_10_1002_aenm_202403439
crossref_primary_10_1021_acsami_9b13533
crossref_primary_10_1002_adma_202008784
crossref_primary_10_1016_j_cej_2020_128284
crossref_primary_10_1016_j_jelechem_2022_117113
crossref_primary_10_1016_j_jechem_2021_11_004
crossref_primary_10_1016_j_cej_2021_132836
crossref_primary_10_1016_j_jelechem_2019_04_047
crossref_primary_10_1360_TB_2022_0050
crossref_primary_10_1002_adma_202008654
crossref_primary_10_1021_acsnano_1c02047
crossref_primary_10_1021_acsnano_3c09919
crossref_primary_10_1002_ange_201909339
crossref_primary_10_1016_j_jallcom_2019_07_145
crossref_primary_10_1039_D1TA07201C
crossref_primary_10_1016_j_cej_2022_139199
crossref_primary_10_1002_adfm_201901051
crossref_primary_10_1002_inf2_12304
crossref_primary_10_1016_j_carbon_2019_04_108
crossref_primary_10_1002_adfm_202111084
crossref_primary_10_1002_smll_202304618
crossref_primary_10_1016_j_jpowsour_2019_01_029
crossref_primary_10_1002_adma_202411197
crossref_primary_10_1016_j_cej_2020_128153
crossref_primary_10_1002_aenm_201803137
crossref_primary_10_1016_j_jechem_2021_05_023
crossref_primary_10_1002_admi_201901420
crossref_primary_10_1021_acsnano_2c00882
crossref_primary_10_1039_D4TA01278J
crossref_primary_10_1149_1945_7111_ab8408
crossref_primary_10_1002_smtd_201900864
crossref_primary_10_1021_acssuschemeng_0c02477
crossref_primary_10_1021_acssuschemeng_1c05959
crossref_primary_10_1002_adma_202209233
crossref_primary_10_1016_j_eng_2018_10_008
crossref_primary_10_1080_09276440_2022_2044108
crossref_primary_10_1021_acsami_0c01640
crossref_primary_10_1039_D4NJ02046D
crossref_primary_10_1016_j_jechem_2023_07_003
crossref_primary_10_1002_anie_201812062
crossref_primary_10_1002_anie_202003136
crossref_primary_10_1002_advs_202102217
crossref_primary_10_1021_acsami_9b10049
crossref_primary_10_1039_C9QM00228F
crossref_primary_10_1007_s10853_020_05511_8
crossref_primary_10_1016_j_flatc_2021_100236
crossref_primary_10_1021_acsaem_9b01007
crossref_primary_10_1007_s11244_022_01642_1
crossref_primary_10_1002_admt_202001136
crossref_primary_10_1002_aenm_201901075
crossref_primary_10_1016_j_cej_2020_127769
crossref_primary_10_1002_smll_202206126
crossref_primary_10_1021_acsenergylett_3c00826
crossref_primary_10_1016_j_jechem_2021_05_039
crossref_primary_10_1021_acsnano_9b07121
crossref_primary_10_1021_acsnano_0c04933
crossref_primary_10_1002_adfm_202203902
crossref_primary_10_1007_s11581_021_04052_7
crossref_primary_10_1021_acssuschemeng_9b00564
crossref_primary_10_1002_ange_201812062
crossref_primary_10_1039_C9TA08600E
crossref_primary_10_1039_C9TA10560C
crossref_primary_10_3390_polym15061460
crossref_primary_10_1007_s42864_020_00046_6
crossref_primary_10_1021_acsami_0c08027
Cites_doi 10.1002/adfm.201304156
10.1002/chem.201702387
10.1021/acs.chemmater.5b02955
10.1021/acs.nanolett.7b04505
10.1002/advs.201600445
10.1039/C6TA01214K
10.1039/c4ta00779d
10.1021/acsami.5b10300
10.1038/ncomms1293
10.1126/science.1141483
10.1002/anie.201410174
10.1039/C6TA07864H
10.1039/C4CS00287C
10.1002/adma.201601382
10.1016/j.ensm.2017.11.007
10.1039/C7TA05120D
10.1002/anie.201411109
10.1038/ncomms4410
10.1039/C2TA00105E
10.1002/cnma.201600227
10.1021/acs.nanolett.5b01919
10.1002/anie.201511632
10.1002/adfm.201704865
10.1038/srep32433
10.1016/j.nanoen.2017.01.040
10.1039/C7EE01430A
10.1002/smll.201702104
10.1016/j.electacta.2017.07.164
10.1039/C5TA10307J
10.1002/aenm.201500165
10.1039/C7EE01047H
10.1038/ncomms8278
10.1038/451652a
10.1039/C4TA07101H
10.1039/C6GC00612D
10.1073/pnas.1615837114
10.1038/ncomms14627
10.1039/C6EE00104A
10.1038/s41467-017-02410-6
10.1016/j.nanoen.2017.09.018
10.1002/adfm.201606663
10.1016/j.ensm.2016.04.002
10.1002/adma.201602913
10.1002/aenm.201702337
10.1149/2.0041701jes
10.1021/jacs.7b11434
10.1002/adfm.201704294
10.1016/j.jpowsour.2016.06.002
10.1021/acsami.6b06565
10.1039/c3cc41875h
10.1021/ja409508q
10.1021/jz500222f
10.1038/ncomms6017
10.1016/j.electacta.2013.02.101
10.1038/ncomms4943
10.1002/admi.201500048
10.1149/1.1710895
10.1021/cm5044667
10.1002/smtd.201700279
10.1021/nl5020475
10.1002/anie.201506972
10.1002/anie.201511553
10.1002/aenm.201602543
10.1016/j.nanoen.2017.08.017
10.1039/C7TA08859K
10.1038/nenergy.2016.114
10.1039/C5CS00410A
10.1021/nl503730c
10.1021/acs.nanolett.6b04610
10.1016/j.ensm.2015.09.007
10.1021/acsnano.7b01945
10.1002/adma.201501559
10.1002/adma.201706643
10.1039/C5TA06348E
10.1038/35037553
10.1016/j.nanoen.2017.01.007
10.1002/adfm.201603704
10.1038/nphoton.2012.11
10.1002/adma.201506111
10.1021/acsnano.6b08627
10.1038/ncomms5759
10.1039/C6EE00194G
10.1021/acsenergylett.7b00465
10.1016/j.nanoen.2017.08.039
10.1021/acsnano.7b06061
10.1002/aenm.201402273
10.1038/nchem.1624
10.1002/aenm.201602567
10.1002/anie.201708746
10.1038/s41467-018-03116-z
10.1021/nl502331f
10.1016/j.mtener.2017.04.006
10.1016/j.nanoen.2017.05.009
10.1039/C6NR02345B
10.1021/jp500382s
10.1021/nn401228t
10.1021/nn203436j
10.1021/acscentsci.7b00123
10.1002/aenm.201700260
10.1021/nl403130h
10.1021/acsenergylett.6b00603
10.1002/aenm.201501636
10.1038/nmat2460
10.1002/adfm.201706391
10.1021/am501627f
10.1038/nmat4465
10.1039/C7TA04279E
10.1002/adfm.201401501
10.1016/j.nanoen.2016.04.053
10.1016/j.ensm.2017.08.005
10.1021/acsami.7b14685
10.1021/am400958x
10.1021/acs.nanolett.7b00417
10.1002/adfm.201702573
10.1002/anie.201501788
10.1016/j.ensm.2017.04.003
10.1021/jacs.6b08681
10.1002/anie.201701026
10.1038/nphoton.2014.134
10.1021/acsnano.6b05696
10.1021/acs.nanolett.5b04166
10.1002/anie.201511830
10.1016/j.nanoen.2017.05.064
10.1002/adma.201606802
10.1039/C7TA04937D
10.1039/C5MH00246J
10.1002/smtd.201700134
10.1038/s41598-017-11922-6
10.1039/C7TA00475C
10.1016/j.ensm.2017.07.015
10.1039/C6TA07202J
10.1016/j.carbon.2017.10.032
10.1002/adma.201303166
10.1038/ncomms9622
10.1038/nmat3191
10.1038/ncomms13065
10.1002/adma.201603835
10.1038/nnano.2017.16
10.1039/C7TA03236F
10.1002/adfm.201702524
10.1039/C5TA03062E
10.1021/jacs.6b12358
10.1149/2.015201eel
10.1038/nenergy.2016.132
10.1021/acsenergylett.7b00164
10.1002/adma.201502467
10.1002/adfm.201303296
10.1038/ncomms6682
10.1038/ncomms11203
10.1002/aenm.201502183
10.1002/aenm.201601843
10.1007/s12274-017-1655-7
10.1021/acsnano.6b07603
10.1016/j.nanoen.2013.05.003
10.1021/acsnano.5b07347
10.1021/ja3052206
10.1021/jacs.5b07071
10.1021/jp300950m
10.1002/adma.201602734
10.1021/acsami.6b03200
10.1002/adma.201705219
10.1007/s12274-017-1581-8
10.1021/ar5002846
10.1021/nn501226z
10.1021/acsnano.7b04442
10.1002/smll.201600809
10.1016/j.carbon.2016.08.050
10.1021/acs.nanolett.6b04433
10.1002/admi.201400227
10.1002/adma.201702707
10.1039/C6TA07411A
10.1039/C6TA04445J
10.1002/aenm.201502459
10.1016/j.nanoen.2017.10.032
10.1021/acs.nanolett.5b04189
10.1002/aenm.201501808
10.1039/C6EE01019A
10.1149/2.0051706jes
10.1002/adma.201603401
10.1021/acs.nanolett.7b02332
10.1021/acsenergylett.6b00245
10.1016/j.ensm.2017.05.009
10.1002/anie.201704324
10.1039/C6EE01662F
10.1002/adfm.201302631
10.1002/adma.201504765
10.1039/c3ta12634j
10.1002/anie.201603897
10.1016/j.jpowsour.2010.11.132
10.1002/adma.201506014
10.1038/ncomms8760
10.1002/anie.201605676
10.1126/science.1212741
10.1021/acsnano.5b03591
10.1039/C5EE03902A
10.3866/PKU.WHXB20041208
10.1021/jacs.5b04472
10.1002/aenm.201500408
10.1002/cssc.201300142
10.1002/adma.201603040
10.1002/adma.201103392
10.1021/acsami.6b05647
10.1021/cr500062v
10.1021/jz401763d
ContentType Journal Article
Copyright 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.201707536
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList
CrossRef
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 10_1002_adfm_201707536
ADFM201707536
Genre reviewArticle
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 21776019
– fundername: Young Elite Scientists Sponsorship Program
  funderid: 2015QNRC001
– fundername: National Key Research and Development Program
  funderid: 2016YFA0202500
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
AAHHS
AANHP
AAYXX
ACBWZ
ACCFJ
ACRPL
ACYXJ
ADNMO
ADZOD
AEEZP
AEQDE
AGQPQ
AIWBW
AJBDE
ASPBG
AVWKF
AZFZN
CITATION
FEDTE
HF~
HVGLF
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-c4206-e63b92fc181d9a06109e104bc82a35a0e91a07f18ad988726a9e352a3b2aeb723
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Mon Jul 14 08:13:14 EDT 2025
Tue Jul 01 04:11:49 EDT 2025
Thu Apr 24 23:06:04 EDT 2025
Wed Aug 20 07:26:41 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 38
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4206-e63b92fc181d9a06109e104bc82a35a0e91a07f18ad988726a9e352a3b2aeb723
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4183-703X
0000-0001-7394-9186
PQID 2105007822
PQPubID 2045204
PageCount 23
ParticipantIDs proquest_journals_2105007822
crossref_primary_10_1002_adfm_201707536
crossref_citationtrail_10_1002_adfm_201707536
wiley_primary_10_1002_adfm_201707536_ADFM201707536
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 19, 2018
PublicationDateYYYYMMDD 2018-09-19
PublicationDate_xml – month: 09
  year: 2018
  text: September 19, 2018
  day: 19
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 5
2017; 40
2017; 7
2016 2016; 55 28
2017; 8
2016 2016; 55 2
2004; 20
2017; 1
2017; 2
2013; 1
2017 2017; 5 2
2013; 2
2017 2017 2017; 17 41 13
2016 2015 2017 2017 2017; 1 5 8 12 4
2016 2017; 6 11
2016 2017; 4 164
2014; 24
2012 2013; 24 135
2011 2012; 196 116
2017 2017 2017; 3 56 17
2017 2017 2017; 139 7 7
2013; 5
2017; 114
2015 2016 2016 2013 2013 2014 2014 2014 2015 2015; 15 8 10 5 7 14 24 6 54 6
2017; 9
2008 2011; 451 334
2018; 9
2018; 8
2014; 5
2015 2015; 48 44
2012; 134
2015 2016 2016 2017; 3 26 4 23
2016 2016 2017; 12 25 56
2015; 137
2017; 33
2015 2017 2016 2017; 2 5 8 5
2016 2017 2018; 1 5 2
2014; 14
2016 2016 2016 2017 2017 2017; 5 109 10 17 7 11
2018; 30
2014; 8
2013 2016 2016; 25 6 28
2014 2016 2017; 14 8 10
2014; 118
2018; 28
2017 2018; 40 30
2018; 140
2013; 49
2015; 3
2012 2014; 6 8
2017; 27
2016 2017 2017 2017; 3 33 38 37
2015 2016; 27 16
2014 2016; 114 45
2013 2013 2015 2015; 4 6 5 5
2015; 54
2015 2016 2017 2017 2016; 5 6 40 5 6
2017 2018; 164 11
2016; 325
2017; 29
2017; 251
2015; 9
2015; 7
2015 2015 2016 2017; 6 54 9 27
2016; 15
2011 2013; 5 13
2017; 139
2016; 55
2016; 4
2018; 18
2000 2012; 407 11
2016; 7
2015; 27
2007; 317
2013 2014 2015 2016 2016 2016 2017 2017 2017; 1 2 6 55 1 9 29 7 56
2011 2016 2016; 2 28 18
2012; 1
2016 2016 2017; 28 4 2
2017; 17
2017; 11
2004; 151
2017; 10
2016 2016 2018; 7 9 126
2009; 8
2014 2015; 1 27
2014 2014 2014 2016 2016 2016; 24 24 5 28 28 2
2017 2017; 27 5
2018; 12
2018; 10
2015 2017; 6 8
2016; 8
2016; 9
2016 2013; 16 97
e_1_2_7_3_2
e_1_2_7_3_1
e_1_2_7_104_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_83_1
e_1_2_7_11_5
e_1_2_7_11_4
e_1_2_7_11_3
e_1_2_7_11_2
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_94_1
e_1_2_7_23_6
e_1_2_7_23_5
e_1_2_7_71_1
e_1_2_7_23_4
e_1_2_7_23_3
e_1_2_7_23_2
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_56_1
e_1_2_7_79_1
e_1_2_7_4_2
e_1_2_7_4_1
e_1_2_7_105_1
e_1_2_7_82_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_67_1
e_1_2_7_29_1
Wang W. K. (e_1_2_7_97_1) 2004; 20
e_1_2_7_93_2
e_1_2_7_70_1
e_1_2_7_93_1
e_1_2_7_70_2
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_78_1
e_1_2_7_106_1
e_1_2_7_9_2
e_1_2_7_9_1
e_1_2_7_81_1
e_1_2_7_1_2
e_1_2_7_1_1
e_1_2_7_13_2
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_89_1
e_1_2_7_28_1
e_1_2_7_9_3
e_1_2_7_92_2
e_1_2_7_110_1
e_1_2_7_92_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_77_1
e_1_2_7_54_2
e_1_2_7_54_1
e_1_2_7_39_1
e_1_2_7_2_2
e_1_2_7_107_1
e_1_2_7_80_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_88_1
e_1_2_7_65_1
e_1_2_7_27_1
e_1_2_7_27_2
e_1_2_7_27_3
e_1_2_7_86_10
e_1_2_7_91_1
e_1_2_7_111_1
e_1_2_7_91_2
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_76_1
e_1_2_7_99_1
e_1_2_7_53_2
e_1_2_7_99_5
e_1_2_7_99_4
e_1_2_7_99_3
e_1_2_7_99_2
e_1_2_7_38_1
e_1_2_7_99_9
e_1_2_7_38_2
e_1_2_7_99_8
e_1_2_7_38_3
e_1_2_7_99_7
e_1_2_7_38_4
e_1_2_7_99_6
e_1_2_7_108_1
e_1_2_7_108_2
e_1_2_7_7_4
e_1_2_7_7_3
e_1_2_7_7_2
e_1_2_7_7_1
e_1_2_7_100_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_87_1
e_1_2_7_87_2
e_1_2_7_64_3
e_1_2_7_64_2
e_1_2_7_87_3
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_7_6
e_1_2_7_7_5
e_1_2_7_108_3
e_1_2_7_108_4
e_1_2_7_90_1
e_1_2_7_112_1
e_1_2_7_52_2
e_1_2_7_75_2
e_1_2_7_52_1
e_1_2_7_98_1
e_1_2_7_75_1
e_1_2_7_37_1
e_1_2_7_37_2
e_1_2_7_109_1
e_1_2_7_8_2
e_1_2_7_8_1
e_1_2_7_101_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_86_2
e_1_2_7_63_1
e_1_2_7_86_3
e_1_2_7_86_1
e_1_2_7_86_6
e_1_2_7_86_7
e_1_2_7_86_4
e_1_2_7_48_1
e_1_2_7_86_5
e_1_2_7_48_2
e_1_2_7_86_8
e_1_2_7_86_9
e_1_2_7_109_2
e_1_2_7_109_3
e_1_2_7_113_1
e_1_2_7_51_1
e_1_2_7_74_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_59_2
e_1_2_7_5_1
e_1_2_7_102_3
e_1_2_7_102_1
e_1_2_7_102_2
e_1_2_7_17_3
e_1_2_7_17_2
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_62_3
e_1_2_7_85_3
e_1_2_7_62_2
e_1_2_7_85_4
e_1_2_7_85_1
e_1_2_7_85_2
e_1_2_7_47_1
e_1_2_7_47_2
e_1_2_7_114_5
e_1_2_7_114_4
e_1_2_7_114_3
e_1_2_7_114_2
e_1_2_7_114_1
e_1_2_7_73_1
e_1_2_7_50_2
e_1_2_7_50_1
e_1_2_7_50_4
e_1_2_7_50_3
e_1_2_7_96_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_35_2
e_1_2_7_58_2
e_1_2_7_35_3
e_1_2_7_58_1
e_1_2_7_58_4
e_1_2_7_58_3
e_1_2_7_6_1
e_1_2_7_103_2
e_1_2_7_103_1
e_1_2_7_18_1
e_1_2_7_84_1
e_1_2_7_61_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_69_1
e_1_2_7_72_1
e_1_2_7_95_1
e_1_2_7_72_2
e_1_2_7_72_3
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_57_2
References_xml – volume: 48 44
  start-page: 56 2664
  year: 2015 2015
  publication-title: Acc. Chem. Res. Chem. Soc. Rev.
– volume: 9
  start-page: 42836
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 15
  start-page: 48
  year: 2016
  publication-title: Nat. Mater.
– volume: 140
  start-page: 1455
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 27
  start-page: 5203
  year: 2015
  publication-title: Adv. Mater.
– volume: 24 135
  start-page: 1176 16736
  year: 2012 2013
  publication-title: Adv. Mater. J. Am. Chem. Soc.
– volume: 49
  start-page: 4513
  year: 2013
  publication-title: Chem. Commun.
– volume: 18
  start-page: 1035
  year: 2018
  publication-title: Nano Lett.
– volume: 8
  start-page: 1702337
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 24
  start-page: 4156
  year: 2014
  publication-title: Adv. Funct. Mater.
– volume: 8
  start-page: 153
  year: 2017
  publication-title: Energy Storage Mater.
– volume: 40
  start-page: 655
  year: 2017
  publication-title: Nano Energy
– volume: 1 27
  start-page: 1400227 6021
  year: 2014 2015
  publication-title: Adv. Mater. Interfaces Adv. Mater.
– volume: 5
  start-page: 5017
  year: 2014
  publication-title: Nat. Commun.
– volume: 10
  start-page: 1694
  year: 2017
  publication-title: Energy Environ. Sci.
– volume: 54
  start-page: 12868
  year: 2015
  publication-title: Angew. Chem., Int. Ed.
– volume: 3 26 4 23
  start-page: 7870 8746 5993 12613
  year: 2015 2016 2016 2017
  publication-title: J. Mater. Chem. A Adv. Funct. Mater. J. Mater. Chem. A Chem. Eur. J.
– volume: 164 11
  start-page: A917 477
  year: 2017 2018
  publication-title: J. Electrochem. Soc. Nano Res.
– volume: 25 6 28
  start-page: 6547 1502459 9539
  year: 2013 2016 2016
  publication-title: Adv. Mater. Adv. Energy Mater. Adv. Mater.
– volume: 2 5 8 5
  start-page: 1500048 25187 13638 19613
  year: 2015 2017 2016 2017
  publication-title: Adv. Mater. Interfaces J. Mater. Chem. A Nanoscale J. Mater. Chem. A
– volume: 7
  start-page: 11203
  year: 2016
  publication-title: Nat. Commun.
– volume: 10
  start-page: 1
  year: 2018
  publication-title: Energy Storage Mater.
– volume: 30
  start-page: 1706643
  year: 2018
  publication-title: Adv. Mater.
– volume: 3 56 17
  start-page: 605 6192 3061
  year: 2017 2017 2017
  publication-title: ACS Cent. Sci. Angew. Chem., Int. Ed. Nano Lett.
– volume: 28 4 2
  start-page: 6926 17711 327
  year: 2016 2016 2017
  publication-title: Adv. Mater. J. Mater. Chem. A ACS Energy Lett.
– volume: 139 7 7
  start-page: 171 1601843 1602567
  year: 2017 2017 2017
  publication-title: J. Am. Chem. Soc. Adv. Energy Mater. Adv. Energy Mater.
– volume: 137
  start-page: 12946
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 151
  start-page: A791
  year: 2004
  publication-title: J. Electrochem. Soc.
– volume: 451 334
  start-page: 652 928
  year: 2008 2011
  publication-title: Nature Science
– volume: 5
  start-page: 6447
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 33
  start-page: 306
  year: 2017
  publication-title: Nano Energy
– volume: 55
  start-page: 10027
  year: 2016
  publication-title: Angew. Chem., Int. Ed.
– volume: 8
  start-page: 500
  year: 2009
  publication-title: Nat. Mater.
– volume: 9
  start-page: 705
  year: 2018
  publication-title: Nat. Commun.
– volume: 28
  start-page: 1704294
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 29
  start-page: 1702707
  year: 2017
  publication-title: Adv. Mater.
– volume: 3 33 38 37
  start-page: 130 124 239 7
  year: 2016 2017 2017 2017
  publication-title: Mater. Horiz. Nano Energy Nano Energy Nano Energy
– volume: 251
  start-page: 43
  year: 2017
  publication-title: Electrochim. Acta
– volume: 54
  start-page: 3907
  year: 2015
  publication-title: Angew. Chem., Int. Ed.
– volume: 3
  start-page: 19857
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 29
  start-page: 1606802
  year: 2017
  publication-title: Adv. Mater.
– volume: 5 6 40 5 6
  start-page: 1501808 1502183 240 15 32433
  year: 2015 2016 2017 2017 2016
  publication-title: Adv. Energy Mater. Adv. Energy Mater. Nano Energy Mater. Today Energy Sci. Rep.
– volume: 118
  start-page: 5733
  year: 2014
  publication-title: J. Phys. Chem. C
– volume: 6 11
  start-page: 1501636 2697
  year: 2016 2017
  publication-title: Adv. Energy Mater. ACS Nano
– volume: 7
  start-page: 27959
  year: 2015
  publication-title: ACS Appl. Mater. Interfaces
– volume: 4 164
  start-page: 4371 A6039
  year: 2016 2017
  publication-title: J. Mater. Chem. A J. Electrochem. Soc.
– volume: 9
  start-page: 1998
  year: 2016
  publication-title: Energy Environ. Sci.
– volume: 8
  start-page: 19550
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 27
  start-page: 2048
  year: 2015
  publication-title: Chem. Mater.
– volume: 137
  start-page: 11542
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 17
  start-page: 5064
  year: 2017
  publication-title: Nano Lett.
– volume: 1 2 6 55 1 9 29 7 56
  start-page: 13261 9280 7278 3106 566 2025 1603835 11386 15118
  year: 2013 2014 2015 2016 2016 2016 2017 2017 2017
  publication-title: J. Mater. Chem. A J. Mater. Chem. A Nat. Commun. Angew. Chem., Int. Ed. ACS Energy Lett. Energy Environ. Sci. Adv. Mater. Sci. Rep. Angew. Chem., Int. Ed.
– volume: 5
  start-page: 3943
  year: 2014
  publication-title: Nat. Commun.
– volume: 55 28
  start-page: 3982 9551
  year: 2016 2016
  publication-title: Angew. Chem., Int. Ed. Adv. Mater.
– volume: 15 8 10 5 7 14 24 6 54 6
  start-page: 5137 25193 4111 5630 5367 4821 1243 8789 4325 7760
  year: 2015 2016 2016 2013 2013 2014 2014 2014 2015 2015
  publication-title: Nano Lett. ACS Appl. Mater. Interfaces ACS Nano ACS Appl. Mater. Interfaces ACS Nano Nano Lett. Adv. Funct. Mater. ACS Appl. Mater. Interfaces Angew. Chem., Int. Ed. Nat. Commun.
– volume: 4 6 5 5
  start-page: 3227 1177 1500165 1500408
  year: 2013 2013 2015 2015
  publication-title: J. Phys. Chem. Lett. ChemSusChem Adv. Energy Mater. Adv. Energy Mater.
– volume: 5
  start-page: 17352
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 27 5
  start-page: 1702524 22120
  year: 2017 2017
  publication-title: Adv. Funct. Mater. J. Mater. Chem. A
– volume: 9
  start-page: 9507
  year: 2015
  publication-title: ACS Nano
– volume: 10
  start-page: 56
  year: 2018
  publication-title: Energy Storage Mater.
– volume: 14
  start-page: 5288
  year: 2014
  publication-title: Nano Lett.
– volume: 5 13
  start-page: 9187 5534
  year: 2011 2013
  publication-title: ACS Nano Nano Lett.
– volume: 7
  start-page: 1700260
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 40 30
  start-page: 360 1705219
  year: 2017 2018
  publication-title: Nano Energy Adv. Mater.
– volume: 6 54 9 27
  start-page: 5682 12886 2533 1606663
  year: 2015 2015 2016 2017
  publication-title: Nat. Commun. Angew. Chem., Int. Ed. Energy Environ. Sci. Adv. Funct. Mater.
– volume: 20
  start-page: 1440
  year: 2004
  publication-title: Acta Phys‐Chim. Sin.
– volume: 17 41 13
  start-page: 538 758 1702104
  year: 2017 2017 2017
  publication-title: Nano Lett. Nano Energy Small
– volume: 11
  start-page: 6031
  year: 2017
  publication-title: ACS Nano
– volume: 3
  start-page: 17106
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 6 8
  start-page: 8622 202
  year: 2015 2017
  publication-title: Nat. Commun. Energy Storage Mater.
– volume: 8
  start-page: 4033
  year: 2014
  publication-title: ACS Nano
– volume: 5
  start-page: 915
  year: 2014
  publication-title: J. Phys. Chem. Lett.
– volume: 1
  start-page: 295
  year: 2013
  publication-title: J. Mater. Chem. A
– volume: 5
  start-page: 4759
  year: 2014
  publication-title: Nat. Commun.
– volume: 5 109 10 17 7 11
  start-page: 223 719 10981 437 1602543 11417
  year: 2016 2016 2016 2017 2017 2017
  publication-title: Energy Storage Mater. Carbon ACS Nano Nano Lett. Adv. Energy Mater. ACS Nano
– volume: 1
  start-page: 1700134
  year: 2017
  publication-title: Small Methods
– volume: 317
  start-page: 100
  year: 2007
  publication-title: Science
– volume: 1
  start-page: A24
  year: 2012
  publication-title: ECS Electrochem. Lett.
– volume: 11
  start-page: 8488
  year: 2017
  publication-title: ACS Nano
– volume: 9
  start-page: 3230
  year: 2016
  publication-title: Energy Environ. Sci.
– volume: 2 28 18
  start-page: 325 3167 5169
  year: 2011 2016 2016
  publication-title: Nat. Commun. Adv. Mater. Green Chem.
– volume: 27 16
  start-page: 6765 549
  year: 2015 2016
  publication-title: Chem. Mater. Nano Lett.
– volume: 10
  start-page: 3698
  year: 2017
  publication-title: Nano Res.
– volume: 114 45
  start-page: 11751 5605
  year: 2014 2016
  publication-title: Chem. Rev. Chem. Soc. Rev.
– volume: 1 5 8 12 4
  start-page: 16114 1402273 14627 194 1600445
  year: 2016 2015 2017 2017 2017
  publication-title: Nat. Energy Adv. Energy Mater. Nat. Commun. Nat. Nanotechnol. Adv. Sci.
– volume: 1 5 2
  start-page: 16132 448 1700279
  year: 2016 2017 2018
  publication-title: Nat. Energy J. Mater. Chem. A Small Methods
– volume: 28
  start-page: 1706391
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 29
  start-page: 1603040
  year: 2017
  publication-title: Adv. Mater.
– volume: 12
  start-page: 30
  year: 2018
  publication-title: Energy Storage Mater.
– volume: 28
  start-page: 1704865
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 407 11
  start-page: 724 19
  year: 2000 2012
  publication-title: Nature Nat. Mater.
– volume: 2
  start-page: 1197
  year: 2013
  publication-title: Nano Energy
– volume: 12 25 56
  start-page: 3283 203 8178
  year: 2016 2016 2017
  publication-title: Small Nano Energy Angew. Chem., Int. Ed.
– volume: 139
  start-page: 8458
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 55
  start-page: 4231
  year: 2016
  publication-title: Angew. Chem., Int. Ed.
– volume: 114
  start-page: 840
  year: 2017
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 6 8
  start-page: 153 506
  year: 2012 2014
  publication-title: Nat. Photonics Nat. Photonics
– volume: 8
  start-page: 2277
  year: 2017
  publication-title: Nat. Commun.
– volume: 14 8 10
  start-page: 7138 13437 1476
  year: 2014 2016 2017
  publication-title: Nano Lett. ACS Appl. Mater. Interfaces Energy Environ. Sci.
– volume: 27
  start-page: 1702573
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 5
  start-page: 518
  year: 2013
  publication-title: Nat. Chem.
– volume: 29
  start-page: 1602734
  year: 2017
  publication-title: Adv. Mater.
– volume: 5 2
  start-page: 14519 1711
  year: 2017 2017
  publication-title: J. Mater. Chem. A ACS Energy Lett.
– volume: 134
  start-page: 15387
  year: 2012
  publication-title: J. Am. Chem. Soc.
– volume: 11
  start-page: 2209
  year: 2017
  publication-title: ACS Nano
– volume: 5
  start-page: 250
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 196 116
  start-page: 6951 8910
  year: 2011 2012
  publication-title: J. Power Sources J. Phys. Chem. C
– volume: 16 97
  start-page: 519 42
  year: 2016 2013
  publication-title: Nano Lett. Electrochim. Acta
– volume: 2
  start-page: 795
  year: 2017
  publication-title: ACS Energy Lett.
– volume: 55 2
  start-page: 12990 937
  year: 2016 2016
  publication-title: Angew. Chem., Int. Ed. ChemNanoMat
– volume: 24 24 5 28 28 2
  start-page: 2772 6105 3410 1603 3374 76
  year: 2014 2014 2014 2016 2016 2016
  publication-title: Adv. Funct. Mater. Adv. Funct. Mater. Nat. Commun. Adv. Mater. Adv. Mater. Energy Storage Mater.
– volume: 7 9 126
  start-page: 13065 1495 394
  year: 2016 2016 2018
  publication-title: Nat. Commun. Energy Environ. Sci. Carbon
– volume: 325
  start-page: 301
  year: 2016
  publication-title: J. Power Sources
– volume: 4
  start-page: 12858
  year: 2016
  publication-title: J. Mater. Chem. A
– ident: e_1_2_7_19_1
  doi: 10.1002/adfm.201304156
– ident: e_1_2_7_85_4
  doi: 10.1002/chem.201702387
– ident: e_1_2_7_103_1
  doi: 10.1021/acs.chemmater.5b02955
– ident: e_1_2_7_80_1
  doi: 10.1021/acs.nanolett.7b04505
– ident: e_1_2_7_11_5
  doi: 10.1002/advs.201600445
– ident: e_1_2_7_57_1
  doi: 10.1039/C6TA01214K
– ident: e_1_2_7_99_2
  doi: 10.1039/c4ta00779d
– ident: e_1_2_7_21_1
  doi: 10.1021/acsami.5b10300
– ident: e_1_2_7_27_1
  doi: 10.1038/ncomms1293
– ident: e_1_2_7_66_1
  doi: 10.1126/science.1141483
– ident: e_1_2_7_83_1
  doi: 10.1002/anie.201410174
– ident: e_1_2_7_17_2
  doi: 10.1039/C6TA07864H
– ident: e_1_2_7_54_2
  doi: 10.1039/C4CS00287C
– ident: e_1_2_7_72_1
  doi: 10.1002/adma.201601382
– ident: e_1_2_7_101_1
  doi: 10.1016/j.ensm.2017.11.007
– ident: e_1_2_7_44_1
  doi: 10.1039/C7TA05120D
– ident: e_1_2_7_86_9
  doi: 10.1002/anie.201411109
– ident: e_1_2_7_7_3
  doi: 10.1038/ncomms4410
– ident: e_1_2_7_26_1
  doi: 10.1039/C2TA00105E
– ident: e_1_2_7_70_2
  doi: 10.1002/cnma.201600227
– ident: e_1_2_7_86_1
  doi: 10.1021/acs.nanolett.5b01919
– ident: e_1_2_7_52_1
  doi: 10.1002/anie.201511632
– ident: e_1_2_7_71_1
  doi: 10.1002/adfm.201704865
– ident: e_1_2_7_114_5
  doi: 10.1038/srep32433
– ident: e_1_2_7_41_1
  doi: 10.1016/j.nanoen.2017.01.040
– ident: e_1_2_7_76_1
  doi: 10.1039/C7EE01430A
– ident: e_1_2_7_102_3
  doi: 10.1002/smll.201702104
– ident: e_1_2_7_46_1
  doi: 10.1016/j.electacta.2017.07.164
– ident: e_1_2_7_85_3
  doi: 10.1039/C5TA10307J
– ident: e_1_2_7_108_3
  doi: 10.1002/aenm.201500165
– ident: e_1_2_7_62_3
  doi: 10.1039/C7EE01047H
– ident: e_1_2_7_99_3
  doi: 10.1038/ncomms8278
– ident: e_1_2_7_1_1
  doi: 10.1038/451652a
– ident: e_1_2_7_85_1
  doi: 10.1039/C4TA07101H
– ident: e_1_2_7_27_3
  doi: 10.1039/C6GC00612D
– ident: e_1_2_7_68_1
  doi: 10.1073/pnas.1615837114
– ident: e_1_2_7_11_3
  doi: 10.1038/ncomms14627
– ident: e_1_2_7_22_1
  doi: 10.1039/C6EE00104A
– ident: e_1_2_7_95_1
  doi: 10.1038/s41467-017-02410-6
– ident: e_1_2_7_73_1
  doi: 10.1016/j.nanoen.2017.09.018
– ident: e_1_2_7_38_4
  doi: 10.1002/adfm.201606663
– ident: e_1_2_7_23_1
  doi: 10.1016/j.ensm.2016.04.002
– ident: e_1_2_7_9_3
  doi: 10.1002/adma.201602913
– ident: e_1_2_7_61_1
  doi: 10.1002/aenm.201702337
– ident: e_1_2_7_57_2
  doi: 10.1149/2.0041701jes
– ident: e_1_2_7_78_1
  doi: 10.1021/jacs.7b11434
– ident: e_1_2_7_31_1
  doi: 10.1002/adfm.201704294
– ident: e_1_2_7_24_1
  doi: 10.1016/j.jpowsour.2016.06.002
– ident: e_1_2_7_65_1
  doi: 10.1021/acsami.6b06565
– ident: e_1_2_7_18_1
  doi: 10.1039/c3cc41875h
– ident: e_1_2_7_91_2
  doi: 10.1021/ja409508q
– ident: e_1_2_7_113_1
  doi: 10.1021/jz500222f
– ident: e_1_2_7_56_1
  doi: 10.1038/ncomms6017
– ident: e_1_2_7_13_2
  doi: 10.1016/j.electacta.2013.02.101
– ident: e_1_2_7_36_1
  doi: 10.1038/ncomms4943
– ident: e_1_2_7_50_1
  doi: 10.1002/admi.201500048
– ident: e_1_2_7_25_1
  doi: 10.1149/1.1710895
– ident: e_1_2_7_89_1
  doi: 10.1021/cm5044667
– ident: e_1_2_7_17_3
  doi: 10.1002/smtd.201700279
– ident: e_1_2_7_86_6
  doi: 10.1021/nl5020475
– ident: e_1_2_7_38_2
  doi: 10.1002/anie.201506972
– ident: e_1_2_7_99_4
  doi: 10.1002/anie.201511553
– ident: e_1_2_7_23_5
  doi: 10.1002/aenm.201602543
– ident: e_1_2_7_114_3
  doi: 10.1016/j.nanoen.2017.08.017
– ident: e_1_2_7_50_2
  doi: 10.1039/C7TA08859K
– ident: e_1_2_7_11_1
  doi: 10.1038/nenergy.2016.114
– ident: e_1_2_7_4_2
  doi: 10.1039/C5CS00410A
– ident: e_1_2_7_62_1
  doi: 10.1021/nl503730c
– ident: e_1_2_7_102_1
  doi: 10.1021/acs.nanolett.6b04610
– ident: e_1_2_7_7_6
  doi: 10.1016/j.ensm.2015.09.007
– ident: e_1_2_7_79_1
  doi: 10.1021/acsnano.7b01945
– ident: e_1_2_7_14_1
  doi: 10.1002/adma.201501559
– ident: e_1_2_7_100_1
  doi: 10.1002/adma.201706643
– ident: e_1_2_7_60_1
  doi: 10.1039/C5TA06348E
– ident: e_1_2_7_3_1
  doi: 10.1038/35037553
– ident: e_1_2_7_58_2
  doi: 10.1016/j.nanoen.2017.01.007
– ident: e_1_2_7_85_2
  doi: 10.1002/adfm.201603704
– ident: e_1_2_7_2_1
  doi: 10.1038/nphoton.2012.11
– ident: e_1_2_7_27_2
  doi: 10.1002/adma.201506111
– ident: e_1_2_7_112_1
  doi: 10.1021/acsnano.6b08627
– ident: e_1_2_7_33_1
  doi: 10.1038/ncomms5759
– ident: e_1_2_7_38_3
  doi: 10.1039/C6EE00194G
– ident: e_1_2_7_75_2
  doi: 10.1021/acsenergylett.7b00465
– ident: e_1_2_7_53_1
  doi: 10.1016/j.nanoen.2017.08.039
– ident: e_1_2_7_23_6
  doi: 10.1021/acsnano.7b06061
– ident: e_1_2_7_11_2
  doi: 10.1002/aenm.201402273
– ident: e_1_2_7_98_1
  doi: 10.1038/nchem.1624
– ident: e_1_2_7_64_3
  doi: 10.1002/aenm.201602567
– ident: e_1_2_7_99_9
  doi: 10.1002/anie.201708746
– ident: e_1_2_7_104_1
  doi: 10.1038/s41467-018-03116-z
– ident: e_1_2_7_34_1
  doi: 10.1021/nl502331f
– ident: e_1_2_7_114_4
  doi: 10.1016/j.mtener.2017.04.006
– ident: e_1_2_7_58_4
  doi: 10.1016/j.nanoen.2017.05.009
– ident: e_1_2_7_50_3
  doi: 10.1039/C6NR02345B
– ident: e_1_2_7_12_1
  doi: 10.1021/jp500382s
– ident: e_1_2_7_86_5
  doi: 10.1021/nn401228t
– ident: e_1_2_7_93_1
  doi: 10.1021/nn203436j
– ident: e_1_2_7_109_1
  doi: 10.1021/acscentsci.7b00123
– ident: e_1_2_7_10_1
  doi: 10.1002/aenm.201700260
– ident: e_1_2_7_93_2
  doi: 10.1021/nl403130h
– ident: e_1_2_7_72_3
  doi: 10.1021/acsenergylett.6b00603
– ident: e_1_2_7_48_1
  doi: 10.1002/aenm.201501636
– ident: e_1_2_7_6_1
  doi: 10.1038/nmat2460
– ident: e_1_2_7_81_1
  doi: 10.1002/adfm.201706391
– ident: e_1_2_7_86_8
  doi: 10.1021/am501627f
– ident: e_1_2_7_67_1
  doi: 10.1038/nmat4465
– ident: e_1_2_7_59_2
  doi: 10.1039/C7TA04279E
– ident: e_1_2_7_7_2
  doi: 10.1002/adfm.201401501
– ident: e_1_2_7_87_2
  doi: 10.1016/j.nanoen.2016.04.053
– ident: e_1_2_7_77_1
  doi: 10.1016/j.ensm.2017.08.005
– ident: e_1_2_7_105_1
  doi: 10.1021/acsami.7b14685
– ident: e_1_2_7_86_4
  doi: 10.1021/am400958x
– ident: e_1_2_7_109_3
  doi: 10.1021/acs.nanolett.7b00417
– ident: e_1_2_7_28_1
  doi: 10.1002/adfm.201702573
– ident: e_1_2_7_88_1
  doi: 10.1002/anie.201501788
– ident: e_1_2_7_47_2
  doi: 10.1016/j.ensm.2017.04.003
– ident: e_1_2_7_64_1
  doi: 10.1021/jacs.6b08681
– ident: e_1_2_7_109_2
  doi: 10.1002/anie.201701026
– ident: e_1_2_7_2_2
  doi: 10.1038/nphoton.2014.134
– ident: e_1_2_7_23_3
  doi: 10.1021/acsnano.6b05696
– ident: e_1_2_7_13_1
  doi: 10.1021/acs.nanolett.5b04166
– ident: e_1_2_7_110_1
  doi: 10.1002/anie.201511830
– ident: e_1_2_7_58_3
  doi: 10.1016/j.nanoen.2017.05.064
– ident: e_1_2_7_94_1
  doi: 10.1002/adma.201606802
– ident: e_1_2_7_50_4
  doi: 10.1039/C7TA04937D
– ident: e_1_2_7_58_1
  doi: 10.1039/C5MH00246J
– ident: e_1_2_7_5_1
  doi: 10.1002/smtd.201700134
– ident: e_1_2_7_99_8
  doi: 10.1038/s41598-017-11922-6
– ident: e_1_2_7_39_1
  doi: 10.1039/C7TA00475C
– ident: e_1_2_7_90_1
  doi: 10.1016/j.ensm.2017.07.015
– ident: e_1_2_7_43_1
  doi: 10.1039/C6TA07202J
– ident: e_1_2_7_35_3
  doi: 10.1016/j.carbon.2017.10.032
– ident: e_1_2_7_9_1
  doi: 10.1002/adma.201303166
– ident: e_1_2_7_47_1
  doi: 10.1038/ncomms9622
– ident: e_1_2_7_3_2
  doi: 10.1038/nmat3191
– ident: e_1_2_7_35_1
  doi: 10.1038/ncomms13065
– ident: e_1_2_7_99_7
  doi: 10.1002/adma.201603835
– ident: e_1_2_7_11_4
  doi: 10.1038/nnano.2017.16
– ident: e_1_2_7_75_1
  doi: 10.1039/C7TA03236F
– ident: e_1_2_7_59_1
  doi: 10.1002/adfm.201702524
– ident: e_1_2_7_45_1
  doi: 10.1039/C5TA03062E
– ident: e_1_2_7_15_1
  doi: 10.1021/jacs.6b12358
– ident: e_1_2_7_55_1
  doi: 10.1149/2.015201eel
– ident: e_1_2_7_17_1
  doi: 10.1038/nenergy.2016.132
– ident: e_1_2_7_69_1
  doi: 10.1021/acsenergylett.7b00164
– ident: e_1_2_7_8_2
  doi: 10.1002/adma.201502467
– ident: e_1_2_7_7_1
  doi: 10.1002/adfm.201303296
– ident: e_1_2_7_38_1
  doi: 10.1038/ncomms6682
– ident: e_1_2_7_32_1
  doi: 10.1038/ncomms11203
– ident: e_1_2_7_114_2
  doi: 10.1002/aenm.201502183
– ident: e_1_2_7_64_2
  doi: 10.1002/aenm.201601843
– ident: e_1_2_7_37_2
  doi: 10.1007/s12274-017-1655-7
– ident: e_1_2_7_48_2
  doi: 10.1021/acsnano.6b07603
– ident: e_1_2_7_29_1
  doi: 10.1016/j.nanoen.2013.05.003
– ident: e_1_2_7_86_3
  doi: 10.1021/acsnano.5b07347
– ident: e_1_2_7_16_1
  doi: 10.1021/ja3052206
– ident: e_1_2_7_51_1
  doi: 10.1021/jacs.5b07071
– ident: e_1_2_7_92_2
  doi: 10.1021/jp300950m
– ident: e_1_2_7_107_1
  doi: 10.1002/adma.201602734
– ident: e_1_2_7_62_2
  doi: 10.1021/acsami.6b03200
– ident: e_1_2_7_53_2
  doi: 10.1002/adma.201705219
– ident: e_1_2_7_74_1
  doi: 10.1007/s12274-017-1581-8
– ident: e_1_2_7_54_1
  doi: 10.1021/ar5002846
– ident: e_1_2_7_106_1
  doi: 10.1021/nn501226z
– ident: e_1_2_7_63_1
  doi: 10.1021/acsnano.7b04442
– ident: e_1_2_7_87_1
  doi: 10.1002/smll.201600809
– ident: e_1_2_7_23_2
  doi: 10.1016/j.carbon.2016.08.050
– ident: e_1_2_7_23_4
  doi: 10.1021/acs.nanolett.6b04433
– ident: e_1_2_7_8_1
  doi: 10.1002/admi.201400227
– ident: e_1_2_7_42_1
  doi: 10.1002/adma.201702707
– ident: e_1_2_7_72_2
  doi: 10.1039/C6TA07411A
– ident: e_1_2_7_40_1
  doi: 10.1039/C6TA04445J
– ident: e_1_2_7_9_2
  doi: 10.1002/aenm.201502459
– ident: e_1_2_7_102_2
  doi: 10.1016/j.nanoen.2017.10.032
– ident: e_1_2_7_103_2
  doi: 10.1021/acs.nanolett.5b04189
– ident: e_1_2_7_114_1
  doi: 10.1002/aenm.201501808
– ident: e_1_2_7_99_6
  doi: 10.1039/C6EE01019A
– ident: e_1_2_7_37_1
  doi: 10.1149/2.0051706jes
– ident: e_1_2_7_52_2
  doi: 10.1002/adma.201603401
– ident: e_1_2_7_96_1
  doi: 10.1021/acs.nanolett.7b02332
– ident: e_1_2_7_99_5
  doi: 10.1021/acsenergylett.6b00245
– ident: e_1_2_7_30_1
  doi: 10.1016/j.ensm.2017.05.009
– ident: e_1_2_7_87_3
  doi: 10.1002/anie.201704324
– ident: e_1_2_7_49_1
  doi: 10.1039/C6EE01662F
– ident: e_1_2_7_86_7
  doi: 10.1002/adfm.201302631
– ident: e_1_2_7_7_4
  doi: 10.1002/adma.201504765
– ident: e_1_2_7_99_1
  doi: 10.1039/c3ta12634j
– ident: e_1_2_7_111_1
  doi: 10.1002/anie.201603897
– ident: e_1_2_7_92_1
  doi: 10.1016/j.jpowsour.2010.11.132
– ident: e_1_2_7_7_5
  doi: 10.1002/adma.201506014
– ident: e_1_2_7_86_10
  doi: 10.1038/ncomms8760
– ident: e_1_2_7_70_1
  doi: 10.1002/anie.201605676
– ident: e_1_2_7_1_2
  doi: 10.1126/science.1212741
– ident: e_1_2_7_82_1
  doi: 10.1021/acsnano.5b03591
– ident: e_1_2_7_35_2
  doi: 10.1039/C5EE03902A
– volume: 20
  start-page: 1440
  year: 2004
  ident: e_1_2_7_97_1
  publication-title: Acta Phys‐Chim. Sin.
  doi: 10.3866/PKU.WHXB20041208
– ident: e_1_2_7_20_1
  doi: 10.1021/jacs.5b04472
– ident: e_1_2_7_108_4
  doi: 10.1002/aenm.201500408
– ident: e_1_2_7_108_2
  doi: 10.1002/cssc.201300142
– ident: e_1_2_7_84_1
  doi: 10.1002/adma.201603040
– ident: e_1_2_7_91_1
  doi: 10.1002/adma.201103392
– ident: e_1_2_7_86_2
  doi: 10.1021/acsami.6b05647
– ident: e_1_2_7_4_1
  doi: 10.1021/cr500062v
– ident: e_1_2_7_108_1
  doi: 10.1021/jz401763d
SSID ssj0017734
Score 2.6713805
SecondaryResourceType review_article
Snippet Lithium–sulfur (Li–S) batteries deliver a high theoretical energy density of 2600 Wh kg−1, and hold great promise to serve as a next‐generation...
Lithium–sulfur (Li–S) batteries deliver a high theoretical energy density of 2600 Wh kg −1 , and hold great promise to serve as a next‐generation...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Cathodes
Cathodic dissolution
Dissolution
Electrode materials
Flux density
high‐energy‐density
Lithium
Lithium sulfur batteries
Low conductivity
Materials science
mediators
Reaction kinetics
redox kinetics
Sulfur
Variation
Weight
Title Heterogeneous/Homogeneous Mediators for High‐Energy‐Density Lithium–Sulfur Batteries: Progress and Prospects
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201707536
https://www.proquest.com/docview/2105007822
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8MwGA6iFz34LU7nyEHw1K1Nv70NtzHEiTiF3UrSJShuraztQU_7CYL_cL_EN-nabYIIeksgKW3yJnne9HmfF6Fzx_CYEL6tWYKCg0JYqDFLCE2ALXjc94Snkvb1bp3uo3U9sAdLUfy5PkR54SZXhtqv5QKnLGksREPpUMhIcsOFQ8-UmtuSsCVR0X2pH2W4bv5b2TEkwcsYFKqNOmmsdl89lRZQcxmwqhOns4No8a450eSlnqWsHr5_k3H8z8fsou05HMXN3H720BqP9tHWkkjhAZp0JWMmBkPjcZY0uvG4KOOeyvMRTxIM0BdLyshs-tFW0YRQaElufPqGb57Tp-dsPJt-9rORyCY41_QEF_0S30l6GGy2mEZDWVGBn8kheuy0H6662jxTgxZaRHc07pjMJyIEuDD0qS4l3Dn4eSz0CDVtqnPfoLorDI8OfdjViEN9DsiPmoxQzlxiHqH1KI74McI246bwBA0BeFnUYuDl2pRLJMoEwBmngrRipoJwLmMus2mMglyAmQRyLINyLCvoomz_mgt4_NiyWkx8MF_ISQAesZ3DqAoiagZ_eUrQbHV6Ze3kL51O0SaUFSvF8KtoPZ1k_AygT8pqaKPZ6t30a8rMvwBW0QD_
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NTtwwEB4heqA9QH-oukBbH6h6Crtx_iv1gLqsAuyiqgVpb8HO2uoK2KBNooqeeIRKfZK-Sh-BJ-mM8wNUqpAqcejNjpwosWc83zgz3wBs-nYotY48y9UCHRQuU0u6WlsaZSFUUahDU7RvdODHR-7e2BsvwM8mF6bih2gP3EgzzH5NCk4H0t1r1lAx0ZRKbgdo9Ry_jqvcVxdf0WvL3-_2cYnfcD7YOfwQW3VhASt1OXrQyndkxHWK1m0SiR4xjit0S2QacuF4oqciW_QCbYdiEqEScl9ECoGKcCQXSgbEdYC7_gMqI050_f1PLWOVHQTVj2zfppAye9zwRPZ49_b73raD1-D2JkQ2Nm6wAr-a2alCW062ykJupd_-II78r6bvMSzXiJttVyryBBbU7Ck8usHD-AzmMQUFZahLKivzbpydNW02MqVMsnnOEN0zioq5uvy-YxImsdGn8P_igg2nxZdpeXZ1-eNzearLOatoS6cqf8c-UgQc2hMmZhPqmNzWfBWO7uWjn8PiLJupF8A8qRwdapEitnSFK9GR94QisC01Ija_A1YjGklaM7VTwZDTpOKY5gmtXdKuXQfetuPPK46Sv47caCQtqfeqPEGn36uQYge4EZk7npJs9wejtrf2Lze9hqX4cDRMhrsH--vwEK-bIBw72oDFYl6ql4j0CvnK6BaD4_uWxt8LMFvZ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3dStxAFD6IQmkvWu0Pbqt1Liq9iptMfkfohTQua3VF2gp7l84kM7ioG9kkiF75CIW-SF-lr-CT9MzkRy2UQsEL7zJhEpKZc-Z8J_nmOwDvAicSSjHf8hTHBIWK1BKeUpZCW4gki1RkivaN9oPhofdp7I_n4Ge7F6bWh-g-uGnPMOu1dvCzTPVvREN5pvROcifEoOcGDa1yV16cY9JWfNiJcYbXKR1sf_04tJq6AlbqUUygZeAKRlWKwS1j3NaC4xKzEpFGlLs-tyVzuB0qJ-IZQx-kAWcScQp3BeVShFrqABf9BS-wmS4WEX_uBKucMKz_YweOZpQ541Ym0qb9u897NwzeYNvbCNmEuMEz-NUOTs1sOd6oSrGRXv6hG_mQRm8RnjZ4m2zVDrIEc3L6HJ7cUmF8AbOhpgTl6Ekyr4r-MD9tj8nIFDLJZwVBbE80J-b66vu22S6JB7Em_5cXZG9SHk2q0-urH1-qE1XNSC1aOpHFJjnQ_DeMJoRPM90wO1uLl3B4Ly_9Cuan-VQuA_GFdFWkeIrI0uOewDTe51JDbaEQrwU9sFrLSNJGp12XCzlJaoVpmui5S7q568H7rv9ZrVDy154rraElzUpVJJjy-zVO7AE1FvOPuyRb8WDUtV7_z0Vr8OggHiR7O_u7b-AxnjYMHIetwHw5q-QqwrxSvDWeReDbfRvjb4GuWog
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Heterogeneous%2FHomogeneous+Mediators+for+High%E2%80%90Energy%E2%80%90Density+Lithium%E2%80%93Sulfur+Batteries%3A+Progress+and+Prospects&rft.jtitle=Advanced+functional+materials&rft.au=Zhang%2C+Ze%E2%80%90Wen&rft.au=Peng%2C+Hong%E2%80%90Jie&rft.au=Zhao%2C+Meng&rft.au=Huang%2C+Jia%E2%80%90Qi&rft.date=2018-09-19&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=28&rft.issue=38&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadfm.201707536&rft.externalDBID=10.1002%252Fadfm.201707536&rft.externalDocID=ADFM201707536
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon