Fe, Cu‐Coordinated ZIF‐Derived Carbon Framework for Efficient Oxygen Reduction Reaction and Zinc–Air Batteries
Zeolitic imidazole frameworks (ZIFs) offer rich platforms for rational design and construction of high‐performance nonprecious‐metal oxygen reduction reaction (ORR) catalysts owing to their flexibility, hierarchical porous structures, and high surface area. Herein, an Fe, Cu‐coordinated ZIF‐derived...
Saved in:
Published in | Advanced functional materials Vol. 28; no. 39 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
26.09.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Zeolitic imidazole frameworks (ZIFs) offer rich platforms for rational design and construction of high‐performance nonprecious‐metal oxygen reduction reaction (ORR) catalysts owing to their flexibility, hierarchical porous structures, and high surface area. Herein, an Fe, Cu‐coordinated ZIF‐derived carbon framework (Cu@Fe‐N‐C) with a well‐defined morphology of truncated rhombic dodecahedron is facilely prepared by introducing Fe2+ and Cu2+ during the growth of ZIF‐8, followed by pyrolysis. The obtained Cu@Fe‐N‐C, with bimetallic active sites, large surface area, high nitrogen doping level, and conductive carbon frameworks, exhibits excellent ORR performance. It displays 50 mV higher half‐wave potential (0.892 V) than that of Pt catalysts in an alkaline medium and comparable performance to Pt catalysts in an acidic medium. In addition, it also has excellent durability and methanol resistance ability in both acidic and alkaline solutions, which makes it one of the best Pt‐free catalysts reported to date for ORR. Impressively, when being employed as a cathode catalyst in zinc–air batteries, Cu@Fe‐N‐C presents a higher peak power density of 92 mW cm−2 than that of Pt/C (74 mW cm−2) as well as excellent durability.
Fe, Cu‐coordinated zeolitic imidazole framework–derived carbon framework shows a superior oxygen reduction reaction performance with a half‐wave potential of 0.892 V, 50 mV higher than Pt/C, and excellent stability, resulting from bimetallic active sites, high active N content, and the mesoporous architecture. When employed as cathode catalyst, it also displays a good Zn–air battery performance. |
---|---|
AbstractList | Zeolitic imidazole frameworks (ZIFs) offer rich platforms for rational design and construction of high‐performance nonprecious‐metal oxygen reduction reaction (ORR) catalysts owing to their flexibility, hierarchical porous structures, and high surface area. Herein, an Fe, Cu‐coordinated ZIF‐derived carbon framework (Cu@Fe‐N‐C) with a well‐defined morphology of truncated rhombic dodecahedron is facilely prepared by introducing Fe2+ and Cu2+ during the growth of ZIF‐8, followed by pyrolysis. The obtained Cu@Fe‐N‐C, with bimetallic active sites, large surface area, high nitrogen doping level, and conductive carbon frameworks, exhibits excellent ORR performance. It displays 50 mV higher half‐wave potential (0.892 V) than that of Pt catalysts in an alkaline medium and comparable performance to Pt catalysts in an acidic medium. In addition, it also has excellent durability and methanol resistance ability in both acidic and alkaline solutions, which makes it one of the best Pt‐free catalysts reported to date for ORR. Impressively, when being employed as a cathode catalyst in zinc–air batteries, Cu@Fe‐N‐C presents a higher peak power density of 92 mW cm−2 than that of Pt/C (74 mW cm−2) as well as excellent durability. Zeolitic imidazole frameworks (ZIFs) offer rich platforms for rational design and construction of high‐performance nonprecious‐metal oxygen reduction reaction (ORR) catalysts owing to their flexibility, hierarchical porous structures, and high surface area. Herein, an Fe, Cu‐coordinated ZIF‐derived carbon framework (Cu@Fe‐N‐C) with a well‐defined morphology of truncated rhombic dodecahedron is facilely prepared by introducing Fe2+ and Cu2+ during the growth of ZIF‐8, followed by pyrolysis. The obtained Cu@Fe‐N‐C, with bimetallic active sites, large surface area, high nitrogen doping level, and conductive carbon frameworks, exhibits excellent ORR performance. It displays 50 mV higher half‐wave potential (0.892 V) than that of Pt catalysts in an alkaline medium and comparable performance to Pt catalysts in an acidic medium. In addition, it also has excellent durability and methanol resistance ability in both acidic and alkaline solutions, which makes it one of the best Pt‐free catalysts reported to date for ORR. Impressively, when being employed as a cathode catalyst in zinc–air batteries, Cu@Fe‐N‐C presents a higher peak power density of 92 mW cm−2 than that of Pt/C (74 mW cm−2) as well as excellent durability. Fe, Cu‐coordinated zeolitic imidazole framework–derived carbon framework shows a superior oxygen reduction reaction performance with a half‐wave potential of 0.892 V, 50 mV higher than Pt/C, and excellent stability, resulting from bimetallic active sites, high active N content, and the mesoporous architecture. When employed as cathode catalyst, it also displays a good Zn–air battery performance. Zeolitic imidazole frameworks (ZIFs) offer rich platforms for rational design and construction of high‐performance nonprecious‐metal oxygen reduction reaction (ORR) catalysts owing to their flexibility, hierarchical porous structures, and high surface area. Herein, an Fe, Cu‐coordinated ZIF‐derived carbon framework (Cu@Fe‐N‐C) with a well‐defined morphology of truncated rhombic dodecahedron is facilely prepared by introducing Fe 2+ and Cu 2+ during the growth of ZIF‐8, followed by pyrolysis. The obtained Cu@Fe‐N‐C, with bimetallic active sites, large surface area, high nitrogen doping level, and conductive carbon frameworks, exhibits excellent ORR performance. It displays 50 mV higher half‐wave potential (0.892 V) than that of Pt catalysts in an alkaline medium and comparable performance to Pt catalysts in an acidic medium. In addition, it also has excellent durability and methanol resistance ability in both acidic and alkaline solutions, which makes it one of the best Pt‐free catalysts reported to date for ORR. Impressively, when being employed as a cathode catalyst in zinc–air batteries, Cu@Fe‐N‐C presents a higher peak power density of 92 mW cm −2 than that of Pt/C (74 mW cm −2 ) as well as excellent durability. |
Author | Mu, Shichun Meng, Wenqian Liao, Ke Yang, Jinlong He, Daping Wang, Zhihao Xiong, Yuli Meng, Tian Jin, Huihui |
Author_xml | – sequence: 1 givenname: Zhihao surname: Wang fullname: Wang, Zhihao organization: Wuhan University of Technology – sequence: 2 givenname: Huihui surname: Jin fullname: Jin, Huihui organization: Wuhan University of Technology – sequence: 3 givenname: Tian surname: Meng fullname: Meng, Tian organization: Wuhan University of Technology – sequence: 4 givenname: Ke surname: Liao fullname: Liao, Ke organization: China University of Geosciences – sequence: 5 givenname: Wenqian surname: Meng fullname: Meng, Wenqian organization: China University of Geosciences – sequence: 6 givenname: Jinlong surname: Yang fullname: Yang, Jinlong organization: Wuhan University of Technology – sequence: 7 givenname: Daping orcidid: 0000-0002-0284-4990 surname: He fullname: He, Daping email: hedaping@whut.edu.cn organization: University of Technology – sequence: 8 givenname: Yuli orcidid: 0000-0003-3230-6787 surname: Xiong fullname: Xiong, Yuli email: yuli.xiong@yahoo.com organization: Huazhong University of Science and Technology – sequence: 9 givenname: Shichun orcidid: 0000-0003-3902-0976 surname: Mu fullname: Mu, Shichun email: msc@whut.edu.cn organization: Wuhan University of Technology |
BookMark | eNqFkM1KAzEUhYMoqNWt6wG3tiaZdH6WddrRQqUgCuJmyCQ3ktomNZNau-sjCL5hn8QZKhUEMZucXM53wj3HaN9YAwidEdwhGNNLLtWsQzFJMO2m0R46IhGJ2iGmyf5Ok8dDdFxVE4xJHIfsCPkcLoJssVl_ZNY6qQ33IIOnYV5P-uD0W_3KuCutCXLHZ7C07iVQ1gUDpbTQYHwwfl89gwnuQC6E17ZRfCu4qaO0EZv1Z0-74Ip7X0dCdYIOFJ9WcPp9t9BDPrjPbtqj8fUw643aglEctXlMYxqKUEYsKmkcJhKzNBGAExxixsqSlyrFhANQQmkSEZCxKqWSjKVMcB620Pk2d-7s6wIqX0zswpn6y4KS5qRJ2q1dbOsSzlaVA1UI7XmzgHdcTwuCi6bfoum32PVbY51f2NzpGXerv4F0Cyz1FFb_uIteP7_9Yb8AtCSS-Q |
CitedBy_id | crossref_primary_10_1007_s12274_021_3292_4 crossref_primary_10_1016_j_ccr_2019_04_006 crossref_primary_10_1016_j_jcis_2021_06_128 crossref_primary_10_1007_s12274_020_2702_3 crossref_primary_10_1016_j_electacta_2019_134593 crossref_primary_10_1021_acsomega_3c02544 crossref_primary_10_1039_D1MA00475A crossref_primary_10_1021_acs_jpclett_1c03753 crossref_primary_10_1016_j_carbon_2020_09_024 crossref_primary_10_1021_acs_energyfuels_0c02021 crossref_primary_10_1039_C9EE01722D crossref_primary_10_1142_S1793604723400313 crossref_primary_10_1016_j_cej_2023_144618 crossref_primary_10_1021_acssuschemeng_9b02473 crossref_primary_10_1088_1361_6528_ac8487 crossref_primary_10_1016_j_cis_2022_102668 crossref_primary_10_1016_j_jechem_2021_08_019 crossref_primary_10_1039_D0TA00962H crossref_primary_10_1016_j_cej_2022_138699 crossref_primary_10_1007_s11705_022_2289_1 crossref_primary_10_1002_smtd_202000751 crossref_primary_10_1126_sciadv_aaw2322 crossref_primary_10_1002_celc_202001593 crossref_primary_10_1016_j_jcis_2020_05_042 crossref_primary_10_1016_j_ijhydene_2022_08_011 crossref_primary_10_1039_D0SE00402B crossref_primary_10_1002_adma_202308243 crossref_primary_10_1007_s40820_021_00669_5 crossref_primary_10_1016_j_mtener_2021_100834 crossref_primary_10_1016_j_jechem_2023_01_047 crossref_primary_10_1039_C9CY01188A crossref_primary_10_1149_1945_7111_ac797f crossref_primary_10_1016_j_jallcom_2020_153958 crossref_primary_10_1016_j_jece_2024_113417 crossref_primary_10_1039_D1QM00809A crossref_primary_10_1039_D3EN00601H crossref_primary_10_1016_j_jcis_2022_02_080 crossref_primary_10_1039_D0SC04684A crossref_primary_10_1021_acs_analchem_9b04938 crossref_primary_10_1002_aenm_202100514 crossref_primary_10_1039_D1CC03076K crossref_primary_10_1039_D1TA05039G crossref_primary_10_1002_smll_202300612 crossref_primary_10_1039_D4CC04069D crossref_primary_10_1002_ange_202102053 crossref_primary_10_1016_j_cjsc_2023_100068 crossref_primary_10_1002_ange_201910879 crossref_primary_10_1007_s11581_024_05990_8 crossref_primary_10_1021_acsomega_4c01667 crossref_primary_10_1021_acsaem_9b02315 crossref_primary_10_1016_j_jcis_2021_11_048 crossref_primary_10_1021_acsomega_3c06005 crossref_primary_10_1002_eem2_12085 crossref_primary_10_1039_D2RA06741B crossref_primary_10_1021_acsami_8b20565 crossref_primary_10_1021_acsanm_3c05011 crossref_primary_10_1021_acsanm_3c04040 crossref_primary_10_1016_j_mtener_2021_100826 crossref_primary_10_1039_D2NH00362G crossref_primary_10_1002_sus2_127 crossref_primary_10_1016_j_apenergy_2020_115029 crossref_primary_10_1021_acssuschemeng_4c00459 crossref_primary_10_1016_j_jece_2024_112235 crossref_primary_10_1002_smll_202107141 crossref_primary_10_1039_C9TA02894C crossref_primary_10_1021_acsami_9b04648 crossref_primary_10_1039_D2TA04368H crossref_primary_10_1002_celc_201901106 crossref_primary_10_1016_j_nanoen_2023_108854 crossref_primary_10_1021_acsami_0c09689 crossref_primary_10_1039_D2TA03744K crossref_primary_10_1007_s10853_021_06122_7 crossref_primary_10_1021_acsami_1c09095 crossref_primary_10_12677_MS_2022_1211137 crossref_primary_10_1016_j_jpowsour_2021_229575 crossref_primary_10_1007_s41918_023_00181_x crossref_primary_10_1002_smll_202105409 crossref_primary_10_1039_C9TA05981D crossref_primary_10_1039_D4QI03205E crossref_primary_10_1039_C9CC07489A crossref_primary_10_1016_j_nanoen_2018_12_060 crossref_primary_10_1021_acsaem_4c00660 crossref_primary_10_1007_s12598_023_02401_1 crossref_primary_10_1021_acsaem_4c01992 crossref_primary_10_1002_chem_202005415 crossref_primary_10_1002_smll_202207413 crossref_primary_10_1002_batt_201800105 crossref_primary_10_1016_j_jece_2023_111076 crossref_primary_10_1016_j_jssc_2021_122415 crossref_primary_10_1002_smtd_201800211 crossref_primary_10_1016_j_jcis_2020_06_052 crossref_primary_10_1007_s40843_022_2116_3 crossref_primary_10_1039_D4TA05015K crossref_primary_10_1002_zaac_202200002 crossref_primary_10_1016_j_envres_2020_110486 crossref_primary_10_1039_C9CC09481D crossref_primary_10_1002_ange_201901109 crossref_primary_10_1002_tcr_202100280 crossref_primary_10_1007_s12274_022_4327_1 crossref_primary_10_1016_j_jallcom_2020_154152 crossref_primary_10_1002_adma_202002292 crossref_primary_10_1002_advs_202001069 crossref_primary_10_1016_j_jallcom_2020_157422 crossref_primary_10_1002_aic_18763 crossref_primary_10_1016_j_chemosphere_2021_133455 crossref_primary_10_1007_s12274_019_2415_7 crossref_primary_10_1016_j_fuel_2024_133306 crossref_primary_10_1002_smll_202102300 crossref_primary_10_1021_acsanm_4c04790 crossref_primary_10_1039_D1CC02038B crossref_primary_10_1142_S1088424620500479 crossref_primary_10_1002_er_8004 crossref_primary_10_1002_inf2_12257 crossref_primary_10_1016_j_apcatb_2022_121770 crossref_primary_10_1016_j_apcatb_2023_123679 crossref_primary_10_1007_s10853_023_08551_y crossref_primary_10_1039_D3TA05147A crossref_primary_10_1016_j_jallcom_2024_174334 crossref_primary_10_1021_acs_chemrev_9b00685 crossref_primary_10_1002_admi_202200852 crossref_primary_10_1002_adsu_202000115 crossref_primary_10_1002_smtd_201900571 crossref_primary_10_1016_j_seppur_2023_124545 crossref_primary_10_1016_j_ijbiomac_2023_125363 crossref_primary_10_1039_D3EE04513G crossref_primary_10_1002_slct_202000523 crossref_primary_10_1016_j_ccr_2021_214264 crossref_primary_10_1002_smll_202103747 crossref_primary_10_1039_D0MA00454E crossref_primary_10_1007_s40843_019_1190_3 crossref_primary_10_1016_j_jcis_2019_10_025 crossref_primary_10_1016_j_jiec_2022_09_050 crossref_primary_10_1039_D3CY01042B crossref_primary_10_1016_j_bios_2019_111704 crossref_primary_10_1002_adfm_201808872 crossref_primary_10_1002_advs_202411928 crossref_primary_10_1021_acs_inorgchem_3c04443 crossref_primary_10_1016_j_jcis_2022_10_036 crossref_primary_10_1002_smll_202004614 crossref_primary_10_1002_smll_202301985 crossref_primary_10_1039_D1NR01603B crossref_primary_10_1021_acssuschemeng_9b05710 crossref_primary_10_1039_D0TA05510G crossref_primary_10_1002_cssc_202000537 crossref_primary_10_1002_smll_201903937 crossref_primary_10_1109_TDEI_2024_3495588 crossref_primary_10_3390_catal12121515 crossref_primary_10_1002_smll_202007326 crossref_primary_10_1002_eem2_12128 crossref_primary_10_1021_acs_inorgchem_1c03573 crossref_primary_10_1039_D4NJ02342K crossref_primary_10_1016_j_ijhydene_2019_06_151 crossref_primary_10_1039_C9NR04837E crossref_primary_10_1002_smll_202203147 crossref_primary_10_1007_s40820_024_01580_5 crossref_primary_10_1016_j_apsusc_2020_147818 crossref_primary_10_1021_acscatal_2c01541 crossref_primary_10_1007_s12274_020_2975_6 crossref_primary_10_1016_j_ccr_2023_215602 crossref_primary_10_1021_acsami_9b19268 crossref_primary_10_1002_tcr_202200105 crossref_primary_10_1021_acssuschemeng_2c01086 crossref_primary_10_1002_adma_202208661 crossref_primary_10_1002_cssc_201903071 crossref_primary_10_1016_j_seppur_2024_130644 crossref_primary_10_1007_s10853_020_04772_7 crossref_primary_10_1002_smll_201905889 crossref_primary_10_1021_acsami_1c17352 crossref_primary_10_1002_batt_201800093 crossref_primary_10_1002_smll_202106532 crossref_primary_10_1002_cey2_693 crossref_primary_10_1016_j_carbon_2021_11_017 crossref_primary_10_1016_j_cej_2024_155537 crossref_primary_10_1016_j_ensm_2020_01_016 crossref_primary_10_3390_catal11121550 crossref_primary_10_1002_advs_202305194 crossref_primary_10_1002_smll_202306621 crossref_primary_10_1007_s41918_019_00050_6 crossref_primary_10_1039_D0QM00878H crossref_primary_10_1016_j_cej_2021_131801 crossref_primary_10_3390_catal12050525 crossref_primary_10_1021_acs_inorgchem_0c01879 crossref_primary_10_1016_j_jechem_2020_11_028 crossref_primary_10_1016_j_jpowsour_2025_236859 crossref_primary_10_1021_acs_jpcc_1c02833 crossref_primary_10_3390_catal12121640 crossref_primary_10_1016_j_cej_2019_03_020 crossref_primary_10_1021_acsami_0c15754 crossref_primary_10_1002_advs_202104237 crossref_primary_10_1016_j_ijhydene_2021_03_214 crossref_primary_10_1016_j_jpowsour_2020_228302 crossref_primary_10_1039_C9TA00511K crossref_primary_10_1002_celc_201902085 crossref_primary_10_1016_j_carbon_2020_03_011 crossref_primary_10_1016_j_jcis_2021_06_152 crossref_primary_10_1016_j_joule_2019_12_014 crossref_primary_10_1021_acs_inorgchem_9b03516 crossref_primary_10_1016_j_jcis_2023_03_206 crossref_primary_10_1016_j_jelechem_2024_118178 crossref_primary_10_1039_D2TA09922E crossref_primary_10_1016_j_jcis_2020_10_130 crossref_primary_10_1016_j_cej_2024_155767 crossref_primary_10_1002_adfm_202110851 crossref_primary_10_1039_D0TA10370E crossref_primary_10_1021_acs_energyfuels_2c03812 crossref_primary_10_1016_j_cej_2020_125064 crossref_primary_10_1039_C9TA10079B crossref_primary_10_1039_D1SE00242B crossref_primary_10_1016_j_nanoen_2019_04_076 crossref_primary_10_1016_j_ijhydene_2019_08_190 crossref_primary_10_1021_acsami_1c14387 crossref_primary_10_1016_j_matlet_2020_127861 crossref_primary_10_1039_D0NR07892A crossref_primary_10_1002_ijch_202200058 crossref_primary_10_1002_anie_201901109 crossref_primary_10_1002_smll_202104375 crossref_primary_10_1002_smll_202001257 crossref_primary_10_1016_j_mtener_2019_04_007 crossref_primary_10_1088_1361_6528_abe32f crossref_primary_10_1016_j_cej_2022_139820 crossref_primary_10_1016_j_jcis_2022_08_090 crossref_primary_10_1039_D3EE00747B crossref_primary_10_1039_D4LF00408F crossref_primary_10_1002_cey2_35 crossref_primary_10_1007_s12274_022_4563_4 crossref_primary_10_1002_aenm_201803867 crossref_primary_10_1039_D0EE00832J crossref_primary_10_1039_D3NA00074E crossref_primary_10_1016_j_electacta_2019_135394 crossref_primary_10_1021_acsami_2c04786 crossref_primary_10_1039_D2CP05986J crossref_primary_10_1021_acsami_3c03203 crossref_primary_10_1039_D0TA10267A crossref_primary_10_1002_smll_202310250 crossref_primary_10_1007_s11356_022_22430_0 crossref_primary_10_1016_j_cej_2022_139037 crossref_primary_10_1016_j_cej_2021_130055 crossref_primary_10_1016_j_jechem_2020_08_030 crossref_primary_10_1039_D2NJ03091H crossref_primary_10_1039_C9CC07751K crossref_primary_10_1007_s11051_021_05176_7 crossref_primary_10_1002_smll_202404792 crossref_primary_10_1039_D2QI02564G crossref_primary_10_1016_j_apcatb_2023_123645 crossref_primary_10_1016_j_jcis_2022_07_068 crossref_primary_10_1021_acsaem_9b01181 crossref_primary_10_1016_j_cej_2021_132102 crossref_primary_10_1021_acs_jcim_2c00579 crossref_primary_10_1016_j_catcom_2022_106439 crossref_primary_10_1016_j_mtener_2021_100682 crossref_primary_10_1007_s12274_021_3827_8 crossref_primary_10_1016_j_jcis_2020_02_005 crossref_primary_10_1016_j_jre_2024_04_005 crossref_primary_10_1088_2515_7655_ad4f15 crossref_primary_10_1016_j_jallcom_2020_156395 crossref_primary_10_1007_s40820_021_00656_w crossref_primary_10_1002_adts_202100196 crossref_primary_10_1007_s11581_019_03390_x crossref_primary_10_1016_j_jallcom_2019_04_325 crossref_primary_10_1002_eom2_12018 crossref_primary_10_1039_D3QM00973D crossref_primary_10_1039_D0QI01437K crossref_primary_10_3390_catal13020393 crossref_primary_10_1016_j_colsurfa_2024_135497 crossref_primary_10_1016_j_jcis_2024_06_033 crossref_primary_10_1002_anie_202102053 crossref_primary_10_1016_j_cej_2019_122106 crossref_primary_10_1016_j_jcis_2020_09_002 crossref_primary_10_1016_j_ijhydene_2023_08_353 crossref_primary_10_1039_D0NR03378B crossref_primary_10_1007_s40820_020_00581_4 crossref_primary_10_1002_adfm_201900015 crossref_primary_10_1016_j_fuel_2024_132326 crossref_primary_10_1016_j_ccr_2022_214669 crossref_primary_10_1016_j_ccr_2023_215492 crossref_primary_10_1007_s40820_020_00435_z crossref_primary_10_1039_D3NR02025H crossref_primary_10_1002_er_7200 crossref_primary_10_1016_j_cej_2022_135377 crossref_primary_10_1016_j_electacta_2019_06_122 crossref_primary_10_1002_adfm_202003870 crossref_primary_10_1039_D4TA02444C crossref_primary_10_1007_s12274_021_3422_z crossref_primary_10_1016_j_apcatb_2024_124450 crossref_primary_10_1016_j_cej_2019_123683 crossref_primary_10_1021_acs_iecr_2c01350 crossref_primary_10_1039_C9CY01131E crossref_primary_10_1039_D0NR03987J crossref_primary_10_1038_s43246_024_00662_6 crossref_primary_10_1021_acsanm_4c06339 crossref_primary_10_1002_ejic_201901244 crossref_primary_10_1016_j_cej_2021_130401 crossref_primary_10_1039_D0DT04000B crossref_primary_10_1002_aenm_201902736 crossref_primary_10_1016_j_ccr_2022_214777 crossref_primary_10_1039_D1TC02734D crossref_primary_10_1002_celc_201901167 crossref_primary_10_1002_asia_202401761 crossref_primary_10_1039_D3CY01746J crossref_primary_10_1021_acscatal_0c04415 crossref_primary_10_3390_polym13162646 crossref_primary_10_1016_j_ces_2023_118654 crossref_primary_10_1039_D4CE00756E crossref_primary_10_1016_j_cej_2021_133246 crossref_primary_10_1016_j_ijhydene_2019_03_215 crossref_primary_10_1021_acsanm_0c02698 crossref_primary_10_1016_j_jcis_2022_11_118 crossref_primary_10_1002_cctc_202301379 crossref_primary_10_1016_j_jallcom_2021_160838 crossref_primary_10_1016_j_aca_2019_11_054 crossref_primary_10_1002_advs_202405308 crossref_primary_10_1002_elan_202200266 crossref_primary_10_1002_smtd_201900159 crossref_primary_10_1002_aenm_202000814 crossref_primary_10_1016_j_mser_2024_100822 crossref_primary_10_1016_j_jcis_2021_07_125 crossref_primary_10_1021_acsami_1c22641 crossref_primary_10_1016_j_jcis_2023_10_098 crossref_primary_10_1021_acsami_9b07436 crossref_primary_10_1007_s11581_021_04261_0 crossref_primary_10_1021_acsami_0c22573 crossref_primary_10_1021_acsami_9b10398 crossref_primary_10_1021_acs_inorgchem_4c04944 crossref_primary_10_3389_fmats_2019_00261 crossref_primary_10_1002_chem_201902389 crossref_primary_10_1016_j_ijhydene_2022_05_176 crossref_primary_10_1016_j_carbon_2022_01_057 crossref_primary_10_1016_j_ijhydene_2020_01_036 crossref_primary_10_1039_D0TA01565B crossref_primary_10_3389_fchem_2022_881172 crossref_primary_10_1021_acsami_3c19483 crossref_primary_10_1021_acsanm_3c05050 crossref_primary_10_1016_j_cej_2021_130785 crossref_primary_10_1016_j_mtener_2019_07_006 crossref_primary_10_1021_acsnano_1c04471 crossref_primary_10_1021_acsami_9b03518 crossref_primary_10_1039_C9TA13471A crossref_primary_10_1021_acssuschemeng_1c04745 crossref_primary_10_1039_D2TA02076A crossref_primary_10_1021_acssuschemeng_0c05509 crossref_primary_10_1149_1945_7111_ab6b05 crossref_primary_10_1016_j_ces_2023_119049 crossref_primary_10_1021_acsaem_2c03936 crossref_primary_10_1016_j_ccr_2020_213619 crossref_primary_10_1021_acssuschemeng_9b05567 crossref_primary_10_1016_j_electacta_2020_136568 crossref_primary_10_1016_j_ijhydene_2020_09_109 crossref_primary_10_1002_celc_201801859 crossref_primary_10_1002_adfm_202003947 crossref_primary_10_1002_advs_202406659 crossref_primary_10_1039_D0TA09115D crossref_primary_10_1002_smll_202007264 crossref_primary_10_1016_j_jelechem_2020_114389 crossref_primary_10_1002_anie_201910879 crossref_primary_10_1016_j_cej_2023_144743 crossref_primary_10_1016_j_cej_2021_130434 crossref_primary_10_1016_j_diamond_2024_111683 crossref_primary_10_1021_acssuschemeng_9b04244 crossref_primary_10_1073_pnas_2105610118 crossref_primary_10_1039_D1TA06611K crossref_primary_10_1016_j_cej_2022_137112 crossref_primary_10_34133_2020_9512763 crossref_primary_10_1002_adfm_202001097 crossref_primary_10_1021_acsaem_2c01507 crossref_primary_10_1016_j_nxsust_2023_100014 crossref_primary_10_1021_acsaem_2c02838 crossref_primary_10_1002_advs_202102209 crossref_primary_10_1002_smll_202205033 crossref_primary_10_1016_j_jallcom_2020_156256 crossref_primary_10_1007_s40820_020_00538_7 crossref_primary_10_1021_acsami_1c06750 crossref_primary_10_1021_acs_langmuir_1c01548 crossref_primary_10_1002_smll_202411574 crossref_primary_10_1039_C9TA14231B |
Cites_doi | 10.1038/ncomms6285 10.1002/aenm.201700193 10.1039/C6TA03265F 10.1016/j.micromeso.2013.10.003 10.1039/C5TA09232A 10.1038/ncomms9618 10.1002/smll.201700740 10.1002/adfm.201702300 10.1126/science.1200832 10.1021/ja3030565 10.1002/adma.201302786 10.1002/anie.201702473 10.1021/jp047349j 10.1039/C7NR01925D 10.1039/c3sc51052b 10.1039/C4CY01505C 10.1016/j.elecom.2011.03.018 10.1021/jacs.7b10385 10.1039/C7NR04349J 10.1016/j.nanoen.2016.04.042 10.1002/aenm.201602420 10.1002/aenm.201301735 10.1002/adfm.201705048 10.1002/adma.201505855 10.1021/acs.chemrev.5b00462 10.1021/jacs.7b06514 10.1002/adma.201505045 10.1002/adfm.201704638 10.1002/adfm.201701833 10.1021/acsami.6b04189 10.1021/ic9022486 10.1021/acsami.6b16851 10.1002/adma.201606534 10.1021/ja405149m |
ContentType | Journal Article |
Copyright | 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.201802596 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adfm_201802596 ADFM201802596 |
Genre | article |
GrantInformation_xml | – fundername: National Science Foundation for Post‐doctoral Scientists of China funderid: 2016M602292 – fundername: Special financial aid to post‐doctor research fellow funderid: 2017T100548 – fundername: National Natural Science Foundation of China funderid: 51701146; 51672204 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ AANHP AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION FEDTE HF~ HVGLF 7SP 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M |
ID | FETCH-LOGICAL-c4206-a72723c3d646b2738d0498ce0803044bbabf901aee2122861ed7fbdfd4494caa3 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Fri Jul 25 07:34:38 EDT 2025 Thu Apr 24 23:06:55 EDT 2025 Tue Jul 01 04:11:50 EDT 2025 Wed Jan 22 16:58:33 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 39 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4206-a72723c3d646b2738d0498ce0803044bbabf901aee2122861ed7fbdfd4494caa3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-0284-4990 0000-0003-3902-0976 0000-0003-3230-6787 |
PQID | 2111119895 |
PQPubID | 2045204 |
PageCount | 8 |
ParticipantIDs | proquest_journals_2111119895 crossref_citationtrail_10_1002_adfm_201802596 crossref_primary_10_1002_adfm_201802596 wiley_primary_10_1002_adfm_201802596_ADFM201802596 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 26, 2018 |
PublicationDateYYYYMMDD | 2018-09-26 |
PublicationDate_xml | – month: 09 year: 2018 text: September 26, 2018 day: 26 |
PublicationDecade | 2010 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2018 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2016; 4 2017 2014; 13 5 2017; 7 2017 2017 2017; 9 29 7 2018; 28 2015; 6 2013; 4 2012; 134 2011 2014; 332 4 2015 2014; 5 184 2017 2017 2018; 27 27 28 2016; 116 2013 2011; 25 13 2016; 28 2004; 108 2016; 8 2017; 9 2010 2016 2013; 49 28 135 2017; 139 2017 2016 2017 2017; 56 25 5 139 e_1_2_7_4_3 e_1_2_7_6_1 e_1_2_7_4_2 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_1_3 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_6_3 e_1_2_7_7_2 e_1_2_7_8_1 e_1_2_7_6_2 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_15_2 e_1_2_7_16_1 e_1_2_7_1_2 e_1_2_7_2_1 e_1_2_7_14_2 e_1_2_7_15_1 e_1_2_7_1_1 e_1_2_7_14_1 e_1_2_7_10_4 e_1_2_7_13_1 e_1_2_7_10_3 e_1_2_7_12_1 e_1_2_7_10_2 e_1_2_7_11_1 e_1_2_7_10_1 e_1_2_7_21_2 e_1_2_7_21_1 e_1_2_7_20_1 |
References_xml | – volume: 13 5 start-page: 1700740 5285 year: 2017 2014 publication-title: Small Nat. Commun. – volume: 9 start-page: 7641 year: 2017 publication-title: Nanoscale – volume: 4 start-page: 11357 year: 2016 publication-title: J. Mater. Chem. A. – volume: 332 4 start-page: 443 1301735 year: 2011 2014 publication-title: Science Adv. Energy Mater. – volume: 28 start-page: 1704638 year: 2018 publication-title: Adv. Funct. Mater. – volume: 6 start-page: 8618 year: 2015 publication-title: Nat. Commun. – volume: 56 25 5 139 start-page: 6937 110 1930 14143 year: 2017 2016 2017 2017 publication-title: Angew. Chem., Int. Ed. Nano Energy J. Mater. Chem. A. J. Am. Chem. Soc. – volume: 9 start-page: 13257 year: 2017 publication-title: Nanoscale – volume: 9 29 7 start-page: 9699 1606534 1602420 year: 2017 2017 2017 publication-title: ACS Appl. Mater. Interfaces Adv. Mater. Adv. Energy Mater. – volume: 5 184 start-page: 1829 55 year: 2015 2014 publication-title: Catal. Sci. Technol. Microporous Mesoporous Mater. – volume: 116 start-page: 3594 year: 2016 publication-title: Chem. Rev. – volume: 25 13 start-page: 6879 593 year: 2013 2011 publication-title: Adv. Mater. Electrochem. Commun. – volume: 139 start-page: 17281 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 134 start-page: 9082 year: 2012 publication-title: J. Am. Chem. Soc. – volume: 108 start-page: 17886 year: 2004 publication-title: J. Phys. Chem. B. – volume: 28 start-page: 4606 year: 2016 publication-title: Adv. Mater. – volume: 49 28 135 start-page: 3557 1668 15443 year: 2010 2016 2013 publication-title: Inorg. Chem. Adv. Mater. J. Am. Chem. Soc. – volume: 27 27 28 start-page: 1702300 1701833 1705048 year: 2017 2017 2018 publication-title: Adv. Funct. Mater. Adv. Funct. Mater. Adv. Funct. Mater. – volume: 4 start-page: 2941 year: 2013 publication-title: Chem. Sci. – volume: 8 start-page: 21431 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 7 start-page: 1700193 year: 2017 publication-title: Adv. Energy Mater. – ident: e_1_2_7_14_2 doi: 10.1038/ncomms6285 – ident: e_1_2_7_13_1 doi: 10.1002/aenm.201700193 – ident: e_1_2_7_5_1 doi: 10.1039/C6TA03265F – ident: e_1_2_7_15_2 doi: 10.1016/j.micromeso.2013.10.003 – ident: e_1_2_7_10_3 doi: 10.1039/C5TA09232A – ident: e_1_2_7_17_1 doi: 10.1038/ncomms9618 – ident: e_1_2_7_14_1 doi: 10.1002/smll.201700740 – ident: e_1_2_7_1_1 doi: 10.1002/adfm.201702300 – ident: e_1_2_7_7_1 doi: 10.1126/science.1200832 – ident: e_1_2_7_18_1 doi: 10.1021/ja3030565 – ident: e_1_2_7_21_1 doi: 10.1002/adma.201302786 – ident: e_1_2_7_10_1 doi: 10.1002/anie.201702473 – ident: e_1_2_7_12_1 doi: 10.1021/jp047349j – ident: e_1_2_7_19_1 doi: 10.1039/C7NR01925D – ident: e_1_2_7_9_1 doi: 10.1039/c3sc51052b – ident: e_1_2_7_15_1 doi: 10.1039/C4CY01505C – ident: e_1_2_7_21_2 doi: 10.1016/j.elecom.2011.03.018 – ident: e_1_2_7_11_1 doi: 10.1021/jacs.7b10385 – ident: e_1_2_7_16_1 doi: 10.1039/C7NR04349J – ident: e_1_2_7_10_2 doi: 10.1016/j.nanoen.2016.04.042 – ident: e_1_2_7_6_3 doi: 10.1002/aenm.201602420 – ident: e_1_2_7_7_2 doi: 10.1002/aenm.201301735 – ident: e_1_2_7_1_3 doi: 10.1002/adfm.201705048 – ident: e_1_2_7_2_1 doi: 10.1002/adma.201505855 – ident: e_1_2_7_3_1 doi: 10.1021/acs.chemrev.5b00462 – ident: e_1_2_7_10_4 doi: 10.1021/jacs.7b06514 – ident: e_1_2_7_4_2 doi: 10.1002/adma.201505045 – ident: e_1_2_7_20_1 doi: 10.1002/adfm.201704638 – ident: e_1_2_7_1_2 doi: 10.1002/adfm.201701833 – ident: e_1_2_7_8_1 doi: 10.1021/acsami.6b04189 – ident: e_1_2_7_4_1 doi: 10.1021/ic9022486 – ident: e_1_2_7_6_1 doi: 10.1021/acsami.6b16851 – ident: e_1_2_7_6_2 doi: 10.1002/adma.201606534 – ident: e_1_2_7_4_3 doi: 10.1021/ja405149m |
SSID | ssj0017734 |
Score | 2.6779652 |
Snippet | Zeolitic imidazole frameworks (ZIFs) offer rich platforms for rational design and construction of high‐performance nonprecious‐metal oxygen reduction reaction... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Batteries Bimetals Carbon Catalysis Catalysts Copper Durability Fe‐Cu coordination Imidazole Materials science Metal air batteries Morphology Nitrogen oxygen reduction reaction Oxygen reduction reactions Pyrolysis Structural hierarchy Surface area Zinc Zinc-oxygen batteries zinc–air batteries |
Title | Fe, Cu‐Coordinated ZIF‐Derived Carbon Framework for Efficient Oxygen Reduction Reaction and Zinc–Air Batteries |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201802596 https://www.proquest.com/docview/2111119895 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5EL3rwLVar7EHwYjTZbLfJsbQGFavgA4qXsK9AUVKpragnf4LgP-wvcSZpYhVE0Ntu2B2S3dnMN7sz3xKyw2pMgnesHB56HBwU6Tuh0nXHM4EGhwIwc4DJye0zcXTNTzq1zkQWf84PUW644crI_te4wKV6OPgkDZUmwUxyZDCrhci5jQFbiIouSv4or17Pj5WFhwFeXqdgbXTZwdfuX63SJ9ScBKyZxYkWiCzeNQ80ud0fDtS-fvlG4_ifj1kk82M4Shu5_iyRKZsuk7kJksIVMojsHm0OR69vzR54qt0U0KmhN8cRPGlBm0eoNWVf9VIaFZFeFKAwPczYKcCo0fOnZ9BTeoE0sagIUMrzKahMQVQ31aPX90a3T3O2T3DeV8l1dHjVPHLGdzU4mjNXOBIPdH3tG8GFwnQfA65HoC0AUt_lXCmpEoAe0lqwlSwQnjX1RJnEcB5yLaW_RqbTXmrXCRUiBGncIPgCGa4MvCS0CnCidsGUmgpxirmK9ZjIHO_TuItzCmYW42jG5WhWyG7Z_j6n8PixZbWY-ni8lB9ihkYFI8tqFcKyOfxFStxoRe2ytvGXTptkFssYl8JElUwP-kO7BeBnoLbJTKPVPr3czhT9A8Gw_ic |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NThRBEK4gHNSDgEpYReiDxosDO729vTMHDptdJrvCYkIg2XgZ-2-SDWbW7I-KJx6BhCfxVXwEnsSq-QNMjAkJB2_Tk55Kz3RV11c9VV8DvOZNrjA61p4IfYEBimp4oTYtz7eBwYACMXNAxcmDQ9k7Ee-HzeEC_CxrYXJ-iGrDjSwjW6_JwGlDeueaNVTZhErJicKsGcoir3LfnX3DqG262-_iFL_hPNo77vS84mABzwiOEbSiv48N07BSSE21KRZxcmAcoieM7oXWSifoJ5VzuLDzQPrOthJtEytEKIxSDZT7AJboGHGi6-8eVYxVfquV_8iWPqWU-cOSJ7LOd26P97YfvAa3NyFy5uOiZfhVfp08teV0ez7T2-bHH8SR_9XnW4EnBeJm7dxEVmHBpU_h8Q0exmcwi9w71plfnV90xjiuUYoA3LKP_QjvdLHPV2x11ESPUxaVyWwM0T7bywg40G-zD9_P0BTZETHhkq7jVV4ywlSKokapuTq_bI8mLCc0Hbnpczi5l9deg8V0nLp1YFKGKE1Ywpcoo64CPwmdRihs6ogWbA28UjliU3C105Ehn-OcZZrHNHtxNXs1eFv1_5KzlPy150apa3GxWk1jTn6TkueaNeCZ0vxDStzuRoOq9eIuD23Bw97x4CA-6B_uv4RHdJ_ScLjcgMXZZO5eIdab6c3Muhh8um99_A0l0loq |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NThRBEK4gJEYPIiphFaQPGi8O7PT29s4cOGx2mLAiaIgkGy9D_02y0cyS_VHxxCOQ8CK-iq_Ak1A1f4CJITHh4G160lOZ6a7q-mq66muAV7zNFUbH2hOhLzBAUS0v1Kbj-TYwGFAgZg6oOHlvX-4cineD9mAOflW1MAU_RP3DjSwjX6_JwI9tunlFGqpsSpXkxGDWDmWZVrnrTr5j0DbZ6kc4w685j7c_9Xa88lwBzwiOAbSizceWaVkppKbSFIswOTAOwRMG90JrpVN0k8o5XNd5IH1nO6m2qRUiFEapFsq9BwtCNkM6LCI6qAmr_E6n2MeWPmWU-YOKJrLJN2--7003eIVtryPk3MXFi_C7Gpwis-XLxmyqN8zPP3gj_6fRewyPSrzNuoWBLMGcy57Aw2ssjE9hGru3rDe7OD3rjfC9hhnCb8s-92O8E2Gfb9jqqbEeZSyuUtkYYn22ndNvoNdmH36coCGyA-LBJU3Hq6JghKkMRQ0zc3F63h2OWUFnOnSTZ3B4J5-9DPPZKHMrwKQMUZqwhC5RRlMFfho6jUDYNBEr2AZ4lW4kpmRqpwNDviYFxzRPaPaSevYa8Kbuf1xwlPy152qlakm5Vk0STl6TUufaDeC5ztwiJelG8V7dev4vD63D_Y9RnLzv7---gAd0m3JwuFyF-el45tYQ6E31y9y2GBzdtTpeAp4tWNk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fe%2C+Cu%E2%80%90Coordinated+ZIF%E2%80%90Derived+Carbon+Framework+for+Efficient+Oxygen+Reduction+Reaction+and+Zinc%E2%80%93Air+Batteries&rft.jtitle=Advanced+functional+materials&rft.au=Wang%2C+Zhihao&rft.au=Jin%2C+Huihui&rft.au=Tian+Meng&rft.au=Liao%2C+Ke&rft.date=2018-09-26&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=28&rft.issue=39&rft_id=info:doi/10.1002%2Fadfm.201802596&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |