Fe, Cu‐Coordinated ZIF‐Derived Carbon Framework for Efficient Oxygen Reduction Reaction and Zinc–Air Batteries

Zeolitic imidazole frameworks (ZIFs) offer rich platforms for rational design and construction of high‐performance nonprecious‐metal oxygen reduction reaction (ORR) catalysts owing to their flexibility, hierarchical porous structures, and high surface area. Herein, an Fe, Cu‐coordinated ZIF‐derived...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 28; no. 39
Main Authors Wang, Zhihao, Jin, Huihui, Meng, Tian, Liao, Ke, Meng, Wenqian, Yang, Jinlong, He, Daping, Xiong, Yuli, Mu, Shichun
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 26.09.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Zeolitic imidazole frameworks (ZIFs) offer rich platforms for rational design and construction of high‐performance nonprecious‐metal oxygen reduction reaction (ORR) catalysts owing to their flexibility, hierarchical porous structures, and high surface area. Herein, an Fe, Cu‐coordinated ZIF‐derived carbon framework (Cu@Fe‐N‐C) with a well‐defined morphology of truncated rhombic dodecahedron is facilely prepared by introducing Fe2+ and Cu2+ during the growth of ZIF‐8, followed by pyrolysis. The obtained Cu@Fe‐N‐C, with bimetallic active sites, large surface area, high nitrogen doping level, and conductive carbon frameworks, exhibits excellent ORR performance. It displays 50 mV higher half‐wave potential (0.892 V) than that of Pt catalysts in an alkaline medium and comparable performance to Pt catalysts in an acidic medium. In addition, it also has excellent durability and methanol resistance ability in both acidic and alkaline solutions, which makes it one of the best Pt‐free catalysts reported to date for ORR. Impressively, when being employed as a cathode catalyst in zinc–air batteries, Cu@Fe‐N‐C presents a higher peak power density of 92 mW cm−2 than that of Pt/C (74 mW cm−2) as well as excellent durability. Fe, Cu‐coordinated zeolitic imidazole framework–derived carbon framework shows a superior oxygen reduction reaction performance with a half‐wave potential of 0.892 V, 50 mV higher than Pt/C, and excellent stability, resulting from bimetallic active sites, high active N content, and the mesoporous architecture. When employed as cathode catalyst, it also displays a good Zn–air battery performance.
AbstractList Zeolitic imidazole frameworks (ZIFs) offer rich platforms for rational design and construction of high‐performance nonprecious‐metal oxygen reduction reaction (ORR) catalysts owing to their flexibility, hierarchical porous structures, and high surface area. Herein, an Fe, Cu‐coordinated ZIF‐derived carbon framework (Cu@Fe‐N‐C) with a well‐defined morphology of truncated rhombic dodecahedron is facilely prepared by introducing Fe2+ and Cu2+ during the growth of ZIF‐8, followed by pyrolysis. The obtained Cu@Fe‐N‐C, with bimetallic active sites, large surface area, high nitrogen doping level, and conductive carbon frameworks, exhibits excellent ORR performance. It displays 50 mV higher half‐wave potential (0.892 V) than that of Pt catalysts in an alkaline medium and comparable performance to Pt catalysts in an acidic medium. In addition, it also has excellent durability and methanol resistance ability in both acidic and alkaline solutions, which makes it one of the best Pt‐free catalysts reported to date for ORR. Impressively, when being employed as a cathode catalyst in zinc–air batteries, Cu@Fe‐N‐C presents a higher peak power density of 92 mW cm−2 than that of Pt/C (74 mW cm−2) as well as excellent durability.
Zeolitic imidazole frameworks (ZIFs) offer rich platforms for rational design and construction of high‐performance nonprecious‐metal oxygen reduction reaction (ORR) catalysts owing to their flexibility, hierarchical porous structures, and high surface area. Herein, an Fe, Cu‐coordinated ZIF‐derived carbon framework (Cu@Fe‐N‐C) with a well‐defined morphology of truncated rhombic dodecahedron is facilely prepared by introducing Fe2+ and Cu2+ during the growth of ZIF‐8, followed by pyrolysis. The obtained Cu@Fe‐N‐C, with bimetallic active sites, large surface area, high nitrogen doping level, and conductive carbon frameworks, exhibits excellent ORR performance. It displays 50 mV higher half‐wave potential (0.892 V) than that of Pt catalysts in an alkaline medium and comparable performance to Pt catalysts in an acidic medium. In addition, it also has excellent durability and methanol resistance ability in both acidic and alkaline solutions, which makes it one of the best Pt‐free catalysts reported to date for ORR. Impressively, when being employed as a cathode catalyst in zinc–air batteries, Cu@Fe‐N‐C presents a higher peak power density of 92 mW cm−2 than that of Pt/C (74 mW cm−2) as well as excellent durability. Fe, Cu‐coordinated zeolitic imidazole framework–derived carbon framework shows a superior oxygen reduction reaction performance with a half‐wave potential of 0.892 V, 50 mV higher than Pt/C, and excellent stability, resulting from bimetallic active sites, high active N content, and the mesoporous architecture. When employed as cathode catalyst, it also displays a good Zn–air battery performance.
Zeolitic imidazole frameworks (ZIFs) offer rich platforms for rational design and construction of high‐performance nonprecious‐metal oxygen reduction reaction (ORR) catalysts owing to their flexibility, hierarchical porous structures, and high surface area. Herein, an Fe, Cu‐coordinated ZIF‐derived carbon framework (Cu@Fe‐N‐C) with a well‐defined morphology of truncated rhombic dodecahedron is facilely prepared by introducing Fe 2+ and Cu 2+ during the growth of ZIF‐8, followed by pyrolysis. The obtained Cu@Fe‐N‐C, with bimetallic active sites, large surface area, high nitrogen doping level, and conductive carbon frameworks, exhibits excellent ORR performance. It displays 50 mV higher half‐wave potential (0.892 V) than that of Pt catalysts in an alkaline medium and comparable performance to Pt catalysts in an acidic medium. In addition, it also has excellent durability and methanol resistance ability in both acidic and alkaline solutions, which makes it one of the best Pt‐free catalysts reported to date for ORR. Impressively, when being employed as a cathode catalyst in zinc–air batteries, Cu@Fe‐N‐C presents a higher peak power density of 92 mW cm −2 than that of Pt/C (74 mW cm −2 ) as well as excellent durability.
Author Mu, Shichun
Meng, Wenqian
Liao, Ke
Yang, Jinlong
He, Daping
Wang, Zhihao
Xiong, Yuli
Meng, Tian
Jin, Huihui
Author_xml – sequence: 1
  givenname: Zhihao
  surname: Wang
  fullname: Wang, Zhihao
  organization: Wuhan University of Technology
– sequence: 2
  givenname: Huihui
  surname: Jin
  fullname: Jin, Huihui
  organization: Wuhan University of Technology
– sequence: 3
  givenname: Tian
  surname: Meng
  fullname: Meng, Tian
  organization: Wuhan University of Technology
– sequence: 4
  givenname: Ke
  surname: Liao
  fullname: Liao, Ke
  organization: China University of Geosciences
– sequence: 5
  givenname: Wenqian
  surname: Meng
  fullname: Meng, Wenqian
  organization: China University of Geosciences
– sequence: 6
  givenname: Jinlong
  surname: Yang
  fullname: Yang, Jinlong
  organization: Wuhan University of Technology
– sequence: 7
  givenname: Daping
  orcidid: 0000-0002-0284-4990
  surname: He
  fullname: He, Daping
  email: hedaping@whut.edu.cn
  organization: University of Technology
– sequence: 8
  givenname: Yuli
  orcidid: 0000-0003-3230-6787
  surname: Xiong
  fullname: Xiong, Yuli
  email: yuli.xiong@yahoo.com
  organization: Huazhong University of Science and Technology
– sequence: 9
  givenname: Shichun
  orcidid: 0000-0003-3902-0976
  surname: Mu
  fullname: Mu, Shichun
  email: msc@whut.edu.cn
  organization: Wuhan University of Technology
BookMark eNqFkM1KAzEUhYMoqNWt6wG3tiaZdH6WddrRQqUgCuJmyCQ3ktomNZNau-sjCL5hn8QZKhUEMZucXM53wj3HaN9YAwidEdwhGNNLLtWsQzFJMO2m0R46IhGJ2iGmyf5Ok8dDdFxVE4xJHIfsCPkcLoJssVl_ZNY6qQ33IIOnYV5P-uD0W_3KuCutCXLHZ7C07iVQ1gUDpbTQYHwwfl89gwnuQC6E17ZRfCu4qaO0EZv1Z0-74Ip7X0dCdYIOFJ9WcPp9t9BDPrjPbtqj8fUw643aglEctXlMYxqKUEYsKmkcJhKzNBGAExxixsqSlyrFhANQQmkSEZCxKqWSjKVMcB620Pk2d-7s6wIqX0zswpn6y4KS5qRJ2q1dbOsSzlaVA1UI7XmzgHdcTwuCi6bfoum32PVbY51f2NzpGXerv4F0Cyz1FFb_uIteP7_9Yb8AtCSS-Q
CitedBy_id crossref_primary_10_1007_s12274_021_3292_4
crossref_primary_10_1016_j_ccr_2019_04_006
crossref_primary_10_1016_j_jcis_2021_06_128
crossref_primary_10_1007_s12274_020_2702_3
crossref_primary_10_1016_j_electacta_2019_134593
crossref_primary_10_1021_acsomega_3c02544
crossref_primary_10_1039_D1MA00475A
crossref_primary_10_1021_acs_jpclett_1c03753
crossref_primary_10_1016_j_carbon_2020_09_024
crossref_primary_10_1021_acs_energyfuels_0c02021
crossref_primary_10_1039_C9EE01722D
crossref_primary_10_1142_S1793604723400313
crossref_primary_10_1016_j_cej_2023_144618
crossref_primary_10_1021_acssuschemeng_9b02473
crossref_primary_10_1088_1361_6528_ac8487
crossref_primary_10_1016_j_cis_2022_102668
crossref_primary_10_1016_j_jechem_2021_08_019
crossref_primary_10_1039_D0TA00962H
crossref_primary_10_1016_j_cej_2022_138699
crossref_primary_10_1007_s11705_022_2289_1
crossref_primary_10_1002_smtd_202000751
crossref_primary_10_1126_sciadv_aaw2322
crossref_primary_10_1002_celc_202001593
crossref_primary_10_1016_j_jcis_2020_05_042
crossref_primary_10_1016_j_ijhydene_2022_08_011
crossref_primary_10_1039_D0SE00402B
crossref_primary_10_1002_adma_202308243
crossref_primary_10_1007_s40820_021_00669_5
crossref_primary_10_1016_j_mtener_2021_100834
crossref_primary_10_1016_j_jechem_2023_01_047
crossref_primary_10_1039_C9CY01188A
crossref_primary_10_1149_1945_7111_ac797f
crossref_primary_10_1016_j_jallcom_2020_153958
crossref_primary_10_1016_j_jece_2024_113417
crossref_primary_10_1039_D1QM00809A
crossref_primary_10_1039_D3EN00601H
crossref_primary_10_1016_j_jcis_2022_02_080
crossref_primary_10_1039_D0SC04684A
crossref_primary_10_1021_acs_analchem_9b04938
crossref_primary_10_1002_aenm_202100514
crossref_primary_10_1039_D1CC03076K
crossref_primary_10_1039_D1TA05039G
crossref_primary_10_1002_smll_202300612
crossref_primary_10_1039_D4CC04069D
crossref_primary_10_1002_ange_202102053
crossref_primary_10_1016_j_cjsc_2023_100068
crossref_primary_10_1002_ange_201910879
crossref_primary_10_1007_s11581_024_05990_8
crossref_primary_10_1021_acsomega_4c01667
crossref_primary_10_1021_acsaem_9b02315
crossref_primary_10_1016_j_jcis_2021_11_048
crossref_primary_10_1021_acsomega_3c06005
crossref_primary_10_1002_eem2_12085
crossref_primary_10_1039_D2RA06741B
crossref_primary_10_1021_acsami_8b20565
crossref_primary_10_1021_acsanm_3c05011
crossref_primary_10_1021_acsanm_3c04040
crossref_primary_10_1016_j_mtener_2021_100826
crossref_primary_10_1039_D2NH00362G
crossref_primary_10_1002_sus2_127
crossref_primary_10_1016_j_apenergy_2020_115029
crossref_primary_10_1021_acssuschemeng_4c00459
crossref_primary_10_1016_j_jece_2024_112235
crossref_primary_10_1002_smll_202107141
crossref_primary_10_1039_C9TA02894C
crossref_primary_10_1021_acsami_9b04648
crossref_primary_10_1039_D2TA04368H
crossref_primary_10_1002_celc_201901106
crossref_primary_10_1016_j_nanoen_2023_108854
crossref_primary_10_1021_acsami_0c09689
crossref_primary_10_1039_D2TA03744K
crossref_primary_10_1007_s10853_021_06122_7
crossref_primary_10_1021_acsami_1c09095
crossref_primary_10_12677_MS_2022_1211137
crossref_primary_10_1016_j_jpowsour_2021_229575
crossref_primary_10_1007_s41918_023_00181_x
crossref_primary_10_1002_smll_202105409
crossref_primary_10_1039_C9TA05981D
crossref_primary_10_1039_D4QI03205E
crossref_primary_10_1039_C9CC07489A
crossref_primary_10_1016_j_nanoen_2018_12_060
crossref_primary_10_1021_acsaem_4c00660
crossref_primary_10_1007_s12598_023_02401_1
crossref_primary_10_1021_acsaem_4c01992
crossref_primary_10_1002_chem_202005415
crossref_primary_10_1002_smll_202207413
crossref_primary_10_1002_batt_201800105
crossref_primary_10_1016_j_jece_2023_111076
crossref_primary_10_1016_j_jssc_2021_122415
crossref_primary_10_1002_smtd_201800211
crossref_primary_10_1016_j_jcis_2020_06_052
crossref_primary_10_1007_s40843_022_2116_3
crossref_primary_10_1039_D4TA05015K
crossref_primary_10_1002_zaac_202200002
crossref_primary_10_1016_j_envres_2020_110486
crossref_primary_10_1039_C9CC09481D
crossref_primary_10_1002_ange_201901109
crossref_primary_10_1002_tcr_202100280
crossref_primary_10_1007_s12274_022_4327_1
crossref_primary_10_1016_j_jallcom_2020_154152
crossref_primary_10_1002_adma_202002292
crossref_primary_10_1002_advs_202001069
crossref_primary_10_1016_j_jallcom_2020_157422
crossref_primary_10_1002_aic_18763
crossref_primary_10_1016_j_chemosphere_2021_133455
crossref_primary_10_1007_s12274_019_2415_7
crossref_primary_10_1016_j_fuel_2024_133306
crossref_primary_10_1002_smll_202102300
crossref_primary_10_1021_acsanm_4c04790
crossref_primary_10_1039_D1CC02038B
crossref_primary_10_1142_S1088424620500479
crossref_primary_10_1002_er_8004
crossref_primary_10_1002_inf2_12257
crossref_primary_10_1016_j_apcatb_2022_121770
crossref_primary_10_1016_j_apcatb_2023_123679
crossref_primary_10_1007_s10853_023_08551_y
crossref_primary_10_1039_D3TA05147A
crossref_primary_10_1016_j_jallcom_2024_174334
crossref_primary_10_1021_acs_chemrev_9b00685
crossref_primary_10_1002_admi_202200852
crossref_primary_10_1002_adsu_202000115
crossref_primary_10_1002_smtd_201900571
crossref_primary_10_1016_j_seppur_2023_124545
crossref_primary_10_1016_j_ijbiomac_2023_125363
crossref_primary_10_1039_D3EE04513G
crossref_primary_10_1002_slct_202000523
crossref_primary_10_1016_j_ccr_2021_214264
crossref_primary_10_1002_smll_202103747
crossref_primary_10_1039_D0MA00454E
crossref_primary_10_1007_s40843_019_1190_3
crossref_primary_10_1016_j_jcis_2019_10_025
crossref_primary_10_1016_j_jiec_2022_09_050
crossref_primary_10_1039_D3CY01042B
crossref_primary_10_1016_j_bios_2019_111704
crossref_primary_10_1002_adfm_201808872
crossref_primary_10_1002_advs_202411928
crossref_primary_10_1021_acs_inorgchem_3c04443
crossref_primary_10_1016_j_jcis_2022_10_036
crossref_primary_10_1002_smll_202004614
crossref_primary_10_1002_smll_202301985
crossref_primary_10_1039_D1NR01603B
crossref_primary_10_1021_acssuschemeng_9b05710
crossref_primary_10_1039_D0TA05510G
crossref_primary_10_1002_cssc_202000537
crossref_primary_10_1002_smll_201903937
crossref_primary_10_1109_TDEI_2024_3495588
crossref_primary_10_3390_catal12121515
crossref_primary_10_1002_smll_202007326
crossref_primary_10_1002_eem2_12128
crossref_primary_10_1021_acs_inorgchem_1c03573
crossref_primary_10_1039_D4NJ02342K
crossref_primary_10_1016_j_ijhydene_2019_06_151
crossref_primary_10_1039_C9NR04837E
crossref_primary_10_1002_smll_202203147
crossref_primary_10_1007_s40820_024_01580_5
crossref_primary_10_1016_j_apsusc_2020_147818
crossref_primary_10_1021_acscatal_2c01541
crossref_primary_10_1007_s12274_020_2975_6
crossref_primary_10_1016_j_ccr_2023_215602
crossref_primary_10_1021_acsami_9b19268
crossref_primary_10_1002_tcr_202200105
crossref_primary_10_1021_acssuschemeng_2c01086
crossref_primary_10_1002_adma_202208661
crossref_primary_10_1002_cssc_201903071
crossref_primary_10_1016_j_seppur_2024_130644
crossref_primary_10_1007_s10853_020_04772_7
crossref_primary_10_1002_smll_201905889
crossref_primary_10_1021_acsami_1c17352
crossref_primary_10_1002_batt_201800093
crossref_primary_10_1002_smll_202106532
crossref_primary_10_1002_cey2_693
crossref_primary_10_1016_j_carbon_2021_11_017
crossref_primary_10_1016_j_cej_2024_155537
crossref_primary_10_1016_j_ensm_2020_01_016
crossref_primary_10_3390_catal11121550
crossref_primary_10_1002_advs_202305194
crossref_primary_10_1002_smll_202306621
crossref_primary_10_1007_s41918_019_00050_6
crossref_primary_10_1039_D0QM00878H
crossref_primary_10_1016_j_cej_2021_131801
crossref_primary_10_3390_catal12050525
crossref_primary_10_1021_acs_inorgchem_0c01879
crossref_primary_10_1016_j_jechem_2020_11_028
crossref_primary_10_1016_j_jpowsour_2025_236859
crossref_primary_10_1021_acs_jpcc_1c02833
crossref_primary_10_3390_catal12121640
crossref_primary_10_1016_j_cej_2019_03_020
crossref_primary_10_1021_acsami_0c15754
crossref_primary_10_1002_advs_202104237
crossref_primary_10_1016_j_ijhydene_2021_03_214
crossref_primary_10_1016_j_jpowsour_2020_228302
crossref_primary_10_1039_C9TA00511K
crossref_primary_10_1002_celc_201902085
crossref_primary_10_1016_j_carbon_2020_03_011
crossref_primary_10_1016_j_jcis_2021_06_152
crossref_primary_10_1016_j_joule_2019_12_014
crossref_primary_10_1021_acs_inorgchem_9b03516
crossref_primary_10_1016_j_jcis_2023_03_206
crossref_primary_10_1016_j_jelechem_2024_118178
crossref_primary_10_1039_D2TA09922E
crossref_primary_10_1016_j_jcis_2020_10_130
crossref_primary_10_1016_j_cej_2024_155767
crossref_primary_10_1002_adfm_202110851
crossref_primary_10_1039_D0TA10370E
crossref_primary_10_1021_acs_energyfuels_2c03812
crossref_primary_10_1016_j_cej_2020_125064
crossref_primary_10_1039_C9TA10079B
crossref_primary_10_1039_D1SE00242B
crossref_primary_10_1016_j_nanoen_2019_04_076
crossref_primary_10_1016_j_ijhydene_2019_08_190
crossref_primary_10_1021_acsami_1c14387
crossref_primary_10_1016_j_matlet_2020_127861
crossref_primary_10_1039_D0NR07892A
crossref_primary_10_1002_ijch_202200058
crossref_primary_10_1002_anie_201901109
crossref_primary_10_1002_smll_202104375
crossref_primary_10_1002_smll_202001257
crossref_primary_10_1016_j_mtener_2019_04_007
crossref_primary_10_1088_1361_6528_abe32f
crossref_primary_10_1016_j_cej_2022_139820
crossref_primary_10_1016_j_jcis_2022_08_090
crossref_primary_10_1039_D3EE00747B
crossref_primary_10_1039_D4LF00408F
crossref_primary_10_1002_cey2_35
crossref_primary_10_1007_s12274_022_4563_4
crossref_primary_10_1002_aenm_201803867
crossref_primary_10_1039_D0EE00832J
crossref_primary_10_1039_D3NA00074E
crossref_primary_10_1016_j_electacta_2019_135394
crossref_primary_10_1021_acsami_2c04786
crossref_primary_10_1039_D2CP05986J
crossref_primary_10_1021_acsami_3c03203
crossref_primary_10_1039_D0TA10267A
crossref_primary_10_1002_smll_202310250
crossref_primary_10_1007_s11356_022_22430_0
crossref_primary_10_1016_j_cej_2022_139037
crossref_primary_10_1016_j_cej_2021_130055
crossref_primary_10_1016_j_jechem_2020_08_030
crossref_primary_10_1039_D2NJ03091H
crossref_primary_10_1039_C9CC07751K
crossref_primary_10_1007_s11051_021_05176_7
crossref_primary_10_1002_smll_202404792
crossref_primary_10_1039_D2QI02564G
crossref_primary_10_1016_j_apcatb_2023_123645
crossref_primary_10_1016_j_jcis_2022_07_068
crossref_primary_10_1021_acsaem_9b01181
crossref_primary_10_1016_j_cej_2021_132102
crossref_primary_10_1021_acs_jcim_2c00579
crossref_primary_10_1016_j_catcom_2022_106439
crossref_primary_10_1016_j_mtener_2021_100682
crossref_primary_10_1007_s12274_021_3827_8
crossref_primary_10_1016_j_jcis_2020_02_005
crossref_primary_10_1016_j_jre_2024_04_005
crossref_primary_10_1088_2515_7655_ad4f15
crossref_primary_10_1016_j_jallcom_2020_156395
crossref_primary_10_1007_s40820_021_00656_w
crossref_primary_10_1002_adts_202100196
crossref_primary_10_1007_s11581_019_03390_x
crossref_primary_10_1016_j_jallcom_2019_04_325
crossref_primary_10_1002_eom2_12018
crossref_primary_10_1039_D3QM00973D
crossref_primary_10_1039_D0QI01437K
crossref_primary_10_3390_catal13020393
crossref_primary_10_1016_j_colsurfa_2024_135497
crossref_primary_10_1016_j_jcis_2024_06_033
crossref_primary_10_1002_anie_202102053
crossref_primary_10_1016_j_cej_2019_122106
crossref_primary_10_1016_j_jcis_2020_09_002
crossref_primary_10_1016_j_ijhydene_2023_08_353
crossref_primary_10_1039_D0NR03378B
crossref_primary_10_1007_s40820_020_00581_4
crossref_primary_10_1002_adfm_201900015
crossref_primary_10_1016_j_fuel_2024_132326
crossref_primary_10_1016_j_ccr_2022_214669
crossref_primary_10_1016_j_ccr_2023_215492
crossref_primary_10_1007_s40820_020_00435_z
crossref_primary_10_1039_D3NR02025H
crossref_primary_10_1002_er_7200
crossref_primary_10_1016_j_cej_2022_135377
crossref_primary_10_1016_j_electacta_2019_06_122
crossref_primary_10_1002_adfm_202003870
crossref_primary_10_1039_D4TA02444C
crossref_primary_10_1007_s12274_021_3422_z
crossref_primary_10_1016_j_apcatb_2024_124450
crossref_primary_10_1016_j_cej_2019_123683
crossref_primary_10_1021_acs_iecr_2c01350
crossref_primary_10_1039_C9CY01131E
crossref_primary_10_1039_D0NR03987J
crossref_primary_10_1038_s43246_024_00662_6
crossref_primary_10_1021_acsanm_4c06339
crossref_primary_10_1002_ejic_201901244
crossref_primary_10_1016_j_cej_2021_130401
crossref_primary_10_1039_D0DT04000B
crossref_primary_10_1002_aenm_201902736
crossref_primary_10_1016_j_ccr_2022_214777
crossref_primary_10_1039_D1TC02734D
crossref_primary_10_1002_celc_201901167
crossref_primary_10_1002_asia_202401761
crossref_primary_10_1039_D3CY01746J
crossref_primary_10_1021_acscatal_0c04415
crossref_primary_10_3390_polym13162646
crossref_primary_10_1016_j_ces_2023_118654
crossref_primary_10_1039_D4CE00756E
crossref_primary_10_1016_j_cej_2021_133246
crossref_primary_10_1016_j_ijhydene_2019_03_215
crossref_primary_10_1021_acsanm_0c02698
crossref_primary_10_1016_j_jcis_2022_11_118
crossref_primary_10_1002_cctc_202301379
crossref_primary_10_1016_j_jallcom_2021_160838
crossref_primary_10_1016_j_aca_2019_11_054
crossref_primary_10_1002_advs_202405308
crossref_primary_10_1002_elan_202200266
crossref_primary_10_1002_smtd_201900159
crossref_primary_10_1002_aenm_202000814
crossref_primary_10_1016_j_mser_2024_100822
crossref_primary_10_1016_j_jcis_2021_07_125
crossref_primary_10_1021_acsami_1c22641
crossref_primary_10_1016_j_jcis_2023_10_098
crossref_primary_10_1021_acsami_9b07436
crossref_primary_10_1007_s11581_021_04261_0
crossref_primary_10_1021_acsami_0c22573
crossref_primary_10_1021_acsami_9b10398
crossref_primary_10_1021_acs_inorgchem_4c04944
crossref_primary_10_3389_fmats_2019_00261
crossref_primary_10_1002_chem_201902389
crossref_primary_10_1016_j_ijhydene_2022_05_176
crossref_primary_10_1016_j_carbon_2022_01_057
crossref_primary_10_1016_j_ijhydene_2020_01_036
crossref_primary_10_1039_D0TA01565B
crossref_primary_10_3389_fchem_2022_881172
crossref_primary_10_1021_acsami_3c19483
crossref_primary_10_1021_acsanm_3c05050
crossref_primary_10_1016_j_cej_2021_130785
crossref_primary_10_1016_j_mtener_2019_07_006
crossref_primary_10_1021_acsnano_1c04471
crossref_primary_10_1021_acsami_9b03518
crossref_primary_10_1039_C9TA13471A
crossref_primary_10_1021_acssuschemeng_1c04745
crossref_primary_10_1039_D2TA02076A
crossref_primary_10_1021_acssuschemeng_0c05509
crossref_primary_10_1149_1945_7111_ab6b05
crossref_primary_10_1016_j_ces_2023_119049
crossref_primary_10_1021_acsaem_2c03936
crossref_primary_10_1016_j_ccr_2020_213619
crossref_primary_10_1021_acssuschemeng_9b05567
crossref_primary_10_1016_j_electacta_2020_136568
crossref_primary_10_1016_j_ijhydene_2020_09_109
crossref_primary_10_1002_celc_201801859
crossref_primary_10_1002_adfm_202003947
crossref_primary_10_1002_advs_202406659
crossref_primary_10_1039_D0TA09115D
crossref_primary_10_1002_smll_202007264
crossref_primary_10_1016_j_jelechem_2020_114389
crossref_primary_10_1002_anie_201910879
crossref_primary_10_1016_j_cej_2023_144743
crossref_primary_10_1016_j_cej_2021_130434
crossref_primary_10_1016_j_diamond_2024_111683
crossref_primary_10_1021_acssuschemeng_9b04244
crossref_primary_10_1073_pnas_2105610118
crossref_primary_10_1039_D1TA06611K
crossref_primary_10_1016_j_cej_2022_137112
crossref_primary_10_34133_2020_9512763
crossref_primary_10_1002_adfm_202001097
crossref_primary_10_1021_acsaem_2c01507
crossref_primary_10_1016_j_nxsust_2023_100014
crossref_primary_10_1021_acsaem_2c02838
crossref_primary_10_1002_advs_202102209
crossref_primary_10_1002_smll_202205033
crossref_primary_10_1016_j_jallcom_2020_156256
crossref_primary_10_1007_s40820_020_00538_7
crossref_primary_10_1021_acsami_1c06750
crossref_primary_10_1021_acs_langmuir_1c01548
crossref_primary_10_1002_smll_202411574
crossref_primary_10_1039_C9TA14231B
Cites_doi 10.1038/ncomms6285
10.1002/aenm.201700193
10.1039/C6TA03265F
10.1016/j.micromeso.2013.10.003
10.1039/C5TA09232A
10.1038/ncomms9618
10.1002/smll.201700740
10.1002/adfm.201702300
10.1126/science.1200832
10.1021/ja3030565
10.1002/adma.201302786
10.1002/anie.201702473
10.1021/jp047349j
10.1039/C7NR01925D
10.1039/c3sc51052b
10.1039/C4CY01505C
10.1016/j.elecom.2011.03.018
10.1021/jacs.7b10385
10.1039/C7NR04349J
10.1016/j.nanoen.2016.04.042
10.1002/aenm.201602420
10.1002/aenm.201301735
10.1002/adfm.201705048
10.1002/adma.201505855
10.1021/acs.chemrev.5b00462
10.1021/jacs.7b06514
10.1002/adma.201505045
10.1002/adfm.201704638
10.1002/adfm.201701833
10.1021/acsami.6b04189
10.1021/ic9022486
10.1021/acsami.6b16851
10.1002/adma.201606534
10.1021/ja405149m
ContentType Journal Article
Copyright 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.201802596
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 10_1002_adfm_201802596
ADFM201802596
Genre article
GrantInformation_xml – fundername: National Science Foundation for Post‐doctoral Scientists of China
  funderid: 2016M602292
– fundername: Special financial aid to post‐doctor research fellow
  funderid: 2017T100548
– fundername: National Natural Science Foundation of China
  funderid: 51701146; 51672204
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
AANHP
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
FEDTE
HF~
HVGLF
7SP
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
ID FETCH-LOGICAL-c4206-a72723c3d646b2738d0498ce0803044bbabf901aee2122861ed7fbdfd4494caa3
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Fri Jul 25 07:34:38 EDT 2025
Thu Apr 24 23:06:55 EDT 2025
Tue Jul 01 04:11:50 EDT 2025
Wed Jan 22 16:58:33 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 39
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4206-a72723c3d646b2738d0498ce0803044bbabf901aee2122861ed7fbdfd4494caa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0284-4990
0000-0003-3902-0976
0000-0003-3230-6787
PQID 2111119895
PQPubID 2045204
PageCount 8
ParticipantIDs proquest_journals_2111119895
crossref_citationtrail_10_1002_adfm_201802596
crossref_primary_10_1002_adfm_201802596
wiley_primary_10_1002_adfm_201802596_ADFM201802596
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 26, 2018
PublicationDateYYYYMMDD 2018-09-26
PublicationDate_xml – month: 09
  year: 2018
  text: September 26, 2018
  day: 26
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2016; 4
2017 2014; 13 5
2017; 7
2017 2017 2017; 9 29 7
2018; 28
2015; 6
2013; 4
2012; 134
2011 2014; 332 4
2015 2014; 5 184
2017 2017 2018; 27 27 28
2016; 116
2013 2011; 25 13
2016; 28
2004; 108
2016; 8
2017; 9
2010 2016 2013; 49 28 135
2017; 139
2017 2016 2017 2017; 56 25 5 139
e_1_2_7_4_3
e_1_2_7_6_1
e_1_2_7_4_2
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_1_3
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_6_3
e_1_2_7_7_2
e_1_2_7_8_1
e_1_2_7_6_2
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_15_2
e_1_2_7_16_1
e_1_2_7_1_2
e_1_2_7_2_1
e_1_2_7_14_2
e_1_2_7_15_1
e_1_2_7_1_1
e_1_2_7_14_1
e_1_2_7_10_4
e_1_2_7_13_1
e_1_2_7_10_3
e_1_2_7_12_1
e_1_2_7_10_2
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_21_2
e_1_2_7_21_1
e_1_2_7_20_1
References_xml – volume: 13 5
  start-page: 1700740 5285
  year: 2017 2014
  publication-title: Small Nat. Commun.
– volume: 9
  start-page: 7641
  year: 2017
  publication-title: Nanoscale
– volume: 4
  start-page: 11357
  year: 2016
  publication-title: J. Mater. Chem. A.
– volume: 332 4
  start-page: 443 1301735
  year: 2011 2014
  publication-title: Science Adv. Energy Mater.
– volume: 28
  start-page: 1704638
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 6
  start-page: 8618
  year: 2015
  publication-title: Nat. Commun.
– volume: 56 25 5 139
  start-page: 6937 110 1930 14143
  year: 2017 2016 2017 2017
  publication-title: Angew. Chem., Int. Ed. Nano Energy J. Mater. Chem. A. J. Am. Chem. Soc.
– volume: 9
  start-page: 13257
  year: 2017
  publication-title: Nanoscale
– volume: 9 29 7
  start-page: 9699 1606534 1602420
  year: 2017 2017 2017
  publication-title: ACS Appl. Mater. Interfaces Adv. Mater. Adv. Energy Mater.
– volume: 5 184
  start-page: 1829 55
  year: 2015 2014
  publication-title: Catal. Sci. Technol. Microporous Mesoporous Mater.
– volume: 116
  start-page: 3594
  year: 2016
  publication-title: Chem. Rev.
– volume: 25 13
  start-page: 6879 593
  year: 2013 2011
  publication-title: Adv. Mater. Electrochem. Commun.
– volume: 139
  start-page: 17281
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 134
  start-page: 9082
  year: 2012
  publication-title: J. Am. Chem. Soc.
– volume: 108
  start-page: 17886
  year: 2004
  publication-title: J. Phys. Chem. B.
– volume: 28
  start-page: 4606
  year: 2016
  publication-title: Adv. Mater.
– volume: 49 28 135
  start-page: 3557 1668 15443
  year: 2010 2016 2013
  publication-title: Inorg. Chem. Adv. Mater. J. Am. Chem. Soc.
– volume: 27 27 28
  start-page: 1702300 1701833 1705048
  year: 2017 2017 2018
  publication-title: Adv. Funct. Mater. Adv. Funct. Mater. Adv. Funct. Mater.
– volume: 4
  start-page: 2941
  year: 2013
  publication-title: Chem. Sci.
– volume: 8
  start-page: 21431
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 7
  start-page: 1700193
  year: 2017
  publication-title: Adv. Energy Mater.
– ident: e_1_2_7_14_2
  doi: 10.1038/ncomms6285
– ident: e_1_2_7_13_1
  doi: 10.1002/aenm.201700193
– ident: e_1_2_7_5_1
  doi: 10.1039/C6TA03265F
– ident: e_1_2_7_15_2
  doi: 10.1016/j.micromeso.2013.10.003
– ident: e_1_2_7_10_3
  doi: 10.1039/C5TA09232A
– ident: e_1_2_7_17_1
  doi: 10.1038/ncomms9618
– ident: e_1_2_7_14_1
  doi: 10.1002/smll.201700740
– ident: e_1_2_7_1_1
  doi: 10.1002/adfm.201702300
– ident: e_1_2_7_7_1
  doi: 10.1126/science.1200832
– ident: e_1_2_7_18_1
  doi: 10.1021/ja3030565
– ident: e_1_2_7_21_1
  doi: 10.1002/adma.201302786
– ident: e_1_2_7_10_1
  doi: 10.1002/anie.201702473
– ident: e_1_2_7_12_1
  doi: 10.1021/jp047349j
– ident: e_1_2_7_19_1
  doi: 10.1039/C7NR01925D
– ident: e_1_2_7_9_1
  doi: 10.1039/c3sc51052b
– ident: e_1_2_7_15_1
  doi: 10.1039/C4CY01505C
– ident: e_1_2_7_21_2
  doi: 10.1016/j.elecom.2011.03.018
– ident: e_1_2_7_11_1
  doi: 10.1021/jacs.7b10385
– ident: e_1_2_7_16_1
  doi: 10.1039/C7NR04349J
– ident: e_1_2_7_10_2
  doi: 10.1016/j.nanoen.2016.04.042
– ident: e_1_2_7_6_3
  doi: 10.1002/aenm.201602420
– ident: e_1_2_7_7_2
  doi: 10.1002/aenm.201301735
– ident: e_1_2_7_1_3
  doi: 10.1002/adfm.201705048
– ident: e_1_2_7_2_1
  doi: 10.1002/adma.201505855
– ident: e_1_2_7_3_1
  doi: 10.1021/acs.chemrev.5b00462
– ident: e_1_2_7_10_4
  doi: 10.1021/jacs.7b06514
– ident: e_1_2_7_4_2
  doi: 10.1002/adma.201505045
– ident: e_1_2_7_20_1
  doi: 10.1002/adfm.201704638
– ident: e_1_2_7_1_2
  doi: 10.1002/adfm.201701833
– ident: e_1_2_7_8_1
  doi: 10.1021/acsami.6b04189
– ident: e_1_2_7_4_1
  doi: 10.1021/ic9022486
– ident: e_1_2_7_6_1
  doi: 10.1021/acsami.6b16851
– ident: e_1_2_7_6_2
  doi: 10.1002/adma.201606534
– ident: e_1_2_7_4_3
  doi: 10.1021/ja405149m
SSID ssj0017734
Score 2.6779652
Snippet Zeolitic imidazole frameworks (ZIFs) offer rich platforms for rational design and construction of high‐performance nonprecious‐metal oxygen reduction reaction...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Batteries
Bimetals
Carbon
Catalysis
Catalysts
Copper
Durability
Fe‐Cu coordination
Imidazole
Materials science
Metal air batteries
Morphology
Nitrogen
oxygen reduction reaction
Oxygen reduction reactions
Pyrolysis
Structural hierarchy
Surface area
Zinc
Zinc-oxygen batteries
zinc–air batteries
Title Fe, Cu‐Coordinated ZIF‐Derived Carbon Framework for Efficient Oxygen Reduction Reaction and Zinc–Air Batteries
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201802596
https://www.proquest.com/docview/2111119895
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5EL3rwLVar7EHwYjTZbLfJsbQGFavgA4qXsK9AUVKpragnf4LgP-wvcSZpYhVE0Ntu2B2S3dnMN7sz3xKyw2pMgnesHB56HBwU6Tuh0nXHM4EGhwIwc4DJye0zcXTNTzq1zkQWf84PUW644crI_te4wKV6OPgkDZUmwUxyZDCrhci5jQFbiIouSv4or17Pj5WFhwFeXqdgbXTZwdfuX63SJ9ScBKyZxYkWiCzeNQ80ud0fDtS-fvlG4_ifj1kk82M4Shu5_iyRKZsuk7kJksIVMojsHm0OR69vzR54qt0U0KmhN8cRPGlBm0eoNWVf9VIaFZFeFKAwPczYKcCo0fOnZ9BTeoE0sagIUMrzKahMQVQ31aPX90a3T3O2T3DeV8l1dHjVPHLGdzU4mjNXOBIPdH3tG8GFwnQfA65HoC0AUt_lXCmpEoAe0lqwlSwQnjX1RJnEcB5yLaW_RqbTXmrXCRUiBGncIPgCGa4MvCS0CnCidsGUmgpxirmK9ZjIHO_TuItzCmYW42jG5WhWyG7Z_j6n8PixZbWY-ni8lB9ihkYFI8tqFcKyOfxFStxoRe2ytvGXTptkFssYl8JElUwP-kO7BeBnoLbJTKPVPr3czhT9A8Gw_ic
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NThRBEK4gHNSDgEpYReiDxosDO729vTMHDptdJrvCYkIg2XgZ-2-SDWbW7I-KJx6BhCfxVXwEnsSq-QNMjAkJB2_Tk55Kz3RV11c9VV8DvOZNrjA61p4IfYEBimp4oTYtz7eBwYACMXNAxcmDQ9k7Ee-HzeEC_CxrYXJ-iGrDjSwjW6_JwGlDeueaNVTZhErJicKsGcoir3LfnX3DqG262-_iFL_hPNo77vS84mABzwiOEbSiv48N07BSSE21KRZxcmAcoieM7oXWSifoJ5VzuLDzQPrOthJtEytEKIxSDZT7AJboGHGi6-8eVYxVfquV_8iWPqWU-cOSJ7LOd26P97YfvAa3NyFy5uOiZfhVfp08teV0ez7T2-bHH8SR_9XnW4EnBeJm7dxEVmHBpU_h8Q0exmcwi9w71plfnV90xjiuUYoA3LKP_QjvdLHPV2x11ESPUxaVyWwM0T7bywg40G-zD9_P0BTZETHhkq7jVV4ywlSKokapuTq_bI8mLCc0Hbnpczi5l9deg8V0nLp1YFKGKE1Ywpcoo64CPwmdRihs6ogWbA28UjliU3C105Ehn-OcZZrHNHtxNXs1eFv1_5KzlPy150apa3GxWk1jTn6TkueaNeCZ0vxDStzuRoOq9eIuD23Bw97x4CA-6B_uv4RHdJ_ScLjcgMXZZO5eIdab6c3Muhh8um99_A0l0loq
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NThRBEK4gJEYPIiphFaQPGi8O7PT29s4cOGx2mLAiaIgkGy9D_02y0cyS_VHxxCOQ8CK-iq_Ak1A1f4CJITHh4G160lOZ6a7q-mq66muAV7zNFUbH2hOhLzBAUS0v1Kbj-TYwGFAgZg6oOHlvX-4cineD9mAOflW1MAU_RP3DjSwjX6_JwI9tunlFGqpsSpXkxGDWDmWZVrnrTr5j0DbZ6kc4w685j7c_9Xa88lwBzwiOAbSizceWaVkppKbSFIswOTAOwRMG90JrpVN0k8o5XNd5IH1nO6m2qRUiFEapFsq9BwtCNkM6LCI6qAmr_E6n2MeWPmWU-YOKJrLJN2--7003eIVtryPk3MXFi_C7Gpwis-XLxmyqN8zPP3gj_6fRewyPSrzNuoWBLMGcy57Aw2ssjE9hGru3rDe7OD3rjfC9hhnCb8s-92O8E2Gfb9jqqbEeZSyuUtkYYn22ndNvoNdmH36coCGyA-LBJU3Hq6JghKkMRQ0zc3F63h2OWUFnOnSTZ3B4J5-9DPPZKHMrwKQMUZqwhC5RRlMFfho6jUDYNBEr2AZ4lW4kpmRqpwNDviYFxzRPaPaSevYa8Kbuf1xwlPy152qlakm5Vk0STl6TUufaDeC5ztwiJelG8V7dev4vD63D_Y9RnLzv7---gAd0m3JwuFyF-el45tYQ6E31y9y2GBzdtTpeAp4tWNk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fe%2C+Cu%E2%80%90Coordinated+ZIF%E2%80%90Derived+Carbon+Framework+for+Efficient+Oxygen+Reduction+Reaction+and+Zinc%E2%80%93Air+Batteries&rft.jtitle=Advanced+functional+materials&rft.au=Wang%2C+Zhihao&rft.au=Jin%2C+Huihui&rft.au=Tian+Meng&rft.au=Liao%2C+Ke&rft.date=2018-09-26&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=28&rft.issue=39&rft_id=info:doi/10.1002%2Fadfm.201802596&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon