Morphology Development via Static Crosslinking of (Polylactic Acid/Acrylic Rubber) as an Immiscible Polymer Blend

The interrelation between crosslinking and morphology is investigated for an immiscible blend of polylactic acid (PLA) and acrylic rubber (ACM). The blends are prepared by solution mixing and static crosslinking is used to avoid the simultaneous effect of the flow field that occurs in dynamic vulcan...

Full description

Saved in:
Bibliographic Details
Published inMacromolecular materials and engineering Vol. 303; no. 3
Main Authors Hesami, Mahdis, Jalali‐Arani, Azam
Format Journal Article
LanguageEnglish
Published Weinheim John Wiley & Sons, Inc 01.03.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The interrelation between crosslinking and morphology is investigated for an immiscible blend of polylactic acid (PLA) and acrylic rubber (ACM). The blends are prepared by solution mixing and static crosslinking is used to avoid the simultaneous effect of the flow field that occurs in dynamic vulcanization. It is carried out at different temperatures, times, and curing agent contents. Scanning force microscopy (SFM) and polarized optical microscopy are used to determine the morphology of the blends. The chemical interactions and viscoelastic properties of the blends after crosslinking are also studied using infrared spectroscopy and rheological tests, respectively. Before crosslinking, SFM shows matrix‐droplet morphology for the samples that it is retained after that for the blend with 30 wt% ACM; however, it is changed to cocontinuous one in the blend with 50 wt% ACM. Partially, grafting of PLA on the crosslinked ACM is confirmed by Fourier transform infrared spectroscopy. The rheological results show that the incorporation of ACM to the PLA slows down the chain relaxation and vulcanization intensifies this effect. A model is proposed to explain the morphology evolution during static crosslinking of an immiscible blend. Static crosslinking of polylactic acid (PLA)/acrylic rubber (ACM) as an immiscible polymer blend is studied. Before crosslinking, a matrix‐droplet morphology is observed for the samples that after crosslinking is changed to a cocontinuous one in the blend with 50 wt% ACM. It is explained by formation of a self‐generated elastic force. In addition, a partially grafting of PLA chains on the ACM is detected.
AbstractList Abstract The interrelation between crosslinking and morphology is investigated for an immiscible blend of polylactic acid (PLA) and acrylic rubber (ACM). The blends are prepared by solution mixing and static crosslinking is used to avoid the simultaneous effect of the flow field that occurs in dynamic vulcanization. It is carried out at different temperatures, times, and curing agent contents. Scanning force microscopy (SFM) and polarized optical microscopy are used to determine the morphology of the blends. The chemical interactions and viscoelastic properties of the blends after crosslinking are also studied using infrared spectroscopy and rheological tests, respectively. Before crosslinking, SFM shows matrix‐droplet morphology for the samples that it is retained after that for the blend with 30 wt% ACM; however, it is changed to cocontinuous one in the blend with 50 wt% ACM. Partially, grafting of PLA on the crosslinked ACM is confirmed by Fourier transform infrared spectroscopy. The rheological results show that the incorporation of ACM to the PLA slows down the chain relaxation and vulcanization intensifies this effect. A model is proposed to explain the morphology evolution during static crosslinking of an immiscible blend.
The interrelation between crosslinking and morphology is investigated for an immiscible blend of polylactic acid (PLA) and acrylic rubber (ACM). The blends are prepared by solution mixing and static crosslinking is used to avoid the simultaneous effect of the flow field that occurs in dynamic vulcanization. It is carried out at different temperatures, times, and curing agent contents. Scanning force microscopy (SFM) and polarized optical microscopy are used to determine the morphology of the blends. The chemical interactions and viscoelastic properties of the blends after crosslinking are also studied using infrared spectroscopy and rheological tests, respectively. Before crosslinking, SFM shows matrix‐droplet morphology for the samples that it is retained after that for the blend with 30 wt% ACM; however, it is changed to cocontinuous one in the blend with 50 wt% ACM. Partially, grafting of PLA on the crosslinked ACM is confirmed by Fourier transform infrared spectroscopy. The rheological results show that the incorporation of ACM to the PLA slows down the chain relaxation and vulcanization intensifies this effect. A model is proposed to explain the morphology evolution during static crosslinking of an immiscible blend. Static crosslinking of polylactic acid (PLA)/acrylic rubber (ACM) as an immiscible polymer blend is studied. Before crosslinking, a matrix‐droplet morphology is observed for the samples that after crosslinking is changed to a cocontinuous one in the blend with 50 wt% ACM. It is explained by formation of a self‐generated elastic force. In addition, a partially grafting of PLA chains on the ACM is detected.
The interrelation between crosslinking and morphology is investigated for an immiscible blend of polylactic acid (PLA) and acrylic rubber (ACM). The blends are prepared by solution mixing and static crosslinking is used to avoid the simultaneous effect of the flow field that occurs in dynamic vulcanization. It is carried out at different temperatures, times, and curing agent contents. Scanning force microscopy (SFM) and polarized optical microscopy are used to determine the morphology of the blends. The chemical interactions and viscoelastic properties of the blends after crosslinking are also studied using infrared spectroscopy and rheological tests, respectively. Before crosslinking, SFM shows matrix‐droplet morphology for the samples that it is retained after that for the blend with 30 wt% ACM; however, it is changed to cocontinuous one in the blend with 50 wt% ACM. Partially, grafting of PLA on the crosslinked ACM is confirmed by Fourier transform infrared spectroscopy. The rheological results show that the incorporation of ACM to the PLA slows down the chain relaxation and vulcanization intensifies this effect. A model is proposed to explain the morphology evolution during static crosslinking of an immiscible blend.
Author Hesami, Mahdis
Jalali‐Arani, Azam
Author_xml – sequence: 1
  givenname: Mahdis
  surname: Hesami
  fullname: Hesami, Mahdis
  organization: Max Planck Institute for Polymer Research
– sequence: 2
  givenname: Azam
  orcidid: 0000-0002-3805-8916
  surname: Jalali‐Arani
  fullname: Jalali‐Arani, Azam
  email: ajalali@aut.ac.ir
  organization: Amirkabir University of Technology
BookMark eNqFkD1PwzAQhi1UJNrCymyJBYa0dpzYyRhKgUpUID7myHEuxcWJWyctyr8noQhGJp91z3One0doUNkKEDqnZEIJ8aelLGHiEyoICQJ-hIY0YLHnkzAYfNeRJ4LYP0Gjul6TDotiNkTbpXWbd2vsqsU3sAdjNyVUDd5riV8a2WiFZ87WtdHVh65W2Bb48sma1kjV9xKl82miXGu6z_Muy8BdYVljWeFFWepa6cwA7oUSHL42UOWn6LiQpoazn3eM3m7nr7N77-HxbjFLHjwV-IR7IiyAqIJHQjJOlJA-oxGNRAE5DwUACSHPCs59woTPaR7EksZEqYiDYDHJ2BhdHOZunN3uoG7Std25qluZdiExHjPGREdNDpTqr3RQpBunS-nalJK0jzXtY01_Y-2E-CB8agPtP3S6TJbzP_cLxr990A
CitedBy_id crossref_primary_10_1155_2020_9364657
crossref_primary_10_1016_j_enmm_2020_100339
crossref_primary_10_1002_mame_202100631
crossref_primary_10_3390_app8091696
crossref_primary_10_1177_0731684420975199
crossref_primary_10_1002_app_51894
crossref_primary_10_1080_00222348_2020_1845498
crossref_primary_10_1002_app_48296
crossref_primary_10_1002_app_49232
crossref_primary_10_1002_pi_5767
crossref_primary_10_1016_j_polymertesting_2019_106023
Cites_doi 10.1002/polb.23665
10.1016/S0032-3861(01)00348-2
10.1016/0032-3861(89)90355-8
10.3139/217.2521
10.1002/pi.5414
10.1016/j.eurpolymj.2011.04.005
10.1016/j.ces.2004.02.025
10.1002/app.45499
10.1021/ma060181a
10.1039/c3sm52375f
10.1103/PhysRevLett.74.2034
10.1021/ma1026934
10.1126/science.267.5197.476
10.1002/pc.21014
10.1021/am5004766
10.1021/ma961542x
10.1016/j.eurpolymj.2010.09.029
10.3390/ma9070607
10.1122/1.550943
10.1016/j.carbpol.2008.01.017
10.1016/j.eurpolymj.2008.12.010
10.1021/bm050581q
10.1007/BF01331356
10.1103/PhysRevLett.71.3158
10.1002/app.1694
10.1021/ma101108g
10.1080/00222348.2016.1238434
10.1016/j.matchemphys.2012.01.053
10.1201/9781420017670
10.1021/bm5012739
10.1122/1.1718582
10.1021/acssuschemeng.5b00788
10.1209/epl/i1996-00488-0
10.1103/PhysRevLett.76.1162
ContentType Journal Article
Copyright 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
7SR
8BQ
8FD
JG9
DOI 10.1002/mame.201700446
DatabaseName CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
DatabaseTitleList CrossRef

Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1439-2054
EndPage n/a
ExternalDocumentID 10_1002_mame_201700446
MAME201700446
Genre article
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OC
24P
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABJCF
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AFBPY
AFGKR
AFKRA
AFPWT
AFZJQ
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AVUZU
AZBYB
AZFZN
AZVAB
BAFTC
BBNVY
BDRZF
BENPR
BFHJK
BGLVJ
BHBCM
BHPHI
BMNLL
BNHUX
BROTX
BRXPI
BY8
CCPQU
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
FEDTE
G-S
G.N
GNP
GODZA
GROUPED_DOAJ
H.T
H.X
HBH
HCIFZ
HHY
HHZ
HVGLF
HZ~
I-F
IX1
J0M
JPC
KB.
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M7P
M7S
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
P2P
P2W
P2X
P4D
PDBOC
PTHSS
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TUS
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~IA
~WT
AAYXX
CITATION
7SR
8BQ
8FD
JG9
ID FETCH-LOGICAL-c4206-75fe0cf687a360c7a2318187fed657ee05edbf662037261d49a190cc86e7390b3
IEDL.DBID DR2
ISSN 1438-7492
IngestDate Fri Sep 13 10:11:51 EDT 2024
Thu Sep 12 16:47:40 EDT 2024
Sat Aug 24 01:06:15 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4206-75fe0cf687a360c7a2318187fed657ee05edbf662037261d49a190cc86e7390b3
ORCID 0000-0002-3805-8916
PQID 2013693337
PQPubID 1016395
PageCount 11
ParticipantIDs proquest_journals_2013693337
crossref_primary_10_1002_mame_201700446
wiley_primary_10_1002_mame_201700446_MAME201700446
PublicationCentury 2000
PublicationDate March 2018
PublicationDateYYYYMMDD 2018-03-01
PublicationDate_xml – month: 03
  year: 2018
  text: March 2018
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Macromolecular materials and engineering
PublicationYear 2018
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2009; 45
1995; 74
2015; 3
2017; 66
2015; 53
2006; 39
2004; 48
2006; 7
2008
134
2011; 32
2008; 74
2002
2012; 12
1998; 42
1996; 76
2001; 42
1996; 34
2016; 55
1989; 30
2001; 81
2010; 43
2012; 133
2006; 61
1993; 71
1997; 30
1990; 29
2014; 15
2011; 44
1995; 267
2011; 26
2011; 47
2014; 6
2010; 4
2016; 9
2014; 10
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_26_1
e_1_2_8_27_1
Tangboriboon N. (e_1_2_8_19_1) 2012; 12
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_21_1
e_1_2_8_22_1
e_1_2_8_23_1
e_1_2_8_1_1
e_1_2_8_17_1
Utracki L. A. (e_1_2_8_25_1) 2002
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_16_1
e_1_2_8_37_1
Boua‐In K. (e_1_2_8_18_1) 2010; 4
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_30_1
References_xml – volume: 39
  start-page: 4195
  year: 2006
  publication-title: Macromolecules
– volume: 10
  start-page: 1816
  year: 2014
  publication-title: Soft Matter
– volume: 47
  start-page: 1447
  year: 2011
  publication-title: Eur. Polym. J.
– volume: 30
  start-page: 1643
  year: 1997
  publication-title: Macromolecules
– volume: 134
  start-page: 45499
  publication-title: J. Appl. Polym. Sci.
– volume: 133
  start-page: 410
  year: 2012
  publication-title: Mater. Chem. Phys.
– volume: 53
  start-page: 522
  year: 2015
  publication-title: J. Polym. Sci., Part B: Polym. Phys.
– volume: 66
  start-page: 1564
  year: 2017
  publication-title: Polym. Int.
– volume: 6
  start-page: 3811
  year: 2014
  publication-title: ACS Appl. Mater. Interfaces
– volume: 74
  start-page: 79
  year: 2008
  publication-title: Carbohyd. Polym.
– volume: 76
  start-page: 1162
  year: 1996
  publication-title: Phys. Rev. Lett.
– volume: 9
  start-page: 1
  year: 2016
  publication-title: Materials
– volume: 81
  start-page: 2531
  year: 2001
  publication-title: J. Appl. Polym. Sci.
– volume: 45
  start-page: 738
  year: 2009
  publication-title: Eur. Polym. J.
– volume: 3
  start-page: 2856
  year: 2015
  publication-title: ACS Sustainable Chem. Eng.
– volume: 267
  start-page: 476
  year: 1995
  publication-title: Science
– volume: 43
  start-page: 6058
  year: 2010
  publication-title: Macromolecules
– volume: 32
  start-page: 44
  year: 2011
  publication-title: Polym. Compos.
– volume: 15
  start-page: 4260
  year: 2014
  publication-title: Biomacromolecules
– volume: 29
  start-page: 204
  year: 1990
  publication-title: Rheol. Acta
– volume: 30
  start-page: 1839
  year: 1989
  publication-title: Polymer
– volume: 42
  start-page: 8647
  year: 2001
  publication-title: Polymer
– volume: 74
  start-page: 2034
  year: 1995
  publication-title: Phys. Rev. Lett.
– volume: 44
  start-page: 1513
  year: 2011
  publication-title: Macromolecules
– volume: 26
  start-page: 580
  year: 2011
  publication-title: Int. Polym. Process.
– year: 2002
– year: 2008
– volume: 42
  start-page: 41
  year: 1998
  publication-title: J. Rheol.
– volume: 4
  start-page: 1404
  year: 2010
  publication-title: Optoelectron. Adv. Mater., Rapid Commun.
– volume: 71
  start-page: 3158
  year: 1993
  publication-title: Phys. Rev. Lett.
– volume: 34
  start-page: 513
  year: 1996
  publication-title: Europhys. Lett.
– volume: 55
  start-page: 1068
  year: 2016
  publication-title: J. Macromol. Sci., Part B: Phys.
– volume: 12
  start-page: 686
  year: 2012
  publication-title: e‐Polym.
– volume: 48
  start-page: 505
  year: 2004
  publication-title: J. Rheol.
– volume: 61
  start-page: 2108
  year: 2006
  publication-title: Chem. Eng. Sci.
– volume: 47
  start-page: 692
  year: 2011
  publication-title: Eur. Polym. J.
– volume: 7
  start-page: 199
  year: 2006
  publication-title: Biomacromolecules
– ident: e_1_2_8_17_1
  doi: 10.1002/polb.23665
– volume: 4
  start-page: 1404
  year: 2010
  ident: e_1_2_8_18_1
  publication-title: Optoelectron. Adv. Mater., Rapid Commun.
  contributor:
    fullname: Boua‐In K.
– ident: e_1_2_8_7_1
  doi: 10.1016/S0032-3861(01)00348-2
– ident: e_1_2_8_4_1
  doi: 10.1016/0032-3861(89)90355-8
– ident: e_1_2_8_24_1
  doi: 10.3139/217.2521
– ident: e_1_2_8_16_1
  doi: 10.1002/pi.5414
– ident: e_1_2_8_32_1
  doi: 10.1016/j.eurpolymj.2011.04.005
– ident: e_1_2_8_33_1
  doi: 10.1016/j.ces.2004.02.025
– ident: e_1_2_8_14_1
  doi: 10.1002/app.45499
– ident: e_1_2_8_6_1
  doi: 10.1021/ma060181a
– ident: e_1_2_8_37_1
  doi: 10.1039/c3sm52375f
– ident: e_1_2_8_3_1
  doi: 10.1103/PhysRevLett.74.2034
– ident: e_1_2_8_9_1
  doi: 10.1021/ma1026934
– ident: e_1_2_8_12_1
  doi: 10.1126/science.267.5197.476
– volume: 12
  start-page: 686
  year: 2012
  ident: e_1_2_8_19_1
  publication-title: e‐Polym.
  contributor:
    fullname: Tangboriboon N.
– ident: e_1_2_8_20_1
  doi: 10.1002/pc.21014
– ident: e_1_2_8_11_1
  doi: 10.1021/am5004766
– ident: e_1_2_8_2_1
  doi: 10.1021/ma961542x
– ident: e_1_2_8_15_1
  doi: 10.1016/j.eurpolymj.2010.09.029
– ident: e_1_2_8_23_1
  doi: 10.3390/ma9070607
– ident: e_1_2_8_30_1
  doi: 10.1122/1.550943
– ident: e_1_2_8_27_1
  doi: 10.1016/j.carbpol.2008.01.017
– ident: e_1_2_8_21_1
  doi: 10.1016/j.eurpolymj.2008.12.010
– ident: e_1_2_8_26_1
  doi: 10.1021/bm050581q
– ident: e_1_2_8_29_1
  doi: 10.1007/BF01331356
– ident: e_1_2_8_34_1
  doi: 10.1103/PhysRevLett.71.3158
– volume-title: Polymer Blends Handbook
  year: 2002
  ident: e_1_2_8_25_1
  contributor:
    fullname: Utracki L. A.
– ident: e_1_2_8_36_1
  doi: 10.1002/app.1694
– ident: e_1_2_8_8_1
  doi: 10.1021/ma101108g
– ident: e_1_2_8_22_1
  doi: 10.1080/00222348.2016.1238434
– ident: e_1_2_8_31_1
  doi: 10.1016/j.matchemphys.2012.01.053
– ident: e_1_2_8_13_1
  doi: 10.1201/9781420017670
– ident: e_1_2_8_5_1
  doi: 10.1021/bm5012739
– ident: e_1_2_8_35_1
  doi: 10.1122/1.1718582
– ident: e_1_2_8_10_1
  doi: 10.1021/acssuschemeng.5b00788
– ident: e_1_2_8_28_1
  doi: 10.1209/epl/i1996-00488-0
– ident: e_1_2_8_1_1
  doi: 10.1103/PhysRevLett.76.1162
SSID ssj0017893
Score 2.3061695
Snippet The interrelation between crosslinking and morphology is investigated for an immiscible blend of polylactic acid (PLA) and acrylic rubber (ACM). The blends are...
Abstract The interrelation between crosslinking and morphology is investigated for an immiscible blend of polylactic acid (PLA) and acrylic rubber (ACM). The...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Publisher
SubjectTerms Acrylic rubber
Atomic force microscopy
Biodegradable materials
Crosslinking
Curing agents
Fourier transforms
immiscible blend
Infrared spectroscopy
Microscopy
Morphology
Optical microscopy
Polylactic acid
Polymer blends
Rheological properties
Rheology
Spectrum analysis
static crosslinking
viscoelastic properties
Viscoelasticity
Vulcanization
Title Morphology Development via Static Crosslinking of (Polylactic Acid/Acrylic Rubber) as an Immiscible Polymer Blend
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmame.201700446
https://www.proquest.com/docview/2013693337/abstract/
Volume 303
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3PS8MwFMeD7KIe_DEVp1NyENRDty7pkvY4x8YUJjIc7FaSNIVh2-l-CPOv96U_9sOLoLeGNqXJe-n7JOR9g9ANlZ5DGppYIXek5bhEWRD0uAVkD8QvjIa5SU7uP7Pe0HkaNUcbWfyZPsRqwc2MjPR_bQa4kLP6WjQ0FrGRuTT6cjClgZ-wUdMzVDRY6Uc1uJuq7pojvi3ueKRQbbRJfbv6dlRao-YmsKYRp3uIRPGt2UaTt9piLmvq64eM438ac4QOchzFrcx_jtGOTspot12cAldG-xuChSfooz8Bu6Qr8XhjuxH-HAtssHWscNs0MD-RAU9CfPcyiZZRmoqFWwpcv6WmywgKg4WUenqPxQyLBD_GsckPlpHGpkKsp_gBAmJwiobdzmu7Z-WHNljKITazeDPUtgqZywVltuICABKggIc6YE2utd3UgQwZIzblMHsLHE8AkyjlMs2pZ0t6hkrJJNHnCGsK_mIYQwsG3EEEUxweCGXAgYJkWEG3hdH890ybw89UmIlvOtRfdWgFVQub-vkYnZm7lHmUUl5BJDXOL2_x-61-Z1W6-EulS7QH1262ia2KSvPpQl8B1czldeq539OH7VM
link.rule.ids 315,786,790,1382,27957,27958,46329,46753,50849,50958
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED90PqgPolNxfuZBUB-KNWmT9rEOZeoqIk7El5KkKQzWTbcp-N976cecT4KPaZsU7nK9X653vwM4Zir06IWhTiY85XgB1Q46PeEgskfELy2HuS1Oju95p-fdvvh1NqGthSn5IWYBN2sZxffaGrgNSJ__sIbmMrc8l5ZgDs80i7CEvs8PGrAUPfdee7NfCSIomHdtm29HeCGtmRtdev57hd-e6QduzoPWwutcr8NaBRdJVOp3AxbMsAnL7bpLWxNW5wgFN-E9HqHcikg5mUsHIp99SSys7GvSti-vOiaQUUZOH0aDr0FRKkUijVsz0uOvAQ4eP5Qy4zMiJ0QOyU2e2_pdNTDETsjNmFyiw0q3oHd99dTuOFVTBUd71OWO8DPj6owHQjLuaiER4KHTFplJuS-McX2Tqoxz6jKBp6vUCyViBq0DbgQLXcW2oTEcDc0OEMNQnxYDGMkRF1DJtcAHMpUKRCkqa8FJLdDkreTOSEqWZJpY0Scz0bdgv5Z3UtnQxN5lPGSMiRbQQgd_rJLEUXw1G-3-Z9IRLHee4m7Svbm_24MVvB6UCWf70JiOP8wBIpCpOqz22DesrdFj
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1bS8MwFMcP6sDLg3jFec2DoD4Ua9Il7WOdjnmZiDgRX0qSJjBYt7lNwW_vSdvN-ST4mLZJ4STp-SXN-R-AY6aigF4Y6lkRKC8IqfbQ6QkPyR6JXzoNcxec3HrgzXZw-1p7nYniL_Qhphtubmbk32s3wQepPf8RDc1k5mQunb4cLmnmoYKoEeC4rsQv7bf29E-CCHPhXZfl2xNBRCfCjT49_93Cb8f0Q5uzzJo7ncYarJa0SOKie9dhzvQ2YKk-SdK2ASszeoKb8N7qo9nyjXIycxqIfHYkcVTZ0aTuXl4mTCB9S04f-92vbh4pRWKNIzPWw68uFp4-lDLDMyJHRPbITZa58F3VNcRVyMyQXKK_Sreg3bh-rje9MqeCpwPqc0_UrPG15aGQjPtaSOQ79NnCmpTXhDF-zaTKck59JnBxlQaRRGTQOuRGsMhXbBsWev2e2QFiGHanQwAjOWIBlVwLfMCqVCCkKFuFk4lBk0EhnZEUIsk0caZPpqavwv7E3kk5hUbuLuMRY0xUgeZ98EcrSStuXU9Lu_-pdASLj1eN5P7m4W4PlvFyWBw324eF8fDDHCB_jNVhOcS-AYEo0Iw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Morphology+Development+via+Static+Crosslinking+of+%28Polylactic+Acid%2FAcrylic+Rubber%29+as+an+Immiscible+Polymer+Blend&rft.jtitle=Macromolecular+materials+and+engineering&rft.au=Hesami%2C+Mahdis&rft.au=Jalali%E2%80%90Arani%2C+Azam&rft.date=2018-03-01&rft.issn=1438-7492&rft.eissn=1439-2054&rft.volume=303&rft.issue=3&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fmame.201700446&rft.externalDBID=10.1002%252Fmame.201700446&rft.externalDocID=MAME201700446
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1438-7492&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1438-7492&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1438-7492&client=summon