Efficient and Durable 3D Self‐Supported Nitrogen‐Doped Carbon‐Coupled Nickel/Cobalt Phosphide Electrodes: Stoichiometric Ratio Regulated Phase‐ and Morphology‐Dependent Overall Water Splitting Performance
The construction of a novel 3D self‐supported integrated NixCo2−xP@NC (0 < x < 2) nanowall array (NA) on Ni foam (NF) electrode constituting highly dispersed NixCo2−xP nanoparticles, nanorods, nanocapsules, and nanodendrites embedded in N‐doped carbon (NC) NA grown on NF is reported. Benefitin...
Saved in:
Published in | Advanced functional materials Vol. 29; no. 44 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.11.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The construction of a novel 3D self‐supported integrated NixCo2−xP@NC (0 < x < 2) nanowall array (NA) on Ni foam (NF) electrode constituting highly dispersed NixCo2−xP nanoparticles, nanorods, nanocapsules, and nanodendrites embedded in N‐doped carbon (NC) NA grown on NF is reported. Benefiting from the collective effects of special morphological and structural design and electronic structure engineering, the NixCo2−xP@NC NA/NF electrodes exhibit superior electrocatalytic performance for water splitting with an excellent stability in a wide pH range. The optimal NiCoP@NC NA/NF electrode exhibits the best hydrogen evolution reaction (HER) activity in acidic solution so far, attaining a current density of 10 mA cm−2 at an overpotential of 34 mV. Moreover, the electrode manifests remarkable performances toward both HER and oxygen evolution reaction in alkaline medium with only small overpotentials of 37 mV at 10 mA cm−2 and 305 mV at 50 mA cm−2, respectively. Most importantly, when coupling with the NiCoP@NC NA/NF electrode for overall water splitting, an alkali electrolyzer delivers a current density of 20 mA cm−2 at a very low cell voltage of ≈1.56 V. In addition, the NiCoP@NC NA/NF electrode has outstanding long‐term durability at j = 10 mA cm−2 with a negligible degradation in current density over 22 h in both acidic and alkaline media.
Highly dispersed NiCoP nanoparticles embedded in nitrogen‐doped carbon shell (NC) nanowall arrays grown on Ni foam are fabricated as a 3D self‐supported integrated electrode. It displays remarkable hydrogen evolution reaction and oxygen evolution reaction bifunctionality as well as overall water splitting performance on account of the strong coupling effect between NiCoP nanoparticles and NC shells. |
---|---|
AbstractList | The construction of a novel 3D self‐supported integrated NixCo2−xP@NC (0 < x < 2) nanowall array (NA) on Ni foam (NF) electrode constituting highly dispersed NixCo2−xP nanoparticles, nanorods, nanocapsules, and nanodendrites embedded in N‐doped carbon (NC) NA grown on NF is reported. Benefiting from the collective effects of special morphological and structural design and electronic structure engineering, the NixCo2−xP@NC NA/NF electrodes exhibit superior electrocatalytic performance for water splitting with an excellent stability in a wide pH range. The optimal NiCoP@NC NA/NF electrode exhibits the best hydrogen evolution reaction (HER) activity in acidic solution so far, attaining a current density of 10 mA cm−2 at an overpotential of 34 mV. Moreover, the electrode manifests remarkable performances toward both HER and oxygen evolution reaction in alkaline medium with only small overpotentials of 37 mV at 10 mA cm−2 and 305 mV at 50 mA cm−2, respectively. Most importantly, when coupling with the NiCoP@NC NA/NF electrode for overall water splitting, an alkali electrolyzer delivers a current density of 20 mA cm−2 at a very low cell voltage of ≈1.56 V. In addition, the NiCoP@NC NA/NF electrode has outstanding long‐term durability at j = 10 mA cm−2 with a negligible degradation in current density over 22 h in both acidic and alkaline media.
Highly dispersed NiCoP nanoparticles embedded in nitrogen‐doped carbon shell (NC) nanowall arrays grown on Ni foam are fabricated as a 3D self‐supported integrated electrode. It displays remarkable hydrogen evolution reaction and oxygen evolution reaction bifunctionality as well as overall water splitting performance on account of the strong coupling effect between NiCoP nanoparticles and NC shells. The construction of a novel 3D self‐supported integrated Ni x Co 2− x P@NC (0 < x < 2) nanowall array (NA) on Ni foam (NF) electrode constituting highly dispersed Ni x Co 2− x P nanoparticles, nanorods, nanocapsules, and nanodendrites embedded in N‐doped carbon (NC) NA grown on NF is reported. Benefiting from the collective effects of special morphological and structural design and electronic structure engineering, the Ni x Co 2− x P@NC NA/NF electrodes exhibit superior electrocatalytic performance for water splitting with an excellent stability in a wide pH range. The optimal NiCoP@NC NA/NF electrode exhibits the best hydrogen evolution reaction (HER) activity in acidic solution so far, attaining a current density of 10 mA cm −2 at an overpotential of 34 mV. Moreover, the electrode manifests remarkable performances toward both HER and oxygen evolution reaction in alkaline medium with only small overpotentials of 37 mV at 10 mA cm −2 and 305 mV at 50 mA cm −2 , respectively. Most importantly, when coupling with the NiCoP@NC NA/NF electrode for overall water splitting, an alkali electrolyzer delivers a current density of 20 mA cm −2 at a very low cell voltage of ≈1.56 V. In addition, the NiCoP@NC NA/NF electrode has outstanding long‐term durability at j = 10 mA cm −2 with a negligible degradation in current density over 22 h in both acidic and alkaline media. The construction of a novel 3D self‐supported integrated NixCo2−xP@NC (0 < x < 2) nanowall array (NA) on Ni foam (NF) electrode constituting highly dispersed NixCo2−xP nanoparticles, nanorods, nanocapsules, and nanodendrites embedded in N‐doped carbon (NC) NA grown on NF is reported. Benefiting from the collective effects of special morphological and structural design and electronic structure engineering, the NixCo2−xP@NC NA/NF electrodes exhibit superior electrocatalytic performance for water splitting with an excellent stability in a wide pH range. The optimal NiCoP@NC NA/NF electrode exhibits the best hydrogen evolution reaction (HER) activity in acidic solution so far, attaining a current density of 10 mA cm−2 at an overpotential of 34 mV. Moreover, the electrode manifests remarkable performances toward both HER and oxygen evolution reaction in alkaline medium with only small overpotentials of 37 mV at 10 mA cm−2 and 305 mV at 50 mA cm−2, respectively. Most importantly, when coupling with the NiCoP@NC NA/NF electrode for overall water splitting, an alkali electrolyzer delivers a current density of 20 mA cm−2 at a very low cell voltage of ≈1.56 V. In addition, the NiCoP@NC NA/NF electrode has outstanding long‐term durability at j = 10 mA cm−2 with a negligible degradation in current density over 22 h in both acidic and alkaline media. |
Author | Cheng, Yan Liu, Baocang Hu, Minghao Jing, Peng Gao, Rui Cao, Bo Ma, Zhixue Zhang, Jun |
Author_xml | – sequence: 1 givenname: Bo surname: Cao fullname: Cao, Bo organization: Inner Mongolia University – sequence: 2 givenname: Yan surname: Cheng fullname: Cheng, Yan organization: Inner Mongolia University – sequence: 3 givenname: Minghao surname: Hu fullname: Hu, Minghao organization: Inner Mongolia University – sequence: 4 givenname: Peng surname: Jing fullname: Jing, Peng organization: Inner Mongolia University – sequence: 5 givenname: Zhixue surname: Ma fullname: Ma, Zhixue organization: Inner Mongolia University – sequence: 6 givenname: Baocang surname: Liu fullname: Liu, Baocang email: cebcliu@imu.edu.cn organization: Inner Mongolia University – sequence: 7 givenname: Rui surname: Gao fullname: Gao, Rui email: gaorui@imu.edu.cn organization: Inner Mongolia University – sequence: 8 givenname: Jun orcidid: 0000-0002-3067-2620 surname: Zhang fullname: Zhang, Jun email: cejzhang@imu.edu.cn organization: Inner Mongolia University |
BookMark | eNqFkc1u1DAUhSNUJNqBLWtLrGfqn4zjsKsyU0Bq6agDgl1049xMXDx2cBzQ7HgEno4H4ElIOqhISIiV7avznXOtc5acOO8wSZ4zumCU8nOom_2CU5ZTKZh8lJwyyeRcUK5OHu7s45PkrO_vKGVZJtLT5Me6aYw26CIBV5PVEKCySMSKbNE2P7993w5d50PEmrw1MfgdunG48t04KCBUfnoWfujsvUJ_Qnte-ApsJJvW911raiRri3pka-xfkm30RrfG7zEGo8ktROPJLe4GC1PIpoUeR8v7ba596Fpv_e4wZWKHrp4WvfmCAawlH0YikG1nTYzG7cgGQ-PDHpzGp8njBmyPz36fs-T95fpd8Xp-dfPqTXFxNdcpp3IuK8V1JWiaSgQQjUpRZQ1fSiUUzSqoQClIteIViJwvlaxSCqzhAHkmMkQxS14cfbvgPw_Yx_LOD8GNkSUXNJfLLB29Zkl6VOng-z5gU2oTp4-7GMDYktFyarCcGiwfGhyxxV9YF8wewuHfQH4EvhqLh_-oy4vV5fUf9hdde7pE |
CitedBy_id | crossref_primary_10_1016_j_jcis_2021_06_128 crossref_primary_10_1016_j_jelechem_2021_115761 crossref_primary_10_1016_j_cej_2021_130444 crossref_primary_10_1016_j_ccr_2023_215381 crossref_primary_10_1016_j_cej_2021_128809 crossref_primary_10_1021_acs_inorgchem_2c01436 crossref_primary_10_1016_j_xcrp_2023_101747 crossref_primary_10_1016_j_ijhydene_2024_07_280 crossref_primary_10_1021_acsami_0c06716 crossref_primary_10_1016_j_electacta_2023_141868 crossref_primary_10_1021_acscatal_0c04975 crossref_primary_10_1016_j_jcis_2021_05_041 crossref_primary_10_1016_j_ijhydene_2021_03_155 crossref_primary_10_1016_j_cej_2020_127308 crossref_primary_10_1016_j_apcatb_2022_122131 crossref_primary_10_1016_j_apsusc_2020_147950 crossref_primary_10_1016_j_jcat_2021_04_003 crossref_primary_10_1039_D2TA09588B crossref_primary_10_1002_cey2_522 crossref_primary_10_1021_acs_energyfuels_3c02773 crossref_primary_10_1016_j_ijhydene_2023_10_211 crossref_primary_10_1016_j_jcis_2024_11_098 crossref_primary_10_1007_s40843_021_2017_y crossref_primary_10_1002_sstr_202100103 crossref_primary_10_1016_j_ijhydene_2021_03_242 crossref_primary_10_1016_j_apcatb_2020_119421 crossref_primary_10_1016_j_coco_2020_100587 crossref_primary_10_1039_D1DT04359E crossref_primary_10_1016_j_jallcom_2023_169873 crossref_primary_10_1016_j_jallcom_2021_161790 crossref_primary_10_1016_j_jallcom_2022_164264 crossref_primary_10_1016_j_cej_2022_138515 crossref_primary_10_1016_j_jallcom_2023_170315 crossref_primary_10_1016_j_colsurfa_2021_128092 crossref_primary_10_1016_j_apcatb_2022_121432 crossref_primary_10_1021_acs_energyfuels_2c02013 crossref_primary_10_1016_j_ijhydene_2024_10_090 crossref_primary_10_1016_j_cej_2023_141674 crossref_primary_10_1021_acsami_2c09377 crossref_primary_10_1002_elt2_20 crossref_primary_10_1021_acsami_2c18237 crossref_primary_10_1016_j_apcata_2023_119130 crossref_primary_10_1039_D1CS00323B crossref_primary_10_1016_j_ijhydene_2023_01_213 crossref_primary_10_1039_D0CY01115K crossref_primary_10_1002_celc_202001585 crossref_primary_10_1002_smsc_202300222 crossref_primary_10_3390_catal12090957 crossref_primary_10_1002_smll_202006773 crossref_primary_10_1039_D4CY00503A crossref_primary_10_1002_smll_202005371 crossref_primary_10_1007_s41918_022_00161_7 crossref_primary_10_1007_s40820_020_00469_3 crossref_primary_10_1016_j_electacta_2022_141269 crossref_primary_10_1039_D4QI01152J crossref_primary_10_3390_polym16223155 crossref_primary_10_1007_s12274_023_6185_x crossref_primary_10_1016_j_cej_2022_134612 crossref_primary_10_1016_j_ijhydene_2021_08_171 crossref_primary_10_1002_advs_202401207 crossref_primary_10_1016_j_ijhydene_2023_01_108 crossref_primary_10_1002_smll_202304863 crossref_primary_10_1016_j_apcatb_2022_121774 crossref_primary_10_1021_acsami_4c02524 crossref_primary_10_1002_smll_202006860 crossref_primary_10_1002_smll_202101727 crossref_primary_10_1016_j_cej_2020_126257 crossref_primary_10_1021_acssuschemeng_1c06514 crossref_primary_10_1002_smll_202402615 crossref_primary_10_1016_j_apsusc_2022_154287 crossref_primary_10_1007_s40843_021_1953_5 crossref_primary_10_1016_j_cej_2022_137297 crossref_primary_10_1016_j_electacta_2021_139204 crossref_primary_10_1021_acs_jpclett_0c00851 crossref_primary_10_1039_D2NJ00335J crossref_primary_10_1021_acssuschemeng_0c00712 crossref_primary_10_1016_j_carbon_2020_07_048 crossref_primary_10_1002_adfm_201910830 crossref_primary_10_1016_j_mtener_2024_101515 crossref_primary_10_1002_admi_202000676 crossref_primary_10_1016_j_apcatb_2024_124197 crossref_primary_10_1016_j_nanoms_2021_05_004 crossref_primary_10_1021_acsami_3c17114 crossref_primary_10_1002_cctc_201902316 crossref_primary_10_1016_j_surfin_2022_102173 crossref_primary_10_1039_D0DT01469A crossref_primary_10_1016_j_ijhydene_2023_09_191 crossref_primary_10_1039_D4DT02507E crossref_primary_10_1016_j_cej_2022_140908 crossref_primary_10_1002_smll_202205603 crossref_primary_10_1002_aenm_202102074 crossref_primary_10_1021_acs_inorgchem_1c02419 crossref_primary_10_1002_adfm_202003261 crossref_primary_10_1039_D3MH02090H crossref_primary_10_26599_NR_2025_94907240 crossref_primary_10_1016_j_mtnano_2021_100120 crossref_primary_10_1002_ange_201915254 crossref_primary_10_1016_j_apcatb_2023_123136 crossref_primary_10_1016_j_jelechem_2021_115656 crossref_primary_10_1002_eem2_12273 crossref_primary_10_1007_s40843_020_1452_9 crossref_primary_10_1016_j_cej_2021_130434 crossref_primary_10_1016_j_cej_2021_130279 crossref_primary_10_1039_D2NR07300E crossref_primary_10_1021_acssuschemeng_2c03250 crossref_primary_10_1039_C9EE03558C crossref_primary_10_1016_j_nanoen_2022_106989 crossref_primary_10_1016_j_apsusc_2021_151247 crossref_primary_10_1039_D3QM00423F crossref_primary_10_1021_acsami_0c04902 crossref_primary_10_1007_s11771_021_4774_y crossref_primary_10_1016_j_jechem_2021_11_035 crossref_primary_10_1021_acsaem_2c01628 crossref_primary_10_1002_anie_201915254 crossref_primary_10_1016_j_apcatb_2021_120630 |
Cites_doi | 10.1002/ange.201200699 10.1039/C5CS00434A 10.1016/j.jpowsour.2016.09.161 10.1021/jp200724h 10.1021/acsnano.8b06312 10.1039/C8TA06529B 10.1002/adma.201302685 10.1002/aenm.201601555 10.1039/C3CS60437C 10.1002/adfm.201600566 10.1039/C6EE01109H 10.1038/nmat1840 10.1002/smll.201700092 10.1002/ange.201610211 10.1126/science.1211934 10.1002/aenm.201502585 10.1021/acsami.7b06305 10.1021/acs.nanolett.6b03332 10.1021/acscatal.6b03192 10.1039/C7TA02651J 10.1002/anie.201610413 10.1021/jacs.5b08186 10.1021/jacs.7b03507 10.1039/C6TA09052D 10.1002/ange.201404161 10.1016/j.nanoen.2018.03.034 10.1038/35104599 10.1021/ja201269b 10.1021/acs.nanolett.6b03803 10.1002/ange.201207111 10.1002/adfm.201803278 10.1021/acscatal.7b00662 10.1021/cs401245q 10.1039/C6NR09883E 10.1002/adfm.201702513 10.1039/C4SC02019G 10.1002/ange.201610413 10.1002/anie.201404161 10.1002/advs.201801490 10.1016/j.carbon.2018.10.023 10.1039/C8TA03485K 10.1016/j.nanoen.2017.01.014 10.1039/C6TA00575F 10.1002/anie.201207111 10.1002/adma.201606793 10.1021/jacs.8b01548 10.1016/j.apcatb.2018.09.082 10.1002/anie.201600525 10.1021/jacs.8b05134 10.1021/acscatal.7b00587 10.1021/ja106102b 10.1038/ncomms5477 10.1039/C5EE03801D 10.1002/anie.201200699 10.1039/C6EE03768B 10.1002/aenm.201602355 10.1039/C6TA10509B 10.1021/jacs.6b09184 10.1002/adfm.201701008 10.1002/adma.201700017 10.1126/science.1257443 10.1039/C6TA07704H 10.1126/science.1103197 10.1002/adma.201503906 10.1016/j.nanoen.2017.03.024 10.1021/acs.jpcc.6b09050 10.1021/jacs.6b12250 10.1039/C3EE42441C 10.1002/anie.201610211 10.1002/adfm.201706847 10.1002/ange.201600525 |
ContentType | Journal Article |
Copyright | 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.201906316 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adfm_201906316 ADFM201906316 |
Genre | article |
GrantInformation_xml | – fundername: Application Program from Inner Mongolia Science and Technology Department funderid: 2016 – fundername: Cooperation Project of State Key Laboratory of Baiyun Obo Rare Earth Resource Researches and Comprehensive Utilization funderid: 2017Z1950 – fundername: NSFC funderid: 21661023; 21601096; 21802076 – fundername: Program of Higher‐level Talents of IMU funderid: 21300‐5155105; 21300‐5185111 – fundername: Natural Science Foundation of Inner Mongolia Autonomous Region of China funderid: 2018BS05007 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ AANHP AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE HF~ HVGLF LW6 7SP 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M |
ID | FETCH-LOGICAL-c4206-6b82cb30446eaa3f84e87f25683807baba88a4c82ba392586b40a1f2aa9737ee3 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Mon Jul 14 09:59:49 EDT 2025 Thu Apr 24 23:10:15 EDT 2025 Tue Jul 01 04:12:03 EDT 2025 Wed Jan 22 16:39:23 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 44 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4206-6b82cb30446eaa3f84e87f25683807baba88a4c82ba392586b40a1f2aa9737ee3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-3067-2620 |
PQID | 2309657468 |
PQPubID | 2045204 |
PageCount | 18 |
ParticipantIDs | proquest_journals_2309657468 crossref_citationtrail_10_1002_adfm_201906316 crossref_primary_10_1002_adfm_201906316 wiley_primary_10_1002_adfm_201906316_ADFM201906316 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 1, 2019 |
PublicationDateYYYYMMDD | 2019-11-01 |
PublicationDate_xml | – month: 11 year: 2019 text: November 1, 2019 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2019 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 5 2014 2014; 53 126 2011; 115 2011; 334 2017; 7 2018; 28 2013; 25 2018; 140 2019; 6 2017; 27 2017; 29 2017 2017; 56 129 2019; 141 2004; 305 2016; 16 2017; 9 2011; 133 2018; 48 2017; 139 2014; 43 2019; 242 2016; 4 2018; 6 2016; 6 2014; 5 2016 2016; 55 128 2014; 4 2015; 137 2012 2012; 51 124 2017; 10 2017; 32 2017; 13 2017; 35 2016; 333 2010; 132 2007; 6 2017; 121 2018; 12 2016; 28 2014; 7 2016; 26 2014; 345 2016; 9 2001; 414 2016; 45 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_26_2 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_50_1 e_1_2_7_25_2 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_56_2 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_14_2 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_63_1 e_1_2_7_12_2 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_65_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_2 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_38_1 |
References_xml | – volume: 27 year: 2017 publication-title: Adv. Funct. Mater. – volume: 51 124 start-page: 6131 6235 year: 2012 2012 publication-title: Angew. Chem., Int. Ed. Angew. Chem. – volume: 10 start-page: 788 year: 2017 publication-title: Energy Environ. Sci. – volume: 16 start-page: 6617 year: 2016 publication-title: Nano Lett. – volume: 48 start-page: 73 year: 2018 publication-title: Nano Energy – volume: 345 start-page: 1326 year: 2014 publication-title: Science – volume: 7 start-page: 2357 year: 2017 publication-title: ACS Catal. – volume: 32 start-page: 511 year: 2017 publication-title: Nano Energy – volume: 141 start-page: 643 year: 2019 publication-title: Carbon – volume: 132 year: 2010 publication-title: J. Am. Chem. Soc. – volume: 139 start-page: 8320 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 305 start-page: 972 year: 2004 publication-title: Science – volume: 242 start-page: 132 year: 2019 publication-title: Appl. Catal., B – volume: 25 start-page: 5807 year: 2013 publication-title: Adv. Mater. – volume: 56 129 start-page: 1324 1344 year: 2017 2017 publication-title: Angew. Chem., Int. Ed. Angew. Chem. – volume: 53 126 start-page: 6710 6828 year: 2014 2014 publication-title: Angew. Chem., Int. Ed. Angew. Chem. – volume: 333 start-page: 213 year: 2016 publication-title: J. Power Sources – volume: 16 start-page: 7718 year: 2016 publication-title: Nano Lett. – volume: 115 start-page: 6448 year: 2011 publication-title: J. Phys. Chem. C – volume: 6 year: 2016 publication-title: Adv. Energy Mater. – volume: 5 start-page: 4477 year: 2014 publication-title: Nat. Commun. – volume: 9 start-page: 2257 year: 2016 publication-title: Energy Environ. Sci. – volume: 43 start-page: 4281 year: 2014 publication-title: Chem. Soc. Rev. – volume: 51 124 year: 2012 2012 publication-title: Angew. Chem., Int. Ed. Angew. Chem. – volume: 4 start-page: 4745 year: 2016 publication-title: J. Mater. Chem. A – volume: 6 year: 2019 publication-title: Adv. Sci. – volume: 6 start-page: 241 year: 2007 publication-title: Nat. Mater. – volume: 139 start-page: 1863 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. – volume: 7 start-page: 3824 year: 2017 publication-title: ACS Catal. – volume: 4 start-page: 1148 year: 2014 publication-title: ACS Catal. – volume: 28 start-page: 77 year: 2016 publication-title: Adv. Mater. – volume: 5 start-page: 4615 year: 2014 publication-title: Chem. Sci. – volume: 26 start-page: 4661 year: 2016 publication-title: Adv. Funct. Mater. – volume: 139 start-page: 2070 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 35 start-page: 161 year: 2017 publication-title: Nano Energy – volume: 9 start-page: 1468 year: 2016 publication-title: Energy Environ. Sci. – volume: 56 129 start-page: 573 588 year: 2017 2017 publication-title: Angew. Chem., Int. Ed. Angew. Chem. – volume: 7 start-page: 4131 year: 2017 publication-title: ACS Catal. – volume: 6 year: 2018 publication-title: J. Mater. Chem. A – volume: 5 year: 2017 publication-title: J. Mater. Chem. A – volume: 4 year: 2016 publication-title: J. Mater. Chem. A – volume: 9 start-page: 3555 year: 2017 publication-title: Nanoscale – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 45 start-page: 1529 year: 2016 publication-title: Chem. Soc. Rev. – volume: 137 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 334 start-page: 1256 year: 2011 publication-title: Science – volume: 140 start-page: 5241 year: 2018 publication-title: J. Am. Chem. Soc. – volume: 133 start-page: 7296 year: 2011 publication-title: J. Am. Chem. Soc. – volume: 12 year: 2018 publication-title: ACS Nano – volume: 7 start-page: 387 year: 2014 publication-title: Energy Environ. Sci. – volume: 121 start-page: 284 year: 2017 publication-title: J. Phys. Chem. C – volume: 9 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 7 year: 2017 publication-title: Adv. Energy Mater. – volume: 140 year: 2018 publication-title: J. Am. Chem. Soc. – volume: 5 start-page: 765 year: 2017 publication-title: J. Mater. Chem. A – volume: 55 128 start-page: 6290 6398 year: 2016 2016 publication-title: Angew. Chem., Int. Ed. Angew. Chem. – volume: 414 start-page: 332 year: 2001 publication-title: Nature – volume: 5 start-page: 2496 year: 2017 publication-title: J. Mater. Chem. A – volume: 13 year: 2017 publication-title: Small – ident: e_1_2_7_12_2 doi: 10.1002/ange.201200699 – ident: e_1_2_7_16_1 doi: 10.1039/C5CS00434A – ident: e_1_2_7_5_1 doi: 10.1016/j.jpowsour.2016.09.161 – ident: e_1_2_7_57_1 doi: 10.1021/jp200724h – ident: e_1_2_7_50_1 doi: 10.1021/acsnano.8b06312 – ident: e_1_2_7_4_1 doi: 10.1039/C8TA06529B – ident: e_1_2_7_8_1 doi: 10.1002/adma.201302685 – ident: e_1_2_7_35_1 doi: 10.1002/aenm.201601555 – ident: e_1_2_7_55_1 doi: 10.1039/C3CS60437C – ident: e_1_2_7_58_1 doi: 10.1002/adfm.201600566 – ident: e_1_2_7_41_1 doi: 10.1039/C6EE01109H – ident: e_1_2_7_6_1 doi: 10.1038/nmat1840 – ident: e_1_2_7_17_1 doi: 10.1002/smll.201700092 – ident: e_1_2_7_25_2 doi: 10.1002/ange.201610211 – ident: e_1_2_7_7_1 doi: 10.1126/science.1211934 – ident: e_1_2_7_34_1 doi: 10.1002/aenm.201502585 – ident: e_1_2_7_62_1 doi: 10.1021/acsami.7b06305 – ident: e_1_2_7_42_1 doi: 10.1021/acs.nanolett.6b03332 – ident: e_1_2_7_30_1 doi: 10.1021/acscatal.6b03192 – ident: e_1_2_7_23_1 doi: 10.1039/C7TA02651J – ident: e_1_2_7_24_1 doi: 10.1002/anie.201610413 – ident: e_1_2_7_29_1 doi: 10.1021/jacs.5b08186 – ident: e_1_2_7_27_1 doi: 10.1021/jacs.7b03507 – ident: e_1_2_7_51_1 doi: 10.1039/C6TA09052D – ident: e_1_2_7_56_2 doi: 10.1002/ange.201404161 – ident: e_1_2_7_48_1 doi: 10.1016/j.nanoen.2018.03.034 – ident: e_1_2_7_1_1 doi: 10.1038/35104599 – ident: e_1_2_7_9_1 doi: 10.1021/ja201269b – ident: e_1_2_7_46_1 doi: 10.1021/acs.nanolett.6b03803 – ident: e_1_2_7_14_2 doi: 10.1002/ange.201207111 – ident: e_1_2_7_33_1 doi: 10.1002/adfm.201803278 – ident: e_1_2_7_36_1 doi: 10.1021/acscatal.7b00662 – ident: e_1_2_7_64_1 doi: 10.1021/cs401245q – ident: e_1_2_7_47_1 doi: 10.1039/C6NR09883E – ident: e_1_2_7_61_1 doi: 10.1002/adfm.201702513 – ident: e_1_2_7_13_1 doi: 10.1039/C4SC02019G – ident: e_1_2_7_24_2 doi: 10.1002/ange.201610413 – ident: e_1_2_7_56_1 doi: 10.1002/anie.201404161 – ident: e_1_2_7_54_1 doi: 10.1002/advs.201801490 – ident: e_1_2_7_49_1 doi: 10.1016/j.carbon.2018.10.023 – ident: e_1_2_7_63_1 doi: 10.1039/C8TA03485K – ident: e_1_2_7_59_1 doi: 10.1016/j.nanoen.2017.01.014 – ident: e_1_2_7_53_1 doi: 10.1039/C6TA00575F – ident: e_1_2_7_14_1 doi: 10.1002/anie.201207111 – ident: e_1_2_7_19_1 doi: 10.1002/adma.201606793 – ident: e_1_2_7_38_1 doi: 10.1021/jacs.8b01548 – ident: e_1_2_7_10_1 doi: 10.1016/j.apcatb.2018.09.082 – ident: e_1_2_7_26_1 doi: 10.1002/anie.201600525 – ident: e_1_2_7_65_1 doi: 10.1021/jacs.8b05134 – ident: e_1_2_7_52_1 doi: 10.1021/acscatal.7b00587 – ident: e_1_2_7_60_1 doi: 10.1021/ja106102b – ident: e_1_2_7_21_1 doi: 10.1038/ncomms5477 – ident: e_1_2_7_45_1 doi: 10.1039/C5EE03801D – ident: e_1_2_7_12_1 doi: 10.1002/anie.201200699 – ident: e_1_2_7_18_1 doi: 10.1039/C6EE03768B – ident: e_1_2_7_37_1 doi: 10.1002/aenm.201602355 – ident: e_1_2_7_44_1 doi: 10.1039/C6TA10509B – ident: e_1_2_7_20_1 doi: 10.1021/jacs.6b09184 – ident: e_1_2_7_32_1 doi: 10.1002/adfm.201701008 – ident: e_1_2_7_28_1 doi: 10.1002/adma.201700017 – ident: e_1_2_7_3_1 doi: 10.1126/science.1257443 – ident: e_1_2_7_43_1 doi: 10.1039/C6TA07704H – ident: e_1_2_7_2_1 doi: 10.1126/science.1103197 – ident: e_1_2_7_11_1 doi: 10.1002/adma.201503906 – ident: e_1_2_7_31_1 doi: 10.1016/j.nanoen.2017.03.024 – ident: e_1_2_7_40_1 doi: 10.1021/acs.jpcc.6b09050 – ident: e_1_2_7_22_1 doi: 10.1021/jacs.6b12250 – ident: e_1_2_7_15_1 doi: 10.1039/C3EE42441C – ident: e_1_2_7_25_1 doi: 10.1002/anie.201610211 – ident: e_1_2_7_39_1 doi: 10.1002/adfm.201706847 – ident: e_1_2_7_26_2 doi: 10.1002/ange.201600525 |
SSID | ssj0017734 |
Score | 2.609396 |
Snippet | The construction of a novel 3D self‐supported integrated NixCo2−xP@NC (0 < x < 2) nanowall array (NA) on Ni foam (NF) electrode constituting highly dispersed... The construction of a novel 3D self‐supported integrated Ni x Co 2− x P@NC (0 < x < 2) nanowall array (NA) on Ni foam (NF) electrode constituting highly... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | 3D self‐supported electrodes Carbon Current density Durability Electrodes Electronic structure Hydrogen evolution reactions Materials science Metal foams Morphology Nanoparticles Nanorods Nickel nickel/cobalt phosphides Nitrogen nitrogen‐doped carbon overall water splitting Oxygen evolution reactions Phosphides Structural design Water splitting |
Title | Efficient and Durable 3D Self‐Supported Nitrogen‐Doped Carbon‐Coupled Nickel/Cobalt Phosphide Electrodes: Stoichiometric Ratio Regulated Phase‐ and Morphology‐Dependent Overall Water Splitting Performance |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201906316 https://www.proquest.com/docview/2309657468 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NjtMwELbQcoED_4iyy8oHJE7Z5t8Ot6pptUJ0qVpW9BbZsU0roqZK0z1w4hF4Oh6AJ2HGSdMuEkKCW2z5L_LY89me-YaQ10HEGaDYAGaAMSdUEXe4J4yTq9w1iWuYcNF3eHIVX16H7xbR4siLv-GH6C7ccGXY_RoXuJDb_oE0VCiDnuSg0OLAQ85tNNhCVDTr-KM8xppn5dhDAy9vsWdtdP3-7eq3tdIBah4DVqtxxg-J2I-1MTT5crGr5UX-9Tcax__5mUfkQQtH6aCRn8fkjl4_IfePSAqfkh8jyzIByomKtaLprkJvKxqkdK4L8_PbdwwMiia7il6t6qoEiYTMtNxAxlBUssTksNxtClsCdo2iP0QWkppOl-V2s1wpTUdNNB6lt2_pvC5X-RJpATB6AJ2h7NCZ_oyBxqCJ6RIULzRpRzMpQU7sywD22Qb0remHG7xqK-gnqFHROQBta95Npwc3iWfkejz6OLx02mgQTh76buzEkvu5DPABWgsRGB5qzgwgNo6c-VJIwbkIc-5LAZgv4rEMXeEZX4iEBUzr4Dk5WZdr_YLQXOnEVSZhIhYAIKVgRskw0lpCB1qaHnH20pDlLVU6Ruwosobk2c9wvrJuvnrkTVd-05CE_LHk2V64snaz2GZwCkziiIUx7xHfSslfWskG6XjSpV7-S6VTcg-_G6_KM3JSVzv9CuBVLc_J3UE6eT8_t0vpF-6HKBA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbhMxELZKOQAH_hGBAj6AOG2z__YicaiyiVLahChpRW6LvWuTiFU2SjYgOPEIvAqvwoEH4EmY2b-0SAgJqQeOtuyxZc94xvbMN4Q8dTzOwIp1YAcYM9zE4wa3hDbiJDZ1YGomTIwdHgz9_qn7aupNd8i3OhamxIdoHtxQMorzGgUcH6TbW9RQkWgMJQeN5juWX_lVHqlPH-HWtn55GMIWP7PtXvek0zeqxAJG7Npwg_Ylt2Pp4F-mEsLR3FWcaVD-HOHXpZCCc-HG3JYCzAeP-9I1haVtIQLmMKUcoHuJXMY04gjXH44bxCqLsfIj27fQpcya1jiRpt0-P9_zenBr3J41kQsd17tBvterU7q2vN_f5HI__vwbcOR_tXw3yfXK4qYHpYjcIjtqcZtcO4PDeIf86BZAGqB_qVgkNNysMKCMOiGdqFT__PIVc5-iV3JCh_N8lYHQQWWYLaGiI1Yyw2In2yzTogUcjGm7g0ArOR3NsvVyNk8U7ZYJhxK1fkEneTaPZ4h8gAkS6BjFg47VO8ylBiRGM7AtgGQxm0EGolB8fuCYVc7inL7-gK-JKX0DPVZ0AneJwoOdjraRIHfJ6YUs7D2yu8gW6j6hcaICM9EBE74AG1kKphPpekpJGEBJ3SJGzX5RXKHBY1KSNCpxrO0I-SNq-KNFnjftlyUOyh9b7tXcHFXn4TqCi27ge8z1eYvYBVv-hUp0EPYGTenBv3R6Qq70TwbH0fHh8OghuYr1ZRDpHtnNVxv1CKzJXD4u5JeStxfN8b8A2GqDsw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbhMxELZKkRAc-EcECvgA4rTN_tuLxKHKJmopCVFCRW6LvbZJRJSNkg0ITjwCj8KrcOEBeBJm9i8tEkJC6oGjLXts2TOesT3zDSGPvYAzsGI92AHGLF8F3OKOMFaqUttEtmHCxtjh_iA8PPFfTILJDvlWx8KU-BDNgxtKRnFeo4AvlWlvQUOFMhhJDgot9Jywcqs81p8-wqVt_fwohh1-4rq97uvOoVXlFbBS34ULdCi5m0oPvzK1EJ7hvubMgO7niL4uhRScCz_lrhRgPQQ8lL4tHOMKETGPae0B3Qvkoh_aESaLiEcNYJXDWPmPHTroUeZMaphI222fne9ZNbi1bU9byIWK610j3-vFKT1b3u9vcrmffv4NN_J_Wr3r5Gplb9ODUkBukB29uEmunEJhvEV-dAsYDdC-VCwUjTcrDCejXkzHem5-fvmKmU_RJ1nRwSxfZSByUBlnS6joiJXMsNjJNst50QKOxXm7gzArOR1Os_VyOlOadst0Q0qvn9Fxns3SKeIeYHoEOkLhoCP9DjOpAYnhFCwLIFnMpp-BIBRfHzhmlbE4p68-4FvinL6BHis6hptE4b9Oh9s4kNvk5FwW9g7ZXWQLfZfQVOnIViZiIhRgIUvBjJJ-oLWEAbQ0LWLV3JekFRY8piSZJyWKtZsgfyQNf7TI06b9skRB-WPLvZqZk-o0XCdwzY3CgPkhbxG34Mq_UEkO4l6_Kd37l06PyKVh3EteHg2O75PLWF1GkO6R3Xy10Q_AlMzlw0J6KXl73gz_C8iXgmI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+and+Durable+3D+Self%E2%80%90Supported+Nitrogen%E2%80%90Doped+Carbon%E2%80%90Coupled+Nickel%2FCobalt+Phosphide+Electrodes%3A+Stoichiometric+Ratio+Regulated+Phase%E2%80%90+and+Morphology%E2%80%90Dependent+Overall+Water+Splitting+Performance&rft.jtitle=Advanced+functional+materials&rft.au=Cao%2C+Bo&rft.au=Cheng%2C+Yan&rft.au=Hu%2C+Minghao&rft.au=Jing%2C+Peng&rft.date=2019-11-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=29&rft.issue=44&rft_id=info:doi/10.1002%2Fadfm.201906316&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adfm_201906316 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |