Efficient and Durable 3D Self‐Supported Nitrogen‐Doped Carbon‐Coupled Nickel/Cobalt Phosphide Electrodes: Stoichiometric Ratio Regulated Phase‐ and Morphology‐Dependent Overall Water Splitting Performance

The construction of a novel 3D self‐supported integrated NixCo2−xP@NC (0 < x < 2) nanowall array (NA) on Ni foam (NF) electrode constituting highly dispersed NixCo2−xP nanoparticles, nanorods, nanocapsules, and nanodendrites embedded in N‐doped carbon (NC) NA grown on NF is reported. Benefitin...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 29; no. 44
Main Authors Cao, Bo, Cheng, Yan, Hu, Minghao, Jing, Peng, Ma, Zhixue, Liu, Baocang, Gao, Rui, Zhang, Jun
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.11.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The construction of a novel 3D self‐supported integrated NixCo2−xP@NC (0 < x < 2) nanowall array (NA) on Ni foam (NF) electrode constituting highly dispersed NixCo2−xP nanoparticles, nanorods, nanocapsules, and nanodendrites embedded in N‐doped carbon (NC) NA grown on NF is reported. Benefiting from the collective effects of special morphological and structural design and electronic structure engineering, the NixCo2−xP@NC NA/NF electrodes exhibit superior electrocatalytic performance for water splitting with an excellent stability in a wide pH range. The optimal NiCoP@NC NA/NF electrode exhibits the best hydrogen evolution reaction (HER) activity in acidic solution so far, attaining a current density of 10 mA cm−2 at an overpotential of 34 mV. Moreover, the electrode manifests remarkable performances toward both HER and oxygen evolution reaction in alkaline medium with only small overpotentials of 37 mV at 10 mA cm−2 and 305 mV at 50 mA cm−2, respectively. Most importantly, when coupling with the NiCoP@NC NA/NF electrode for overall water splitting, an alkali electrolyzer delivers a current density of 20 mA cm−2 at a very low cell voltage of ≈1.56 V. In addition, the NiCoP@NC NA/NF electrode has outstanding long‐term durability at j = 10 mA cm−2 with a negligible degradation in current density over 22 h in both acidic and alkaline media. Highly dispersed NiCoP nanoparticles embedded in nitrogen‐doped carbon shell (NC) nanowall arrays grown on Ni foam are fabricated as a 3D self‐supported integrated electrode. It displays remarkable hydrogen evolution reaction and oxygen evolution reaction bifunctionality as well as overall water splitting performance on account of the strong coupling effect between NiCoP nanoparticles and NC shells.
AbstractList The construction of a novel 3D self‐supported integrated NixCo2−xP@NC (0 < x < 2) nanowall array (NA) on Ni foam (NF) electrode constituting highly dispersed NixCo2−xP nanoparticles, nanorods, nanocapsules, and nanodendrites embedded in N‐doped carbon (NC) NA grown on NF is reported. Benefiting from the collective effects of special morphological and structural design and electronic structure engineering, the NixCo2−xP@NC NA/NF electrodes exhibit superior electrocatalytic performance for water splitting with an excellent stability in a wide pH range. The optimal NiCoP@NC NA/NF electrode exhibits the best hydrogen evolution reaction (HER) activity in acidic solution so far, attaining a current density of 10 mA cm−2 at an overpotential of 34 mV. Moreover, the electrode manifests remarkable performances toward both HER and oxygen evolution reaction in alkaline medium with only small overpotentials of 37 mV at 10 mA cm−2 and 305 mV at 50 mA cm−2, respectively. Most importantly, when coupling with the NiCoP@NC NA/NF electrode for overall water splitting, an alkali electrolyzer delivers a current density of 20 mA cm−2 at a very low cell voltage of ≈1.56 V. In addition, the NiCoP@NC NA/NF electrode has outstanding long‐term durability at j = 10 mA cm−2 with a negligible degradation in current density over 22 h in both acidic and alkaline media. Highly dispersed NiCoP nanoparticles embedded in nitrogen‐doped carbon shell (NC) nanowall arrays grown on Ni foam are fabricated as a 3D self‐supported integrated electrode. It displays remarkable hydrogen evolution reaction and oxygen evolution reaction bifunctionality as well as overall water splitting performance on account of the strong coupling effect between NiCoP nanoparticles and NC shells.
The construction of a novel 3D self‐supported integrated Ni x Co 2− x P@NC (0 < x < 2) nanowall array (NA) on Ni foam (NF) electrode constituting highly dispersed Ni x Co 2− x P nanoparticles, nanorods, nanocapsules, and nanodendrites embedded in N‐doped carbon (NC) NA grown on NF is reported. Benefiting from the collective effects of special morphological and structural design and electronic structure engineering, the Ni x Co 2− x P@NC NA/NF electrodes exhibit superior electrocatalytic performance for water splitting with an excellent stability in a wide pH range. The optimal NiCoP@NC NA/NF electrode exhibits the best hydrogen evolution reaction (HER) activity in acidic solution so far, attaining a current density of 10 mA cm −2 at an overpotential of 34 mV. Moreover, the electrode manifests remarkable performances toward both HER and oxygen evolution reaction in alkaline medium with only small overpotentials of 37 mV at 10 mA cm −2 and 305 mV at 50 mA cm −2 , respectively. Most importantly, when coupling with the NiCoP@NC NA/NF electrode for overall water splitting, an alkali electrolyzer delivers a current density of 20 mA cm −2 at a very low cell voltage of ≈1.56 V. In addition, the NiCoP@NC NA/NF electrode has outstanding long‐term durability at j = 10 mA cm −2 with a negligible degradation in current density over 22 h in both acidic and alkaline media.
The construction of a novel 3D self‐supported integrated NixCo2−xP@NC (0 < x < 2) nanowall array (NA) on Ni foam (NF) electrode constituting highly dispersed NixCo2−xP nanoparticles, nanorods, nanocapsules, and nanodendrites embedded in N‐doped carbon (NC) NA grown on NF is reported. Benefiting from the collective effects of special morphological and structural design and electronic structure engineering, the NixCo2−xP@NC NA/NF electrodes exhibit superior electrocatalytic performance for water splitting with an excellent stability in a wide pH range. The optimal NiCoP@NC NA/NF electrode exhibits the best hydrogen evolution reaction (HER) activity in acidic solution so far, attaining a current density of 10 mA cm−2 at an overpotential of 34 mV. Moreover, the electrode manifests remarkable performances toward both HER and oxygen evolution reaction in alkaline medium with only small overpotentials of 37 mV at 10 mA cm−2 and 305 mV at 50 mA cm−2, respectively. Most importantly, when coupling with the NiCoP@NC NA/NF electrode for overall water splitting, an alkali electrolyzer delivers a current density of 20 mA cm−2 at a very low cell voltage of ≈1.56 V. In addition, the NiCoP@NC NA/NF electrode has outstanding long‐term durability at j = 10 mA cm−2 with a negligible degradation in current density over 22 h in both acidic and alkaline media.
Author Cheng, Yan
Liu, Baocang
Hu, Minghao
Jing, Peng
Gao, Rui
Cao, Bo
Ma, Zhixue
Zhang, Jun
Author_xml – sequence: 1
  givenname: Bo
  surname: Cao
  fullname: Cao, Bo
  organization: Inner Mongolia University
– sequence: 2
  givenname: Yan
  surname: Cheng
  fullname: Cheng, Yan
  organization: Inner Mongolia University
– sequence: 3
  givenname: Minghao
  surname: Hu
  fullname: Hu, Minghao
  organization: Inner Mongolia University
– sequence: 4
  givenname: Peng
  surname: Jing
  fullname: Jing, Peng
  organization: Inner Mongolia University
– sequence: 5
  givenname: Zhixue
  surname: Ma
  fullname: Ma, Zhixue
  organization: Inner Mongolia University
– sequence: 6
  givenname: Baocang
  surname: Liu
  fullname: Liu, Baocang
  email: cebcliu@imu.edu.cn
  organization: Inner Mongolia University
– sequence: 7
  givenname: Rui
  surname: Gao
  fullname: Gao, Rui
  email: gaorui@imu.edu.cn
  organization: Inner Mongolia University
– sequence: 8
  givenname: Jun
  orcidid: 0000-0002-3067-2620
  surname: Zhang
  fullname: Zhang, Jun
  email: cejzhang@imu.edu.cn
  organization: Inner Mongolia University
BookMark eNqFkc1u1DAUhSNUJNqBLWtLrGfqn4zjsKsyU0Bq6agDgl1049xMXDx2cBzQ7HgEno4H4ElIOqhISIiV7avznXOtc5acOO8wSZ4zumCU8nOom_2CU5ZTKZh8lJwyyeRcUK5OHu7s45PkrO_vKGVZJtLT5Me6aYw26CIBV5PVEKCySMSKbNE2P7993w5d50PEmrw1MfgdunG48t04KCBUfnoWfujsvUJ_Qnte-ApsJJvW911raiRri3pka-xfkm30RrfG7zEGo8ktROPJLe4GC1PIpoUeR8v7ba596Fpv_e4wZWKHrp4WvfmCAawlH0YikG1nTYzG7cgGQ-PDHpzGp8njBmyPz36fs-T95fpd8Xp-dfPqTXFxNdcpp3IuK8V1JWiaSgQQjUpRZQ1fSiUUzSqoQClIteIViJwvlaxSCqzhAHkmMkQxS14cfbvgPw_Yx_LOD8GNkSUXNJfLLB29Zkl6VOng-z5gU2oTp4-7GMDYktFyarCcGiwfGhyxxV9YF8wewuHfQH4EvhqLh_-oy4vV5fUf9hdde7pE
CitedBy_id crossref_primary_10_1016_j_jcis_2021_06_128
crossref_primary_10_1016_j_jelechem_2021_115761
crossref_primary_10_1016_j_cej_2021_130444
crossref_primary_10_1016_j_ccr_2023_215381
crossref_primary_10_1016_j_cej_2021_128809
crossref_primary_10_1021_acs_inorgchem_2c01436
crossref_primary_10_1016_j_xcrp_2023_101747
crossref_primary_10_1016_j_ijhydene_2024_07_280
crossref_primary_10_1021_acsami_0c06716
crossref_primary_10_1016_j_electacta_2023_141868
crossref_primary_10_1021_acscatal_0c04975
crossref_primary_10_1016_j_jcis_2021_05_041
crossref_primary_10_1016_j_ijhydene_2021_03_155
crossref_primary_10_1016_j_cej_2020_127308
crossref_primary_10_1016_j_apcatb_2022_122131
crossref_primary_10_1016_j_apsusc_2020_147950
crossref_primary_10_1016_j_jcat_2021_04_003
crossref_primary_10_1039_D2TA09588B
crossref_primary_10_1002_cey2_522
crossref_primary_10_1021_acs_energyfuels_3c02773
crossref_primary_10_1016_j_ijhydene_2023_10_211
crossref_primary_10_1016_j_jcis_2024_11_098
crossref_primary_10_1007_s40843_021_2017_y
crossref_primary_10_1002_sstr_202100103
crossref_primary_10_1016_j_ijhydene_2021_03_242
crossref_primary_10_1016_j_apcatb_2020_119421
crossref_primary_10_1016_j_coco_2020_100587
crossref_primary_10_1039_D1DT04359E
crossref_primary_10_1016_j_jallcom_2023_169873
crossref_primary_10_1016_j_jallcom_2021_161790
crossref_primary_10_1016_j_jallcom_2022_164264
crossref_primary_10_1016_j_cej_2022_138515
crossref_primary_10_1016_j_jallcom_2023_170315
crossref_primary_10_1016_j_colsurfa_2021_128092
crossref_primary_10_1016_j_apcatb_2022_121432
crossref_primary_10_1021_acs_energyfuels_2c02013
crossref_primary_10_1016_j_ijhydene_2024_10_090
crossref_primary_10_1016_j_cej_2023_141674
crossref_primary_10_1021_acsami_2c09377
crossref_primary_10_1002_elt2_20
crossref_primary_10_1021_acsami_2c18237
crossref_primary_10_1016_j_apcata_2023_119130
crossref_primary_10_1039_D1CS00323B
crossref_primary_10_1016_j_ijhydene_2023_01_213
crossref_primary_10_1039_D0CY01115K
crossref_primary_10_1002_celc_202001585
crossref_primary_10_1002_smsc_202300222
crossref_primary_10_3390_catal12090957
crossref_primary_10_1002_smll_202006773
crossref_primary_10_1039_D4CY00503A
crossref_primary_10_1002_smll_202005371
crossref_primary_10_1007_s41918_022_00161_7
crossref_primary_10_1007_s40820_020_00469_3
crossref_primary_10_1016_j_electacta_2022_141269
crossref_primary_10_1039_D4QI01152J
crossref_primary_10_3390_polym16223155
crossref_primary_10_1007_s12274_023_6185_x
crossref_primary_10_1016_j_cej_2022_134612
crossref_primary_10_1016_j_ijhydene_2021_08_171
crossref_primary_10_1002_advs_202401207
crossref_primary_10_1016_j_ijhydene_2023_01_108
crossref_primary_10_1002_smll_202304863
crossref_primary_10_1016_j_apcatb_2022_121774
crossref_primary_10_1021_acsami_4c02524
crossref_primary_10_1002_smll_202006860
crossref_primary_10_1002_smll_202101727
crossref_primary_10_1016_j_cej_2020_126257
crossref_primary_10_1021_acssuschemeng_1c06514
crossref_primary_10_1002_smll_202402615
crossref_primary_10_1016_j_apsusc_2022_154287
crossref_primary_10_1007_s40843_021_1953_5
crossref_primary_10_1016_j_cej_2022_137297
crossref_primary_10_1016_j_electacta_2021_139204
crossref_primary_10_1021_acs_jpclett_0c00851
crossref_primary_10_1039_D2NJ00335J
crossref_primary_10_1021_acssuschemeng_0c00712
crossref_primary_10_1016_j_carbon_2020_07_048
crossref_primary_10_1002_adfm_201910830
crossref_primary_10_1016_j_mtener_2024_101515
crossref_primary_10_1002_admi_202000676
crossref_primary_10_1016_j_apcatb_2024_124197
crossref_primary_10_1016_j_nanoms_2021_05_004
crossref_primary_10_1021_acsami_3c17114
crossref_primary_10_1002_cctc_201902316
crossref_primary_10_1016_j_surfin_2022_102173
crossref_primary_10_1039_D0DT01469A
crossref_primary_10_1016_j_ijhydene_2023_09_191
crossref_primary_10_1039_D4DT02507E
crossref_primary_10_1016_j_cej_2022_140908
crossref_primary_10_1002_smll_202205603
crossref_primary_10_1002_aenm_202102074
crossref_primary_10_1021_acs_inorgchem_1c02419
crossref_primary_10_1002_adfm_202003261
crossref_primary_10_1039_D3MH02090H
crossref_primary_10_26599_NR_2025_94907240
crossref_primary_10_1016_j_mtnano_2021_100120
crossref_primary_10_1002_ange_201915254
crossref_primary_10_1016_j_apcatb_2023_123136
crossref_primary_10_1016_j_jelechem_2021_115656
crossref_primary_10_1002_eem2_12273
crossref_primary_10_1007_s40843_020_1452_9
crossref_primary_10_1016_j_cej_2021_130434
crossref_primary_10_1016_j_cej_2021_130279
crossref_primary_10_1039_D2NR07300E
crossref_primary_10_1021_acssuschemeng_2c03250
crossref_primary_10_1039_C9EE03558C
crossref_primary_10_1016_j_nanoen_2022_106989
crossref_primary_10_1016_j_apsusc_2021_151247
crossref_primary_10_1039_D3QM00423F
crossref_primary_10_1021_acsami_0c04902
crossref_primary_10_1007_s11771_021_4774_y
crossref_primary_10_1016_j_jechem_2021_11_035
crossref_primary_10_1021_acsaem_2c01628
crossref_primary_10_1002_anie_201915254
crossref_primary_10_1016_j_apcatb_2021_120630
Cites_doi 10.1002/ange.201200699
10.1039/C5CS00434A
10.1016/j.jpowsour.2016.09.161
10.1021/jp200724h
10.1021/acsnano.8b06312
10.1039/C8TA06529B
10.1002/adma.201302685
10.1002/aenm.201601555
10.1039/C3CS60437C
10.1002/adfm.201600566
10.1039/C6EE01109H
10.1038/nmat1840
10.1002/smll.201700092
10.1002/ange.201610211
10.1126/science.1211934
10.1002/aenm.201502585
10.1021/acsami.7b06305
10.1021/acs.nanolett.6b03332
10.1021/acscatal.6b03192
10.1039/C7TA02651J
10.1002/anie.201610413
10.1021/jacs.5b08186
10.1021/jacs.7b03507
10.1039/C6TA09052D
10.1002/ange.201404161
10.1016/j.nanoen.2018.03.034
10.1038/35104599
10.1021/ja201269b
10.1021/acs.nanolett.6b03803
10.1002/ange.201207111
10.1002/adfm.201803278
10.1021/acscatal.7b00662
10.1021/cs401245q
10.1039/C6NR09883E
10.1002/adfm.201702513
10.1039/C4SC02019G
10.1002/ange.201610413
10.1002/anie.201404161
10.1002/advs.201801490
10.1016/j.carbon.2018.10.023
10.1039/C8TA03485K
10.1016/j.nanoen.2017.01.014
10.1039/C6TA00575F
10.1002/anie.201207111
10.1002/adma.201606793
10.1021/jacs.8b01548
10.1016/j.apcatb.2018.09.082
10.1002/anie.201600525
10.1021/jacs.8b05134
10.1021/acscatal.7b00587
10.1021/ja106102b
10.1038/ncomms5477
10.1039/C5EE03801D
10.1002/anie.201200699
10.1039/C6EE03768B
10.1002/aenm.201602355
10.1039/C6TA10509B
10.1021/jacs.6b09184
10.1002/adfm.201701008
10.1002/adma.201700017
10.1126/science.1257443
10.1039/C6TA07704H
10.1126/science.1103197
10.1002/adma.201503906
10.1016/j.nanoen.2017.03.024
10.1021/acs.jpcc.6b09050
10.1021/jacs.6b12250
10.1039/C3EE42441C
10.1002/anie.201610211
10.1002/adfm.201706847
10.1002/ange.201600525
ContentType Journal Article
Copyright 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.201906316
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList
CrossRef
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 10_1002_adfm_201906316
ADFM201906316
Genre article
GrantInformation_xml – fundername: Application Program from Inner Mongolia Science and Technology Department
  funderid: 2016
– fundername: Cooperation Project of State Key Laboratory of Baiyun Obo Rare Earth Resource Researches and Comprehensive Utilization
  funderid: 2017Z1950
– fundername: NSFC
  funderid: 21661023; 21601096; 21802076
– fundername: Program of Higher‐level Talents of IMU
  funderid: 21300‐5155105; 21300‐5185111
– fundername: Natural Science Foundation of Inner Mongolia Autonomous Region of China
  funderid: 2018BS05007
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
AANHP
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
HF~
HVGLF
LW6
7SP
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
ID FETCH-LOGICAL-c4206-6b82cb30446eaa3f84e87f25683807baba88a4c82ba392586b40a1f2aa9737ee3
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Mon Jul 14 09:59:49 EDT 2025
Thu Apr 24 23:10:15 EDT 2025
Tue Jul 01 04:12:03 EDT 2025
Wed Jan 22 16:39:23 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 44
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4206-6b82cb30446eaa3f84e87f25683807baba88a4c82ba392586b40a1f2aa9737ee3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3067-2620
PQID 2309657468
PQPubID 2045204
PageCount 18
ParticipantIDs proquest_journals_2309657468
crossref_citationtrail_10_1002_adfm_201906316
crossref_primary_10_1002_adfm_201906316
wiley_primary_10_1002_adfm_201906316_ADFM201906316
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 1, 2019
PublicationDateYYYYMMDD 2019-11-01
PublicationDate_xml – month: 11
  year: 2019
  text: November 1, 2019
  day: 01
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 5
2014 2014; 53 126
2011; 115
2011; 334
2017; 7
2018; 28
2013; 25
2018; 140
2019; 6
2017; 27
2017; 29
2017 2017; 56 129
2019; 141
2004; 305
2016; 16
2017; 9
2011; 133
2018; 48
2017; 139
2014; 43
2019; 242
2016; 4
2018; 6
2016; 6
2014; 5
2016 2016; 55 128
2014; 4
2015; 137
2012 2012; 51 124
2017; 10
2017; 32
2017; 13
2017; 35
2016; 333
2010; 132
2007; 6
2017; 121
2018; 12
2016; 28
2014; 7
2016; 26
2014; 345
2016; 9
2001; 414
2016; 45
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_26_2
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_50_1
e_1_2_7_25_2
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_56_2
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_14_2
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_63_1
e_1_2_7_12_2
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_65_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_2
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_38_1
References_xml – volume: 27
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 51 124
  start-page: 6131 6235
  year: 2012 2012
  publication-title: Angew. Chem., Int. Ed. Angew. Chem.
– volume: 10
  start-page: 788
  year: 2017
  publication-title: Energy Environ. Sci.
– volume: 16
  start-page: 6617
  year: 2016
  publication-title: Nano Lett.
– volume: 48
  start-page: 73
  year: 2018
  publication-title: Nano Energy
– volume: 345
  start-page: 1326
  year: 2014
  publication-title: Science
– volume: 7
  start-page: 2357
  year: 2017
  publication-title: ACS Catal.
– volume: 32
  start-page: 511
  year: 2017
  publication-title: Nano Energy
– volume: 141
  start-page: 643
  year: 2019
  publication-title: Carbon
– volume: 132
  year: 2010
  publication-title: J. Am. Chem. Soc.
– volume: 139
  start-page: 8320
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 305
  start-page: 972
  year: 2004
  publication-title: Science
– volume: 242
  start-page: 132
  year: 2019
  publication-title: Appl. Catal., B
– volume: 25
  start-page: 5807
  year: 2013
  publication-title: Adv. Mater.
– volume: 56 129
  start-page: 1324 1344
  year: 2017 2017
  publication-title: Angew. Chem., Int. Ed. Angew. Chem.
– volume: 53 126
  start-page: 6710 6828
  year: 2014 2014
  publication-title: Angew. Chem., Int. Ed. Angew. Chem.
– volume: 333
  start-page: 213
  year: 2016
  publication-title: J. Power Sources
– volume: 16
  start-page: 7718
  year: 2016
  publication-title: Nano Lett.
– volume: 115
  start-page: 6448
  year: 2011
  publication-title: J. Phys. Chem. C
– volume: 6
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 5
  start-page: 4477
  year: 2014
  publication-title: Nat. Commun.
– volume: 9
  start-page: 2257
  year: 2016
  publication-title: Energy Environ. Sci.
– volume: 43
  start-page: 4281
  year: 2014
  publication-title: Chem. Soc. Rev.
– volume: 51 124
  year: 2012 2012
  publication-title: Angew. Chem., Int. Ed. Angew. Chem.
– volume: 4
  start-page: 4745
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 6
  year: 2019
  publication-title: Adv. Sci.
– volume: 6
  start-page: 241
  year: 2007
  publication-title: Nat. Mater.
– volume: 139
  start-page: 1863
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 7
  start-page: 3824
  year: 2017
  publication-title: ACS Catal.
– volume: 4
  start-page: 1148
  year: 2014
  publication-title: ACS Catal.
– volume: 28
  start-page: 77
  year: 2016
  publication-title: Adv. Mater.
– volume: 5
  start-page: 4615
  year: 2014
  publication-title: Chem. Sci.
– volume: 26
  start-page: 4661
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 139
  start-page: 2070
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 35
  start-page: 161
  year: 2017
  publication-title: Nano Energy
– volume: 9
  start-page: 1468
  year: 2016
  publication-title: Energy Environ. Sci.
– volume: 56 129
  start-page: 573 588
  year: 2017 2017
  publication-title: Angew. Chem., Int. Ed. Angew. Chem.
– volume: 7
  start-page: 4131
  year: 2017
  publication-title: ACS Catal.
– volume: 6
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 5
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 4
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 9
  start-page: 3555
  year: 2017
  publication-title: Nanoscale
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 45
  start-page: 1529
  year: 2016
  publication-title: Chem. Soc. Rev.
– volume: 137
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 334
  start-page: 1256
  year: 2011
  publication-title: Science
– volume: 140
  start-page: 5241
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 133
  start-page: 7296
  year: 2011
  publication-title: J. Am. Chem. Soc.
– volume: 12
  year: 2018
  publication-title: ACS Nano
– volume: 7
  start-page: 387
  year: 2014
  publication-title: Energy Environ. Sci.
– volume: 121
  start-page: 284
  year: 2017
  publication-title: J. Phys. Chem. C
– volume: 9
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 7
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 140
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 765
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 55 128
  start-page: 6290 6398
  year: 2016 2016
  publication-title: Angew. Chem., Int. Ed. Angew. Chem.
– volume: 414
  start-page: 332
  year: 2001
  publication-title: Nature
– volume: 5
  start-page: 2496
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 13
  year: 2017
  publication-title: Small
– ident: e_1_2_7_12_2
  doi: 10.1002/ange.201200699
– ident: e_1_2_7_16_1
  doi: 10.1039/C5CS00434A
– ident: e_1_2_7_5_1
  doi: 10.1016/j.jpowsour.2016.09.161
– ident: e_1_2_7_57_1
  doi: 10.1021/jp200724h
– ident: e_1_2_7_50_1
  doi: 10.1021/acsnano.8b06312
– ident: e_1_2_7_4_1
  doi: 10.1039/C8TA06529B
– ident: e_1_2_7_8_1
  doi: 10.1002/adma.201302685
– ident: e_1_2_7_35_1
  doi: 10.1002/aenm.201601555
– ident: e_1_2_7_55_1
  doi: 10.1039/C3CS60437C
– ident: e_1_2_7_58_1
  doi: 10.1002/adfm.201600566
– ident: e_1_2_7_41_1
  doi: 10.1039/C6EE01109H
– ident: e_1_2_7_6_1
  doi: 10.1038/nmat1840
– ident: e_1_2_7_17_1
  doi: 10.1002/smll.201700092
– ident: e_1_2_7_25_2
  doi: 10.1002/ange.201610211
– ident: e_1_2_7_7_1
  doi: 10.1126/science.1211934
– ident: e_1_2_7_34_1
  doi: 10.1002/aenm.201502585
– ident: e_1_2_7_62_1
  doi: 10.1021/acsami.7b06305
– ident: e_1_2_7_42_1
  doi: 10.1021/acs.nanolett.6b03332
– ident: e_1_2_7_30_1
  doi: 10.1021/acscatal.6b03192
– ident: e_1_2_7_23_1
  doi: 10.1039/C7TA02651J
– ident: e_1_2_7_24_1
  doi: 10.1002/anie.201610413
– ident: e_1_2_7_29_1
  doi: 10.1021/jacs.5b08186
– ident: e_1_2_7_27_1
  doi: 10.1021/jacs.7b03507
– ident: e_1_2_7_51_1
  doi: 10.1039/C6TA09052D
– ident: e_1_2_7_56_2
  doi: 10.1002/ange.201404161
– ident: e_1_2_7_48_1
  doi: 10.1016/j.nanoen.2018.03.034
– ident: e_1_2_7_1_1
  doi: 10.1038/35104599
– ident: e_1_2_7_9_1
  doi: 10.1021/ja201269b
– ident: e_1_2_7_46_1
  doi: 10.1021/acs.nanolett.6b03803
– ident: e_1_2_7_14_2
  doi: 10.1002/ange.201207111
– ident: e_1_2_7_33_1
  doi: 10.1002/adfm.201803278
– ident: e_1_2_7_36_1
  doi: 10.1021/acscatal.7b00662
– ident: e_1_2_7_64_1
  doi: 10.1021/cs401245q
– ident: e_1_2_7_47_1
  doi: 10.1039/C6NR09883E
– ident: e_1_2_7_61_1
  doi: 10.1002/adfm.201702513
– ident: e_1_2_7_13_1
  doi: 10.1039/C4SC02019G
– ident: e_1_2_7_24_2
  doi: 10.1002/ange.201610413
– ident: e_1_2_7_56_1
  doi: 10.1002/anie.201404161
– ident: e_1_2_7_54_1
  doi: 10.1002/advs.201801490
– ident: e_1_2_7_49_1
  doi: 10.1016/j.carbon.2018.10.023
– ident: e_1_2_7_63_1
  doi: 10.1039/C8TA03485K
– ident: e_1_2_7_59_1
  doi: 10.1016/j.nanoen.2017.01.014
– ident: e_1_2_7_53_1
  doi: 10.1039/C6TA00575F
– ident: e_1_2_7_14_1
  doi: 10.1002/anie.201207111
– ident: e_1_2_7_19_1
  doi: 10.1002/adma.201606793
– ident: e_1_2_7_38_1
  doi: 10.1021/jacs.8b01548
– ident: e_1_2_7_10_1
  doi: 10.1016/j.apcatb.2018.09.082
– ident: e_1_2_7_26_1
  doi: 10.1002/anie.201600525
– ident: e_1_2_7_65_1
  doi: 10.1021/jacs.8b05134
– ident: e_1_2_7_52_1
  doi: 10.1021/acscatal.7b00587
– ident: e_1_2_7_60_1
  doi: 10.1021/ja106102b
– ident: e_1_2_7_21_1
  doi: 10.1038/ncomms5477
– ident: e_1_2_7_45_1
  doi: 10.1039/C5EE03801D
– ident: e_1_2_7_12_1
  doi: 10.1002/anie.201200699
– ident: e_1_2_7_18_1
  doi: 10.1039/C6EE03768B
– ident: e_1_2_7_37_1
  doi: 10.1002/aenm.201602355
– ident: e_1_2_7_44_1
  doi: 10.1039/C6TA10509B
– ident: e_1_2_7_20_1
  doi: 10.1021/jacs.6b09184
– ident: e_1_2_7_32_1
  doi: 10.1002/adfm.201701008
– ident: e_1_2_7_28_1
  doi: 10.1002/adma.201700017
– ident: e_1_2_7_3_1
  doi: 10.1126/science.1257443
– ident: e_1_2_7_43_1
  doi: 10.1039/C6TA07704H
– ident: e_1_2_7_2_1
  doi: 10.1126/science.1103197
– ident: e_1_2_7_11_1
  doi: 10.1002/adma.201503906
– ident: e_1_2_7_31_1
  doi: 10.1016/j.nanoen.2017.03.024
– ident: e_1_2_7_40_1
  doi: 10.1021/acs.jpcc.6b09050
– ident: e_1_2_7_22_1
  doi: 10.1021/jacs.6b12250
– ident: e_1_2_7_15_1
  doi: 10.1039/C3EE42441C
– ident: e_1_2_7_25_1
  doi: 10.1002/anie.201610211
– ident: e_1_2_7_39_1
  doi: 10.1002/adfm.201706847
– ident: e_1_2_7_26_2
  doi: 10.1002/ange.201600525
SSID ssj0017734
Score 2.609396
Snippet The construction of a novel 3D self‐supported integrated NixCo2−xP@NC (0 < x < 2) nanowall array (NA) on Ni foam (NF) electrode constituting highly dispersed...
The construction of a novel 3D self‐supported integrated Ni x Co 2− x P@NC (0 < x < 2) nanowall array (NA) on Ni foam (NF) electrode constituting highly...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms 3D self‐supported electrodes
Carbon
Current density
Durability
Electrodes
Electronic structure
Hydrogen evolution reactions
Materials science
Metal foams
Morphology
Nanoparticles
Nanorods
Nickel
nickel/cobalt phosphides
Nitrogen
nitrogen‐doped carbon
overall water splitting
Oxygen evolution reactions
Phosphides
Structural design
Water splitting
Title Efficient and Durable 3D Self‐Supported Nitrogen‐Doped Carbon‐Coupled Nickel/Cobalt Phosphide Electrodes: Stoichiometric Ratio Regulated Phase‐ and Morphology‐Dependent Overall Water Splitting Performance
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201906316
https://www.proquest.com/docview/2309657468
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NjtMwELbQcoED_4iyy8oHJE7Z5t8Ot6pptUJ0qVpW9BbZsU0roqZK0z1w4hF4Oh6AJ2HGSdMuEkKCW2z5L_LY89me-YaQ10HEGaDYAGaAMSdUEXe4J4yTq9w1iWuYcNF3eHIVX16H7xbR4siLv-GH6C7ccGXY_RoXuJDb_oE0VCiDnuSg0OLAQ85tNNhCVDTr-KM8xppn5dhDAy9vsWdtdP3-7eq3tdIBah4DVqtxxg-J2I-1MTT5crGr5UX-9Tcax__5mUfkQQtH6aCRn8fkjl4_IfePSAqfkh8jyzIByomKtaLprkJvKxqkdK4L8_PbdwwMiia7il6t6qoEiYTMtNxAxlBUssTksNxtClsCdo2iP0QWkppOl-V2s1wpTUdNNB6lt2_pvC5X-RJpATB6AJ2h7NCZ_oyBxqCJ6RIULzRpRzMpQU7sywD22Qb0remHG7xqK-gnqFHROQBta95Npwc3iWfkejz6OLx02mgQTh76buzEkvu5DPABWgsRGB5qzgwgNo6c-VJIwbkIc-5LAZgv4rEMXeEZX4iEBUzr4Dk5WZdr_YLQXOnEVSZhIhYAIKVgRskw0lpCB1qaHnH20pDlLVU6Ruwosobk2c9wvrJuvnrkTVd-05CE_LHk2V64snaz2GZwCkziiIUx7xHfSslfWskG6XjSpV7-S6VTcg-_G6_KM3JSVzv9CuBVLc_J3UE6eT8_t0vpF-6HKBA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbhMxELZKOQAH_hGBAj6AOG2z__YicaiyiVLahChpRW6LvWuTiFU2SjYgOPEIvAqvwoEH4EmY2b-0SAgJqQeOtuyxZc94xvbMN4Q8dTzOwIp1YAcYM9zE4wa3hDbiJDZ1YGomTIwdHgz9_qn7aupNd8i3OhamxIdoHtxQMorzGgUcH6TbW9RQkWgMJQeN5juWX_lVHqlPH-HWtn55GMIWP7PtXvek0zeqxAJG7Npwg_Ylt2Pp4F-mEsLR3FWcaVD-HOHXpZCCc-HG3JYCzAeP-9I1haVtIQLmMKUcoHuJXMY04gjXH44bxCqLsfIj27fQpcya1jiRpt0-P9_zenBr3J41kQsd17tBvterU7q2vN_f5HI__vwbcOR_tXw3yfXK4qYHpYjcIjtqcZtcO4PDeIf86BZAGqB_qVgkNNysMKCMOiGdqFT__PIVc5-iV3JCh_N8lYHQQWWYLaGiI1Yyw2In2yzTogUcjGm7g0ArOR3NsvVyNk8U7ZYJhxK1fkEneTaPZ4h8gAkS6BjFg47VO8ylBiRGM7AtgGQxm0EGolB8fuCYVc7inL7-gK-JKX0DPVZ0AneJwoOdjraRIHfJ6YUs7D2yu8gW6j6hcaICM9EBE74AG1kKphPpekpJGEBJ3SJGzX5RXKHBY1KSNCpxrO0I-SNq-KNFnjftlyUOyh9b7tXcHFXn4TqCi27ge8z1eYvYBVv-hUp0EPYGTenBv3R6Qq70TwbH0fHh8OghuYr1ZRDpHtnNVxv1CKzJXD4u5JeStxfN8b8A2GqDsw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbhMxELZKkRAc-EcECvgA4rTN_tuLxKHKJmopCVFCRW6LvbZJRJSNkg0ITjwCj8KrcOEBeBJm9i8tEkJC6oGjLXts2TOesT3zDSGPvYAzsGI92AHGLF8F3OKOMFaqUttEtmHCxtjh_iA8PPFfTILJDvlWx8KU-BDNgxtKRnFeo4AvlWlvQUOFMhhJDgot9Jywcqs81p8-wqVt_fwohh1-4rq97uvOoVXlFbBS34ULdCi5m0oPvzK1EJ7hvubMgO7niL4uhRScCz_lrhRgPQQ8lL4tHOMKETGPae0B3Qvkoh_aESaLiEcNYJXDWPmPHTroUeZMaphI222fne9ZNbi1bU9byIWK610j3-vFKT1b3u9vcrmffv4NN_J_Wr3r5Gplb9ODUkBukB29uEmunEJhvEV-dAsYDdC-VCwUjTcrDCejXkzHem5-fvmKmU_RJ1nRwSxfZSByUBlnS6joiJXMsNjJNst50QKOxXm7gzArOR1Os_VyOlOadst0Q0qvn9Fxns3SKeIeYHoEOkLhoCP9DjOpAYnhFCwLIFnMpp-BIBRfHzhmlbE4p68-4FvinL6BHis6hptE4b9Oh9s4kNvk5FwW9g7ZXWQLfZfQVOnIViZiIhRgIUvBjJJ-oLWEAbQ0LWLV3JekFRY8piSZJyWKtZsgfyQNf7TI06b9skRB-WPLvZqZk-o0XCdwzY3CgPkhbxG34Mq_UEkO4l6_Kd37l06PyKVh3EteHg2O75PLWF1GkO6R3Xy10Q_AlMzlw0J6KXl73gz_C8iXgmI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+and+Durable+3D+Self%E2%80%90Supported+Nitrogen%E2%80%90Doped+Carbon%E2%80%90Coupled+Nickel%2FCobalt+Phosphide+Electrodes%3A+Stoichiometric+Ratio+Regulated+Phase%E2%80%90+and+Morphology%E2%80%90Dependent+Overall+Water+Splitting+Performance&rft.jtitle=Advanced+functional+materials&rft.au=Cao%2C+Bo&rft.au=Cheng%2C+Yan&rft.au=Hu%2C+Minghao&rft.au=Jing%2C+Peng&rft.date=2019-11-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=29&rft.issue=44&rft_id=info:doi/10.1002%2Fadfm.201906316&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adfm_201906316
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon