Multifunctional Enhancement for Highly Stable and Efficient Perovskite Solar Cells

With a certified efficiency as high as 25.2%, perovskite has taken the crown as the highest efficiency thin film solar cell material. Unfortunately, serious instability issues must be resolved before perovskite solar cells (PSCs) are commercialized. Aided by theoretical calculation, an appropriate m...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 31; no. 7
Main Authors Cai, Yuan, Cui, Jian, Chen, Ming, Zhang, Miaomiao, Han, Yu, Qian, Fang, Zhao, Huan, Yang, Shaomin, Yang, Zhou, Bian, Hongtao, Wang, Tao, Guo, Kunpeng, Cai, Molang, Dai, Songyuan, Liu, Zhike, Liu, Shengzhong (Frank)
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.02.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract With a certified efficiency as high as 25.2%, perovskite has taken the crown as the highest efficiency thin film solar cell material. Unfortunately, serious instability issues must be resolved before perovskite solar cells (PSCs) are commercialized. Aided by theoretical calculation, an appropriate multifunctional molecule, 2,2‐difluoropropanediamide (DFPDA), is selected to ameliorate all the instability issues. Specifically, the carbonyl groups in DFPDA form chemical bonds with Pb2+ and passivate under‐coordinated Pb2+ defects. Consequently, the perovskite crystallization rate is reduced and high‐quality films are produced with fewer defects. The amino groups not only bind with iodide to suppress ion migration but also increase the electron density on the carbonyl groups to further enhance their passivation effect. Furthermore, the fluorine groups in DFPDA form both an effective barrier on the perovskite to improve its moisture stability and a bridge between the perovskite and HTL for effective charge transport. In addition, they show an effective doping effect in the HTL to improve its carrier mobility. With the help of the combined effects of these groups in DFPDA, the PSCs with DFPDA additive achieve a champion efficiency of 22.21% and a substantially improved stability against moisture, heat, and light. Aided by theoretical calculations, a multifunctional 2,2‐difluoropropanediamide (DFPDA) molecule that bears carbonyl, amino, and fluorine groups is first introduced into the perovskite precursor, serving as a crystal growth mitigator, grain boundaries passivator, and surface protection material. With the help of the combined effects of multifunctional groups in DFPDA, the perovskite cells deliver an efficiency of 22.21% and improved stability.
AbstractList With a certified efficiency as high as 25.2%, perovskite has taken the crown as the highest efficiency thin film solar cell material. Unfortunately, serious instability issues must be resolved before perovskite solar cells (PSCs) are commercialized. Aided by theoretical calculation, an appropriate multifunctional molecule, 2,2‐difluoropropanediamide (DFPDA), is selected to ameliorate all the instability issues. Specifically, the carbonyl groups in DFPDA form chemical bonds with Pb 2+ and passivate under‐coordinated Pb 2+ defects. Consequently, the perovskite crystallization rate is reduced and high‐quality films are produced with fewer defects. The amino groups not only bind with iodide to suppress ion migration but also increase the electron density on the carbonyl groups to further enhance their passivation effect. Furthermore, the fluorine groups in DFPDA form both an effective barrier on the perovskite to improve its moisture stability and a bridge between the perovskite and HTL for effective charge transport. In addition, they show an effective doping effect in the HTL to improve its carrier mobility. With the help of the combined effects of these groups in DFPDA, the PSCs with DFPDA additive achieve a champion efficiency of 22.21% and a substantially improved stability against moisture, heat, and light.
With a certified efficiency as high as 25.2%, perovskite has taken the crown as the highest efficiency thin film solar cell material. Unfortunately, serious instability issues must be resolved before perovskite solar cells (PSCs) are commercialized. Aided by theoretical calculation, an appropriate multifunctional molecule, 2,2‐difluoropropanediamide (DFPDA), is selected to ameliorate all the instability issues. Specifically, the carbonyl groups in DFPDA form chemical bonds with Pb2+ and passivate under‐coordinated Pb2+ defects. Consequently, the perovskite crystallization rate is reduced and high‐quality films are produced with fewer defects. The amino groups not only bind with iodide to suppress ion migration but also increase the electron density on the carbonyl groups to further enhance their passivation effect. Furthermore, the fluorine groups in DFPDA form both an effective barrier on the perovskite to improve its moisture stability and a bridge between the perovskite and HTL for effective charge transport. In addition, they show an effective doping effect in the HTL to improve its carrier mobility. With the help of the combined effects of these groups in DFPDA, the PSCs with DFPDA additive achieve a champion efficiency of 22.21% and a substantially improved stability against moisture, heat, and light. Aided by theoretical calculations, a multifunctional 2,2‐difluoropropanediamide (DFPDA) molecule that bears carbonyl, amino, and fluorine groups is first introduced into the perovskite precursor, serving as a crystal growth mitigator, grain boundaries passivator, and surface protection material. With the help of the combined effects of multifunctional groups in DFPDA, the perovskite cells deliver an efficiency of 22.21% and improved stability.
With a certified efficiency as high as 25.2%, perovskite has taken the crown as the highest efficiency thin film solar cell material. Unfortunately, serious instability issues must be resolved before perovskite solar cells (PSCs) are commercialized. Aided by theoretical calculation, an appropriate multifunctional molecule, 2,2‐difluoropropanediamide (DFPDA), is selected to ameliorate all the instability issues. Specifically, the carbonyl groups in DFPDA form chemical bonds with Pb2+ and passivate under‐coordinated Pb2+ defects. Consequently, the perovskite crystallization rate is reduced and high‐quality films are produced with fewer defects. The amino groups not only bind with iodide to suppress ion migration but also increase the electron density on the carbonyl groups to further enhance their passivation effect. Furthermore, the fluorine groups in DFPDA form both an effective barrier on the perovskite to improve its moisture stability and a bridge between the perovskite and HTL for effective charge transport. In addition, they show an effective doping effect in the HTL to improve its carrier mobility. With the help of the combined effects of these groups in DFPDA, the PSCs with DFPDA additive achieve a champion efficiency of 22.21% and a substantially improved stability against moisture, heat, and light.
Author Cai, Molang
Cai, Yuan
Yang, Shaomin
Liu, Shengzhong (Frank)
Qian, Fang
Cui, Jian
Wang, Tao
Han, Yu
Chen, Ming
Liu, Zhike
Zhang, Miaomiao
Zhao, Huan
Yang, Zhou
Guo, Kunpeng
Bian, Hongtao
Dai, Songyuan
Author_xml – sequence: 1
  givenname: Yuan
  surname: Cai
  fullname: Cai, Yuan
  organization: Chinese Academy of Sciences
– sequence: 2
  givenname: Jian
  surname: Cui
  fullname: Cui, Jian
  organization: Chinese Academy of Sciences
– sequence: 3
  givenname: Ming
  surname: Chen
  fullname: Chen, Ming
  organization: Chinese Academy of Sciences
– sequence: 4
  givenname: Miaomiao
  surname: Zhang
  fullname: Zhang, Miaomiao
  organization: Shaanxi Normal University
– sequence: 5
  givenname: Yu
  surname: Han
  fullname: Han, Yu
  organization: Chinese Academy of Sciences
– sequence: 6
  givenname: Fang
  surname: Qian
  fullname: Qian, Fang
  organization: Chinese Academy of Sciences
– sequence: 7
  givenname: Huan
  surname: Zhao
  fullname: Zhao, Huan
  organization: Chinese Academy of Sciences
– sequence: 8
  givenname: Shaomin
  surname: Yang
  fullname: Yang, Shaomin
  organization: Chinese Academy of Sciences
– sequence: 9
  givenname: Zhou
  surname: Yang
  fullname: Yang, Zhou
  organization: Chinese Academy of Sciences
– sequence: 10
  givenname: Hongtao
  surname: Bian
  fullname: Bian, Hongtao
  organization: Shaanxi Normal University
– sequence: 11
  givenname: Tao
  surname: Wang
  fullname: Wang, Tao
  organization: Shaanxi Normal University
– sequence: 12
  givenname: Kunpeng
  surname: Guo
  fullname: Guo, Kunpeng
  organization: Taiyuan University of Technology
– sequence: 13
  givenname: Molang
  surname: Cai
  fullname: Cai, Molang
  organization: North China Electric Power University
– sequence: 14
  givenname: Songyuan
  surname: Dai
  fullname: Dai, Songyuan
  organization: North China Electric Power University
– sequence: 15
  givenname: Zhike
  surname: Liu
  fullname: Liu, Zhike
  email: zhike2015@snnu.edu.cn
  organization: Chinese Academy of Sciences
– sequence: 16
  givenname: Shengzhong (Frank)
  orcidid: 0000-0002-6338-852X
  surname: Liu
  fullname: Liu, Shengzhong (Frank)
  email: szliu@dicp.ac.cn
  organization: Chinese Academy of Sciences
BookMark eNqFkNFLwzAQh4NMcJu--lzweTNp07R9HHNzwobiFHwr1_TiMrNmJq2y_96VyQRBfLqD-3133NcjncpWSMglo0NGaXgNpdoMQxpSGieJOCFdJpgYRDRMO8eevZyRnvdrSlmSRLxLHheNqbVqKllrW4EJJtUKKokbrOpAWRfM9OvK7IJlDYXBAKoymCilpW7nD-jsh3_TNQZLa8AFYzTGn5NTBcbjxXftk-fp5Gk8G8zvb-_Go_lA8pCKQVxEXCIILFGxVGYcIogTnoUAKZeRwIxCyNIYBStkQQsZc5GVGcYqYgAlRn1yddi7dfa9QV_na9u4_Q8-D3maJFyIJN2nhoeUdNZ7hyrfOr0Bt8sZzVtveestP3rbA_wXIHUNrZ3agTZ_Y9kB-9QGd_8cyUc308UP-wVieIWX
CitedBy_id crossref_primary_10_1002_adfm_202214834
crossref_primary_10_1039_D2SE00951J
crossref_primary_10_1016_j_apsusc_2022_154410
crossref_primary_10_1016_j_cej_2021_130685
crossref_primary_10_1021_acsaem_3c02723
crossref_primary_10_1002_cplu_202300367
crossref_primary_10_1016_j_cej_2024_156684
crossref_primary_10_1002_solr_202200284
crossref_primary_10_1016_j_cej_2024_156686
crossref_primary_10_1021_acsaem_2c03955
crossref_primary_10_1021_acsami_0c20584
crossref_primary_10_1002_aisy_202200307
crossref_primary_10_1016_j_cej_2024_158507
crossref_primary_10_1002_ente_202200354
crossref_primary_10_1016_j_cej_2022_137806
crossref_primary_10_1088_1674_4926_44_8_080201
crossref_primary_10_1002_ange_202305221
crossref_primary_10_1002_adfm_202310194
crossref_primary_10_1002_smll_202303213
crossref_primary_10_1002_aenm_202203190
crossref_primary_10_1021_acssuschemeng_2c05816
crossref_primary_10_1063_5_0226720
crossref_primary_10_1021_acsami_1c18239
crossref_primary_10_1002_solr_202200297
crossref_primary_10_1016_j_cej_2023_144848
crossref_primary_10_1016_j_dyepig_2021_110029
crossref_primary_10_1002_aenm_202203635
crossref_primary_10_1002_adfm_202200534
crossref_primary_10_1021_acsaem_2c00435
crossref_primary_10_1002_adfm_202106380
crossref_primary_10_1016_j_jechem_2021_08_006
crossref_primary_10_1021_acsaem_3c00549
crossref_primary_10_1039_D2EE01016J
crossref_primary_10_3390_en18010174
crossref_primary_10_1002_aenm_202201463
crossref_primary_10_1002_anie_202302435
crossref_primary_10_1021_acsaem_2c01881
crossref_primary_10_1039_D4RA08786K
crossref_primary_10_1002_ange_202213478
crossref_primary_10_1002_adfm_202421361
crossref_primary_10_1002_adfm_202213963
crossref_primary_10_1016_j_cej_2023_144279
crossref_primary_10_1016_j_rinp_2024_107587
crossref_primary_10_1002_adfm_202300932
crossref_primary_10_1002_adfm_202102902
crossref_primary_10_1021_acsaelm_5c00087
crossref_primary_10_1002_ange_202309292
crossref_primary_10_1021_acs_jpclett_1c02682
crossref_primary_10_1021_acs_energyfuels_2c03191
crossref_primary_10_1002_adom_202302513
crossref_primary_10_1016_j_cej_2021_133186
crossref_primary_10_1016_j_cej_2022_135647
crossref_primary_10_1002_anie_202305815
crossref_primary_10_1016_j_solener_2023_111843
crossref_primary_10_1021_acsami_4c05893
crossref_primary_10_1002_aenm_202204260
crossref_primary_10_1016_j_jpowsour_2021_230676
crossref_primary_10_1016_j_nanoen_2022_107368
crossref_primary_10_1021_acsaem_2c00223
crossref_primary_10_1016_j_mtchem_2023_101511
crossref_primary_10_1002_aenm_202300610
crossref_primary_10_1002_cssc_202101573
crossref_primary_10_1039_D3EE01546G
crossref_primary_10_1002_smll_202206205
crossref_primary_10_1002_aenm_202102281
crossref_primary_10_1002_adfm_202300128
crossref_primary_10_1039_D1TA06247F
crossref_primary_10_1002_smll_202402557
crossref_primary_10_1016_j_mssp_2024_109235
crossref_primary_10_1088_1361_6463_acbf62
crossref_primary_10_1002_anie_202313133
crossref_primary_10_1002_adfm_202203704
crossref_primary_10_1016_j_jcis_2021_07_147
crossref_primary_10_1021_acsami_3c17899
crossref_primary_10_1002_adfm_202303873
crossref_primary_10_1007_s10853_022_07930_1
crossref_primary_10_1016_j_jpowsour_2024_235710
crossref_primary_10_1002_solr_202200862
crossref_primary_10_1002_adfm_202112032
crossref_primary_10_1002_ange_202305815
crossref_primary_10_1016_j_cej_2022_138800
crossref_primary_10_1002_anie_202418763
crossref_primary_10_1016_j_jallcom_2025_178884
crossref_primary_10_1021_acsami_1c11237
crossref_primary_10_1021_acsami_4c03969
crossref_primary_10_1002_adfm_202212577
crossref_primary_10_1039_D4TA00369A
crossref_primary_10_1021_acsami_2c15928
crossref_primary_10_1016_j_apsusc_2022_152670
crossref_primary_10_1007_s42114_021_00238_9
crossref_primary_10_1063_5_0139669
crossref_primary_10_1016_j_cej_2023_143722
crossref_primary_10_1002_anie_202420369
crossref_primary_10_1021_acsaem_2c00370
crossref_primary_10_1002_solr_202300766
crossref_primary_10_1002_solr_202200883
crossref_primary_10_1016_j_cej_2022_139345
crossref_primary_10_1360_SSPMA_2023_0066
crossref_primary_10_1039_D3TA03174H
crossref_primary_10_1021_acsami_3c09294
crossref_primary_10_1021_acsenergylett_1c01649
crossref_primary_10_35848_1347_4065_ad9931
crossref_primary_10_1039_D3TC00656E
crossref_primary_10_1063_5_0197150
crossref_primary_10_1021_acsaem_1c02339
crossref_primary_10_1002_er_8008
crossref_primary_10_1002_smll_202301630
crossref_primary_10_1021_acsaem_2c01699
crossref_primary_10_1002_adfm_202423096
crossref_primary_10_1002_aenm_202301302
crossref_primary_10_1002_solr_202400884
crossref_primary_10_1021_acs_jpclett_2c03750
crossref_primary_10_1002_anie_202201209
crossref_primary_10_1002_ange_202205012
crossref_primary_10_1039_D4TC02432J
crossref_primary_10_1021_acssuschemeng_2c07754
crossref_primary_10_1016_j_apsusc_2024_161950
crossref_primary_10_1002_aenm_202405212
crossref_primary_10_1002_solr_202200097
crossref_primary_10_1021_jacsau_3c00469
crossref_primary_10_1039_D2TA00653G
crossref_primary_10_1007_s11426_022_1349_6
crossref_primary_10_1002_adsu_202100510
crossref_primary_10_1002_anie_202205012
crossref_primary_10_1016_j_cej_2022_138028
crossref_primary_10_1021_acsaem_1c03554
crossref_primary_10_1039_D2NJ06313A
crossref_primary_10_1039_D4EE02964J
crossref_primary_10_1021_acsami_1c06216
crossref_primary_10_1002_cjoc_202300651
crossref_primary_10_1021_acsaem_3c00463
crossref_primary_10_1002_adma_202109998
crossref_primary_10_1002_smtd_202201663
crossref_primary_10_1002_anie_202305221
crossref_primary_10_1039_D2YA00303A
crossref_primary_10_1002_advs_202306280
crossref_primary_10_1039_D4SE01801J
crossref_primary_10_1002_adfm_202407732
crossref_primary_10_1002_solr_202201079
crossref_primary_10_1016_j_cej_2023_141524
crossref_primary_10_1021_acsaem_5c00341
crossref_primary_10_6023_A24040134
crossref_primary_10_1002_ange_202201209
crossref_primary_10_1039_D1TA08092J
crossref_primary_10_1002_aenm_202101018
crossref_primary_10_1016_j_matlet_2023_134427
crossref_primary_10_1021_acsaem_1c00930
crossref_primary_10_1021_acsami_2c17694
crossref_primary_10_1021_acsomega_1c04685
crossref_primary_10_15541_jim20230050
crossref_primary_10_1038_s41566_024_01383_5
crossref_primary_10_1002_advs_202302005
crossref_primary_10_1016_j_jallcom_2025_179401
crossref_primary_10_1007_s10854_022_08435_y
crossref_primary_10_1021_acsaem_3c01580
crossref_primary_10_1039_D3SE00081H
crossref_primary_10_1039_D3TA03423B
crossref_primary_10_1002_ange_202420369
crossref_primary_10_1002_adfm_202210028
crossref_primary_10_1016_j_mssp_2022_106488
crossref_primary_10_1016_j_cej_2023_147736
crossref_primary_10_1016_j_jechem_2023_12_030
crossref_primary_10_1002_adfm_202421576
crossref_primary_10_1002_solr_202400065
crossref_primary_10_1021_acsami_2c07552
crossref_primary_10_1021_acsami_2c09058
crossref_primary_10_1016_j_cej_2024_157383
crossref_primary_10_1002_advs_202202028
crossref_primary_10_1021_acsaem_3c01209
crossref_primary_10_1016_j_solener_2021_06_001
crossref_primary_10_1016_j_cej_2022_137990
crossref_primary_10_3390_ma16062163
crossref_primary_10_1016_j_cej_2022_138962
crossref_primary_10_1016_j_solmat_2021_111400
crossref_primary_10_1038_s41467_025_57303_w
crossref_primary_10_1016_j_apsusc_2022_153842
crossref_primary_10_1021_acsami_3c17450
crossref_primary_10_1016_j_nanoen_2022_107792
crossref_primary_10_1002_admi_202202266
crossref_primary_10_1002_aenm_202301332
crossref_primary_10_1021_acsami_2c14638
crossref_primary_10_1016_j_orgel_2024_107102
crossref_primary_10_1002_pssb_202300475
crossref_primary_10_1021_acsami_4c20422
crossref_primary_10_1007_s11426_022_1403_6
crossref_primary_10_1021_acsami_4c21992
crossref_primary_10_1021_acsaem_1c02141
crossref_primary_10_1002_ange_202313133
crossref_primary_10_1002_smtd_202400948
crossref_primary_10_1021_acsami_4c13209
crossref_primary_10_1002_adfm_202108944
crossref_primary_10_1002_aenm_202203471
crossref_primary_10_1002_adfm_202412389
crossref_primary_10_1016_j_mtcomm_2022_104653
crossref_primary_10_1039_D3QM00970J
crossref_primary_10_1016_j_apsusc_2022_154248
crossref_primary_10_1002_cssc_202100980
crossref_primary_10_1039_D4EE03579H
crossref_primary_10_1021_acsanm_4c02342
crossref_primary_10_1002_adma_202302552
crossref_primary_10_1002_solr_202100944
crossref_primary_10_1007_s10854_023_11737_4
crossref_primary_10_1007_s40843_022_2255_2
crossref_primary_10_1021_acsami_2c04308
crossref_primary_10_1007_s40820_021_00688_2
crossref_primary_10_1016_j_solener_2021_11_075
crossref_primary_10_1016_j_mtcomm_2022_104546
crossref_primary_10_1021_acsenergylett_1c02645
crossref_primary_10_1016_j_colsurfa_2024_135052
crossref_primary_10_1021_acsanm_1c02850
crossref_primary_10_1039_D2TA02588D
crossref_primary_10_1039_D2TC01938H
crossref_primary_10_1002_smtd_202200933
crossref_primary_10_1021_acsami_3c13591
crossref_primary_10_1016_j_mtsust_2023_100381
crossref_primary_10_1002_solr_202400438
crossref_primary_10_1016_j_orgel_2022_106597
crossref_primary_10_1016_j_surfin_2022_102097
crossref_primary_10_1007_s12274_021_3600_z
crossref_primary_10_1007_s40843_023_2645_4
crossref_primary_10_1016_j_mssp_2022_106952
crossref_primary_10_1002_cjoc_202200812
crossref_primary_10_1016_j_cej_2024_151128
crossref_primary_10_1007_s40843_021_1762_0
crossref_primary_10_1002_solr_202300028
crossref_primary_10_1007_s40820_023_01040_6
crossref_primary_10_1021_acsami_4c09850
crossref_primary_10_1002_ange_202113932
crossref_primary_10_1002_aenm_202101454
crossref_primary_10_1021_acsaem_1c02235
crossref_primary_10_1002_adfm_202201374
crossref_primary_10_1021_acs_inorgchem_3c01618
crossref_primary_10_1002_smll_202303159
crossref_primary_10_1016_j_apsusc_2023_157339
crossref_primary_10_1063_5_0057978
crossref_primary_10_3390_nano13030619
crossref_primary_10_1002_adom_202402047
crossref_primary_10_1007_s10904_023_02970_9
crossref_primary_10_1002_ange_202418763
crossref_primary_10_1021_acs_chemmater_2c03141
crossref_primary_10_1039_D1MA01165K
crossref_primary_10_1016_j_jechem_2021_04_058
crossref_primary_10_1016_j_nanoen_2022_107193
crossref_primary_10_1002_adfm_202302270
crossref_primary_10_1016_j_matchemphys_2023_127668
crossref_primary_10_1016_j_mssp_2022_107130
crossref_primary_10_1021_acsaem_4c00029
crossref_primary_10_1002_smll_202102272
crossref_primary_10_1002_smll_202408923
crossref_primary_10_1002_advs_202410424
crossref_primary_10_1016_j_susmat_2023_e00622
crossref_primary_10_1039_D4MH01430H
crossref_primary_10_1002_adfm_202208317
crossref_primary_10_1021_acsami_4c00731
crossref_primary_10_1016_j_nanoen_2023_108990
crossref_primary_10_1002_anie_202113932
crossref_primary_10_1002_solr_202200364
crossref_primary_10_3389_felec_2021_712785
crossref_primary_10_1016_j_cej_2024_157212
crossref_primary_10_1002_adma_202306140
crossref_primary_10_1002_ange_202302435
crossref_primary_10_1002_anie_202309292
crossref_primary_10_1016_j_cej_2022_134613
crossref_primary_10_1039_D4RA07942F
crossref_primary_10_1002_solr_202200238
crossref_primary_10_1002_adfm_202411014
crossref_primary_10_1016_j_cej_2022_139988
crossref_primary_10_1021_acsami_3c17529
crossref_primary_10_1021_acs_jpclett_2c01059
crossref_primary_10_1039_D2DT03957E
crossref_primary_10_1021_accountsmr_1c00099
crossref_primary_10_1002_adma_202410425
crossref_primary_10_1002_solr_202400245
crossref_primary_10_1002_solr_202400244
crossref_primary_10_1021_acsami_1c23292
crossref_primary_10_1021_acsmaterialslett_2c00123
crossref_primary_10_5937_tehnika2206667A
crossref_primary_10_1039_D4TA01039F
crossref_primary_10_1002_solr_202100747
crossref_primary_10_1002_smll_202203519
crossref_primary_10_1002_solr_202300137
crossref_primary_10_1088_2515_7655_ada4dd
crossref_primary_10_1016_j_nanoen_2025_110681
crossref_primary_10_1021_acsami_1c18035
crossref_primary_10_1002_cssc_202300545
crossref_primary_10_1016_j_nanoen_2022_106965
crossref_primary_10_1039_D4DT00076E
crossref_primary_10_1007_s40843_022_2365_3
crossref_primary_10_1021_acsami_4c14477
crossref_primary_10_1002_adfm_202418798
crossref_primary_10_1039_D2EE03342A
crossref_primary_10_1016_j_chempr_2021_11_010
crossref_primary_10_1002_cssc_202400038
crossref_primary_10_1016_j_jallcom_2021_160827
crossref_primary_10_1002_smll_202307206
crossref_primary_10_1002_aenm_202201509
crossref_primary_10_1016_j_jcis_2025_137321
crossref_primary_10_1002_adfm_202204450
crossref_primary_10_1016_j_nanoen_2025_110774
crossref_primary_10_1016_j_chip_2024_100125
crossref_primary_10_1016_j_matchemphys_2024_129432
crossref_primary_10_1021_acsaem_4c02471
crossref_primary_10_3390_ma16216990
crossref_primary_10_1002_adfm_202202829
crossref_primary_10_1002_advs_202203640
crossref_primary_10_1002_solr_202300105
crossref_primary_10_1002_aenm_202200537
crossref_primary_10_1002_aenm_202203127
crossref_primary_10_1016_j_solener_2023_04_041
crossref_primary_10_1002_adfm_202213123
crossref_primary_10_1002_solr_202200021
crossref_primary_10_1016_j_cej_2021_134230
crossref_primary_10_1002_anie_202213478
crossref_primary_10_1002_solr_202200935
crossref_primary_10_1002_adma_202211317
crossref_primary_10_1093_rb_rbac098
crossref_primary_10_1021_acsaem_2c01992
crossref_primary_10_1002_cptc_202200311
crossref_primary_10_1002_anie_202302462
crossref_primary_10_1016_j_cej_2021_133948
crossref_primary_10_1016_j_nanoen_2022_108136
crossref_primary_10_1039_D3CP03200K
crossref_primary_10_1515_nanoph_2020_0634
crossref_primary_10_1039_D3TC00748K
crossref_primary_10_1002_adfm_202212606
crossref_primary_10_1016_j_jechem_2021_04_017
crossref_primary_10_1021_acsenergylett_2c02576
crossref_primary_10_1021_acsenergylett_1c01811
crossref_primary_10_1002_solr_202300479
crossref_primary_10_1016_j_mssp_2024_108184
crossref_primary_10_1016_j_solener_2024_112527
crossref_primary_10_1016_j_cej_2021_134223
crossref_primary_10_1021_acsami_4c14579
crossref_primary_10_1016_j_cej_2022_139535
crossref_primary_10_1002_adfm_202411024
crossref_primary_10_1002_inf2_12322
crossref_primary_10_1016_j_mtcomm_2022_103750
crossref_primary_10_1039_D3TA07690C
crossref_primary_10_1016_j_jpowsour_2024_235995
crossref_primary_10_1002_ange_202302462
crossref_primary_10_1007_s40843_022_2289_5
crossref_primary_10_3390_photonics11010087
crossref_primary_10_1016_j_jechem_2021_05_042
Cites_doi 10.1039/C9EE01773A
10.1126/science.1243167
10.1103/PhysRevLett.77.3865
10.1126/science.1243982
10.1002/advs.201903009
10.1039/C8CS00853A
10.1002/aenm.201902650
10.1002/adma.201806823
10.1002/aenm.202000691
10.1002/aenm.201801668
10.1039/C5TA03990H
10.1103/PhysRevLett.102.073005
10.1002/jcc.20575
10.1002/adfm.201803269
10.1007/s11426-019-9653-8
10.1021/jz500279b
10.1002/adfm.201807850
10.1002/solr.201800352
10.1021/nn5036476
10.1002/solr.201900072
10.1002/solr.201900220
10.1016/j.solmat.2019.110052
10.1002/adma.201706576
10.1016/j.nanoen.2017.12.028
10.1021/acs.jpclett.9b02463
10.1002/aenm.201902279
10.1038/s41586-019-1357-2
10.1088/0953-8984/21/8/084204
10.1063/1.4964723
10.1021/jacs.8b13091
10.1021/acsami.7b01063
10.1002/admt.201900311
10.1016/j.polymer.2003.10.028
10.1021/acsami.9b15166
10.1038/s41467-019-13923-7
10.1002/adma.201903691
10.1002/adma.201600969
10.1016/j.nanoen.2020.104639
10.1016/j.commatsci.2005.04.010
10.1002/aenm.201903696
10.1002/adma.201902902
10.1002/smll.201904387
10.1021/jacs.5b04930
10.1002/adma.201905661
10.1039/C8EE01500G
10.1038/s41566-019-0398-2
10.1103/PhysRevB.54.11169
10.1021/ja511132a
10.1038/s41467-018-03169-0
10.1126/science.aaa9272
10.1038/s41467-018-06709-w
10.1039/c3cs35372a
10.1002/aenm.201803766
10.1002/adfm.201909972
10.1016/j.joule.2020.06.005
10.1039/D0TA01255F
10.1103/PhysRevB.47.558
10.1039/C4EE01529K
10.1038/nenergy.2017.102
10.1038/s41566-018-0154-z
10.1039/C8EE01101J
10.1038/s41467-019-08455-z
ContentType Journal Article
Copyright 2020 Wiley‐VCH GmbH
2021 Wiley‐VCH GmbH
Copyright_xml – notice: 2020 Wiley‐VCH GmbH
– notice: 2021 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.202005776
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList CrossRef

Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 10_1002_adfm_202005776
ADFM202005776
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 62074095; 61704101; 91733301
– fundername: 111 Project
  funderid: B(14041)
– fundername: National Key Research and Development Program of China
  funderid: 2016YFA0202403
– fundername: DNL Cooperation Fund CAS
  funderid: DNL180311
– fundername: Fundamental Research Funds for the Central Universities
  funderid: GK202002001; GK201903048
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
HF~
HVGLF
LW6
7SP
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
ID FETCH-LOGICAL-c4206-5b34cea6edef18c94a3a57492aa84c36e90a2185e61bcb0bc5469d9e5f31aade3
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Fri Jul 25 07:25:54 EDT 2025
Thu Apr 24 22:58:12 EDT 2025
Tue Jul 01 04:12:21 EDT 2025
Wed Jan 22 16:31:44 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4206-5b34cea6edef18c94a3a57492aa84c36e90a2185e61bcb0bc5469d9e5f31aade3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6338-852X
PQID 2487746678
PQPubID 2045204
PageCount 11
ParticipantIDs proquest_journals_2487746678
crossref_primary_10_1002_adfm_202005776
crossref_citationtrail_10_1002_adfm_202005776
wiley_primary_10_1002_adfm_202005776_ADFM202005776
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-02-01
PublicationDateYYYYMMDD 2021-02-01
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 2
2020; 63
2019; 11
2019; 10
2019; 13
2019; 12
2019; 15
2006; 36
2016; 145
2019; 201
2020; 11
2020; 10
2015; 348
2018; 45
2017; 9
1996; 77
2020; 8
2007; 28
2020; 7
2018; 9
2018; 8
2014; 5
2020; 4
2015; 137
2019; 29
2018; 30
2014; 8
2014; 7
2003; 44
1993; 47
2019; 9
2018; 28
2019; 4
2019; 3
2009; 21
2015; 3
2019; 31
2013; 42
2013; 342
2020; 32
2019; 141
1996; 54
2020; 30
2020
2020; 71
2019; 48
2009; 102
2018; 12
2016; 28
2018; 11
2019; 571
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_63_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_38_1
References_xml – volume: 342
  start-page: 341
  year: 2013
  publication-title: Science
– volume: 10
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 12
  start-page: 355
  year: 2018
  publication-title: Nat. Photonics
– volume: 102
  year: 2009
  publication-title: Phys. Rev. Lett.
– volume: 137
  start-page: 8696
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 10
  start-page: 6865
  year: 2019
  publication-title: J. Phys. Chem. Lett.
– volume: 63
  start-page: 107
  year: 2020
  publication-title: Sci. China: Chem.
– volume: 9
  start-page: 1076
  year: 2018
  publication-title: Nat. Commun.
– volume: 77
  start-page: 3865
  year: 1996
  publication-title: Phys. Rev. Lett.
– volume: 2
  year: 2017
  publication-title: Nat. Energy
– volume: 201
  year: 2019
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 7
  year: 2020
  publication-title: Adv. Sci.
– volume: 4
  start-page: 1743
  year: 2020
  publication-title: Joule
– volume: 28
  start-page: 899
  year: 2007
  publication-title: J. Comput. Chem.
– volume: 71
  year: 2020
  publication-title: Nano Energy
– volume: 342
  start-page: 344
  year: 2013
  publication-title: Science
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 44
  start-page: 8119
  year: 2003
  publication-title: Polymer
– volume: 54
  year: 1996
  publication-title: Phys. Rev. B
– volume: 8
  start-page: 9815
  year: 2014
  publication-title: ACS Nano
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 42
  start-page: 3453
  year: 2013
  publication-title: Chem. Soc. Rev.
– volume: 28
  start-page: 6734
  year: 2016
  publication-title: Adv. Mater.
– volume: 36
  start-page: 354
  year: 2006
  publication-title: Comput. Mater. Sci.
– volume: 45
  start-page: 28
  year: 2018
  publication-title: Nano Energy
– volume: 137
  start-page: 1530
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 8
  start-page: 7205
  year: 2020
  publication-title: J. Mater. Chem. A
– volume: 3
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 11
  start-page: 117
  year: 2020
  publication-title: Nat. Commun.
– volume: 4
  year: 2019
  publication-title: Adv. Mater. Technol.
– volume: 11
  start-page: 2609
  year: 2018
  publication-title: Energy Environ. Sci.
– volume: 21
  year: 2009
  publication-title: J. Phys.: Condens. Matter
– volume: 141
  start-page: 5781
  year: 2019
  publication-title: J. Am. Chem. Soc.
– volume: 47
  start-page: 558
  year: 1993
  publication-title: Phys. Rev. B
– volume: 11
  start-page: 2985
  year: 2018
  publication-title: Energy Environ. Sci.
– volume: 7
  start-page: 3040
  year: 2014
  publication-title: Energy Environ. Sci.
– volume: 48
  start-page: 3842
  year: 2019
  publication-title: Chem. Soc. Rev.
– volume: 15
  year: 2019
  publication-title: Small
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 9
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 348
  start-page: 1234
  year: 2015
  publication-title: Science
– volume: 11
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 9
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 9
  start-page: 4482
  year: 2018
  publication-title: Nat. Commun.
– volume: 5
  start-page: 1035
  year: 2014
  publication-title: J. Phys. Chem. Lett.
– volume: 12
  start-page: 3063
  year: 2019
  publication-title: Energy Environ. Sci.
– volume: 571
  start-page: 245
  year: 2019
  publication-title: Nature
– volume: 145
  year: 2016
  publication-title: J. Chem. Phys.
– year: 2020
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 10
  start-page: 520
  year: 2019
  publication-title: Nat. Commun.
– volume: 3
  year: 2019
  publication-title: Sol. RRL
– volume: 13
  start-page: 460
  year: 2019
  publication-title: Nat. Photonics
– ident: e_1_2_7_3_1
  doi: 10.1039/C9EE01773A
– ident: e_1_2_7_4_1
  doi: 10.1126/science.1243167
– ident: e_1_2_7_59_1
  doi: 10.1103/PhysRevLett.77.3865
– ident: e_1_2_7_5_1
  doi: 10.1126/science.1243982
– ident: e_1_2_7_29_1
  doi: 10.1002/advs.201903009
– ident: e_1_2_7_12_1
  doi: 10.1039/C8CS00853A
– ident: e_1_2_7_8_1
  doi: 10.1002/aenm.201902650
– ident: e_1_2_7_55_1
  doi: 10.1002/adma.201806823
– ident: e_1_2_7_50_1
  doi: 10.1002/aenm.202000691
– ident: e_1_2_7_39_1
  doi: 10.1002/aenm.201801668
– ident: e_1_2_7_28_1
  doi: 10.1039/C5TA03990H
– ident: e_1_2_7_60_1
  doi: 10.1103/PhysRevLett.102.073005
– ident: e_1_2_7_62_1
  doi: 10.1002/jcc.20575
– ident: e_1_2_7_27_1
  doi: 10.1002/adfm.201803269
– ident: e_1_2_7_7_1
  doi: 10.1007/s11426-019-9653-8
– ident: e_1_2_7_2_1
  doi: 10.1021/jz500279b
– ident: e_1_2_7_34_1
  doi: 10.1002/adfm.201807850
– ident: e_1_2_7_37_1
  doi: 10.1002/solr.201800352
– ident: e_1_2_7_13_1
  doi: 10.1021/nn5036476
– ident: e_1_2_7_33_1
  doi: 10.1002/solr.201900072
– ident: e_1_2_7_32_1
  doi: 10.1002/solr.201900220
– ident: e_1_2_7_36_1
  doi: 10.1016/j.solmat.2019.110052
– ident: e_1_2_7_6_1
  doi: 10.1002/adma.201706576
– ident: e_1_2_7_16_1
  doi: 10.1016/j.nanoen.2017.12.028
– ident: e_1_2_7_21_1
  doi: 10.1021/acs.jpclett.9b02463
– ident: e_1_2_7_44_1
  doi: 10.1002/aenm.201902279
– ident: e_1_2_7_46_1
  doi: 10.1038/s41586-019-1357-2
– ident: e_1_2_7_61_1
  doi: 10.1088/0953-8984/21/8/084204
– ident: e_1_2_7_18_1
  doi: 10.1063/1.4964723
– ident: e_1_2_7_43_1
  doi: 10.1021/jacs.8b13091
– ident: e_1_2_7_47_1
  doi: 10.1021/acsami.7b01063
– ident: e_1_2_7_48_1
  doi: 10.1002/admt.201900311
– ident: e_1_2_7_31_1
  doi: 10.1016/j.polymer.2003.10.028
– ident: e_1_2_7_54_1
  doi: 10.1021/acsami.9b15166
– ident: e_1_2_7_45_1
  doi: 10.1038/s41467-019-13923-7
– ident: e_1_2_7_14_1
  doi: 10.1002/adma.201903691
– ident: e_1_2_7_9_1
  doi: 10.1002/adma.201600969
– ident: e_1_2_7_41_1
  doi: 10.1016/j.nanoen.2020.104639
– ident: e_1_2_7_63_1
  doi: 10.1016/j.commatsci.2005.04.010
– ident: e_1_2_7_22_1
  doi: 10.1002/aenm.201903696
– ident: e_1_2_7_23_1
  doi: 10.1002/adma.201902902
– ident: e_1_2_7_49_1
  doi: 10.1002/smll.201904387
– ident: e_1_2_7_1_1
– ident: e_1_2_7_25_1
  doi: 10.1021/jacs.5b04930
– ident: e_1_2_7_35_1
  doi: 10.1002/adma.201905661
– ident: e_1_2_7_38_1
  doi: 10.1039/C8EE01500G
– ident: e_1_2_7_24_1
  doi: 10.1038/s41566-019-0398-2
– ident: e_1_2_7_58_1
  doi: 10.1103/PhysRevB.54.11169
– ident: e_1_2_7_53_1
  doi: 10.1021/ja511132a
– ident: e_1_2_7_11_1
  doi: 10.1038/s41467-018-03169-0
– ident: e_1_2_7_26_1
  doi: 10.1126/science.aaa9272
– ident: e_1_2_7_20_1
  doi: 10.1038/s41467-018-06709-w
– ident: e_1_2_7_17_1
  doi: 10.1039/c3cs35372a
– ident: e_1_2_7_15_1
  doi: 10.1002/aenm.201803766
– ident: e_1_2_7_51_1
  doi: 10.1002/adfm.201909972
– ident: e_1_2_7_56_1
  doi: 10.1016/j.joule.2020.06.005
– ident: e_1_2_7_19_1
  doi: 10.1039/D0TA01255F
– ident: e_1_2_7_57_1
  doi: 10.1103/PhysRevB.47.558
– ident: e_1_2_7_40_1
  doi: 10.1039/C4EE01529K
– ident: e_1_2_7_52_1
  doi: 10.1038/nenergy.2017.102
– ident: e_1_2_7_42_1
  doi: 10.1038/s41566-018-0154-z
– ident: e_1_2_7_10_1
  doi: 10.1039/C8EE01101J
– ident: e_1_2_7_30_1
  doi: 10.1038/s41467-019-08455-z
SSID ssj0017734
Score 2.6994357
Snippet With a certified efficiency as high as 25.2%, perovskite has taken the crown as the highest efficiency thin film solar cell material. Unfortunately, serious...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms additives
Carbonyl groups
Carbonyls
Carrier mobility
Charge transport
Chemical bonds
combined effects
Commercialization
Crystal defects
Crystallization
Efficiency
Electron density
Fluorine
high efficiency solar cells
Ion migration
Materials science
Moisture
multifunctional groups
perovskite solar cells
Perovskites
Photovoltaic cells
Solar cells
Stability
Thin films
Title Multifunctional Enhancement for Highly Stable and Efficient Perovskite Solar Cells
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202005776
https://www.proquest.com/docview/2487746678
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF6kXvTgW6zWsgfBU9psstltjqUPRKxIa6G3sK8gGFLpQ9Bf707SpK0ggh5DdkOyM5P5ZnbmW4RurF5YpyuZo5RpOTRm2gk5CRxBuc8DIlhoYEd38MjuxvR-Ekw2uvhzfogy4QaWkf2vwcCFnDfXpKFCx9BJDlkRzoFzGwq2ABUNS_4ownm-rcwIFHiRScHa6HrN7enbXmkNNTcBa-Zx-odIFO-aF5q8NpYL2VCf32gc__MxR-hgBUdxO9efY7Rj0hO0v0FSeIqGWY8u-L88bYh76QuoCqQVsYW8GEpFkg9sYatMDBapxr2MlwLuP5nZ9H0OGWI8giAad0ySzM_QuN977tw5q5MYHEU9lzmB9KkyghltYtJSIRW-CDgNPSFaVPnMhK6wWCEwjEglXakCG3Xr0ASxT4TQxj9HlXSamguEFdU2AiUspiGEazpsWTfqxcKXWiuLjarIKSQRqRVNOZyWkUQ5wbIXwVpF5VpV0W05_i0n6PhxZK0QbLQy1Hnk2YCNU2ZddhV5mYR-eUrU7vYH5dXlXyZdoT0PKmOy2u8aqixmS3Ntoc1C1tFuuzt4GNUzNf4CunvxUg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB58HNSDb7FadQ-Cp7TdZLPbHEVbqrYiPsBb2FcQDFFsFfTXu5M0sRVE0GPIbkh2ZjPfzM58A3Do9MIZXcU9rW3bYwk3XiRo6EkmAhFSySOLJ7qDS967Y-f3YZlNiLUwBT9EFXDDnZH_r3GDY0C6-cUaKk2CpeQYFhGCz8I8tvXOvarrikGKClEcLHOKKV70vuRtbPnN6fnTdukLbE5C1tzmdFdAlW9bpJo8Nl5HqqE_vhE5_utzVmF5jEjJcaFCazBjs3VYmuAp3IDrvEwXTWAROSSd7AG1BSOLxKFegtki6TtxyFWllsjMkE5OTYH3r-zL09sQg8TkBv1ocmLTdLgJd93O7UnPGzdj8DTzW9wLVcC0ldwam9C2jpgMZChY5EvZZjrgNmpJBxdCy6nSqqV06BxvE9kwCaiUxgZbMJc9ZXYbiGbGOaGUJyxCj81EbWdJ_UQGyhjt4FENvFIUsR4zlWPDjDQuOJb9GNcqrtaqBkfV-OeCo-PHkfVSsvF4rw5j3_lsgnFntWvg5yL65Snx8Wl3UF3t_GXSASz0bgf9uH92ebELiz4myuSp4HWYG7282j2HdEZqP9flTzw-89k
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60gujBt1ifexA8RbPJZjc5im3xjfiA3sK-gmBIxbaC_np3kjZWQQQ9huyGZGcm883szLcA-04vnNNV3NPaxh7LuPESQSNPMhGKiEqeWNzRvbrmpw_svBt1J7r4K36IOuGGllH-r9HAn0129EkaKk2GneSYFRGCT8MM436Met26rQmkqBDVvjKnWOFFu2PaRj84-jr_q1v6xJqTiLV0OZ1FkOOXrSpNng6HA3Wo37_xOP7na5ZgYYRHyXGlQMswZYsVmJ9gKVyF27JJFx1glTck7eIRdQXzisRhXoK1IvkbcbhV5ZbIwpB2SUyB92_sS--1jylicodRNDmxed5fg4dO-_7k1BsdxeBpFvjci1TItJXcGpvRWCdMhjISLAmkjJkOuU186cBCZDlVWvlKRy7sNomNspBKaWy4Do2iV9gNIJoZF4JSnrEE4zWTxM6PBpkMlTHagaMmeGNJpHrEU47HZeRpxbAcpLhWab1WTTioxz9XDB0_jtweCzYdWWo_DVzEJhh3PrsJQSmhX56SHrc6V_XV5l8m7cHsTauTXp5dX2zBXIBVMmUd-DY0Bi9Du-NgzkDtlpr8AX5B8pE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multifunctional+Enhancement+for+Highly+Stable+and+Efficient+Perovskite+Solar+Cells&rft.jtitle=Advanced+functional+materials&rft.au=Cai%2C+Yuan&rft.au=Cui%2C+Jian&rft.au=Chen%2C+Ming&rft.au=Zhang%2C+Miaomiao&rft.date=2021-02-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=31&rft.issue=7&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadfm.202005776&rft.externalDBID=10.1002%252Fadfm.202005776&rft.externalDocID=ADFM202005776
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon