Multifunctional Enhancement for Highly Stable and Efficient Perovskite Solar Cells
With a certified efficiency as high as 25.2%, perovskite has taken the crown as the highest efficiency thin film solar cell material. Unfortunately, serious instability issues must be resolved before perovskite solar cells (PSCs) are commercialized. Aided by theoretical calculation, an appropriate m...
Saved in:
Published in | Advanced functional materials Vol. 31; no. 7 |
---|---|
Main Authors | , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.02.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | With a certified efficiency as high as 25.2%, perovskite has taken the crown as the highest efficiency thin film solar cell material. Unfortunately, serious instability issues must be resolved before perovskite solar cells (PSCs) are commercialized. Aided by theoretical calculation, an appropriate multifunctional molecule, 2,2‐difluoropropanediamide (DFPDA), is selected to ameliorate all the instability issues. Specifically, the carbonyl groups in DFPDA form chemical bonds with Pb2+ and passivate under‐coordinated Pb2+ defects. Consequently, the perovskite crystallization rate is reduced and high‐quality films are produced with fewer defects. The amino groups not only bind with iodide to suppress ion migration but also increase the electron density on the carbonyl groups to further enhance their passivation effect. Furthermore, the fluorine groups in DFPDA form both an effective barrier on the perovskite to improve its moisture stability and a bridge between the perovskite and HTL for effective charge transport. In addition, they show an effective doping effect in the HTL to improve its carrier mobility. With the help of the combined effects of these groups in DFPDA, the PSCs with DFPDA additive achieve a champion efficiency of 22.21% and a substantially improved stability against moisture, heat, and light.
Aided by theoretical calculations, a multifunctional 2,2‐difluoropropanediamide (DFPDA) molecule that bears carbonyl, amino, and fluorine groups is first introduced into the perovskite precursor, serving as a crystal growth mitigator, grain boundaries passivator, and surface protection material. With the help of the combined effects of multifunctional groups in DFPDA, the perovskite cells deliver an efficiency of 22.21% and improved stability. |
---|---|
AbstractList | With a certified efficiency as high as 25.2%, perovskite has taken the crown as the highest efficiency thin film solar cell material. Unfortunately, serious instability issues must be resolved before perovskite solar cells (PSCs) are commercialized. Aided by theoretical calculation, an appropriate multifunctional molecule, 2,2‐difluoropropanediamide (DFPDA), is selected to ameliorate all the instability issues. Specifically, the carbonyl groups in DFPDA form chemical bonds with Pb
2+
and passivate under‐coordinated Pb
2+
defects. Consequently, the perovskite crystallization rate is reduced and high‐quality films are produced with fewer defects. The amino groups not only bind with iodide to suppress ion migration but also increase the electron density on the carbonyl groups to further enhance their passivation effect. Furthermore, the fluorine groups in DFPDA form both an effective barrier on the perovskite to improve its moisture stability and a bridge between the perovskite and HTL for effective charge transport. In addition, they show an effective doping effect in the HTL to improve its carrier mobility. With the help of the combined effects of these groups in DFPDA, the PSCs with DFPDA additive achieve a champion efficiency of 22.21% and a substantially improved stability against moisture, heat, and light. With a certified efficiency as high as 25.2%, perovskite has taken the crown as the highest efficiency thin film solar cell material. Unfortunately, serious instability issues must be resolved before perovskite solar cells (PSCs) are commercialized. Aided by theoretical calculation, an appropriate multifunctional molecule, 2,2‐difluoropropanediamide (DFPDA), is selected to ameliorate all the instability issues. Specifically, the carbonyl groups in DFPDA form chemical bonds with Pb2+ and passivate under‐coordinated Pb2+ defects. Consequently, the perovskite crystallization rate is reduced and high‐quality films are produced with fewer defects. The amino groups not only bind with iodide to suppress ion migration but also increase the electron density on the carbonyl groups to further enhance their passivation effect. Furthermore, the fluorine groups in DFPDA form both an effective barrier on the perovskite to improve its moisture stability and a bridge between the perovskite and HTL for effective charge transport. In addition, they show an effective doping effect in the HTL to improve its carrier mobility. With the help of the combined effects of these groups in DFPDA, the PSCs with DFPDA additive achieve a champion efficiency of 22.21% and a substantially improved stability against moisture, heat, and light. Aided by theoretical calculations, a multifunctional 2,2‐difluoropropanediamide (DFPDA) molecule that bears carbonyl, amino, and fluorine groups is first introduced into the perovskite precursor, serving as a crystal growth mitigator, grain boundaries passivator, and surface protection material. With the help of the combined effects of multifunctional groups in DFPDA, the perovskite cells deliver an efficiency of 22.21% and improved stability. With a certified efficiency as high as 25.2%, perovskite has taken the crown as the highest efficiency thin film solar cell material. Unfortunately, serious instability issues must be resolved before perovskite solar cells (PSCs) are commercialized. Aided by theoretical calculation, an appropriate multifunctional molecule, 2,2‐difluoropropanediamide (DFPDA), is selected to ameliorate all the instability issues. Specifically, the carbonyl groups in DFPDA form chemical bonds with Pb2+ and passivate under‐coordinated Pb2+ defects. Consequently, the perovskite crystallization rate is reduced and high‐quality films are produced with fewer defects. The amino groups not only bind with iodide to suppress ion migration but also increase the electron density on the carbonyl groups to further enhance their passivation effect. Furthermore, the fluorine groups in DFPDA form both an effective barrier on the perovskite to improve its moisture stability and a bridge between the perovskite and HTL for effective charge transport. In addition, they show an effective doping effect in the HTL to improve its carrier mobility. With the help of the combined effects of these groups in DFPDA, the PSCs with DFPDA additive achieve a champion efficiency of 22.21% and a substantially improved stability against moisture, heat, and light. |
Author | Cai, Molang Cai, Yuan Yang, Shaomin Liu, Shengzhong (Frank) Qian, Fang Cui, Jian Wang, Tao Han, Yu Chen, Ming Liu, Zhike Zhang, Miaomiao Zhao, Huan Yang, Zhou Guo, Kunpeng Bian, Hongtao Dai, Songyuan |
Author_xml | – sequence: 1 givenname: Yuan surname: Cai fullname: Cai, Yuan organization: Chinese Academy of Sciences – sequence: 2 givenname: Jian surname: Cui fullname: Cui, Jian organization: Chinese Academy of Sciences – sequence: 3 givenname: Ming surname: Chen fullname: Chen, Ming organization: Chinese Academy of Sciences – sequence: 4 givenname: Miaomiao surname: Zhang fullname: Zhang, Miaomiao organization: Shaanxi Normal University – sequence: 5 givenname: Yu surname: Han fullname: Han, Yu organization: Chinese Academy of Sciences – sequence: 6 givenname: Fang surname: Qian fullname: Qian, Fang organization: Chinese Academy of Sciences – sequence: 7 givenname: Huan surname: Zhao fullname: Zhao, Huan organization: Chinese Academy of Sciences – sequence: 8 givenname: Shaomin surname: Yang fullname: Yang, Shaomin organization: Chinese Academy of Sciences – sequence: 9 givenname: Zhou surname: Yang fullname: Yang, Zhou organization: Chinese Academy of Sciences – sequence: 10 givenname: Hongtao surname: Bian fullname: Bian, Hongtao organization: Shaanxi Normal University – sequence: 11 givenname: Tao surname: Wang fullname: Wang, Tao organization: Shaanxi Normal University – sequence: 12 givenname: Kunpeng surname: Guo fullname: Guo, Kunpeng organization: Taiyuan University of Technology – sequence: 13 givenname: Molang surname: Cai fullname: Cai, Molang organization: North China Electric Power University – sequence: 14 givenname: Songyuan surname: Dai fullname: Dai, Songyuan organization: North China Electric Power University – sequence: 15 givenname: Zhike surname: Liu fullname: Liu, Zhike email: zhike2015@snnu.edu.cn organization: Chinese Academy of Sciences – sequence: 16 givenname: Shengzhong (Frank) orcidid: 0000-0002-6338-852X surname: Liu fullname: Liu, Shengzhong (Frank) email: szliu@dicp.ac.cn organization: Chinese Academy of Sciences |
BookMark | eNqFkNFLwzAQh4NMcJu--lzweTNp07R9HHNzwobiFHwr1_TiMrNmJq2y_96VyQRBfLqD-3133NcjncpWSMglo0NGaXgNpdoMQxpSGieJOCFdJpgYRDRMO8eevZyRnvdrSlmSRLxLHheNqbVqKllrW4EJJtUKKokbrOpAWRfM9OvK7IJlDYXBAKoymCilpW7nD-jsh3_TNQZLa8AFYzTGn5NTBcbjxXftk-fp5Gk8G8zvb-_Go_lA8pCKQVxEXCIILFGxVGYcIogTnoUAKZeRwIxCyNIYBStkQQsZc5GVGcYqYgAlRn1yddi7dfa9QV_na9u4_Q8-D3maJFyIJN2nhoeUdNZ7hyrfOr0Bt8sZzVtveestP3rbA_wXIHUNrZ3agTZ_Y9kB-9QGd_8cyUc308UP-wVieIWX |
CitedBy_id | crossref_primary_10_1002_adfm_202214834 crossref_primary_10_1039_D2SE00951J crossref_primary_10_1016_j_apsusc_2022_154410 crossref_primary_10_1016_j_cej_2021_130685 crossref_primary_10_1021_acsaem_3c02723 crossref_primary_10_1002_cplu_202300367 crossref_primary_10_1016_j_cej_2024_156684 crossref_primary_10_1002_solr_202200284 crossref_primary_10_1016_j_cej_2024_156686 crossref_primary_10_1021_acsaem_2c03955 crossref_primary_10_1021_acsami_0c20584 crossref_primary_10_1002_aisy_202200307 crossref_primary_10_1016_j_cej_2024_158507 crossref_primary_10_1002_ente_202200354 crossref_primary_10_1016_j_cej_2022_137806 crossref_primary_10_1088_1674_4926_44_8_080201 crossref_primary_10_1002_ange_202305221 crossref_primary_10_1002_adfm_202310194 crossref_primary_10_1002_smll_202303213 crossref_primary_10_1002_aenm_202203190 crossref_primary_10_1021_acssuschemeng_2c05816 crossref_primary_10_1063_5_0226720 crossref_primary_10_1021_acsami_1c18239 crossref_primary_10_1002_solr_202200297 crossref_primary_10_1016_j_cej_2023_144848 crossref_primary_10_1016_j_dyepig_2021_110029 crossref_primary_10_1002_aenm_202203635 crossref_primary_10_1002_adfm_202200534 crossref_primary_10_1021_acsaem_2c00435 crossref_primary_10_1002_adfm_202106380 crossref_primary_10_1016_j_jechem_2021_08_006 crossref_primary_10_1021_acsaem_3c00549 crossref_primary_10_1039_D2EE01016J crossref_primary_10_3390_en18010174 crossref_primary_10_1002_aenm_202201463 crossref_primary_10_1002_anie_202302435 crossref_primary_10_1021_acsaem_2c01881 crossref_primary_10_1039_D4RA08786K crossref_primary_10_1002_ange_202213478 crossref_primary_10_1002_adfm_202421361 crossref_primary_10_1002_adfm_202213963 crossref_primary_10_1016_j_cej_2023_144279 crossref_primary_10_1016_j_rinp_2024_107587 crossref_primary_10_1002_adfm_202300932 crossref_primary_10_1002_adfm_202102902 crossref_primary_10_1021_acsaelm_5c00087 crossref_primary_10_1002_ange_202309292 crossref_primary_10_1021_acs_jpclett_1c02682 crossref_primary_10_1021_acs_energyfuels_2c03191 crossref_primary_10_1002_adom_202302513 crossref_primary_10_1016_j_cej_2021_133186 crossref_primary_10_1016_j_cej_2022_135647 crossref_primary_10_1002_anie_202305815 crossref_primary_10_1016_j_solener_2023_111843 crossref_primary_10_1021_acsami_4c05893 crossref_primary_10_1002_aenm_202204260 crossref_primary_10_1016_j_jpowsour_2021_230676 crossref_primary_10_1016_j_nanoen_2022_107368 crossref_primary_10_1021_acsaem_2c00223 crossref_primary_10_1016_j_mtchem_2023_101511 crossref_primary_10_1002_aenm_202300610 crossref_primary_10_1002_cssc_202101573 crossref_primary_10_1039_D3EE01546G crossref_primary_10_1002_smll_202206205 crossref_primary_10_1002_aenm_202102281 crossref_primary_10_1002_adfm_202300128 crossref_primary_10_1039_D1TA06247F crossref_primary_10_1002_smll_202402557 crossref_primary_10_1016_j_mssp_2024_109235 crossref_primary_10_1088_1361_6463_acbf62 crossref_primary_10_1002_anie_202313133 crossref_primary_10_1002_adfm_202203704 crossref_primary_10_1016_j_jcis_2021_07_147 crossref_primary_10_1021_acsami_3c17899 crossref_primary_10_1002_adfm_202303873 crossref_primary_10_1007_s10853_022_07930_1 crossref_primary_10_1016_j_jpowsour_2024_235710 crossref_primary_10_1002_solr_202200862 crossref_primary_10_1002_adfm_202112032 crossref_primary_10_1002_ange_202305815 crossref_primary_10_1016_j_cej_2022_138800 crossref_primary_10_1002_anie_202418763 crossref_primary_10_1016_j_jallcom_2025_178884 crossref_primary_10_1021_acsami_1c11237 crossref_primary_10_1021_acsami_4c03969 crossref_primary_10_1002_adfm_202212577 crossref_primary_10_1039_D4TA00369A crossref_primary_10_1021_acsami_2c15928 crossref_primary_10_1016_j_apsusc_2022_152670 crossref_primary_10_1007_s42114_021_00238_9 crossref_primary_10_1063_5_0139669 crossref_primary_10_1016_j_cej_2023_143722 crossref_primary_10_1002_anie_202420369 crossref_primary_10_1021_acsaem_2c00370 crossref_primary_10_1002_solr_202300766 crossref_primary_10_1002_solr_202200883 crossref_primary_10_1016_j_cej_2022_139345 crossref_primary_10_1360_SSPMA_2023_0066 crossref_primary_10_1039_D3TA03174H crossref_primary_10_1021_acsami_3c09294 crossref_primary_10_1021_acsenergylett_1c01649 crossref_primary_10_35848_1347_4065_ad9931 crossref_primary_10_1039_D3TC00656E crossref_primary_10_1063_5_0197150 crossref_primary_10_1021_acsaem_1c02339 crossref_primary_10_1002_er_8008 crossref_primary_10_1002_smll_202301630 crossref_primary_10_1021_acsaem_2c01699 crossref_primary_10_1002_adfm_202423096 crossref_primary_10_1002_aenm_202301302 crossref_primary_10_1002_solr_202400884 crossref_primary_10_1021_acs_jpclett_2c03750 crossref_primary_10_1002_anie_202201209 crossref_primary_10_1002_ange_202205012 crossref_primary_10_1039_D4TC02432J crossref_primary_10_1021_acssuschemeng_2c07754 crossref_primary_10_1016_j_apsusc_2024_161950 crossref_primary_10_1002_aenm_202405212 crossref_primary_10_1002_solr_202200097 crossref_primary_10_1021_jacsau_3c00469 crossref_primary_10_1039_D2TA00653G crossref_primary_10_1007_s11426_022_1349_6 crossref_primary_10_1002_adsu_202100510 crossref_primary_10_1002_anie_202205012 crossref_primary_10_1016_j_cej_2022_138028 crossref_primary_10_1021_acsaem_1c03554 crossref_primary_10_1039_D2NJ06313A crossref_primary_10_1039_D4EE02964J crossref_primary_10_1021_acsami_1c06216 crossref_primary_10_1002_cjoc_202300651 crossref_primary_10_1021_acsaem_3c00463 crossref_primary_10_1002_adma_202109998 crossref_primary_10_1002_smtd_202201663 crossref_primary_10_1002_anie_202305221 crossref_primary_10_1039_D2YA00303A crossref_primary_10_1002_advs_202306280 crossref_primary_10_1039_D4SE01801J crossref_primary_10_1002_adfm_202407732 crossref_primary_10_1002_solr_202201079 crossref_primary_10_1016_j_cej_2023_141524 crossref_primary_10_1021_acsaem_5c00341 crossref_primary_10_6023_A24040134 crossref_primary_10_1002_ange_202201209 crossref_primary_10_1039_D1TA08092J crossref_primary_10_1002_aenm_202101018 crossref_primary_10_1016_j_matlet_2023_134427 crossref_primary_10_1021_acsaem_1c00930 crossref_primary_10_1021_acsami_2c17694 crossref_primary_10_1021_acsomega_1c04685 crossref_primary_10_15541_jim20230050 crossref_primary_10_1038_s41566_024_01383_5 crossref_primary_10_1002_advs_202302005 crossref_primary_10_1016_j_jallcom_2025_179401 crossref_primary_10_1007_s10854_022_08435_y crossref_primary_10_1021_acsaem_3c01580 crossref_primary_10_1039_D3SE00081H crossref_primary_10_1039_D3TA03423B crossref_primary_10_1002_ange_202420369 crossref_primary_10_1002_adfm_202210028 crossref_primary_10_1016_j_mssp_2022_106488 crossref_primary_10_1016_j_cej_2023_147736 crossref_primary_10_1016_j_jechem_2023_12_030 crossref_primary_10_1002_adfm_202421576 crossref_primary_10_1002_solr_202400065 crossref_primary_10_1021_acsami_2c07552 crossref_primary_10_1021_acsami_2c09058 crossref_primary_10_1016_j_cej_2024_157383 crossref_primary_10_1002_advs_202202028 crossref_primary_10_1021_acsaem_3c01209 crossref_primary_10_1016_j_solener_2021_06_001 crossref_primary_10_1016_j_cej_2022_137990 crossref_primary_10_3390_ma16062163 crossref_primary_10_1016_j_cej_2022_138962 crossref_primary_10_1016_j_solmat_2021_111400 crossref_primary_10_1038_s41467_025_57303_w crossref_primary_10_1016_j_apsusc_2022_153842 crossref_primary_10_1021_acsami_3c17450 crossref_primary_10_1016_j_nanoen_2022_107792 crossref_primary_10_1002_admi_202202266 crossref_primary_10_1002_aenm_202301332 crossref_primary_10_1021_acsami_2c14638 crossref_primary_10_1016_j_orgel_2024_107102 crossref_primary_10_1002_pssb_202300475 crossref_primary_10_1021_acsami_4c20422 crossref_primary_10_1007_s11426_022_1403_6 crossref_primary_10_1021_acsami_4c21992 crossref_primary_10_1021_acsaem_1c02141 crossref_primary_10_1002_ange_202313133 crossref_primary_10_1002_smtd_202400948 crossref_primary_10_1021_acsami_4c13209 crossref_primary_10_1002_adfm_202108944 crossref_primary_10_1002_aenm_202203471 crossref_primary_10_1002_adfm_202412389 crossref_primary_10_1016_j_mtcomm_2022_104653 crossref_primary_10_1039_D3QM00970J crossref_primary_10_1016_j_apsusc_2022_154248 crossref_primary_10_1002_cssc_202100980 crossref_primary_10_1039_D4EE03579H crossref_primary_10_1021_acsanm_4c02342 crossref_primary_10_1002_adma_202302552 crossref_primary_10_1002_solr_202100944 crossref_primary_10_1007_s10854_023_11737_4 crossref_primary_10_1007_s40843_022_2255_2 crossref_primary_10_1021_acsami_2c04308 crossref_primary_10_1007_s40820_021_00688_2 crossref_primary_10_1016_j_solener_2021_11_075 crossref_primary_10_1016_j_mtcomm_2022_104546 crossref_primary_10_1021_acsenergylett_1c02645 crossref_primary_10_1016_j_colsurfa_2024_135052 crossref_primary_10_1021_acsanm_1c02850 crossref_primary_10_1039_D2TA02588D crossref_primary_10_1039_D2TC01938H crossref_primary_10_1002_smtd_202200933 crossref_primary_10_1021_acsami_3c13591 crossref_primary_10_1016_j_mtsust_2023_100381 crossref_primary_10_1002_solr_202400438 crossref_primary_10_1016_j_orgel_2022_106597 crossref_primary_10_1016_j_surfin_2022_102097 crossref_primary_10_1007_s12274_021_3600_z crossref_primary_10_1007_s40843_023_2645_4 crossref_primary_10_1016_j_mssp_2022_106952 crossref_primary_10_1002_cjoc_202200812 crossref_primary_10_1016_j_cej_2024_151128 crossref_primary_10_1007_s40843_021_1762_0 crossref_primary_10_1002_solr_202300028 crossref_primary_10_1007_s40820_023_01040_6 crossref_primary_10_1021_acsami_4c09850 crossref_primary_10_1002_ange_202113932 crossref_primary_10_1002_aenm_202101454 crossref_primary_10_1021_acsaem_1c02235 crossref_primary_10_1002_adfm_202201374 crossref_primary_10_1021_acs_inorgchem_3c01618 crossref_primary_10_1002_smll_202303159 crossref_primary_10_1016_j_apsusc_2023_157339 crossref_primary_10_1063_5_0057978 crossref_primary_10_3390_nano13030619 crossref_primary_10_1002_adom_202402047 crossref_primary_10_1007_s10904_023_02970_9 crossref_primary_10_1002_ange_202418763 crossref_primary_10_1021_acs_chemmater_2c03141 crossref_primary_10_1039_D1MA01165K crossref_primary_10_1016_j_jechem_2021_04_058 crossref_primary_10_1016_j_nanoen_2022_107193 crossref_primary_10_1002_adfm_202302270 crossref_primary_10_1016_j_matchemphys_2023_127668 crossref_primary_10_1016_j_mssp_2022_107130 crossref_primary_10_1021_acsaem_4c00029 crossref_primary_10_1002_smll_202102272 crossref_primary_10_1002_smll_202408923 crossref_primary_10_1002_advs_202410424 crossref_primary_10_1016_j_susmat_2023_e00622 crossref_primary_10_1039_D4MH01430H crossref_primary_10_1002_adfm_202208317 crossref_primary_10_1021_acsami_4c00731 crossref_primary_10_1016_j_nanoen_2023_108990 crossref_primary_10_1002_anie_202113932 crossref_primary_10_1002_solr_202200364 crossref_primary_10_3389_felec_2021_712785 crossref_primary_10_1016_j_cej_2024_157212 crossref_primary_10_1002_adma_202306140 crossref_primary_10_1002_ange_202302435 crossref_primary_10_1002_anie_202309292 crossref_primary_10_1016_j_cej_2022_134613 crossref_primary_10_1039_D4RA07942F crossref_primary_10_1002_solr_202200238 crossref_primary_10_1002_adfm_202411014 crossref_primary_10_1016_j_cej_2022_139988 crossref_primary_10_1021_acsami_3c17529 crossref_primary_10_1021_acs_jpclett_2c01059 crossref_primary_10_1039_D2DT03957E crossref_primary_10_1021_accountsmr_1c00099 crossref_primary_10_1002_adma_202410425 crossref_primary_10_1002_solr_202400245 crossref_primary_10_1002_solr_202400244 crossref_primary_10_1021_acsami_1c23292 crossref_primary_10_1021_acsmaterialslett_2c00123 crossref_primary_10_5937_tehnika2206667A crossref_primary_10_1039_D4TA01039F crossref_primary_10_1002_solr_202100747 crossref_primary_10_1002_smll_202203519 crossref_primary_10_1002_solr_202300137 crossref_primary_10_1088_2515_7655_ada4dd crossref_primary_10_1016_j_nanoen_2025_110681 crossref_primary_10_1021_acsami_1c18035 crossref_primary_10_1002_cssc_202300545 crossref_primary_10_1016_j_nanoen_2022_106965 crossref_primary_10_1039_D4DT00076E crossref_primary_10_1007_s40843_022_2365_3 crossref_primary_10_1021_acsami_4c14477 crossref_primary_10_1002_adfm_202418798 crossref_primary_10_1039_D2EE03342A crossref_primary_10_1016_j_chempr_2021_11_010 crossref_primary_10_1002_cssc_202400038 crossref_primary_10_1016_j_jallcom_2021_160827 crossref_primary_10_1002_smll_202307206 crossref_primary_10_1002_aenm_202201509 crossref_primary_10_1016_j_jcis_2025_137321 crossref_primary_10_1002_adfm_202204450 crossref_primary_10_1016_j_nanoen_2025_110774 crossref_primary_10_1016_j_chip_2024_100125 crossref_primary_10_1016_j_matchemphys_2024_129432 crossref_primary_10_1021_acsaem_4c02471 crossref_primary_10_3390_ma16216990 crossref_primary_10_1002_adfm_202202829 crossref_primary_10_1002_advs_202203640 crossref_primary_10_1002_solr_202300105 crossref_primary_10_1002_aenm_202200537 crossref_primary_10_1002_aenm_202203127 crossref_primary_10_1016_j_solener_2023_04_041 crossref_primary_10_1002_adfm_202213123 crossref_primary_10_1002_solr_202200021 crossref_primary_10_1016_j_cej_2021_134230 crossref_primary_10_1002_anie_202213478 crossref_primary_10_1002_solr_202200935 crossref_primary_10_1002_adma_202211317 crossref_primary_10_1093_rb_rbac098 crossref_primary_10_1021_acsaem_2c01992 crossref_primary_10_1002_cptc_202200311 crossref_primary_10_1002_anie_202302462 crossref_primary_10_1016_j_cej_2021_133948 crossref_primary_10_1016_j_nanoen_2022_108136 crossref_primary_10_1039_D3CP03200K crossref_primary_10_1515_nanoph_2020_0634 crossref_primary_10_1039_D3TC00748K crossref_primary_10_1002_adfm_202212606 crossref_primary_10_1016_j_jechem_2021_04_017 crossref_primary_10_1021_acsenergylett_2c02576 crossref_primary_10_1021_acsenergylett_1c01811 crossref_primary_10_1002_solr_202300479 crossref_primary_10_1016_j_mssp_2024_108184 crossref_primary_10_1016_j_solener_2024_112527 crossref_primary_10_1016_j_cej_2021_134223 crossref_primary_10_1021_acsami_4c14579 crossref_primary_10_1016_j_cej_2022_139535 crossref_primary_10_1002_adfm_202411024 crossref_primary_10_1002_inf2_12322 crossref_primary_10_1016_j_mtcomm_2022_103750 crossref_primary_10_1039_D3TA07690C crossref_primary_10_1016_j_jpowsour_2024_235995 crossref_primary_10_1002_ange_202302462 crossref_primary_10_1007_s40843_022_2289_5 crossref_primary_10_3390_photonics11010087 crossref_primary_10_1016_j_jechem_2021_05_042 |
Cites_doi | 10.1039/C9EE01773A 10.1126/science.1243167 10.1103/PhysRevLett.77.3865 10.1126/science.1243982 10.1002/advs.201903009 10.1039/C8CS00853A 10.1002/aenm.201902650 10.1002/adma.201806823 10.1002/aenm.202000691 10.1002/aenm.201801668 10.1039/C5TA03990H 10.1103/PhysRevLett.102.073005 10.1002/jcc.20575 10.1002/adfm.201803269 10.1007/s11426-019-9653-8 10.1021/jz500279b 10.1002/adfm.201807850 10.1002/solr.201800352 10.1021/nn5036476 10.1002/solr.201900072 10.1002/solr.201900220 10.1016/j.solmat.2019.110052 10.1002/adma.201706576 10.1016/j.nanoen.2017.12.028 10.1021/acs.jpclett.9b02463 10.1002/aenm.201902279 10.1038/s41586-019-1357-2 10.1088/0953-8984/21/8/084204 10.1063/1.4964723 10.1021/jacs.8b13091 10.1021/acsami.7b01063 10.1002/admt.201900311 10.1016/j.polymer.2003.10.028 10.1021/acsami.9b15166 10.1038/s41467-019-13923-7 10.1002/adma.201903691 10.1002/adma.201600969 10.1016/j.nanoen.2020.104639 10.1016/j.commatsci.2005.04.010 10.1002/aenm.201903696 10.1002/adma.201902902 10.1002/smll.201904387 10.1021/jacs.5b04930 10.1002/adma.201905661 10.1039/C8EE01500G 10.1038/s41566-019-0398-2 10.1103/PhysRevB.54.11169 10.1021/ja511132a 10.1038/s41467-018-03169-0 10.1126/science.aaa9272 10.1038/s41467-018-06709-w 10.1039/c3cs35372a 10.1002/aenm.201803766 10.1002/adfm.201909972 10.1016/j.joule.2020.06.005 10.1039/D0TA01255F 10.1103/PhysRevB.47.558 10.1039/C4EE01529K 10.1038/nenergy.2017.102 10.1038/s41566-018-0154-z 10.1039/C8EE01101J 10.1038/s41467-019-08455-z |
ContentType | Journal Article |
Copyright | 2020 Wiley‐VCH GmbH 2021 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2020 Wiley‐VCH GmbH – notice: 2021 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.202005776 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adfm_202005776 ADFM202005776 |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 62074095; 61704101; 91733301 – fundername: 111 Project funderid: B(14041) – fundername: National Key Research and Development Program of China funderid: 2016YFA0202403 – fundername: DNL Cooperation Fund CAS funderid: DNL180311 – fundername: Fundamental Research Funds for the Central Universities funderid: GK202002001; GK201903048 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE HF~ HVGLF LW6 7SP 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M |
ID | FETCH-LOGICAL-c4206-5b34cea6edef18c94a3a57492aa84c36e90a2185e61bcb0bc5469d9e5f31aade3 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Fri Jul 25 07:25:54 EDT 2025 Thu Apr 24 22:58:12 EDT 2025 Tue Jul 01 04:12:21 EDT 2025 Wed Jan 22 16:31:44 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4206-5b34cea6edef18c94a3a57492aa84c36e90a2185e61bcb0bc5469d9e5f31aade3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-6338-852X |
PQID | 2487746678 |
PQPubID | 2045204 |
PageCount | 11 |
ParticipantIDs | proquest_journals_2487746678 crossref_primary_10_1002_adfm_202005776 crossref_citationtrail_10_1002_adfm_202005776 wiley_primary_10_1002_adfm_202005776_ADFM202005776 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-02-01 |
PublicationDateYYYYMMDD | 2021-02-01 |
PublicationDate_xml | – month: 02 year: 2021 text: 2021-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 2 2020; 63 2019; 11 2019; 10 2019; 13 2019; 12 2019; 15 2006; 36 2016; 145 2019; 201 2020; 11 2020; 10 2015; 348 2018; 45 2017; 9 1996; 77 2020; 8 2007; 28 2020; 7 2018; 9 2018; 8 2014; 5 2020; 4 2015; 137 2019; 29 2018; 30 2014; 8 2014; 7 2003; 44 1993; 47 2019; 9 2018; 28 2019; 4 2019; 3 2009; 21 2015; 3 2019; 31 2013; 42 2013; 342 2020; 32 2019; 141 1996; 54 2020; 30 2020 2020; 71 2019; 48 2009; 102 2018; 12 2016; 28 2018; 11 2019; 571 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_63_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_38_1 |
References_xml | – volume: 342 start-page: 341 year: 2013 publication-title: Science – volume: 10 year: 2020 publication-title: Adv. Energy Mater. – volume: 12 start-page: 355 year: 2018 publication-title: Nat. Photonics – volume: 102 year: 2009 publication-title: Phys. Rev. Lett. – volume: 137 start-page: 8696 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 10 start-page: 6865 year: 2019 publication-title: J. Phys. Chem. Lett. – volume: 63 start-page: 107 year: 2020 publication-title: Sci. China: Chem. – volume: 9 start-page: 1076 year: 2018 publication-title: Nat. Commun. – volume: 77 start-page: 3865 year: 1996 publication-title: Phys. Rev. Lett. – volume: 2 year: 2017 publication-title: Nat. Energy – volume: 201 year: 2019 publication-title: Sol. Energy Mater. Sol. Cells – volume: 7 year: 2020 publication-title: Adv. Sci. – volume: 4 start-page: 1743 year: 2020 publication-title: Joule – volume: 28 start-page: 899 year: 2007 publication-title: J. Comput. Chem. – volume: 71 year: 2020 publication-title: Nano Energy – volume: 342 start-page: 344 year: 2013 publication-title: Science – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 44 start-page: 8119 year: 2003 publication-title: Polymer – volume: 54 year: 1996 publication-title: Phys. Rev. B – volume: 8 start-page: 9815 year: 2014 publication-title: ACS Nano – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. – volume: 42 start-page: 3453 year: 2013 publication-title: Chem. Soc. Rev. – volume: 28 start-page: 6734 year: 2016 publication-title: Adv. Mater. – volume: 36 start-page: 354 year: 2006 publication-title: Comput. Mater. Sci. – volume: 45 start-page: 28 year: 2018 publication-title: Nano Energy – volume: 137 start-page: 1530 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 8 start-page: 7205 year: 2020 publication-title: J. Mater. Chem. A – volume: 3 year: 2015 publication-title: J. Mater. Chem. A – volume: 11 start-page: 117 year: 2020 publication-title: Nat. Commun. – volume: 4 year: 2019 publication-title: Adv. Mater. Technol. – volume: 11 start-page: 2609 year: 2018 publication-title: Energy Environ. Sci. – volume: 21 year: 2009 publication-title: J. Phys.: Condens. Matter – volume: 141 start-page: 5781 year: 2019 publication-title: J. Am. Chem. Soc. – volume: 47 start-page: 558 year: 1993 publication-title: Phys. Rev. B – volume: 11 start-page: 2985 year: 2018 publication-title: Energy Environ. Sci. – volume: 7 start-page: 3040 year: 2014 publication-title: Energy Environ. Sci. – volume: 48 start-page: 3842 year: 2019 publication-title: Chem. Soc. Rev. – volume: 15 year: 2019 publication-title: Small – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 9 year: 2019 publication-title: Adv. Energy Mater. – volume: 348 start-page: 1234 year: 2015 publication-title: Science – volume: 11 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 9 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 9 start-page: 4482 year: 2018 publication-title: Nat. Commun. – volume: 5 start-page: 1035 year: 2014 publication-title: J. Phys. Chem. Lett. – volume: 12 start-page: 3063 year: 2019 publication-title: Energy Environ. Sci. – volume: 571 start-page: 245 year: 2019 publication-title: Nature – volume: 145 year: 2016 publication-title: J. Chem. Phys. – year: 2020 – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 10 start-page: 520 year: 2019 publication-title: Nat. Commun. – volume: 3 year: 2019 publication-title: Sol. RRL – volume: 13 start-page: 460 year: 2019 publication-title: Nat. Photonics – ident: e_1_2_7_3_1 doi: 10.1039/C9EE01773A – ident: e_1_2_7_4_1 doi: 10.1126/science.1243167 – ident: e_1_2_7_59_1 doi: 10.1103/PhysRevLett.77.3865 – ident: e_1_2_7_5_1 doi: 10.1126/science.1243982 – ident: e_1_2_7_29_1 doi: 10.1002/advs.201903009 – ident: e_1_2_7_12_1 doi: 10.1039/C8CS00853A – ident: e_1_2_7_8_1 doi: 10.1002/aenm.201902650 – ident: e_1_2_7_55_1 doi: 10.1002/adma.201806823 – ident: e_1_2_7_50_1 doi: 10.1002/aenm.202000691 – ident: e_1_2_7_39_1 doi: 10.1002/aenm.201801668 – ident: e_1_2_7_28_1 doi: 10.1039/C5TA03990H – ident: e_1_2_7_60_1 doi: 10.1103/PhysRevLett.102.073005 – ident: e_1_2_7_62_1 doi: 10.1002/jcc.20575 – ident: e_1_2_7_27_1 doi: 10.1002/adfm.201803269 – ident: e_1_2_7_7_1 doi: 10.1007/s11426-019-9653-8 – ident: e_1_2_7_2_1 doi: 10.1021/jz500279b – ident: e_1_2_7_34_1 doi: 10.1002/adfm.201807850 – ident: e_1_2_7_37_1 doi: 10.1002/solr.201800352 – ident: e_1_2_7_13_1 doi: 10.1021/nn5036476 – ident: e_1_2_7_33_1 doi: 10.1002/solr.201900072 – ident: e_1_2_7_32_1 doi: 10.1002/solr.201900220 – ident: e_1_2_7_36_1 doi: 10.1016/j.solmat.2019.110052 – ident: e_1_2_7_6_1 doi: 10.1002/adma.201706576 – ident: e_1_2_7_16_1 doi: 10.1016/j.nanoen.2017.12.028 – ident: e_1_2_7_21_1 doi: 10.1021/acs.jpclett.9b02463 – ident: e_1_2_7_44_1 doi: 10.1002/aenm.201902279 – ident: e_1_2_7_46_1 doi: 10.1038/s41586-019-1357-2 – ident: e_1_2_7_61_1 doi: 10.1088/0953-8984/21/8/084204 – ident: e_1_2_7_18_1 doi: 10.1063/1.4964723 – ident: e_1_2_7_43_1 doi: 10.1021/jacs.8b13091 – ident: e_1_2_7_47_1 doi: 10.1021/acsami.7b01063 – ident: e_1_2_7_48_1 doi: 10.1002/admt.201900311 – ident: e_1_2_7_31_1 doi: 10.1016/j.polymer.2003.10.028 – ident: e_1_2_7_54_1 doi: 10.1021/acsami.9b15166 – ident: e_1_2_7_45_1 doi: 10.1038/s41467-019-13923-7 – ident: e_1_2_7_14_1 doi: 10.1002/adma.201903691 – ident: e_1_2_7_9_1 doi: 10.1002/adma.201600969 – ident: e_1_2_7_41_1 doi: 10.1016/j.nanoen.2020.104639 – ident: e_1_2_7_63_1 doi: 10.1016/j.commatsci.2005.04.010 – ident: e_1_2_7_22_1 doi: 10.1002/aenm.201903696 – ident: e_1_2_7_23_1 doi: 10.1002/adma.201902902 – ident: e_1_2_7_49_1 doi: 10.1002/smll.201904387 – ident: e_1_2_7_1_1 – ident: e_1_2_7_25_1 doi: 10.1021/jacs.5b04930 – ident: e_1_2_7_35_1 doi: 10.1002/adma.201905661 – ident: e_1_2_7_38_1 doi: 10.1039/C8EE01500G – ident: e_1_2_7_24_1 doi: 10.1038/s41566-019-0398-2 – ident: e_1_2_7_58_1 doi: 10.1103/PhysRevB.54.11169 – ident: e_1_2_7_53_1 doi: 10.1021/ja511132a – ident: e_1_2_7_11_1 doi: 10.1038/s41467-018-03169-0 – ident: e_1_2_7_26_1 doi: 10.1126/science.aaa9272 – ident: e_1_2_7_20_1 doi: 10.1038/s41467-018-06709-w – ident: e_1_2_7_17_1 doi: 10.1039/c3cs35372a – ident: e_1_2_7_15_1 doi: 10.1002/aenm.201803766 – ident: e_1_2_7_51_1 doi: 10.1002/adfm.201909972 – ident: e_1_2_7_56_1 doi: 10.1016/j.joule.2020.06.005 – ident: e_1_2_7_19_1 doi: 10.1039/D0TA01255F – ident: e_1_2_7_57_1 doi: 10.1103/PhysRevB.47.558 – ident: e_1_2_7_40_1 doi: 10.1039/C4EE01529K – ident: e_1_2_7_52_1 doi: 10.1038/nenergy.2017.102 – ident: e_1_2_7_42_1 doi: 10.1038/s41566-018-0154-z – ident: e_1_2_7_10_1 doi: 10.1039/C8EE01101J – ident: e_1_2_7_30_1 doi: 10.1038/s41467-019-08455-z |
SSID | ssj0017734 |
Score | 2.6994357 |
Snippet | With a certified efficiency as high as 25.2%, perovskite has taken the crown as the highest efficiency thin film solar cell material. Unfortunately, serious... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | additives Carbonyl groups Carbonyls Carrier mobility Charge transport Chemical bonds combined effects Commercialization Crystal defects Crystallization Efficiency Electron density Fluorine high efficiency solar cells Ion migration Materials science Moisture multifunctional groups perovskite solar cells Perovskites Photovoltaic cells Solar cells Stability Thin films |
Title | Multifunctional Enhancement for Highly Stable and Efficient Perovskite Solar Cells |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202005776 https://www.proquest.com/docview/2487746678 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF6kXvTgW6zWsgfBU9psstltjqUPRKxIa6G3sK8gGFLpQ9Bf707SpK0ggh5DdkOyM5P5ZnbmW4RurF5YpyuZo5RpOTRm2gk5CRxBuc8DIlhoYEd38MjuxvR-Ekw2uvhzfogy4QaWkf2vwcCFnDfXpKFCx9BJDlkRzoFzGwq2ABUNS_4ownm-rcwIFHiRScHa6HrN7enbXmkNNTcBa-Zx-odIFO-aF5q8NpYL2VCf32gc__MxR-hgBUdxO9efY7Rj0hO0v0FSeIqGWY8u-L88bYh76QuoCqQVsYW8GEpFkg9sYatMDBapxr2MlwLuP5nZ9H0OGWI8giAad0ySzM_QuN977tw5q5MYHEU9lzmB9KkyghltYtJSIRW-CDgNPSFaVPnMhK6wWCEwjEglXakCG3Xr0ASxT4TQxj9HlXSamguEFdU2AiUspiGEazpsWTfqxcKXWiuLjarIKSQRqRVNOZyWkUQ5wbIXwVpF5VpV0W05_i0n6PhxZK0QbLQy1Hnk2YCNU2ZddhV5mYR-eUrU7vYH5dXlXyZdoT0PKmOy2u8aqixmS3Ntoc1C1tFuuzt4GNUzNf4CunvxUg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB58HNSDb7FadQ-Cp7TdZLPbHEVbqrYiPsBb2FcQDFFsFfTXu5M0sRVE0GPIbkh2ZjPfzM58A3Do9MIZXcU9rW3bYwk3XiRo6EkmAhFSySOLJ7qDS967Y-f3YZlNiLUwBT9EFXDDnZH_r3GDY0C6-cUaKk2CpeQYFhGCz8I8tvXOvarrikGKClEcLHOKKV70vuRtbPnN6fnTdukLbE5C1tzmdFdAlW9bpJo8Nl5HqqE_vhE5_utzVmF5jEjJcaFCazBjs3VYmuAp3IDrvEwXTWAROSSd7AG1BSOLxKFegtki6TtxyFWllsjMkE5OTYH3r-zL09sQg8TkBv1ocmLTdLgJd93O7UnPGzdj8DTzW9wLVcC0ldwam9C2jpgMZChY5EvZZjrgNmpJBxdCy6nSqqV06BxvE9kwCaiUxgZbMJc9ZXYbiGbGOaGUJyxCj81EbWdJ_UQGyhjt4FENvFIUsR4zlWPDjDQuOJb9GNcqrtaqBkfV-OeCo-PHkfVSsvF4rw5j3_lsgnFntWvg5yL65Snx8Wl3UF3t_GXSASz0bgf9uH92ebELiz4myuSp4HWYG7282j2HdEZqP9flTzw-89k |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60gujBt1ifexA8RbPJZjc5im3xjfiA3sK-gmBIxbaC_np3kjZWQQQ9huyGZGcm883szLcA-04vnNNV3NPaxh7LuPESQSNPMhGKiEqeWNzRvbrmpw_svBt1J7r4K36IOuGGllH-r9HAn0129EkaKk2GneSYFRGCT8MM436Met26rQmkqBDVvjKnWOFFu2PaRj84-jr_q1v6xJqTiLV0OZ1FkOOXrSpNng6HA3Wo37_xOP7na5ZgYYRHyXGlQMswZYsVmJ9gKVyF27JJFx1glTck7eIRdQXzisRhXoK1IvkbcbhV5ZbIwpB2SUyB92_sS--1jylicodRNDmxed5fg4dO-_7k1BsdxeBpFvjci1TItJXcGpvRWCdMhjISLAmkjJkOuU186cBCZDlVWvlKRy7sNomNspBKaWy4Do2iV9gNIJoZF4JSnrEE4zWTxM6PBpkMlTHagaMmeGNJpHrEU47HZeRpxbAcpLhWab1WTTioxz9XDB0_jtweCzYdWWo_DVzEJhh3PrsJQSmhX56SHrc6V_XV5l8m7cHsTauTXp5dX2zBXIBVMmUd-DY0Bi9Du-NgzkDtlpr8AX5B8pE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multifunctional+Enhancement+for+Highly+Stable+and+Efficient+Perovskite+Solar+Cells&rft.jtitle=Advanced+functional+materials&rft.au=Cai%2C+Yuan&rft.au=Cui%2C+Jian&rft.au=Chen%2C+Ming&rft.au=Zhang%2C+Miaomiao&rft.date=2021-02-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=31&rft.issue=7&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadfm.202005776&rft.externalDBID=10.1002%252Fadfm.202005776&rft.externalDocID=ADFM202005776 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |