Characterization and correction of cardiovascular motion artifacts in diffusion‐weighted imaging of the pancreas
Purpose To assess the effects of cardiovascular‐induced motion on conventional DWI of the pancreas and to evaluate motion‐robust DWI methods in a motion phantom and healthy volunteers. Methods 3T DWI was acquired using standard monopolar and motion‐compensated gradient waveforms, including in an ana...
Saved in:
Published in | Magnetic resonance in medicine Vol. 86; no. 4; pp. 1956 - 1969 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.10.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Purpose
To assess the effects of cardiovascular‐induced motion on conventional DWI of the pancreas and to evaluate motion‐robust DWI methods in a motion phantom and healthy volunteers.
Methods
3T DWI was acquired using standard monopolar and motion‐compensated gradient waveforms, including in an anatomically accurate pancreas phantom with controllable compressive motion and healthy volunteers (n = 8, 10). In volunteers, highly controlled single‐slice DWI using breath‐holding and cardiac gating and whole‐pancreas respiratory‐triggered DWI were acquired. For each acquisition, the ADC variability across volunteers, as well as ADC differences across parts of the pancreas were evaluated.
Results
In motion phantom scans, conventional DWI led to biased ADC, whereas motion‐compensated waveforms produced consistent ADC. In the breath‐held, cardiac‐triggered study, conventional DWI led to heterogeneous DW signals and highly variable ADC across the pancreas, whereas motion‐compensated DWI avoided these artifacts. In the respiratory‐triggered study, conventional DWI produced heterogeneous ADC across the pancreas (head: 1756 ± 173 × 10−6 mm2/s; body: 1530 ± 338 × 10−6 mm2/s; tail: 1388 ± 267 × 10−6 mm2/s), with ADCs in the head significantly higher than in the tail (P < .05). Motion‐compensated ADC had lower variability across volunteers (head: 1277 ± 102 × 10−6 mm2/s; body: 1204 ± 169 × 10−6 mm2/s; tail: 1235 ± 178 × 10−6 mm2/s), with no significant difference (P ≥ .19) across the pancreas.
Conclusion
Cardiovascular motion introduces artifacts and ADC bias in pancreas DWI, which are addressed by motion‐robust DWI. |
---|---|
AbstractList | To assess the effects of cardiovascular-induced motion on conventional DWI of the pancreas and to evaluate motion-robust DWI methods in a motion phantom and healthy volunteers.PURPOSETo assess the effects of cardiovascular-induced motion on conventional DWI of the pancreas and to evaluate motion-robust DWI methods in a motion phantom and healthy volunteers.3T DWI was acquired using standard monopolar and motion-compensated gradient waveforms, including in an anatomically accurate pancreas phantom with controllable compressive motion and healthy volunteers (n = 8, 10). In volunteers, highly controlled single-slice DWI using breath-holding and cardiac gating and whole-pancreas respiratory-triggered DWI were acquired. For each acquisition, the ADC variability across volunteers, as well as ADC differences across parts of the pancreas were evaluated.METHODS3T DWI was acquired using standard monopolar and motion-compensated gradient waveforms, including in an anatomically accurate pancreas phantom with controllable compressive motion and healthy volunteers (n = 8, 10). In volunteers, highly controlled single-slice DWI using breath-holding and cardiac gating and whole-pancreas respiratory-triggered DWI were acquired. For each acquisition, the ADC variability across volunteers, as well as ADC differences across parts of the pancreas were evaluated.In motion phantom scans, conventional DWI led to biased ADC, whereas motion-compensated waveforms produced consistent ADC. In the breath-held, cardiac-triggered study, conventional DWI led to heterogeneous DW signals and highly variable ADC across the pancreas, whereas motion-compensated DWI avoided these artifacts. In the respiratory-triggered study, conventional DWI produced heterogeneous ADC across the pancreas (head: 1756 ± 173 × 10-6 mm2 /s; body: 1530 ± 338 × 10-6 mm2 /s; tail: 1388 ± 267 × 10-6 mm2 /s), with ADCs in the head significantly higher than in the tail (P < .05). Motion-compensated ADC had lower variability across volunteers (head: 1277 ± 102 × 10-6 mm2 /s; body: 1204 ± 169 × 10-6 mm2 /s; tail: 1235 ± 178 × 10-6 mm2 /s), with no significant difference (P ≥ .19) across the pancreas.RESULTSIn motion phantom scans, conventional DWI led to biased ADC, whereas motion-compensated waveforms produced consistent ADC. In the breath-held, cardiac-triggered study, conventional DWI led to heterogeneous DW signals and highly variable ADC across the pancreas, whereas motion-compensated DWI avoided these artifacts. In the respiratory-triggered study, conventional DWI produced heterogeneous ADC across the pancreas (head: 1756 ± 173 × 10-6 mm2 /s; body: 1530 ± 338 × 10-6 mm2 /s; tail: 1388 ± 267 × 10-6 mm2 /s), with ADCs in the head significantly higher than in the tail (P < .05). Motion-compensated ADC had lower variability across volunteers (head: 1277 ± 102 × 10-6 mm2 /s; body: 1204 ± 169 × 10-6 mm2 /s; tail: 1235 ± 178 × 10-6 mm2 /s), with no significant difference (P ≥ .19) across the pancreas.Cardiovascular motion introduces artifacts and ADC bias in pancreas DWI, which are addressed by motion-robust DWI.CONCLUSIONCardiovascular motion introduces artifacts and ADC bias in pancreas DWI, which are addressed by motion-robust DWI. Purpose To assess the effects of cardiovascular‐induced motion on conventional DWI of the pancreas and to evaluate motion‐robust DWI methods in a motion phantom and healthy volunteers. Methods 3T DWI was acquired using standard monopolar and motion‐compensated gradient waveforms, including in an anatomically accurate pancreas phantom with controllable compressive motion and healthy volunteers (n = 8, 10). In volunteers, highly controlled single‐slice DWI using breath‐holding and cardiac gating and whole‐pancreas respiratory‐triggered DWI were acquired. For each acquisition, the ADC variability across volunteers, as well as ADC differences across parts of the pancreas were evaluated. Results In motion phantom scans, conventional DWI led to biased ADC, whereas motion‐compensated waveforms produced consistent ADC. In the breath‐held, cardiac‐triggered study, conventional DWI led to heterogeneous DW signals and highly variable ADC across the pancreas, whereas motion‐compensated DWI avoided these artifacts. In the respiratory‐triggered study, conventional DWI produced heterogeneous ADC across the pancreas (head: 1756 ± 173 × 10−6 mm2/s; body: 1530 ± 338 × 10−6 mm2/s; tail: 1388 ± 267 × 10−6 mm2/s), with ADCs in the head significantly higher than in the tail (P < .05). Motion‐compensated ADC had lower variability across volunteers (head: 1277 ± 102 × 10−6 mm2/s; body: 1204 ± 169 × 10−6 mm2/s; tail: 1235 ± 178 × 10−6 mm2/s), with no significant difference (P ≥ .19) across the pancreas. Conclusion Cardiovascular motion introduces artifacts and ADC bias in pancreas DWI, which are addressed by motion‐robust DWI. PurposeTo assess the effects of cardiovascular‐induced motion on conventional DWI of the pancreas and to evaluate motion‐robust DWI methods in a motion phantom and healthy volunteers.Methods3T DWI was acquired using standard monopolar and motion‐compensated gradient waveforms, including in an anatomically accurate pancreas phantom with controllable compressive motion and healthy volunteers (n = 8, 10). In volunteers, highly controlled single‐slice DWI using breath‐holding and cardiac gating and whole‐pancreas respiratory‐triggered DWI were acquired. For each acquisition, the ADC variability across volunteers, as well as ADC differences across parts of the pancreas were evaluated.ResultsIn motion phantom scans, conventional DWI led to biased ADC, whereas motion‐compensated waveforms produced consistent ADC. In the breath‐held, cardiac‐triggered study, conventional DWI led to heterogeneous DW signals and highly variable ADC across the pancreas, whereas motion‐compensated DWI avoided these artifacts. In the respiratory‐triggered study, conventional DWI produced heterogeneous ADC across the pancreas (head: 1756 ± 173 × 10−6 mm2/s; body: 1530 ± 338 × 10−6 mm2/s; tail: 1388 ± 267 × 10−6 mm2/s), with ADCs in the head significantly higher than in the tail (P < .05). Motion‐compensated ADC had lower variability across volunteers (head: 1277 ± 102 × 10−6 mm2/s; body: 1204 ± 169 × 10−6 mm2/s; tail: 1235 ± 178 × 10−6 mm2/s), with no significant difference (P ≥ .19) across the pancreas.ConclusionCardiovascular motion introduces artifacts and ADC bias in pancreas DWI, which are addressed by motion‐robust DWI. |
Author | Hernando, Diego Roldán‐Alzate, Alejandro Starekova, Jitka Zhang, Yuxin Rutkowski, David R. Geng, Ruiqi Estkowski, Lloyd |
AuthorAffiliation | 1 Department of Radiology, University of Wisconsin-Madison, Madison, WI, 53705, USA 2 Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, 53705, USA 4 Department of MR, GE Healthcare, Waukesha, WI, 53188, USA 3 Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI, 53705, USA |
AuthorAffiliation_xml | – name: 1 Department of Radiology, University of Wisconsin-Madison, Madison, WI, 53705, USA – name: 3 Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI, 53705, USA – name: 4 Department of MR, GE Healthcare, Waukesha, WI, 53188, USA – name: 2 Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, 53705, USA |
Author_xml | – sequence: 1 givenname: Ruiqi orcidid: 0000-0002-5790-5711 surname: Geng fullname: Geng, Ruiqi organization: University of Wisconsin‐Madison – sequence: 2 givenname: Yuxin orcidid: 0000-0001-9852-7959 surname: Zhang fullname: Zhang, Yuxin organization: University of Wisconsin‐Madison – sequence: 3 givenname: Jitka orcidid: 0000-0002-4285-3090 surname: Starekova fullname: Starekova, Jitka organization: University of Wisconsin‐Madison – sequence: 4 givenname: David R. orcidid: 0000-0002-1168-5004 surname: Rutkowski fullname: Rutkowski, David R. organization: University of Wisconsin‐Madison – sequence: 5 givenname: Lloyd surname: Estkowski fullname: Estkowski, Lloyd organization: GE Healthcare – sequence: 6 givenname: Alejandro orcidid: 0000-0003-4149-4038 surname: Roldán‐Alzate fullname: Roldán‐Alzate, Alejandro organization: University of Wisconsin‐Madison – sequence: 7 givenname: Diego orcidid: 0000-0002-0016-0317 surname: Hernando fullname: Hernando, Diego email: dhernando@wisc.edu organization: University of Wisconsin‐Madison |
BookMark | eNp1kctuFDEQRS0UlExCFvxBS2xg0Ymf_dggoREvKVEkBGur2q6ecdRtD3Z3omSVT-Ab-RKcmWFBRFZW2efeKtc9Jgc-eCTkNaNnjFJ-PsbxjDeNrF6QBVOcl1y18oAsaC1pKVgrj8hxSteU0rat5SE5EpJJLmq1IHG5hghmwujuYXLBF-BtYUKMaLZl6AsD0bpwA8nMA8RiDDsuTq7PylQ4X1jX93PK178fft2iW60ntIUbYeX86tFiWmOxAW8iQnpFXvYwJDzdnyfkx6eP35dfyourz1-XHy5KIzmtSkGVqJhoqJEVAO8NpZ3qhFUMgdYMmFA9WKksq5H3XSsay4UyXdXIFlndiRPyfue7mbsRrUE_RRj0Jua54p0O4PS_L96t9Src6Ia3irM2G7zdG8Twc8Y06dElg8MAHsOcNFdSSKkaoTL65gl6Hebo8_cypQRXXMgqU-c7ysSQUsReGzdtt577u0Ezqh_z1DlPvc0zK949Ufwd_3_s3v3WDXj3PKgvv13uFH8As_2zwQ |
CitedBy_id | crossref_primary_10_1002_mrm_30372 crossref_primary_10_1097_RLI_0000000000001148 crossref_primary_10_1002_mrm_30067 crossref_primary_10_1016_j_mri_2024_04_026 crossref_primary_10_1002_mrm_29531 crossref_primary_10_1002_mrm_30069 crossref_primary_10_1002_mrm_30102 crossref_primary_10_1002_jmri_29127 crossref_primary_10_1002_mrm_29433 crossref_primary_10_1002_nbm_5147 crossref_primary_10_1016_j_acra_2022_07_018 crossref_primary_10_1007_s10334_024_01181_8 crossref_primary_10_1007_s10334_024_01162_x crossref_primary_10_1016_j_clinimag_2021_11_033 |
Cites_doi | 10.1002/mrm.26166 10.7863/jum.1990.9.1.45 10.1002/jmri.21508 10.1016/j.crad.2014.10.010 10.1259/bjr.20140449 10.1097/RLI.0b013e3181c8ceac 10.2214/AJR.05.0778 10.2214/AJR.12.10170 10.1259/bjr/43911400 10.1002/jmri.23796 10.1016/j.mri.2013.10.005 10.1002/jmri.22414 10.1148/radiology.168.2.3393671 10.1002/mrm.27462 10.1002/mrm.25410 10.1038/ajg.2010.87 10.1002/mrm.10581 10.2214/AJR.08.1260 10.2214/AJR.05.1918 10.1148/radiol.13121628 10.1016/j.diii.2012.12.007 10.1002/nbm.3505 10.1007/s00259-013-2371-5 10.1002/jmri.21569 10.1097/MD.0000000000015104 10.1002/jmri.21340 10.1002/mrm.21640 10.1007/s00330-008-0968-z 10.1002/jmri.22743 10.1002/(SICI)1099-1492(199902)12:1<51::AID-NBM546>3.0.CO;2-E 10.1148/radiol.14130778 10.3348/kjr.2015.16.6.1216 10.1002/mrm.20508 10.1016/S0360-3016(01)01453-5 10.1002/jmri.21651 10.1007/s005350050184 10.1002/mrm.27490 10.1097/RLI.0000000000000028 10.1097/RLI.0b013e3181b62271 10.1002/jmri.22816 10.1016/j.ejrad.2012.01.032 10.1016/j.ejrnm.2015.03.009 10.1002/mrm.27735 10.1038/s41598-017-16826-z 10.1007/s00330-015-3999-2 10.1097/RMR.0b013e3181b48667 10.1016/j.neuroimage.2013.01.038 10.1007/s00330-009-1384-8 |
ContentType | Journal Article |
Copyright | 2021 International Society for Magnetic Resonance in Medicine 2021 International Society for Magnetic Resonance in Medicine. |
Copyright_xml | – notice: 2021 International Society for Magnetic Resonance in Medicine – notice: 2021 International Society for Magnetic Resonance in Medicine. |
DBID | AAYXX CITATION 8FD FR3 K9. M7Z P64 7X8 5PM |
DOI | 10.1002/mrm.28846 |
DatabaseName | CrossRef Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biochemistry Abstracts 1 Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef Biochemistry Abstracts 1 ProQuest Health & Medical Complete (Alumni) Engineering Research Database Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Biochemistry Abstracts 1 |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Physics |
EISSN | 1522-2594 |
EndPage | 1969 |
ExternalDocumentID | PMC8295219 10_1002_mrm_28846 MRM28846 |
Genre | article |
GrantInformation_xml | – fundername: Wisconsin Alumni Research Foundation – fundername: Departments of Radiology and Medical Physics, University of Wisconsin‐Madison – fundername: GE Healthcare – fundername: Bracco Diagnostics – fundername: National Institute of Biomedical Imaging and Bioengineering funderid: R41‐EB025729; R44‐EB025729 |
GroupedDBID | --- -DZ .3N .55 .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AAHQN AAIPD AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDPE ABEML ABIJN ABJNI ABLJU ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 FEDTE FUBAC G-S G.N GNP GODZA H.X HBH HDBZQ HF~ HGLYW HHY HHZ HVGLF HZ~ I-F IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RGB RIWAO RJQFR ROL RWI RX1 RYL SAMSI SUPJJ SV3 TEORI TUS TWZ UB1 V2E V8K W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WIN WJL WOHZO WQJ WRC WUP WVDHM WXI WXSBR X7M XG1 XPP XV2 ZGI ZXP ZZTAW ~IA ~WT AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY FR3 K9. M7Z P64 7X8 5PM |
ID | FETCH-LOGICAL-c4206-305361380c46aa2fc00b5b3d51ea071a135fad45d17e2fb938d235cb6849e17b3 |
IEDL.DBID | DR2 |
ISSN | 0740-3194 1522-2594 |
IngestDate | Thu Aug 21 18:39:26 EDT 2025 Fri Jul 11 10:13:24 EDT 2025 Fri Jul 25 12:13:27 EDT 2025 Thu Apr 24 22:55:45 EDT 2025 Tue Jul 01 04:27:00 EDT 2025 Wed Jan 22 16:29:46 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4206-305361380c46aa2fc00b5b3d51ea071a135fad45d17e2fb938d235cb6849e17b3 |
Notes | Funding information National Institutes of Health, Grant/Award Numbers: NIH R41‐EB025729, NIH R44‐EB025729; University of Wisconsin‐Madison Office of the Vice Chancellor for Research and Graduate Education; Wisconsin Alumni Research Foundation; UW‐Madison Departments of Radiology and Medical Physics ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-5790-5711 0000-0002-4285-3090 0000-0002-0016-0317 0000-0001-9852-7959 0000-0002-1168-5004 0000-0003-4149-4038 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/8295219 |
PMID | 34142375 |
PQID | 2553252346 |
PQPubID | 1016391 |
PageCount | 14 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8295219 proquest_miscellaneous_2543445835 proquest_journals_2553252346 crossref_citationtrail_10_1002_mrm_28846 crossref_primary_10_1002_mrm_28846 wiley_primary_10_1002_mrm_28846_MRM28846 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2021 |
PublicationDateYYYYMMDD | 2021-10-01 |
PublicationDate_xml | – month: 10 year: 2021 text: October 2021 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Magnetic resonance in medicine |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2009; 44 2017; 7 2001; 50 2013; 3 2015; 70 2010; 105 2009; 82 2019; 98 2007; 188 2015; 74 2013; 201 2003; 50 2015; 46 2017; 77 2013; 94 2008; 27 2015; 88 2008; 28 1999; 12 2009; 19 2008; 60 2014; 55 2012; 81 2015; 16 2009; 20 2013; 40 2008; 18 2014; 49 2011; 31 1988; 168 2013; 268 2011; 33 2011; 34 2012; 35 2014; 274 2009; 29 2010; 45 2013; 37 2019; 82 2019; 81 2009; 192 2013; 72 2006; 187 2005; 53 2016; 29 1990; 9 2016; 26 1998; 33 2014; 32 e_1_2_8_28_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 Bozgeyik Z (e_1_2_8_19_1) 2013; 3 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_41_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_15_1 e_1_2_8_38_1 Jang KM (e_1_2_8_17_1) 2014; 55 e_1_2_8_32_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 Wang Y (e_1_2_8_24_1) 2011; 31 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_40_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_52_1 e_1_2_8_50_1 |
References_xml | – volume: 74 start-page: 410 year: 2015 end-page: 419 article-title: Flow‐compensated intravoxel incoherent motion diffusion imaging publication-title: Magn Reson Med – volume: 32 start-page: 125 year: 2014 end-page: 131 article-title: High resolution diffusion weighted magnetic resonance imaging of the pancreas using reduced field of view single‐shot echo‐planar imaging at 3 T publication-title: Magn Reson Imaging – volume: 29 start-page: 350 year: 2009 end-page: 356 article-title: Pancreatic diffusion‐weighted imaging (DWI): comparison between mass‐forming focal pancreatitis (FP), pancreatic cancer (PC), and normal pancreas publication-title: J Magn Reson Imaging JMRI – volume: 19 start-page: 1981 year: 2009 end-page: 1990 article-title: Diffusion‐weighted magnetic resonance imaging of pancreas tumours publication-title: Eur Radiol – volume: 55 start-page: 140 year: 2014 end-page: 148 article-title: The value of gadoxetic acid‐enhanced and diffusion‐weighted MRI for prediction of grading of pancreatic neuroendocrine tumors publication-title: Acta Radiol Stockh Swed 1987 – volume: 37 start-page: 172 year: 2013 end-page: 178 article-title: Motion artifact reduction of diffusion‐weighted MRI of the liver: use of velocity‐compensated diffusion gradients combined with tetrahedral gradients publication-title: J Magn Reson Imaging – volume: 105 start-page: 1870 year: 2010 end-page: 1875 article-title: Differentiation of autoimmune pancreatitis from pancreatic cancer by diffusion‐weighted MRI publication-title: Am J Gastroenterol – volume: 70 start-page: 153 year: 2015 end-page: 160 article-title: Differentiation of solid‐type serous cystic neoplasm from neuroendocrine tumour in the pancreas: value of abdominal MRI with diffusion‐weighted imaging in comparison with MDCT publication-title: Clin Radiol – volume: 201 start-page: 1002 year: 2013 end-page: 1008 article-title: Use of diffusion‐weighted MRI to differentiate chronic pancreatitis from pancreatic cancer publication-title: AJR Am J Roentgenol – volume: 9 start-page: 45 year: 1990 end-page: 48 article-title: Ultrasonic measurements of portal vasculature in diagnosis of portal hypertension. A controversial subject reviewed publication-title: J Ultrasound Med Off J Am Inst Ultrasound Med – volume: 187 start-page: 1521 year: 2006 end-page: 1530 article-title: ADC measurement of abdominal organs and lesions using parallel imaging technique publication-title: Am J Roentgenol – volume: 50 start-page: 265 year: 2001 end-page: 278 article-title: Organ motion and its management publication-title: Int J Radiat Oncol – volume: 82 start-page: 28 year: 2009 end-page: 34 article-title: Advanced pancreatic cancer: the use of the apparent diffusion coefficient to predict response to chemotherapy publication-title: Br J Radiol – volume: 16 start-page: 1216 year: 2015 end-page: 1225 article-title: Reduced field‐of‐view diffusion‐weighted magnetic resonance imaging of the pancreas: comparison with conventional single‐shot echo‐planar imaging publication-title: Korean J Radiol – volume: 20 start-page: 43 year: 2009 end-page: 47 article-title: Diffusion‐weighted magnetic resonance imaging of the pancreas publication-title: Top Magn Reson Imaging TMRI – volume: 188 start-page: 409 year: 2007 end-page: 414 article-title: High‐b value diffusion‐weighted MRI for detecting pancreatic adenocarcinoma: preliminary results publication-title: Am J Roentgenol – volume: 88 start-page: 20140449 year: 2015 article-title: ADC values in diffusion‐weighted MRI and their relationship with age, gender and BMI in healthy people’s pancreases publication-title: Br J Radiol – volume: 82 start-page: 302 year: 2019 end-page: 311 article-title: Motion‐robust and blood‐suppressed M1‐optimized diffusion MR imaging of the liver publication-title: Magn Reson Med – volume: 18 start-page: 1937 year: 2008 end-page: 1952 article-title: Diffusion‐weighted whole‐body imaging with background body signal suppression (DWIBS): features and potential applications in oncology publication-title: Eur Radiol – volume: 7 start-page: 17038 year: 2017 article-title: Apparent diffusion coefficient (ADC) predicts therapy response in pancreatic ductal adenocarcinoma publication-title: Sci Rep – volume: 3 start-page: 269 year: 2013 end-page: 278 article-title: The role of diffusion weighted magnetic resonance imaging in oncologic settings publication-title: Quant Imaging Med Surg – volume: 27 start-page: 1302 year: 2008 end-page: 1308 article-title: Apparent diffusion coefficient in pancreatic cancer: characterization and histopathological correlations publication-title: J Magn Reson Imaging JMRI – volume: 33 start-page: 136 year: 2011 end-page: 142 article-title: Diffusion‐weighted magnetic resonance imaging of pancreatic adenocarcinomas: association with histopathology and tumor grade publication-title: J Magn Reson Imaging – volume: 168 start-page: 497 year: 1988 end-page: 505 article-title: Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging publication-title: Radiology – volume: 98 issue: 14 year: 2019 article-title: Reproducibility of normalized apparent diffusion coefficient measurements on 3.0‐T diffusion‐weighted imaging of normal pancreas in a healthy population publication-title: Medicine (Baltimore) – volume: 34 start-page: 861 year: 2011 end-page: 865 article-title: Diffusion‐weighted imaging of the healthy pancreas: apparent diffusion coefficient values of the normal head, body, and tail calculated from different sets of b‐values publication-title: J Magn Reson Imaging – volume: 49 start-page: 396 year: 2014 end-page: 402 article-title: Intravoxel incoherent motion diffusion‐weighted imaging of pancreatic neuroendocrine tumors: prediction of the histologic grade using pure diffusion coefficient and tumor size publication-title: Invest Radiol – volume: 40 start-page: 897 year: 2013 end-page: 907 article-title: Comparison of abdominal MRI with diffusion‐weighted imaging to 68Ga‐DOTATATE PET/CT in detection of neuroendocrine tumors of the pancreas publication-title: Eur J Nucl Med Mol Imaging – volume: 31 start-page: E47 year: 2011 end-page: E64 article-title: Diffusion‐weighted MR imaging of solid and cystic lesions of the pancreas publication-title: Radiogr Rev Publ Radiol Soc N Am Inc – volume: 33 start-page: 835 year: 1998 end-page: 841 article-title: Mechanism of inhibitory effect of glucagon on gastrointestinal motility and cause of side effects of glucagon publication-title: J Gastroenterol – volume: 26 start-page: 1835 year: 2016 end-page: 1842 article-title: Increased tumour ADC value during chemotherapy predicts improved survival in unresectable pancreatic cancer publication-title: Eur Radiol – volume: 77 start-page: 717 year: 2017 end-page: 729 article-title: Convex optimized diffusion encoding (CODE) gradient waveforms for minimum echo time and bulk motion‐compensated diffusion‐weighted MRI publication-title: Magn Reson Med – volume: 72 start-page: 41 year: 2013 end-page: 47 article-title: A robust multi‐shot scan strategy for high‐resolution diffusion weighted MRI enabled by multiplexed sensitivity‐encoding (MUSE) publication-title: Neuroimage – volume: 44 start-page: 769 year: 2009 end-page: 775 article-title: Differentiation of pancreas carcinoma from healthy pancreatic tissue using multiple b‐values: comparison of apparent diffusion coefficient and intravoxel incoherent motion derived parameters publication-title: Invest Radiol – volume: 94 start-page: 418 year: 2013 end-page: 427 article-title: Diffusion‐weighted MR imaging of the normal pancreas: reproducibility and variations of apparent diffusion coefficient measurement at 1.5‐ and 3.0‐Tesla publication-title: Diagn Interv Imaging – volume: 81 start-page: e746 year: 2012 end-page: e749 article-title: Pancreatic neuroendocrine tumor: added value of fusion of T2‐weighted imaging and high b‐value diffusion‐weighted imaging for tumor detection publication-title: Eur J Radiol – volume: 60 start-page: 468 year: 2008 end-page: 473 article-title: DWI of the spinal cord with reduced FOV single‐shot EPI publication-title: Magn Reson Med – volume: 53 start-page: 1432 year: 2005 end-page: 1440 article-title: Diffusional kurtosis imaging: the quantification of non‐gaussian water diffusion by means of magnetic resonance imaging publication-title: Magn Reson Med – volume: 81 start-page: 1521 year: 2019 end-page: 1533 article-title: Effect of flow‐encoding strength on intravoxel incoherent motion in the liver publication-title: Magn Reson Med – volume: 29 start-page: 640 year: 2016 end-page: 649 article-title: Quantification of microcirculatory parameters by joint analysis of flow‐compensated and non‐flow‐compensated intravoxel incoherent motion (IVIM) data publication-title: NMR Biomed – volume: 35 start-page: 318 year: 2012 end-page: 327 article-title: Cardiac motion in diffusion‐weighted MRI of the liver: artifact and a method of correction publication-title: J Magn Reson Imaging – volume: 50 start-page: 727 year: 2003 end-page: 734 article-title: Characterization of continuously distributed cortical water diffusion rates with a stretched‐exponential model publication-title: Magn Reson Med – volume: 81 start-page: 989 year: 2019 end-page: 1003 article-title: Optimized diffusion‐weighting gradient waveform design (ODGD) formulation for motion compensation and concomitant gradient nulling publication-title: Magn Reson Med – volume: 28 start-page: 928 year: 2008 end-page: 936 article-title: Quantitative analysis of diffusion‐weighted magnetic resonance imaging of the pancreas: usefulness in characterizing solid pancreatic masses publication-title: J Magn Reson Imaging JMRI – volume: 45 start-page: 104 year: 2010 end-page: 108 article-title: Field strength and diffusion encoding technique affect the apparent diffusion coefficient measurements in diffusion‐weighted imaging of the abdomen publication-title: Invest Radiol – volume: 46 start-page: 563 year: 2015 end-page: 568 article-title: Differentiation of pancreatic lesions using diffusion‐weighted MRI publication-title: Egypt J Radiol Nucl Med – volume: 268 start-page: 390 year: 2013 end-page: 399 article-title: High sensitivity of diffusion‐weighted MR imaging for the detection of liver metastases from neuroendocrine tumors: comparison with T2‐weighted and dynamic gadolinium‐enhanced MR imaging publication-title: Radiology – volume: 28 start-page: 1141 year: 2008 end-page: 1148 article-title: Comparison and reproducibility of ADC measurements in breathhold, respiratory triggered, and free‐breathing diffusion‐weighted MR imaging of the liver publication-title: J Magn Reson Imaging JMRI – volume: 12 start-page: 51 year: 1999 end-page: 62 article-title: Multi‐component apparent diffusion coefficients in human brain publication-title: NMR Biomed – volume: 274 start-page: 45 year: 2014 end-page: 63 article-title: Diffusion‐weighted MR imaging of the pancreas: current status and recommendations publication-title: Radiology – volume: 192 start-page: 915 year: 2009 end-page: 922 article-title: Respiratory‐triggered versus breath‐hold diffusion‐weighted MRI of liver lesions: comparison of image quality and apparent diffusion coefficient values publication-title: Am J Roentgenol – ident: e_1_2_8_38_1 doi: 10.1002/mrm.26166 – ident: e_1_2_8_45_1 – ident: e_1_2_8_44_1 doi: 10.7863/jum.1990.9.1.45 – ident: e_1_2_8_12_1 doi: 10.1002/jmri.21508 – ident: e_1_2_8_16_1 doi: 10.1016/j.crad.2014.10.010 – ident: e_1_2_8_35_1 doi: 10.1259/bjr.20140449 – ident: e_1_2_8_34_1 doi: 10.1097/RLI.0b013e3181c8ceac – ident: e_1_2_8_25_1 doi: 10.2214/AJR.05.0778 – ident: e_1_2_8_13_1 doi: 10.2214/AJR.12.10170 – ident: e_1_2_8_7_1 doi: 10.1259/bjr/43911400 – ident: e_1_2_8_37_1 doi: 10.1002/jmri.23796 – ident: e_1_2_8_42_1 doi: 10.1016/j.mri.2013.10.005 – ident: e_1_2_8_22_1 doi: 10.1002/jmri.22414 – ident: e_1_2_8_46_1 doi: 10.1148/radiology.168.2.3393671 – ident: e_1_2_8_40_1 doi: 10.1002/mrm.27462 – ident: e_1_2_8_53_1 doi: 10.1002/mrm.25410 – ident: e_1_2_8_5_1 doi: 10.1038/ajg.2010.87 – ident: e_1_2_8_48_1 doi: 10.1002/mrm.10581 – ident: e_1_2_8_30_1 doi: 10.2214/AJR.08.1260 – ident: e_1_2_8_2_1 doi: 10.2214/AJR.05.1918 – ident: e_1_2_8_14_1 doi: 10.1148/radiol.13121628 – ident: e_1_2_8_21_1 doi: 10.1016/j.diii.2012.12.007 – ident: e_1_2_8_52_1 doi: 10.1002/nbm.3505 – volume: 3 start-page: 269 year: 2013 ident: e_1_2_8_19_1 article-title: The role of diffusion weighted magnetic resonance imaging in oncologic settings publication-title: Quant Imaging Med Surg – ident: e_1_2_8_4_1 doi: 10.1007/s00259-013-2371-5 – volume: 55 start-page: 140 year: 2014 ident: e_1_2_8_17_1 article-title: The value of gadoxetic acid‐enhanced and diffusion‐weighted MRI for prediction of grading of pancreatic neuroendocrine tumors publication-title: Acta Radiol Stockh Swed 1987 – ident: e_1_2_8_29_1 doi: 10.1002/jmri.21569 – ident: e_1_2_8_20_1 doi: 10.1097/MD.0000000000015104 – ident: e_1_2_8_11_1 doi: 10.1002/jmri.21340 – ident: e_1_2_8_50_1 doi: 10.1002/mrm.21640 – ident: e_1_2_8_36_1 doi: 10.1007/s00330-008-0968-z – volume: 31 start-page: E47 year: 2011 ident: e_1_2_8_24_1 article-title: Diffusion‐weighted MR imaging of solid and cystic lesions of the pancreas publication-title: Radiogr Rev Publ Radiol Soc N Am Inc – ident: e_1_2_8_33_1 doi: 10.1002/jmri.22743 – ident: e_1_2_8_47_1 doi: 10.1002/(SICI)1099-1492(199902)12:1<51::AID-NBM546>3.0.CO;2-E – ident: e_1_2_8_28_1 doi: 10.1148/radiol.14130778 – ident: e_1_2_8_43_1 doi: 10.3348/kjr.2015.16.6.1216 – ident: e_1_2_8_49_1 doi: 10.1002/mrm.20508 – ident: e_1_2_8_26_1 doi: 10.1016/S0360-3016(01)01453-5 – ident: e_1_2_8_6_1 doi: 10.1002/jmri.21651 – ident: e_1_2_8_31_1 doi: 10.1007/s005350050184 – ident: e_1_2_8_54_1 doi: 10.1002/mrm.27490 – ident: e_1_2_8_18_1 doi: 10.1097/RLI.0000000000000028 – ident: e_1_2_8_23_1 doi: 10.1097/RLI.0b013e3181b62271 – ident: e_1_2_8_41_1 – ident: e_1_2_8_32_1 doi: 10.1002/jmri.22816 – ident: e_1_2_8_3_1 doi: 10.1016/j.ejrad.2012.01.032 – ident: e_1_2_8_15_1 doi: 10.1016/j.ejrnm.2015.03.009 – ident: e_1_2_8_39_1 doi: 10.1002/mrm.27735 – ident: e_1_2_8_9_1 doi: 10.1038/s41598-017-16826-z – ident: e_1_2_8_8_1 doi: 10.1007/s00330-015-3999-2 – ident: e_1_2_8_27_1 doi: 10.1097/RMR.0b013e3181b48667 – ident: e_1_2_8_51_1 doi: 10.1016/j.neuroimage.2013.01.038 – ident: e_1_2_8_10_1 doi: 10.1007/s00330-009-1384-8 |
SSID | ssj0009974 |
Score | 2.4492488 |
Snippet | Purpose
To assess the effects of cardiovascular‐induced motion on conventional DWI of the pancreas and to evaluate motion‐robust DWI methods in a motion... PurposeTo assess the effects of cardiovascular‐induced motion on conventional DWI of the pancreas and to evaluate motion‐robust DWI methods in a motion phantom... To assess the effects of cardiovascular-induced motion on conventional DWI of the pancreas and to evaluate motion-robust DWI methods in a motion phantom and... |
SourceID | pubmedcentral proquest crossref wiley |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1956 |
SubjectTerms | cardiovascular compression compressive motion diffusion‐weighted imaging DWI artifacts Evaluation Gating Heart Pancreas Robustness Stability Tails Variability Waveforms |
Title | Characterization and correction of cardiovascular motion artifacts in diffusion‐weighted imaging of the pancreas |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.28846 https://www.proquest.com/docview/2553252346 https://www.proquest.com/docview/2543445835 https://pubmed.ncbi.nlm.nih.gov/PMC8295219 |
Volume | 86 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9QwEB-OA8UXP07F1VOi-OBL99pk0jb4JIfHIawPhwf3IJR8FRdvu7LdRbin-xP8G_1LzKQf6x4K4ltppm2Szkx-SSa_AXgtDXH2BuVVAT0kmHuThDtpgi7jjtcelaV1yNnH_PQcP1zIiz14O5yF6fghxgU3sozor8nAtWmPtqShi9ViysswfAb_S7FaBIjOttRRSnUMzAWSn1E4sAql_Gh8cncs2gLMm-GRv8PWOO6c3IPPQ427cJOv083aTO3VDTLH_2zSfbjb41H2rlOgB7DnmwO4Pet33A_gVgwRte1DWB2P3M7d0U2mG8csZfeIZyPYsmZ2J7qVdSmCGGknHaBo2bxhlJFlQ0t0P69_fI_rst6x-SImS6JXBEDKgociMNs-gvOT95-OT5M-Y0NikccgOikCPihTi7nWvLZpaqQRTmZeByyjMyFr7VC6rPC8NkqUjgtpTV6i8llhxGPYb5aNfwKsQKutL7XBIkftc2NtblJVB0SpBTqcwJvh31W2pzOnrBqXVUfEzKvQm1XszQm8GkW_dRwefxI6HBSg6s24rcJ8S_AwVafil2NxMEDaVdGNX25IBgXS7rOcQLGjOOPHiMJ7t6SZf4lU3iVXAT-p0JioF3-vXjU7m8WLp_8u-gzucIrAiaGHh7C_Xm388wCh1uZFtJVf-RIdhg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIh6XAqUVWwoYxIFLtokfSSz1giqqBZoeqlbqBUV-RazoZtE-hMSJn8Bv7C_B4zyWrUBC3KLYSWxnxv48nvkG4LXQyNnrhVd69BDx1OnI34kjbhNqaeW4NGiHLE7T0QX_cCkuN-Cwi4Vp-CF6gxtqRpivUcHRIH2wYg2dzCZDmvv18xbcxozeYUN1tiKPkrLhYM44zjSSd7xCMT3oH11fjVYQ86aD5O_ANaw8xw_gU9fmxuHky3C50EPz_Qad4_926iFstZCUvG1k6BFsuHob7hbtofs23Aleomb-GGZHPb1zE71JVG2JwQQfITyCTCti1hxcSZMliKCAYgzFnIxrgklZlmilu_7x81swzTpLxpOQLwlf4TEp8ZMU4tn5Dlwcvzs_GkVt0obIcBr86ATzECGPDU-VopWJYy00syJxysMZlTBRKcuFTTJHKy1ZbikTRqc5ly7JNNuFzXpauydAMm6UcbnSPEu5cqk2JtWxrDyoVIxbPoA33c8rTctojok1rsqGi5mWfjTLMJoDeNVX_drQePyp0n4nAWWryfPSb7kY9bt1LH7ZF3sdxIMVVbvpEutwxvEAWgwgW5Oc_mPI4r1eUo8_BzbvnEoPoaTvTBCMvzevLM6KcLH371VfwL3ReXFSnrw__fgU7lN0yAmeiPuwuZgt3TOPqBb6eVCcX6RCIaE |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIiouPAoVCwUM4sAl28SePCxOqGVVHluhiko9IEV-Raxgs9U-hMSJn8Bv5JfgcR7LViAhblHsJLYzY38ez3wD8CzVxNnrhVd69BBh5nTk78QR2oRbXjmUhuyQ45Ps-AzfnKfnW_Cii4Vp-CF6gxtpRpivScEvbHWwJg2dzqdDXvjl8wpcxSwuSKSPTtfcUVI2FMw50kQjsaMVivlB_-jmYrRGmJf9I3_HrWHhGd2Ej12TG3-Tz8PVUg_Nt0tsjv_Zp1twowWk7GUjQbdhy9W7sDNuj9x34VrwETWLOzA_7Mmdm9hNpmrLDKX3CMERbFYxs-HeypocQYzEkyIoFmxSM0rJsiIb3c_vP74Gw6yzbDIN2ZLoFR6RMj9FEZpd3IWz0asPh8dRm7IhMsiDF10qPEAoYoOZUrwycaxTLWyaOOXBjEpEWimLqU1yxystRWG5SI3OCpQuybXYg-16Vrt7wHI0yrhCacwzVC7TxmQ6lpWHlEqgxQE87_5daVo-c0qr8aVsmJh56UezDKM5gKd91YuGxONPlfY7AShbPV6UfsMluN-rU_GTvthrIB2rqNrNVlQHBdLxczqAfENw-o8Rh_dmST35FLi8Cy49gJK-M0Eu_t68cnw6Dhf3_73qY9h5fzQq370-efsArnPyxgluiPuwvZyv3EMPp5b6UVCbX1ayIFk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Characterization+and+correction+of+cardiovascular+motion+artifacts+in+diffusion%E2%80%90weighted+imaging+of+the+pancreas&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Geng%2C+Ruiqi&rft.au=Zhang%2C+Yuxin&rft.au=Starekova%2C+Jitka&rft.au=Rutkowski%2C+David+R&rft.date=2021-10-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0740-3194&rft.eissn=1522-2594&rft.volume=86&rft.issue=4&rft.spage=1956&rft.epage=1969&rft_id=info:doi/10.1002%2Fmrm.28846&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon |