Characterization and correction of cardiovascular motion artifacts in diffusion‐weighted imaging of the pancreas

Purpose To assess the effects of cardiovascular‐induced motion on conventional DWI of the pancreas and to evaluate motion‐robust DWI methods in a motion phantom and healthy volunteers. Methods 3T DWI was acquired using standard monopolar and motion‐compensated gradient waveforms, including in an ana...

Full description

Saved in:
Bibliographic Details
Published inMagnetic resonance in medicine Vol. 86; no. 4; pp. 1956 - 1969
Main Authors Geng, Ruiqi, Zhang, Yuxin, Starekova, Jitka, Rutkowski, David R., Estkowski, Lloyd, Roldán‐Alzate, Alejandro, Hernando, Diego
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.10.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Purpose To assess the effects of cardiovascular‐induced motion on conventional DWI of the pancreas and to evaluate motion‐robust DWI methods in a motion phantom and healthy volunteers. Methods 3T DWI was acquired using standard monopolar and motion‐compensated gradient waveforms, including in an anatomically accurate pancreas phantom with controllable compressive motion and healthy volunteers (n = 8, 10). In volunteers, highly controlled single‐slice DWI using breath‐holding and cardiac gating and whole‐pancreas respiratory‐triggered DWI were acquired. For each acquisition, the ADC variability across volunteers, as well as ADC differences across parts of the pancreas were evaluated. Results In motion phantom scans, conventional DWI led to biased ADC, whereas motion‐compensated waveforms produced consistent ADC. In the breath‐held, cardiac‐triggered study, conventional DWI led to heterogeneous DW signals and highly variable ADC across the pancreas, whereas motion‐compensated DWI avoided these artifacts. In the respiratory‐triggered study, conventional DWI produced heterogeneous ADC across the pancreas (head: 1756 ± 173 × 10−6 mm2/s; body: 1530 ± 338 × 10−6 mm2/s; tail: 1388 ± 267 × 10−6 mm2/s), with ADCs in the head significantly higher than in the tail (P < .05). Motion‐compensated ADC had lower variability across volunteers (head: 1277 ± 102 × 10−6 mm2/s; body: 1204 ± 169 × 10−6 mm2/s; tail: 1235 ± 178 × 10−6 mm2/s), with no significant difference (P ≥ .19) across the pancreas. Conclusion Cardiovascular motion introduces artifacts and ADC bias in pancreas DWI, which are addressed by motion‐robust DWI.
AbstractList To assess the effects of cardiovascular-induced motion on conventional DWI of the pancreas and to evaluate motion-robust DWI methods in a motion phantom and healthy volunteers.PURPOSETo assess the effects of cardiovascular-induced motion on conventional DWI of the pancreas and to evaluate motion-robust DWI methods in a motion phantom and healthy volunteers.3T DWI was acquired using standard monopolar and motion-compensated gradient waveforms, including in an anatomically accurate pancreas phantom with controllable compressive motion and healthy volunteers (n = 8, 10). In volunteers, highly controlled single-slice DWI using breath-holding and cardiac gating and whole-pancreas respiratory-triggered DWI were acquired. For each acquisition, the ADC variability across volunteers, as well as ADC differences across parts of the pancreas were evaluated.METHODS3T DWI was acquired using standard monopolar and motion-compensated gradient waveforms, including in an anatomically accurate pancreas phantom with controllable compressive motion and healthy volunteers (n = 8, 10). In volunteers, highly controlled single-slice DWI using breath-holding and cardiac gating and whole-pancreas respiratory-triggered DWI were acquired. For each acquisition, the ADC variability across volunteers, as well as ADC differences across parts of the pancreas were evaluated.In motion phantom scans, conventional DWI led to biased ADC, whereas motion-compensated waveforms produced consistent ADC. In the breath-held, cardiac-triggered study, conventional DWI led to heterogeneous DW signals and highly variable ADC across the pancreas, whereas motion-compensated DWI avoided these artifacts. In the respiratory-triggered study, conventional DWI produced heterogeneous ADC across the pancreas (head: 1756 ± 173 × 10-6 mm2 /s; body: 1530 ± 338 × 10-6 mm2 /s; tail: 1388 ± 267 × 10-6 mm2 /s), with ADCs in the head significantly higher than in the tail (P < .05). Motion-compensated ADC had lower variability across volunteers (head: 1277 ± 102 × 10-6 mm2 /s; body: 1204 ± 169 × 10-6 mm2 /s; tail: 1235 ± 178 × 10-6 mm2 /s), with no significant difference (P ≥ .19) across the pancreas.RESULTSIn motion phantom scans, conventional DWI led to biased ADC, whereas motion-compensated waveforms produced consistent ADC. In the breath-held, cardiac-triggered study, conventional DWI led to heterogeneous DW signals and highly variable ADC across the pancreas, whereas motion-compensated DWI avoided these artifacts. In the respiratory-triggered study, conventional DWI produced heterogeneous ADC across the pancreas (head: 1756 ± 173 × 10-6 mm2 /s; body: 1530 ± 338 × 10-6 mm2 /s; tail: 1388 ± 267 × 10-6 mm2 /s), with ADCs in the head significantly higher than in the tail (P < .05). Motion-compensated ADC had lower variability across volunteers (head: 1277 ± 102 × 10-6 mm2 /s; body: 1204 ± 169 × 10-6 mm2 /s; tail: 1235 ± 178 × 10-6 mm2 /s), with no significant difference (P ≥ .19) across the pancreas.Cardiovascular motion introduces artifacts and ADC bias in pancreas DWI, which are addressed by motion-robust DWI.CONCLUSIONCardiovascular motion introduces artifacts and ADC bias in pancreas DWI, which are addressed by motion-robust DWI.
Purpose To assess the effects of cardiovascular‐induced motion on conventional DWI of the pancreas and to evaluate motion‐robust DWI methods in a motion phantom and healthy volunteers. Methods 3T DWI was acquired using standard monopolar and motion‐compensated gradient waveforms, including in an anatomically accurate pancreas phantom with controllable compressive motion and healthy volunteers (n = 8, 10). In volunteers, highly controlled single‐slice DWI using breath‐holding and cardiac gating and whole‐pancreas respiratory‐triggered DWI were acquired. For each acquisition, the ADC variability across volunteers, as well as ADC differences across parts of the pancreas were evaluated. Results In motion phantom scans, conventional DWI led to biased ADC, whereas motion‐compensated waveforms produced consistent ADC. In the breath‐held, cardiac‐triggered study, conventional DWI led to heterogeneous DW signals and highly variable ADC across the pancreas, whereas motion‐compensated DWI avoided these artifacts. In the respiratory‐triggered study, conventional DWI produced heterogeneous ADC across the pancreas (head: 1756 ± 173 × 10−6 mm2/s; body: 1530 ± 338 × 10−6 mm2/s; tail: 1388 ± 267 × 10−6 mm2/s), with ADCs in the head significantly higher than in the tail (P < .05). Motion‐compensated ADC had lower variability across volunteers (head: 1277 ± 102 × 10−6 mm2/s; body: 1204 ± 169 × 10−6 mm2/s; tail: 1235 ± 178 × 10−6 mm2/s), with no significant difference (P ≥ .19) across the pancreas. Conclusion Cardiovascular motion introduces artifacts and ADC bias in pancreas DWI, which are addressed by motion‐robust DWI.
PurposeTo assess the effects of cardiovascular‐induced motion on conventional DWI of the pancreas and to evaluate motion‐robust DWI methods in a motion phantom and healthy volunteers.Methods3T DWI was acquired using standard monopolar and motion‐compensated gradient waveforms, including in an anatomically accurate pancreas phantom with controllable compressive motion and healthy volunteers (n = 8, 10). In volunteers, highly controlled single‐slice DWI using breath‐holding and cardiac gating and whole‐pancreas respiratory‐triggered DWI were acquired. For each acquisition, the ADC variability across volunteers, as well as ADC differences across parts of the pancreas were evaluated.ResultsIn motion phantom scans, conventional DWI led to biased ADC, whereas motion‐compensated waveforms produced consistent ADC. In the breath‐held, cardiac‐triggered study, conventional DWI led to heterogeneous DW signals and highly variable ADC across the pancreas, whereas motion‐compensated DWI avoided these artifacts. In the respiratory‐triggered study, conventional DWI produced heterogeneous ADC across the pancreas (head: 1756 ± 173 × 10−6 mm2/s; body: 1530 ± 338 × 10−6 mm2/s; tail: 1388 ± 267 × 10−6 mm2/s), with ADCs in the head significantly higher than in the tail (P < .05). Motion‐compensated ADC had lower variability across volunteers (head: 1277 ± 102 × 10−6 mm2/s; body: 1204 ± 169 × 10−6 mm2/s; tail: 1235 ± 178 × 10−6 mm2/s), with no significant difference (P ≥ .19) across the pancreas.ConclusionCardiovascular motion introduces artifacts and ADC bias in pancreas DWI, which are addressed by motion‐robust DWI.
Author Hernando, Diego
Roldán‐Alzate, Alejandro
Starekova, Jitka
Zhang, Yuxin
Rutkowski, David R.
Geng, Ruiqi
Estkowski, Lloyd
AuthorAffiliation 1 Department of Radiology, University of Wisconsin-Madison, Madison, WI, 53705, USA
2 Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, 53705, USA
4 Department of MR, GE Healthcare, Waukesha, WI, 53188, USA
3 Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI, 53705, USA
AuthorAffiliation_xml – name: 1 Department of Radiology, University of Wisconsin-Madison, Madison, WI, 53705, USA
– name: 3 Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI, 53705, USA
– name: 4 Department of MR, GE Healthcare, Waukesha, WI, 53188, USA
– name: 2 Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, 53705, USA
Author_xml – sequence: 1
  givenname: Ruiqi
  orcidid: 0000-0002-5790-5711
  surname: Geng
  fullname: Geng, Ruiqi
  organization: University of Wisconsin‐Madison
– sequence: 2
  givenname: Yuxin
  orcidid: 0000-0001-9852-7959
  surname: Zhang
  fullname: Zhang, Yuxin
  organization: University of Wisconsin‐Madison
– sequence: 3
  givenname: Jitka
  orcidid: 0000-0002-4285-3090
  surname: Starekova
  fullname: Starekova, Jitka
  organization: University of Wisconsin‐Madison
– sequence: 4
  givenname: David R.
  orcidid: 0000-0002-1168-5004
  surname: Rutkowski
  fullname: Rutkowski, David R.
  organization: University of Wisconsin‐Madison
– sequence: 5
  givenname: Lloyd
  surname: Estkowski
  fullname: Estkowski, Lloyd
  organization: GE Healthcare
– sequence: 6
  givenname: Alejandro
  orcidid: 0000-0003-4149-4038
  surname: Roldán‐Alzate
  fullname: Roldán‐Alzate, Alejandro
  organization: University of Wisconsin‐Madison
– sequence: 7
  givenname: Diego
  orcidid: 0000-0002-0016-0317
  surname: Hernando
  fullname: Hernando, Diego
  email: dhernando@wisc.edu
  organization: University of Wisconsin‐Madison
BookMark eNp1kctuFDEQRS0UlExCFvxBS2xg0Ymf_dggoREvKVEkBGur2q6ecdRtD3Z3omSVT-Ab-RKcmWFBRFZW2efeKtc9Jgc-eCTkNaNnjFJ-PsbxjDeNrF6QBVOcl1y18oAsaC1pKVgrj8hxSteU0rat5SE5EpJJLmq1IHG5hghmwujuYXLBF-BtYUKMaLZl6AsD0bpwA8nMA8RiDDsuTq7PylQ4X1jX93PK178fft2iW60ntIUbYeX86tFiWmOxAW8iQnpFXvYwJDzdnyfkx6eP35dfyourz1-XHy5KIzmtSkGVqJhoqJEVAO8NpZ3qhFUMgdYMmFA9WKksq5H3XSsay4UyXdXIFlndiRPyfue7mbsRrUE_RRj0Jua54p0O4PS_L96t9Src6Ia3irM2G7zdG8Twc8Y06dElg8MAHsOcNFdSSKkaoTL65gl6Hebo8_cypQRXXMgqU-c7ysSQUsReGzdtt577u0Ezqh_z1DlPvc0zK949Ufwd_3_s3v3WDXj3PKgvv13uFH8As_2zwQ
CitedBy_id crossref_primary_10_1002_mrm_30372
crossref_primary_10_1097_RLI_0000000000001148
crossref_primary_10_1002_mrm_30067
crossref_primary_10_1016_j_mri_2024_04_026
crossref_primary_10_1002_mrm_29531
crossref_primary_10_1002_mrm_30069
crossref_primary_10_1002_mrm_30102
crossref_primary_10_1002_jmri_29127
crossref_primary_10_1002_mrm_29433
crossref_primary_10_1002_nbm_5147
crossref_primary_10_1016_j_acra_2022_07_018
crossref_primary_10_1007_s10334_024_01181_8
crossref_primary_10_1007_s10334_024_01162_x
crossref_primary_10_1016_j_clinimag_2021_11_033
Cites_doi 10.1002/mrm.26166
10.7863/jum.1990.9.1.45
10.1002/jmri.21508
10.1016/j.crad.2014.10.010
10.1259/bjr.20140449
10.1097/RLI.0b013e3181c8ceac
10.2214/AJR.05.0778
10.2214/AJR.12.10170
10.1259/bjr/43911400
10.1002/jmri.23796
10.1016/j.mri.2013.10.005
10.1002/jmri.22414
10.1148/radiology.168.2.3393671
10.1002/mrm.27462
10.1002/mrm.25410
10.1038/ajg.2010.87
10.1002/mrm.10581
10.2214/AJR.08.1260
10.2214/AJR.05.1918
10.1148/radiol.13121628
10.1016/j.diii.2012.12.007
10.1002/nbm.3505
10.1007/s00259-013-2371-5
10.1002/jmri.21569
10.1097/MD.0000000000015104
10.1002/jmri.21340
10.1002/mrm.21640
10.1007/s00330-008-0968-z
10.1002/jmri.22743
10.1002/(SICI)1099-1492(199902)12:1<51::AID-NBM546>3.0.CO;2-E
10.1148/radiol.14130778
10.3348/kjr.2015.16.6.1216
10.1002/mrm.20508
10.1016/S0360-3016(01)01453-5
10.1002/jmri.21651
10.1007/s005350050184
10.1002/mrm.27490
10.1097/RLI.0000000000000028
10.1097/RLI.0b013e3181b62271
10.1002/jmri.22816
10.1016/j.ejrad.2012.01.032
10.1016/j.ejrnm.2015.03.009
10.1002/mrm.27735
10.1038/s41598-017-16826-z
10.1007/s00330-015-3999-2
10.1097/RMR.0b013e3181b48667
10.1016/j.neuroimage.2013.01.038
10.1007/s00330-009-1384-8
ContentType Journal Article
Copyright 2021 International Society for Magnetic Resonance in Medicine
2021 International Society for Magnetic Resonance in Medicine.
Copyright_xml – notice: 2021 International Society for Magnetic Resonance in Medicine
– notice: 2021 International Society for Magnetic Resonance in Medicine.
DBID AAYXX
CITATION
8FD
FR3
K9.
M7Z
P64
7X8
5PM
DOI 10.1002/mrm.28846
DatabaseName CrossRef
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biochemistry Abstracts 1
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
Biochemistry Abstracts 1
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Biochemistry Abstracts 1
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 1522-2594
EndPage 1969
ExternalDocumentID PMC8295219
10_1002_mrm_28846
MRM28846
Genre article
GrantInformation_xml – fundername: Wisconsin Alumni Research Foundation
– fundername: Departments of Radiology and Medical Physics, University of Wisconsin‐Madison
– fundername: GE Healthcare
– fundername: Bracco Diagnostics
– fundername: National Institute of Biomedical Imaging and Bioengineering
  funderid: R41‐EB025729; R44‐EB025729
GroupedDBID ---
-DZ
.3N
.55
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
I-F
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGB
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TUS
TWZ
UB1
V2E
V8K
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
X7M
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
FR3
K9.
M7Z
P64
7X8
5PM
ID FETCH-LOGICAL-c4206-305361380c46aa2fc00b5b3d51ea071a135fad45d17e2fb938d235cb6849e17b3
IEDL.DBID DR2
ISSN 0740-3194
1522-2594
IngestDate Thu Aug 21 18:39:26 EDT 2025
Fri Jul 11 10:13:24 EDT 2025
Fri Jul 25 12:13:27 EDT 2025
Thu Apr 24 22:55:45 EDT 2025
Tue Jul 01 04:27:00 EDT 2025
Wed Jan 22 16:29:46 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4206-305361380c46aa2fc00b5b3d51ea071a135fad45d17e2fb938d235cb6849e17b3
Notes Funding information
National Institutes of Health, Grant/Award Numbers: NIH R41‐EB025729, NIH R44‐EB025729; University of Wisconsin‐Madison Office of the Vice Chancellor for Research and Graduate Education; Wisconsin Alumni Research Foundation; UW‐Madison Departments of Radiology and Medical Physics
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5790-5711
0000-0002-4285-3090
0000-0002-0016-0317
0000-0001-9852-7959
0000-0002-1168-5004
0000-0003-4149-4038
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/8295219
PMID 34142375
PQID 2553252346
PQPubID 1016391
PageCount 14
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8295219
proquest_miscellaneous_2543445835
proquest_journals_2553252346
crossref_citationtrail_10_1002_mrm_28846
crossref_primary_10_1002_mrm_28846
wiley_primary_10_1002_mrm_28846_MRM28846
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2021
PublicationDateYYYYMMDD 2021-10-01
PublicationDate_xml – month: 10
  year: 2021
  text: October 2021
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Magnetic resonance in medicine
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2009; 44
2017; 7
2001; 50
2013; 3
2015; 70
2010; 105
2009; 82
2019; 98
2007; 188
2015; 74
2013; 201
2003; 50
2015; 46
2017; 77
2013; 94
2008; 27
2015; 88
2008; 28
1999; 12
2009; 19
2008; 60
2014; 55
2012; 81
2015; 16
2009; 20
2013; 40
2008; 18
2014; 49
2011; 31
1988; 168
2013; 268
2011; 33
2011; 34
2012; 35
2014; 274
2009; 29
2010; 45
2013; 37
2019; 82
2019; 81
2009; 192
2013; 72
2006; 187
2005; 53
2016; 29
1990; 9
2016; 26
1998; 33
2014; 32
e_1_2_8_28_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
Bozgeyik Z (e_1_2_8_19_1) 2013; 3
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_41_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_15_1
e_1_2_8_38_1
Jang KM (e_1_2_8_17_1) 2014; 55
e_1_2_8_32_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
Wang Y (e_1_2_8_24_1) 2011; 31
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_40_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – volume: 74
  start-page: 410
  year: 2015
  end-page: 419
  article-title: Flow‐compensated intravoxel incoherent motion diffusion imaging
  publication-title: Magn Reson Med
– volume: 32
  start-page: 125
  year: 2014
  end-page: 131
  article-title: High resolution diffusion weighted magnetic resonance imaging of the pancreas using reduced field of view single‐shot echo‐planar imaging at 3 T
  publication-title: Magn Reson Imaging
– volume: 29
  start-page: 350
  year: 2009
  end-page: 356
  article-title: Pancreatic diffusion‐weighted imaging (DWI): comparison between mass‐forming focal pancreatitis (FP), pancreatic cancer (PC), and normal pancreas
  publication-title: J Magn Reson Imaging JMRI
– volume: 19
  start-page: 1981
  year: 2009
  end-page: 1990
  article-title: Diffusion‐weighted magnetic resonance imaging of pancreas tumours
  publication-title: Eur Radiol
– volume: 55
  start-page: 140
  year: 2014
  end-page: 148
  article-title: The value of gadoxetic acid‐enhanced and diffusion‐weighted MRI for prediction of grading of pancreatic neuroendocrine tumors
  publication-title: Acta Radiol Stockh Swed 1987
– volume: 37
  start-page: 172
  year: 2013
  end-page: 178
  article-title: Motion artifact reduction of diffusion‐weighted MRI of the liver: use of velocity‐compensated diffusion gradients combined with tetrahedral gradients
  publication-title: J Magn Reson Imaging
– volume: 105
  start-page: 1870
  year: 2010
  end-page: 1875
  article-title: Differentiation of autoimmune pancreatitis from pancreatic cancer by diffusion‐weighted MRI
  publication-title: Am J Gastroenterol
– volume: 70
  start-page: 153
  year: 2015
  end-page: 160
  article-title: Differentiation of solid‐type serous cystic neoplasm from neuroendocrine tumour in the pancreas: value of abdominal MRI with diffusion‐weighted imaging in comparison with MDCT
  publication-title: Clin Radiol
– volume: 201
  start-page: 1002
  year: 2013
  end-page: 1008
  article-title: Use of diffusion‐weighted MRI to differentiate chronic pancreatitis from pancreatic cancer
  publication-title: AJR Am J Roentgenol
– volume: 9
  start-page: 45
  year: 1990
  end-page: 48
  article-title: Ultrasonic measurements of portal vasculature in diagnosis of portal hypertension. A controversial subject reviewed
  publication-title: J Ultrasound Med Off J Am Inst Ultrasound Med
– volume: 187
  start-page: 1521
  year: 2006
  end-page: 1530
  article-title: ADC measurement of abdominal organs and lesions using parallel imaging technique
  publication-title: Am J Roentgenol
– volume: 50
  start-page: 265
  year: 2001
  end-page: 278
  article-title: Organ motion and its management
  publication-title: Int J Radiat Oncol
– volume: 82
  start-page: 28
  year: 2009
  end-page: 34
  article-title: Advanced pancreatic cancer: the use of the apparent diffusion coefficient to predict response to chemotherapy
  publication-title: Br J Radiol
– volume: 16
  start-page: 1216
  year: 2015
  end-page: 1225
  article-title: Reduced field‐of‐view diffusion‐weighted magnetic resonance imaging of the pancreas: comparison with conventional single‐shot echo‐planar imaging
  publication-title: Korean J Radiol
– volume: 20
  start-page: 43
  year: 2009
  end-page: 47
  article-title: Diffusion‐weighted magnetic resonance imaging of the pancreas
  publication-title: Top Magn Reson Imaging TMRI
– volume: 188
  start-page: 409
  year: 2007
  end-page: 414
  article-title: High‐b value diffusion‐weighted MRI for detecting pancreatic adenocarcinoma: preliminary results
  publication-title: Am J Roentgenol
– volume: 88
  start-page: 20140449
  year: 2015
  article-title: ADC values in diffusion‐weighted MRI and their relationship with age, gender and BMI in healthy people’s pancreases
  publication-title: Br J Radiol
– volume: 82
  start-page: 302
  year: 2019
  end-page: 311
  article-title: Motion‐robust and blood‐suppressed M1‐optimized diffusion MR imaging of the liver
  publication-title: Magn Reson Med
– volume: 18
  start-page: 1937
  year: 2008
  end-page: 1952
  article-title: Diffusion‐weighted whole‐body imaging with background body signal suppression (DWIBS): features and potential applications in oncology
  publication-title: Eur Radiol
– volume: 7
  start-page: 17038
  year: 2017
  article-title: Apparent diffusion coefficient (ADC) predicts therapy response in pancreatic ductal adenocarcinoma
  publication-title: Sci Rep
– volume: 3
  start-page: 269
  year: 2013
  end-page: 278
  article-title: The role of diffusion weighted magnetic resonance imaging in oncologic settings
  publication-title: Quant Imaging Med Surg
– volume: 27
  start-page: 1302
  year: 2008
  end-page: 1308
  article-title: Apparent diffusion coefficient in pancreatic cancer: characterization and histopathological correlations
  publication-title: J Magn Reson Imaging JMRI
– volume: 33
  start-page: 136
  year: 2011
  end-page: 142
  article-title: Diffusion‐weighted magnetic resonance imaging of pancreatic adenocarcinomas: association with histopathology and tumor grade
  publication-title: J Magn Reson Imaging
– volume: 168
  start-page: 497
  year: 1988
  end-page: 505
  article-title: Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging
  publication-title: Radiology
– volume: 98
  issue: 14
  year: 2019
  article-title: Reproducibility of normalized apparent diffusion coefficient measurements on 3.0‐T diffusion‐weighted imaging of normal pancreas in a healthy population
  publication-title: Medicine (Baltimore)
– volume: 34
  start-page: 861
  year: 2011
  end-page: 865
  article-title: Diffusion‐weighted imaging of the healthy pancreas: apparent diffusion coefficient values of the normal head, body, and tail calculated from different sets of b‐values
  publication-title: J Magn Reson Imaging
– volume: 49
  start-page: 396
  year: 2014
  end-page: 402
  article-title: Intravoxel incoherent motion diffusion‐weighted imaging of pancreatic neuroendocrine tumors: prediction of the histologic grade using pure diffusion coefficient and tumor size
  publication-title: Invest Radiol
– volume: 40
  start-page: 897
  year: 2013
  end-page: 907
  article-title: Comparison of abdominal MRI with diffusion‐weighted imaging to 68Ga‐DOTATATE PET/CT in detection of neuroendocrine tumors of the pancreas
  publication-title: Eur J Nucl Med Mol Imaging
– volume: 31
  start-page: E47
  year: 2011
  end-page: E64
  article-title: Diffusion‐weighted MR imaging of solid and cystic lesions of the pancreas
  publication-title: Radiogr Rev Publ Radiol Soc N Am Inc
– volume: 33
  start-page: 835
  year: 1998
  end-page: 841
  article-title: Mechanism of inhibitory effect of glucagon on gastrointestinal motility and cause of side effects of glucagon
  publication-title: J Gastroenterol
– volume: 26
  start-page: 1835
  year: 2016
  end-page: 1842
  article-title: Increased tumour ADC value during chemotherapy predicts improved survival in unresectable pancreatic cancer
  publication-title: Eur Radiol
– volume: 77
  start-page: 717
  year: 2017
  end-page: 729
  article-title: Convex optimized diffusion encoding (CODE) gradient waveforms for minimum echo time and bulk motion‐compensated diffusion‐weighted MRI
  publication-title: Magn Reson Med
– volume: 72
  start-page: 41
  year: 2013
  end-page: 47
  article-title: A robust multi‐shot scan strategy for high‐resolution diffusion weighted MRI enabled by multiplexed sensitivity‐encoding (MUSE)
  publication-title: Neuroimage
– volume: 44
  start-page: 769
  year: 2009
  end-page: 775
  article-title: Differentiation of pancreas carcinoma from healthy pancreatic tissue using multiple b‐values: comparison of apparent diffusion coefficient and intravoxel incoherent motion derived parameters
  publication-title: Invest Radiol
– volume: 94
  start-page: 418
  year: 2013
  end-page: 427
  article-title: Diffusion‐weighted MR imaging of the normal pancreas: reproducibility and variations of apparent diffusion coefficient measurement at 1.5‐ and 3.0‐Tesla
  publication-title: Diagn Interv Imaging
– volume: 81
  start-page: e746
  year: 2012
  end-page: e749
  article-title: Pancreatic neuroendocrine tumor: added value of fusion of T2‐weighted imaging and high b‐value diffusion‐weighted imaging for tumor detection
  publication-title: Eur J Radiol
– volume: 60
  start-page: 468
  year: 2008
  end-page: 473
  article-title: DWI of the spinal cord with reduced FOV single‐shot EPI
  publication-title: Magn Reson Med
– volume: 53
  start-page: 1432
  year: 2005
  end-page: 1440
  article-title: Diffusional kurtosis imaging: the quantification of non‐gaussian water diffusion by means of magnetic resonance imaging
  publication-title: Magn Reson Med
– volume: 81
  start-page: 1521
  year: 2019
  end-page: 1533
  article-title: Effect of flow‐encoding strength on intravoxel incoherent motion in the liver
  publication-title: Magn Reson Med
– volume: 29
  start-page: 640
  year: 2016
  end-page: 649
  article-title: Quantification of microcirculatory parameters by joint analysis of flow‐compensated and non‐flow‐compensated intravoxel incoherent motion (IVIM) data
  publication-title: NMR Biomed
– volume: 35
  start-page: 318
  year: 2012
  end-page: 327
  article-title: Cardiac motion in diffusion‐weighted MRI of the liver: artifact and a method of correction
  publication-title: J Magn Reson Imaging
– volume: 50
  start-page: 727
  year: 2003
  end-page: 734
  article-title: Characterization of continuously distributed cortical water diffusion rates with a stretched‐exponential model
  publication-title: Magn Reson Med
– volume: 81
  start-page: 989
  year: 2019
  end-page: 1003
  article-title: Optimized diffusion‐weighting gradient waveform design (ODGD) formulation for motion compensation and concomitant gradient nulling
  publication-title: Magn Reson Med
– volume: 28
  start-page: 928
  year: 2008
  end-page: 936
  article-title: Quantitative analysis of diffusion‐weighted magnetic resonance imaging of the pancreas: usefulness in characterizing solid pancreatic masses
  publication-title: J Magn Reson Imaging JMRI
– volume: 45
  start-page: 104
  year: 2010
  end-page: 108
  article-title: Field strength and diffusion encoding technique affect the apparent diffusion coefficient measurements in diffusion‐weighted imaging of the abdomen
  publication-title: Invest Radiol
– volume: 46
  start-page: 563
  year: 2015
  end-page: 568
  article-title: Differentiation of pancreatic lesions using diffusion‐weighted MRI
  publication-title: Egypt J Radiol Nucl Med
– volume: 268
  start-page: 390
  year: 2013
  end-page: 399
  article-title: High sensitivity of diffusion‐weighted MR imaging for the detection of liver metastases from neuroendocrine tumors: comparison with T2‐weighted and dynamic gadolinium‐enhanced MR imaging
  publication-title: Radiology
– volume: 28
  start-page: 1141
  year: 2008
  end-page: 1148
  article-title: Comparison and reproducibility of ADC measurements in breathhold, respiratory triggered, and free‐breathing diffusion‐weighted MR imaging of the liver
  publication-title: J Magn Reson Imaging JMRI
– volume: 12
  start-page: 51
  year: 1999
  end-page: 62
  article-title: Multi‐component apparent diffusion coefficients in human brain
  publication-title: NMR Biomed
– volume: 274
  start-page: 45
  year: 2014
  end-page: 63
  article-title: Diffusion‐weighted MR imaging of the pancreas: current status and recommendations
  publication-title: Radiology
– volume: 192
  start-page: 915
  year: 2009
  end-page: 922
  article-title: Respiratory‐triggered versus breath‐hold diffusion‐weighted MRI of liver lesions: comparison of image quality and apparent diffusion coefficient values
  publication-title: Am J Roentgenol
– ident: e_1_2_8_38_1
  doi: 10.1002/mrm.26166
– ident: e_1_2_8_45_1
– ident: e_1_2_8_44_1
  doi: 10.7863/jum.1990.9.1.45
– ident: e_1_2_8_12_1
  doi: 10.1002/jmri.21508
– ident: e_1_2_8_16_1
  doi: 10.1016/j.crad.2014.10.010
– ident: e_1_2_8_35_1
  doi: 10.1259/bjr.20140449
– ident: e_1_2_8_34_1
  doi: 10.1097/RLI.0b013e3181c8ceac
– ident: e_1_2_8_25_1
  doi: 10.2214/AJR.05.0778
– ident: e_1_2_8_13_1
  doi: 10.2214/AJR.12.10170
– ident: e_1_2_8_7_1
  doi: 10.1259/bjr/43911400
– ident: e_1_2_8_37_1
  doi: 10.1002/jmri.23796
– ident: e_1_2_8_42_1
  doi: 10.1016/j.mri.2013.10.005
– ident: e_1_2_8_22_1
  doi: 10.1002/jmri.22414
– ident: e_1_2_8_46_1
  doi: 10.1148/radiology.168.2.3393671
– ident: e_1_2_8_40_1
  doi: 10.1002/mrm.27462
– ident: e_1_2_8_53_1
  doi: 10.1002/mrm.25410
– ident: e_1_2_8_5_1
  doi: 10.1038/ajg.2010.87
– ident: e_1_2_8_48_1
  doi: 10.1002/mrm.10581
– ident: e_1_2_8_30_1
  doi: 10.2214/AJR.08.1260
– ident: e_1_2_8_2_1
  doi: 10.2214/AJR.05.1918
– ident: e_1_2_8_14_1
  doi: 10.1148/radiol.13121628
– ident: e_1_2_8_21_1
  doi: 10.1016/j.diii.2012.12.007
– ident: e_1_2_8_52_1
  doi: 10.1002/nbm.3505
– volume: 3
  start-page: 269
  year: 2013
  ident: e_1_2_8_19_1
  article-title: The role of diffusion weighted magnetic resonance imaging in oncologic settings
  publication-title: Quant Imaging Med Surg
– ident: e_1_2_8_4_1
  doi: 10.1007/s00259-013-2371-5
– volume: 55
  start-page: 140
  year: 2014
  ident: e_1_2_8_17_1
  article-title: The value of gadoxetic acid‐enhanced and diffusion‐weighted MRI for prediction of grading of pancreatic neuroendocrine tumors
  publication-title: Acta Radiol Stockh Swed 1987
– ident: e_1_2_8_29_1
  doi: 10.1002/jmri.21569
– ident: e_1_2_8_20_1
  doi: 10.1097/MD.0000000000015104
– ident: e_1_2_8_11_1
  doi: 10.1002/jmri.21340
– ident: e_1_2_8_50_1
  doi: 10.1002/mrm.21640
– ident: e_1_2_8_36_1
  doi: 10.1007/s00330-008-0968-z
– volume: 31
  start-page: E47
  year: 2011
  ident: e_1_2_8_24_1
  article-title: Diffusion‐weighted MR imaging of solid and cystic lesions of the pancreas
  publication-title: Radiogr Rev Publ Radiol Soc N Am Inc
– ident: e_1_2_8_33_1
  doi: 10.1002/jmri.22743
– ident: e_1_2_8_47_1
  doi: 10.1002/(SICI)1099-1492(199902)12:1<51::AID-NBM546>3.0.CO;2-E
– ident: e_1_2_8_28_1
  doi: 10.1148/radiol.14130778
– ident: e_1_2_8_43_1
  doi: 10.3348/kjr.2015.16.6.1216
– ident: e_1_2_8_49_1
  doi: 10.1002/mrm.20508
– ident: e_1_2_8_26_1
  doi: 10.1016/S0360-3016(01)01453-5
– ident: e_1_2_8_6_1
  doi: 10.1002/jmri.21651
– ident: e_1_2_8_31_1
  doi: 10.1007/s005350050184
– ident: e_1_2_8_54_1
  doi: 10.1002/mrm.27490
– ident: e_1_2_8_18_1
  doi: 10.1097/RLI.0000000000000028
– ident: e_1_2_8_23_1
  doi: 10.1097/RLI.0b013e3181b62271
– ident: e_1_2_8_41_1
– ident: e_1_2_8_32_1
  doi: 10.1002/jmri.22816
– ident: e_1_2_8_3_1
  doi: 10.1016/j.ejrad.2012.01.032
– ident: e_1_2_8_15_1
  doi: 10.1016/j.ejrnm.2015.03.009
– ident: e_1_2_8_39_1
  doi: 10.1002/mrm.27735
– ident: e_1_2_8_9_1
  doi: 10.1038/s41598-017-16826-z
– ident: e_1_2_8_8_1
  doi: 10.1007/s00330-015-3999-2
– ident: e_1_2_8_27_1
  doi: 10.1097/RMR.0b013e3181b48667
– ident: e_1_2_8_51_1
  doi: 10.1016/j.neuroimage.2013.01.038
– ident: e_1_2_8_10_1
  doi: 10.1007/s00330-009-1384-8
SSID ssj0009974
Score 2.4492488
Snippet Purpose To assess the effects of cardiovascular‐induced motion on conventional DWI of the pancreas and to evaluate motion‐robust DWI methods in a motion...
PurposeTo assess the effects of cardiovascular‐induced motion on conventional DWI of the pancreas and to evaluate motion‐robust DWI methods in a motion phantom...
To assess the effects of cardiovascular-induced motion on conventional DWI of the pancreas and to evaluate motion-robust DWI methods in a motion phantom and...
SourceID pubmedcentral
proquest
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1956
SubjectTerms cardiovascular compression
compressive motion
diffusion‐weighted imaging
DWI artifacts
Evaluation
Gating
Heart
Pancreas
Robustness
Stability
Tails
Variability
Waveforms
Title Characterization and correction of cardiovascular motion artifacts in diffusion‐weighted imaging of the pancreas
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.28846
https://www.proquest.com/docview/2553252346
https://www.proquest.com/docview/2543445835
https://pubmed.ncbi.nlm.nih.gov/PMC8295219
Volume 86
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9QwEB-OA8UXP07F1VOi-OBL99pk0jb4JIfHIawPhwf3IJR8FRdvu7LdRbin-xP8G_1LzKQf6x4K4ltppm2Szkx-SSa_AXgtDXH2BuVVAT0kmHuThDtpgi7jjtcelaV1yNnH_PQcP1zIiz14O5yF6fghxgU3sozor8nAtWmPtqShi9ViysswfAb_S7FaBIjOttRRSnUMzAWSn1E4sAql_Gh8cncs2gLMm-GRv8PWOO6c3IPPQ427cJOv083aTO3VDTLH_2zSfbjb41H2rlOgB7DnmwO4Pet33A_gVgwRte1DWB2P3M7d0U2mG8csZfeIZyPYsmZ2J7qVdSmCGGknHaBo2bxhlJFlQ0t0P69_fI_rst6x-SImS6JXBEDKgociMNs-gvOT95-OT5M-Y0NikccgOikCPihTi7nWvLZpaqQRTmZeByyjMyFr7VC6rPC8NkqUjgtpTV6i8llhxGPYb5aNfwKsQKutL7XBIkftc2NtblJVB0SpBTqcwJvh31W2pzOnrBqXVUfEzKvQm1XszQm8GkW_dRwefxI6HBSg6s24rcJ8S_AwVafil2NxMEDaVdGNX25IBgXS7rOcQLGjOOPHiMJ7t6SZf4lU3iVXAT-p0JioF3-vXjU7m8WLp_8u-gzucIrAiaGHh7C_Xm388wCh1uZFtJVf-RIdhg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIh6XAqUVWwoYxIFLtokfSSz1giqqBZoeqlbqBUV-RazoZtE-hMSJn8Bv7C_B4zyWrUBC3KLYSWxnxv48nvkG4LXQyNnrhVd69BDx1OnI34kjbhNqaeW4NGiHLE7T0QX_cCkuN-Cwi4Vp-CF6gxtqRpivUcHRIH2wYg2dzCZDmvv18xbcxozeYUN1tiKPkrLhYM44zjSSd7xCMT3oH11fjVYQ86aD5O_ANaw8xw_gU9fmxuHky3C50EPz_Qad4_926iFstZCUvG1k6BFsuHob7hbtofs23Aleomb-GGZHPb1zE71JVG2JwQQfITyCTCti1hxcSZMliKCAYgzFnIxrgklZlmilu_7x81swzTpLxpOQLwlf4TEp8ZMU4tn5Dlwcvzs_GkVt0obIcBr86ATzECGPDU-VopWJYy00syJxysMZlTBRKcuFTTJHKy1ZbikTRqc5ly7JNNuFzXpauydAMm6UcbnSPEu5cqk2JtWxrDyoVIxbPoA33c8rTctojok1rsqGi5mWfjTLMJoDeNVX_drQePyp0n4nAWWryfPSb7kY9bt1LH7ZF3sdxIMVVbvpEutwxvEAWgwgW5Oc_mPI4r1eUo8_BzbvnEoPoaTvTBCMvzevLM6KcLH371VfwL3ReXFSnrw__fgU7lN0yAmeiPuwuZgt3TOPqBb6eVCcX6RCIaE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIiouPAoVCwUM4sAl28SePCxOqGVVHluhiko9IEV-Raxgs9U-hMSJn8Bv5JfgcR7LViAhblHsJLYzY38ez3wD8CzVxNnrhVd69BBh5nTk78QR2oRbXjmUhuyQ45Ps-AzfnKfnW_Cii4Vp-CF6gxtpRpivScEvbHWwJg2dzqdDXvjl8wpcxSwuSKSPTtfcUVI2FMw50kQjsaMVivlB_-jmYrRGmJf9I3_HrWHhGd2Ej12TG3-Tz8PVUg_Nt0tsjv_Zp1twowWk7GUjQbdhy9W7sDNuj9x34VrwETWLOzA_7Mmdm9hNpmrLDKX3CMERbFYxs-HeypocQYzEkyIoFmxSM0rJsiIb3c_vP74Gw6yzbDIN2ZLoFR6RMj9FEZpd3IWz0asPh8dRm7IhMsiDF10qPEAoYoOZUrwycaxTLWyaOOXBjEpEWimLqU1yxystRWG5SI3OCpQuybXYg-16Vrt7wHI0yrhCacwzVC7TxmQ6lpWHlEqgxQE87_5daVo-c0qr8aVsmJh56UezDKM5gKd91YuGxONPlfY7AShbPV6UfsMluN-rU_GTvthrIB2rqNrNVlQHBdLxczqAfENw-o8Rh_dmST35FLi8Cy49gJK-M0Eu_t68cnw6Dhf3_73qY9h5fzQq370-efsArnPyxgluiPuwvZyv3EMPp5b6UVCbX1ayIFk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Characterization+and+correction+of+cardiovascular+motion+artifacts+in+diffusion%E2%80%90weighted+imaging+of+the+pancreas&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Geng%2C+Ruiqi&rft.au=Zhang%2C+Yuxin&rft.au=Starekova%2C+Jitka&rft.au=Rutkowski%2C+David+R&rft.date=2021-10-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0740-3194&rft.eissn=1522-2594&rft.volume=86&rft.issue=4&rft.spage=1956&rft.epage=1969&rft_id=info:doi/10.1002%2Fmrm.28846&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon