An Autolytic High Strength Instant Adhesive Hydrogel for Emergency Self‐Rescue

Adhesive hydrogels are promising to be explored as biomedical sealants, hemostatic agents, and glues in promoting wound healing and tissue regeneration. However, it is challenging to engineer a hydrogel combining instant robust adhesion and high strength. Herein, a high‐strength instantly self‐adhes...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 28; no. 42
Main Authors Cui, Chunyan, Wu, Tengling, Gao, Fei, Fan, Chuanchuan, Xu, Ziyang, Wang, Hongbo, Liu, Bo, Liu, Wenguang
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 17.10.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Adhesive hydrogels are promising to be explored as biomedical sealants, hemostatic agents, and glues in promoting wound healing and tissue regeneration. However, it is challenging to engineer a hydrogel combining instant robust adhesion and high strength. Herein, a high‐strength instantly self‐adhesive organic–inorganic hybrid (OIH) hydrogel by a one‐pot radical polymerization of N‐acryloyl 2‐glycine (ACG), biocompatible glycine derivative vinyl monomer with addition of hydroxyapatite (HAp), naturally occurring mineral is designed and fabricated. The hydrogen bonding from side chain of poly(N‐acryloyl 2‐glycine) (PACG), carboxyl‐Ca2+ ionic crosslinking together with PACG chain‐HAp physical interactions contribute to automatic self‐repairing high mechanical properties. Importantly, this OIH hydrogel exhibits robust adhesion to diverse substrates, presumably due to synergistic interactions of carboxyl with the substrate surface and the enhanced contact of PACG chains to adherent surfaces facilitated by HAp nanoparticles. Remarkably, the PACG‐HAp OIH hydrogels can instantly self‐adhere to the soft tissues with adhesion strength of 105 kPa, and anastomose the broken intestines, meanwhile promoting wound healing and stopping bleeding. The OIH hydrogel is autolytic in the body without eliciting inflammatory reaction. Further, the ready‐to‐use PACG‐HAp adhesive hydrogel can be properly stored for a long time. This novel hydrogel will find an appealing application as a new adhesive for emergency self‐rescue. A high strength autolytic hybrid hydrogel is fabricated by polymerization of glycine derivative vinyl monomer with addition of hydroxyapatite. This reversible noncovalent bonding toughened self‐healable hydrogel can instantly robustly self‐adhere to diverse substrates, in particular soft tissues, meanwhile promoting wound healing and stopping bleeding, and amazingly anastomose the broken intestine. The hydrogel holds promising potential as an emergency self‐rescue adhesive.
AbstractList Adhesive hydrogels are promising to be explored as biomedical sealants, hemostatic agents, and glues in promoting wound healing and tissue regeneration. However, it is challenging to engineer a hydrogel combining instant robust adhesion and high strength. Herein, a high‐strength instantly self‐adhesive organic–inorganic hybrid (OIH) hydrogel by a one‐pot radical polymerization of N‐acryloyl 2‐glycine (ACG), biocompatible glycine derivative vinyl monomer with addition of hydroxyapatite (HAp), naturally occurring mineral is designed and fabricated. The hydrogen bonding from side chain of poly(N‐acryloyl 2‐glycine) (PACG), carboxyl‐Ca2+ ionic crosslinking together with PACG chain‐HAp physical interactions contribute to automatic self‐repairing high mechanical properties. Importantly, this OIH hydrogel exhibits robust adhesion to diverse substrates, presumably due to synergistic interactions of carboxyl with the substrate surface and the enhanced contact of PACG chains to adherent surfaces facilitated by HAp nanoparticles. Remarkably, the PACG‐HAp OIH hydrogels can instantly self‐adhere to the soft tissues with adhesion strength of 105 kPa, and anastomose the broken intestines, meanwhile promoting wound healing and stopping bleeding. The OIH hydrogel is autolytic in the body without eliciting inflammatory reaction. Further, the ready‐to‐use PACG‐HAp adhesive hydrogel can be properly stored for a long time. This novel hydrogel will find an appealing application as a new adhesive for emergency self‐rescue.
Adhesive hydrogels are promising to be explored as biomedical sealants, hemostatic agents, and glues in promoting wound healing and tissue regeneration. However, it is challenging to engineer a hydrogel combining instant robust adhesion and high strength. Herein, a high‐strength instantly self‐adhesive organic–inorganic hybrid (OIH) hydrogel by a one‐pot radical polymerization of N‐acryloyl 2‐glycine (ACG), biocompatible glycine derivative vinyl monomer with addition of hydroxyapatite (HAp), naturally occurring mineral is designed and fabricated. The hydrogen bonding from side chain of poly(N‐acryloyl 2‐glycine) (PACG), carboxyl‐Ca2+ ionic crosslinking together with PACG chain‐HAp physical interactions contribute to automatic self‐repairing high mechanical properties. Importantly, this OIH hydrogel exhibits robust adhesion to diverse substrates, presumably due to synergistic interactions of carboxyl with the substrate surface and the enhanced contact of PACG chains to adherent surfaces facilitated by HAp nanoparticles. Remarkably, the PACG‐HAp OIH hydrogels can instantly self‐adhere to the soft tissues with adhesion strength of 105 kPa, and anastomose the broken intestines, meanwhile promoting wound healing and stopping bleeding. The OIH hydrogel is autolytic in the body without eliciting inflammatory reaction. Further, the ready‐to‐use PACG‐HAp adhesive hydrogel can be properly stored for a long time. This novel hydrogel will find an appealing application as a new adhesive for emergency self‐rescue. A high strength autolytic hybrid hydrogel is fabricated by polymerization of glycine derivative vinyl monomer with addition of hydroxyapatite. This reversible noncovalent bonding toughened self‐healable hydrogel can instantly robustly self‐adhere to diverse substrates, in particular soft tissues, meanwhile promoting wound healing and stopping bleeding, and amazingly anastomose the broken intestine. The hydrogel holds promising potential as an emergency self‐rescue adhesive.
Abstract Adhesive hydrogels are promising to be explored as biomedical sealants, hemostatic agents, and glues in promoting wound healing and tissue regeneration. However, it is challenging to engineer a hydrogel combining instant robust adhesion and high strength. Herein, a high‐strength instantly self‐adhesive organic–inorganic hybrid (OIH) hydrogel by a one‐pot radical polymerization of N‐acryloyl 2‐glycine (ACG), biocompatible glycine derivative vinyl monomer with addition of hydroxyapatite (HAp), naturally occurring mineral is designed and fabricated. The hydrogen bonding from side chain of poly(N‐acryloyl 2‐glycine) (PACG), carboxyl‐Ca 2+ ionic crosslinking together with PACG chain‐HAp physical interactions contribute to automatic self‐repairing high mechanical properties. Importantly, this OIH hydrogel exhibits robust adhesion to diverse substrates, presumably due to synergistic interactions of carboxyl with the substrate surface and the enhanced contact of PACG chains to adherent surfaces facilitated by HAp nanoparticles. Remarkably, the PACG‐HAp OIH hydrogels can instantly self‐adhere to the soft tissues with adhesion strength of 105 kPa, and anastomose the broken intestines, meanwhile promoting wound healing and stopping bleeding. The OIH hydrogel is autolytic in the body without eliciting inflammatory reaction. Further, the ready‐to‐use PACG‐HAp adhesive hydrogel can be properly stored for a long time. This novel hydrogel will find an appealing application as a new adhesive for emergency self‐rescue.
Author Liu, Wenguang
Wang, Hongbo
Liu, Bo
Gao, Fei
Xu, Ziyang
Cui, Chunyan
Wu, Tengling
Fan, Chuanchuan
Author_xml – sequence: 1
  givenname: Chunyan
  surname: Cui
  fullname: Cui, Chunyan
  organization: Tianjin University
– sequence: 2
  givenname: Tengling
  surname: Wu
  fullname: Wu, Tengling
  organization: Tianjin University
– sequence: 3
  givenname: Fei
  surname: Gao
  fullname: Gao, Fei
  organization: Tianjin University
– sequence: 4
  givenname: Chuanchuan
  surname: Fan
  fullname: Fan, Chuanchuan
  organization: Tianjin University
– sequence: 5
  givenname: Ziyang
  surname: Xu
  fullname: Xu, Ziyang
  organization: Tianjin University
– sequence: 6
  givenname: Hongbo
  surname: Wang
  fullname: Wang, Hongbo
  organization: Tianjin University
– sequence: 7
  givenname: Bo
  surname: Liu
  fullname: Liu, Bo
  organization: Tianjin University
– sequence: 8
  givenname: Wenguang
  surname: Liu
  fullname: Liu, Wenguang
  email: wgliu@tju.edu.cn
  organization: Tianjin University
BookMark eNqFkMFKw0AQhhepYK1ePS94Tt3ZpMnmGGprCxXFKnhbks1smpJu6m6q5OYj-Iw-iSmVevQ0P8P3z8B3TnqmNkjIFbAhMMZv0lxvhpyBYEHMRyekDyGEns-46B0zvJ6Rc-fWjEEU-UGfPCaGJrumrtqmVHRWFiu6bCyaolnRuXFNahqa5Ct05TvSWZvbusCK6trSyQZtgUa1dImV_v78ekKndnhBTnVaObz8nQPyMp08j2fe4uFuPk4Wngo4G3laqFznMBJZFOfaR1SRn-oQcs0zEMA1ig4TAWrmZyII0wwgV1qEKXLV7f0BuT7c3dr6bYeuket6Z033UnKAOA5YAH5HDQ-UsrVzFrXc2nKT2lYCk3trcm9NHq11hfhQ-CgrbP-hZXI7vf_r_gBcanQK
CitedBy_id crossref_primary_10_1186_s12951_022_01634_z
crossref_primary_10_1002_adma_202105120
crossref_primary_10_1002_adma_201905761
crossref_primary_10_1016_j_carbpol_2024_121873
crossref_primary_10_1039_D1TB02215F
crossref_primary_10_1016_j_bioactmat_2023_02_020
crossref_primary_10_1039_D1TA08091A
crossref_primary_10_1021_acsami_0c01022
crossref_primary_10_1002_adhm_202302700
crossref_primary_10_1002_anbr_202200115
crossref_primary_10_1039_C9MH01844A
crossref_primary_10_1016_j_actbio_2022_06_008
crossref_primary_10_1021_acsami_2c10202
crossref_primary_10_1021_acsnano_1c00204
crossref_primary_10_1039_C9TA14224J
crossref_primary_10_1016_j_cej_2022_140493
crossref_primary_10_1016_j_actbio_2021_09_056
crossref_primary_10_1002_adhm_202203342
crossref_primary_10_1016_j_ijbiomac_2023_124055
crossref_primary_10_1002_adhm_202203241
crossref_primary_10_1016_j_progpolymsci_2021_101388
crossref_primary_10_1016_j_cej_2021_130610
crossref_primary_10_1021_acsami_1c13744
crossref_primary_10_1016_j_actbio_2023_08_026
crossref_primary_10_1002_adfm_202107226
crossref_primary_10_1016_j_eurpolymj_2022_111548
crossref_primary_10_1007_s40843_023_2763_1
crossref_primary_10_1016_j_ijbiomac_2024_132360
crossref_primary_10_1016_j_bioactmat_2022_05_010
crossref_primary_10_1016_j_ijbiomac_2023_127192
crossref_primary_10_1002_adma_202106842
crossref_primary_10_1007_s12668_024_01314_2
crossref_primary_10_1038_s41467_023_43571_x
crossref_primary_10_1039_D0BM00966K
crossref_primary_10_1039_D2SC04962G
crossref_primary_10_1002_adma_202308701
crossref_primary_10_1002_marc_202300092
crossref_primary_10_1093_burnst_tkac033
crossref_primary_10_3390_app122211404
crossref_primary_10_1016_j_cej_2023_143989
crossref_primary_10_1016_j_compositesb_2023_110964
crossref_primary_10_1021_acsami_2c09706
crossref_primary_10_1007_s10965_022_03130_2
crossref_primary_10_1016_j_cej_2021_132252
crossref_primary_10_1002_SMMD_20220032
crossref_primary_10_1186_s40824_022_00330_1
crossref_primary_10_1002_adfm_202109144
crossref_primary_10_1021_acsnano_3c08625
crossref_primary_10_1016_j_biomaterials_2022_121377
crossref_primary_10_1016_j_carbpol_2023_121738
crossref_primary_10_1007_s40843_021_2004_6
crossref_primary_10_1039_D0BM00770F
crossref_primary_10_1016_j_isci_2023_106022
crossref_primary_10_1021_acsnano_1c04206
crossref_primary_10_1016_j_cej_2020_127967
crossref_primary_10_1016_j_cej_2022_136580
crossref_primary_10_1039_D0TB02000A
crossref_primary_10_1016_j_porgcoat_2024_108402
crossref_primary_10_1039_D3TB01660A
crossref_primary_10_1016_j_xcrp_2021_100623
crossref_primary_10_1002_mame_202100290
crossref_primary_10_1016_j_polymer_2020_122845
crossref_primary_10_1002_adhm_202302538
crossref_primary_10_1007_s42242_022_00191_6
crossref_primary_10_1002_adma_202300394
crossref_primary_10_1016_j_eurpolymj_2024_113260
crossref_primary_10_1039_D0NR03785K
crossref_primary_10_1039_D1NR01148K
crossref_primary_10_1002_advs_201900867
crossref_primary_10_3389_fbioe_2021_716035
crossref_primary_10_1016_j_carbpol_2021_118382
crossref_primary_10_1039_D0TC02986F
crossref_primary_10_1016_j_porgcoat_2024_108635
crossref_primary_10_1016_j_jcis_2019_10_019
crossref_primary_10_1021_acsnano_4c01214
crossref_primary_10_1021_acsbiomaterials_9b00130
crossref_primary_10_1016_j_reactfunctpolym_2021_105151
crossref_primary_10_1007_s11426_022_1243_5
crossref_primary_10_1039_C9BM02029B
crossref_primary_10_1021_acs_biomac_1c01387
crossref_primary_10_1038_s41570_021_00323_z
crossref_primary_10_1039_D2TA03782C
crossref_primary_10_1016_j_cis_2023_102982
crossref_primary_10_1016_j_cej_2020_127069
crossref_primary_10_1016_j_eurpolymj_2023_112252
crossref_primary_10_1016_j_actbio_2022_09_006
crossref_primary_10_1002_anie_202207425
crossref_primary_10_1002_adma_202001628
crossref_primary_10_3390_gels9010002
crossref_primary_10_1039_C9BM01635J
crossref_primary_10_1039_D3TB01189E
crossref_primary_10_1021_acsami_1c14231
crossref_primary_10_1016_j_matdes_2020_108916
crossref_primary_10_1002_pol_20210896
crossref_primary_10_1039_D0TB00640H
crossref_primary_10_1039_C9TA00618D
crossref_primary_10_1016_j_colsurfb_2022_112987
crossref_primary_10_1021_acs_iecr_9b01796
crossref_primary_10_1021_acsabm_1c00501
crossref_primary_10_1002_smll_202309900
crossref_primary_10_1021_acsami_1c12505
crossref_primary_10_1039_D0QI01203C
crossref_primary_10_1021_acsami_3c04148
crossref_primary_10_1021_acsami_2c00494
crossref_primary_10_1002_pol_20210916
crossref_primary_10_1002_ange_202207425
crossref_primary_10_1016_j_actbio_2021_08_033
crossref_primary_10_1016_j_carbpol_2021_118753
crossref_primary_10_1021_acsabm_3c00807
crossref_primary_10_1002_adhm_202301477
crossref_primary_10_1002_adhm_202300669
crossref_primary_10_1016_j_colsurfa_2020_125443
crossref_primary_10_1039_D0TA06935C
crossref_primary_10_1002_adfm_202005689
crossref_primary_10_1021_acsami_0c12090
crossref_primary_10_1021_acs_langmuir_0c01605
crossref_primary_10_1126_sciadv_aaw5643
crossref_primary_10_1021_acsami_9b02556
crossref_primary_10_1002_mame_202200060
crossref_primary_10_1126_sciadv_adg4031
crossref_primary_10_1002_adma_202204581
crossref_primary_10_1016_j_cej_2021_133017
crossref_primary_10_1002_EXP_20210083
crossref_primary_10_1016_j_cej_2023_146244
crossref_primary_10_3390_gels8020115
Cites_doi 10.1002/adfm.201303536
10.1038/nature12806
10.1021/acsami.5b00287
10.1016/j.biomaterials.2015.07.014
10.1002/adfm.201500006
10.1002/anie.201610955
10.1021/ja104996y
10.1021/am504566v
10.1016/j.jsb.2009.09.008
10.1016/j.dental.2011.11.010
10.1021/acsami.8b01082
10.1021/bm101076e
10.1080/21691401.2018.1439842
10.1021/acsami.7b04832
10.1039/C7TB01279A
10.1126/science.1212648
10.1038/nmat4758
10.1021/ma100378r
10.1002/adma.201202343
10.1039/C3TB20696C
10.1039/c3sm52132j
10.1016/j.biotechadv.2011.01.005
10.1021/la4045623
10.1016/j.biomaterials.2009.09.062
10.1016/j.progpolymsci.2014.02.001
10.1002/adfm.201604894
10.1017/S0025315400018786
10.1080/09205063.2018.1466469
10.1039/C5EN00104H
10.1021/acsami.6b00912
10.1016/j.ijadhadh.2011.07.008
10.1093/icb/42.6.1172
10.1038/s41467-017-02387-2
10.1002/mabi.201200362
10.1021/acsnano.6b05318
10.1016/j.biomaterials.2018.04.023
10.1016/j.actbio.2008.12.005
10.1039/c4tb00155a
10.1039/C5CS00499C
ContentType Journal Article
Copyright 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.201804925
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 10_1002_adfm_201804925
ADFM201804925
Genre article
GrantInformation_xml – fundername: National Key research and Development Program
  funderid: 2016YFC1101301
– fundername: National Natural Science Foundation
  funderid: 51325305; 51733006
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
AAYXX
ACBWZ
ASPBG
AVWKF
AZFZN
CITATION
FEDTE
HF~
HVGLF
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-c4205-f8cdfd158b79df3eec73af61df2b1812fe820584ef03b846ab11dcf86ae2c5843
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Thu Oct 10 20:30:43 EDT 2024
Fri Aug 23 02:45:56 EDT 2024
Sat Aug 24 00:45:53 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 42
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4205-f8cdfd158b79df3eec73af61df2b1812fe820584ef03b846ab11dcf86ae2c5843
PQID 2119940413
PQPubID 2045204
PageCount 12
ParticipantIDs proquest_journals_2119940413
crossref_primary_10_1002_adfm_201804925
wiley_primary_10_1002_adfm_201804925_ADFM201804925
PublicationCentury 2000
PublicationDate October 17, 2018
PublicationDateYYYYMMDD 2018-10-17
PublicationDate_xml – month: 10
  year: 2018
  text: October 17, 2018
  day: 17
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 5
2007; 19
2011; 334
2018; 29
2010; 31
2017; 8
2013; 25
2017; 3
2017; 27
2010; 169
2011; 31
2014; 24
2011; 12
2016; 17
2015; 7
2017; 9
2015; 67
2010; 43
2015; 25
2018; 171
2014; 505
2014; 2
2016; 3
2002; 42
2013; 13
2017; 11
2015; 44
2017; 56
2010; 132
2018
2012; 28
1972; 52
2009; 5
2014; 39
2014; 30
2018; 10
2011; 29
2014; 6
2016; 8
2014; 10
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
Lee H. (e_1_2_7_10_1) 2007; 19
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
Reutenauer P. (e_1_2_7_20_1) 2009; 5
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_1_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
Bhagat V. (e_1_2_7_34_1) 2016; 17
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_36_1
e_1_2_7_37_1
e_1_2_7_38_1
e_1_2_7_39_1
References_xml – volume: 7
  start-page: 8533
  year: 2015
  publication-title: ACS Appl. Mater. Interfaces
– volume: 42
  start-page: 1172
  year: 2002
  publication-title: Integr. Comp. Biol.
– volume: 2
  start-page: 4067
  year: 2014
  publication-title: J. Mater. Chem. B
– volume: 5
  start-page: 1893
  year: 2009
  publication-title: Int. Sci.
– volume: 2
  start-page: 201
  year: 2014
  publication-title: J. Mater. Chem. B
– volume: 31
  start-page: 795
  year: 2011
  publication-title: Int. J. Adhes. Adhes.
– volume: 44
  start-page: 8174
  year: 2015
  publication-title: Chem. Soc. Rev.
– volume: 132
  start-page: 12531
  year: 2010
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 5588
  year: 2017
  publication-title: J. Mater. Chem. B
– volume: 25
  start-page: 3814
  year: 2015
  publication-title: Adv. Funct. Mater.
– volume: 12
  start-page: 342
  year: 2011
  publication-title: Biomacromolecules
– volume: 505
  start-page: 382
  year: 2014
  publication-title: Nature
– volume: 10
  start-page: 2479
  year: 2014
  publication-title: Soft Matter
– volume: 171
  start-page: 83
  year: 2018
  publication-title: Biomaterials
– volume: 6
  start-page: 16982
  year: 2014
  publication-title: ACS Appl. Mater. Interfaces
– volume: 56
  start-page: 1
  year: 2017
  publication-title: Angew. Chem., Int. Ed. Engl.
– volume: 8
  start-page: 2218
  year: 2017
  publication-title: Nat. Commun.
– volume: 29
  start-page: 322
  year: 2011
  publication-title: Biotechnol. Adv.
– volume: 52
  start-page: 429
  year: 1972
  publication-title: J. Mar. Biol.
– volume: 27
  start-page: 1604894
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 9
  start-page: 17645
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 29
  start-page: 1463
  year: 2018
  publication-title: Biomater. Sci.
– volume: 19
  start-page: 318
  year: 2007
  publication-title: Science
– volume: 3
  start-page: 283
  year: 2016
  publication-title: nviron. Sci. Nano
– volume: 11
  start-page: 2561
  year: 2017
  publication-title: ACS Nano
– volume: 334
  start-page: 965
  year: 2011
  publication-title: Science
– volume: 13
  start-page: 59
  year: 2013
  publication-title: Macromol. Biosci.
– volume: 17
  start-page: 3016
  year: 2016
  publication-title: Biomaterials
– volume: 30
  start-page: 1636
  year: 2014
  publication-title: Langmuir
– volume: 3
  start-page: 147
  year: 2017
  publication-title: Nat. Mater.
– volume: 24
  start-page: 3259
  year: 2014
  publication-title: Adv. Funct. Mater.
– volume: 43
  start-page: 4355
  year: 2010
  publication-title: Macromolecules
– volume: 8
  start-page: 8956
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 28
  start-page: 369
  year: 2012
  publication-title: Dent. Mater.
– volume: 10
  start-page: 10471
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 67
  start-page: 11
  year: 2015
  publication-title: Biomaterials
– volume: 5
  start-page: 1647
  year: 2009
  publication-title: Acta Biomater.
– volume: 25
  start-page: 653
  year: 2013
  publication-title: Adv. Mater.
– volume: 39
  start-page: 1375
  year: 2014
  publication-title: Prog. Polym. Sci.
– volume: 169
  start-page: 145
  year: 2010
  publication-title: J. Struct. Biol.
– volume: 31
  start-page: 420
  year: 2010
  publication-title: Biomaterials
– start-page: 1
  year: 2018
  publication-title: Artif. Cells Nanomed. Biotechnol.
– ident: e_1_2_7_18_1
  doi: 10.1002/adfm.201303536
– ident: e_1_2_7_22_1
  doi: 10.1038/nature12806
– ident: e_1_2_7_29_1
  doi: 10.1021/acsami.5b00287
– ident: e_1_2_7_3_1
  doi: 10.1016/j.biomaterials.2015.07.014
– ident: e_1_2_7_9_1
  doi: 10.1002/adfm.201500006
– ident: e_1_2_7_24_1
  doi: 10.1002/anie.201610955
– ident: e_1_2_7_15_1
  doi: 10.1021/ja104996y
– ident: e_1_2_7_11_1
  doi: 10.1021/am504566v
– ident: e_1_2_7_16_1
  doi: 10.1016/j.jsb.2009.09.008
– ident: e_1_2_7_33_1
  doi: 10.1016/j.dental.2011.11.010
– ident: e_1_2_7_31_1
  doi: 10.1021/acsami.8b01082
– ident: e_1_2_7_35_1
  doi: 10.1021/bm101076e
– volume: 19
  start-page: 318
  year: 2007
  ident: e_1_2_7_10_1
  publication-title: Science
  contributor:
    fullname: Lee H.
– ident: e_1_2_7_39_1
  doi: 10.1080/21691401.2018.1439842
– ident: e_1_2_7_40_1
  doi: 10.1021/acsami.7b04832
– ident: e_1_2_7_30_1
  doi: 10.1039/C7TB01279A
– ident: e_1_2_7_21_1
  doi: 10.1126/science.1212648
– ident: e_1_2_7_7_1
  doi: 10.1038/nmat4758
– ident: e_1_2_7_19_1
  doi: 10.1021/ma100378r
– ident: e_1_2_7_5_1
  doi: 10.1002/adma.201202343
– volume: 17
  start-page: 3016
  year: 2016
  ident: e_1_2_7_34_1
  publication-title: Biomaterials
  contributor:
    fullname: Bhagat V.
– ident: e_1_2_7_4_1
  doi: 10.1039/C3TB20696C
– ident: e_1_2_7_23_1
  doi: 10.1039/c3sm52132j
– ident: e_1_2_7_1_1
  doi: 10.1016/j.biotechadv.2011.01.005
– ident: e_1_2_7_25_1
  doi: 10.1021/la4045623
– ident: e_1_2_7_2_1
  doi: 10.1016/j.biomaterials.2009.09.062
– ident: e_1_2_7_13_1
  doi: 10.1016/j.progpolymsci.2014.02.001
– ident: e_1_2_7_8_1
  doi: 10.1002/adfm.201604894
– ident: e_1_2_7_17_1
  doi: 10.1017/S0025315400018786
– ident: e_1_2_7_38_1
  doi: 10.1080/09205063.2018.1466469
– ident: e_1_2_7_27_1
  doi: 10.1039/C5EN00104H
– ident: e_1_2_7_28_1
  doi: 10.1021/acsami.6b00912
– ident: e_1_2_7_32_1
  doi: 10.1016/j.ijadhadh.2011.07.008
– ident: e_1_2_7_6_1
  doi: 10.1093/icb/42.6.1172
– ident: e_1_2_7_36_1
  doi: 10.1038/s41467-017-02387-2
– ident: e_1_2_7_26_1
  doi: 10.1002/mabi.201200362
– volume: 5
  start-page: 1893
  year: 2009
  ident: e_1_2_7_20_1
  publication-title: Int. Sci.
  contributor:
    fullname: Reutenauer P.
– ident: e_1_2_7_14_1
  doi: 10.1021/acsnano.6b05318
– ident: e_1_2_7_41_1
  doi: 10.1016/j.biomaterials.2018.04.023
– ident: e_1_2_7_37_1
  doi: 10.1016/j.actbio.2008.12.005
– ident: e_1_2_7_12_1
  doi: 10.1039/c4tb00155a
– ident: e_1_2_7_42_1
  doi: 10.1039/C5CS00499C
SSID ssj0017734
Score 2.6290808
Snippet Adhesive hydrogels are promising to be explored as biomedical sealants, hemostatic agents, and glues in promoting wound healing and tissue regeneration....
Abstract Adhesive hydrogels are promising to be explored as biomedical sealants, hemostatic agents, and glues in promoting wound healing and tissue...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Publisher
SubjectTerms adhesion
Adhesive strength
Adhesives
Biocompatibility
Bleeding
Calcium ions
Crosslinking
Glues
Glycine
High strength
high strength hydrogels
Hydrogels
Hydrogen bonding
Hydroxyapatite
Intestine
Maintenance
Materials science
Mechanical properties
Nanoparticles
organic–inorganic hybrids
Regeneration
Sealants
self‐rescue
Soft tissues
Substrates
Tissue engineering
Wound healing
Title An Autolytic High Strength Instant Adhesive Hydrogel for Emergency Self‐Rescue
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201804925
https://www.proquest.com/docview/2119940413
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV27TsMwFLUQEwy8EYWCPCAxpY3jJE7HiLYqSCBUqNQt8uO6lahS1KZDmfgEvpEvwU6aPliQYEui6yi59vU9js89QeiaMOX7QIUTBcp3_AYXjgiBOwEj2o-4iCKZs3wfw07Pv-8H_bUq_kIfYvnBzUZGPl_bAOdiWl-JhnKlbSU5iVyrr2cmYUKZ5XQ1u0v9KMJYsa0cEkvwIv1StdH16pvNN7PSCmquA9Y847T3ES-ftSCavNZmmajJ9x8yjv95mQO0t4CjOC7GzyHagvQI7a6JFB6jpzjF8Swbj-bGBlteCLZb2ekgG-K7HFxmOFZDsDx43JmryXgAI2ywMG6VpZ34GUb66-OzC1M5gxPUa7debjvO4j8MjvQ9N3B0JJVWJIgEayhNASSjXIdEaU9YgKDBwAgDZEC7VBg8wwUhSuoo5OBJc52eou10nMIZwtIFqQQFJqkyhl7D2AdmdW7ZVoKGooJuyn5I3gq5jaQQVvYS66Nk6aMKqpbdlCzCbppYubqG75rEXEFe7u9f7pLEzfbD8uz8L40u0I49tvmMsCraziYzuDRAJRNX-WD8BhqG4Ro
link.rule.ids 315,783,787,1378,27938,27939,46308,46732
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB1BOQAHdkRZfUDiFIjjbD1GQFVWIRaJWxTbY5CoUgTpoZz4BL6RL8GTNGW5IMEx1jhKxp7Mi_3mGWCbR9r3UUgnDrTv-K1MOjLEzAkibvw4k3GsSpbvedi58Y9vg5pNSLUwlT7EaMGNIqP8XlOA04L03qdqaKYNlZLz2CWBvXGYsDEv6BCDg8uRghSPompjOeRE8eK3tW6j6-197_89L32Cza-Qtcw57VmQ9dNWVJOH3X4hd9XLDyHHf73OHMwMESlLqik0D2OYL8D0F53CRbhIcpb0i153YG0YUUMY7Wbnd8U9OyrxZcESfY9EhWedgX7q3WGXWTjMDuvqTnaFXfP--naJz6qPS3DTPrze7zjDoxgc5Xtu4JhYaaN5EMuopY1AVJHITMi18SRhBIMWSVgsg8YV0kKaTHKulYnDDD1l28UyNPJejivAlItKS4GREtoaei1rH9gfdCJcSRHKJuzUA5E-VoobaaWt7KXko3Tkoyas1-OUDiPvOSXFupbv2tzcBK90-C93SZOD9tnoavUvnbZgsnN9dpqeHp2frMEUtVN649E6NIqnPm5Y3FLIzXJmfgA1s-U0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB2xSAgO7Iiy-oDEKRDHztJjRKnKKsQi9RbF9rhIVCmi6aGc-AS-kS_BTppSuCDBMdbYSsYez0v85gXggIaKc2TCiXzFHV5PhSMCTB0_pJpHqYgiWbB8r4PWAz9v--2JKv5SH2L8wc1GRrFf2wB_Vvr4SzQ0VdpWktPItfp60zDLA-ZaUlfjdiwgRcOwPFcOqGV40XYl2-h6x9_7f09LX1hzErEWKae5BGl1syXT5OlokIsj-fpDx_E_T7MMiyM8SuJyAa3AFGarsDChUrgGN3FG4kHe6w6NDbHEEGLPsrNO_kjOCnSZk1g9oiXCk9ZQvfQ62CUGDJPTqraT3GFXf7y932JfDnAdHpqn9yctZ_QjBkdyz_UdHUmlFfUjEdaVZogyZKkOqNKesAhBo8ERBsmgdpkwgCYVlCqpoyBFT5p2tgEzWS_DTSDSRakEw1AyZQy9urH3zeu5pVsJFogaHFbzkDyXehtJqazsJdZHydhHNdippikZxV0_sXp1de6azFwDr_D3L6MkcaN5Nb7a-kunfZi7aTSTy7Pri22Yt802t9FwB2bylwHuGtCSi71iXX4Cm2_j4w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Autolytic+High+Strength+Instant+Adhesive+Hydrogel+for+Emergency+Self%E2%80%90Rescue&rft.jtitle=Advanced+functional+materials&rft.au=Cui%2C+Chunyan&rft.au=Wu%2C+Tengling&rft.au=Gao%2C+Fei&rft.au=Fan%2C+Chuanchuan&rft.date=2018-10-17&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=28&rft.issue=42&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadfm.201804925&rft.externalDBID=10.1002%252Fadfm.201804925&rft.externalDocID=ADFM201804925
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon