An Autolytic High Strength Instant Adhesive Hydrogel for Emergency Self‐Rescue
Adhesive hydrogels are promising to be explored as biomedical sealants, hemostatic agents, and glues in promoting wound healing and tissue regeneration. However, it is challenging to engineer a hydrogel combining instant robust adhesion and high strength. Herein, a high‐strength instantly self‐adhes...
Saved in:
Published in | Advanced functional materials Vol. 28; no. 42 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
17.10.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Adhesive hydrogels are promising to be explored as biomedical sealants, hemostatic agents, and glues in promoting wound healing and tissue regeneration. However, it is challenging to engineer a hydrogel combining instant robust adhesion and high strength. Herein, a high‐strength instantly self‐adhesive organic–inorganic hybrid (OIH) hydrogel by a one‐pot radical polymerization of N‐acryloyl 2‐glycine (ACG), biocompatible glycine derivative vinyl monomer with addition of hydroxyapatite (HAp), naturally occurring mineral is designed and fabricated. The hydrogen bonding from side chain of poly(N‐acryloyl 2‐glycine) (PACG), carboxyl‐Ca2+ ionic crosslinking together with PACG chain‐HAp physical interactions contribute to automatic self‐repairing high mechanical properties. Importantly, this OIH hydrogel exhibits robust adhesion to diverse substrates, presumably due to synergistic interactions of carboxyl with the substrate surface and the enhanced contact of PACG chains to adherent surfaces facilitated by HAp nanoparticles. Remarkably, the PACG‐HAp OIH hydrogels can instantly self‐adhere to the soft tissues with adhesion strength of 105 kPa, and anastomose the broken intestines, meanwhile promoting wound healing and stopping bleeding. The OIH hydrogel is autolytic in the body without eliciting inflammatory reaction. Further, the ready‐to‐use PACG‐HAp adhesive hydrogel can be properly stored for a long time. This novel hydrogel will find an appealing application as a new adhesive for emergency self‐rescue.
A high strength autolytic hybrid hydrogel is fabricated by polymerization of glycine derivative vinyl monomer with addition of hydroxyapatite. This reversible noncovalent bonding toughened self‐healable hydrogel can instantly robustly self‐adhere to diverse substrates, in particular soft tissues, meanwhile promoting wound healing and stopping bleeding, and amazingly anastomose the broken intestine. The hydrogel holds promising potential as an emergency self‐rescue adhesive. |
---|---|
AbstractList | Adhesive hydrogels are promising to be explored as biomedical sealants, hemostatic agents, and glues in promoting wound healing and tissue regeneration. However, it is challenging to engineer a hydrogel combining instant robust adhesion and high strength. Herein, a high‐strength instantly self‐adhesive organic–inorganic hybrid (OIH) hydrogel by a one‐pot radical polymerization of N‐acryloyl 2‐glycine (ACG), biocompatible glycine derivative vinyl monomer with addition of hydroxyapatite (HAp), naturally occurring mineral is designed and fabricated. The hydrogen bonding from side chain of poly(N‐acryloyl 2‐glycine) (PACG), carboxyl‐Ca2+ ionic crosslinking together with PACG chain‐HAp physical interactions contribute to automatic self‐repairing high mechanical properties. Importantly, this OIH hydrogel exhibits robust adhesion to diverse substrates, presumably due to synergistic interactions of carboxyl with the substrate surface and the enhanced contact of PACG chains to adherent surfaces facilitated by HAp nanoparticles. Remarkably, the PACG‐HAp OIH hydrogels can instantly self‐adhere to the soft tissues with adhesion strength of 105 kPa, and anastomose the broken intestines, meanwhile promoting wound healing and stopping bleeding. The OIH hydrogel is autolytic in the body without eliciting inflammatory reaction. Further, the ready‐to‐use PACG‐HAp adhesive hydrogel can be properly stored for a long time. This novel hydrogel will find an appealing application as a new adhesive for emergency self‐rescue. Adhesive hydrogels are promising to be explored as biomedical sealants, hemostatic agents, and glues in promoting wound healing and tissue regeneration. However, it is challenging to engineer a hydrogel combining instant robust adhesion and high strength. Herein, a high‐strength instantly self‐adhesive organic–inorganic hybrid (OIH) hydrogel by a one‐pot radical polymerization of N‐acryloyl 2‐glycine (ACG), biocompatible glycine derivative vinyl monomer with addition of hydroxyapatite (HAp), naturally occurring mineral is designed and fabricated. The hydrogen bonding from side chain of poly(N‐acryloyl 2‐glycine) (PACG), carboxyl‐Ca2+ ionic crosslinking together with PACG chain‐HAp physical interactions contribute to automatic self‐repairing high mechanical properties. Importantly, this OIH hydrogel exhibits robust adhesion to diverse substrates, presumably due to synergistic interactions of carboxyl with the substrate surface and the enhanced contact of PACG chains to adherent surfaces facilitated by HAp nanoparticles. Remarkably, the PACG‐HAp OIH hydrogels can instantly self‐adhere to the soft tissues with adhesion strength of 105 kPa, and anastomose the broken intestines, meanwhile promoting wound healing and stopping bleeding. The OIH hydrogel is autolytic in the body without eliciting inflammatory reaction. Further, the ready‐to‐use PACG‐HAp adhesive hydrogel can be properly stored for a long time. This novel hydrogel will find an appealing application as a new adhesive for emergency self‐rescue. A high strength autolytic hybrid hydrogel is fabricated by polymerization of glycine derivative vinyl monomer with addition of hydroxyapatite. This reversible noncovalent bonding toughened self‐healable hydrogel can instantly robustly self‐adhere to diverse substrates, in particular soft tissues, meanwhile promoting wound healing and stopping bleeding, and amazingly anastomose the broken intestine. The hydrogel holds promising potential as an emergency self‐rescue adhesive. Abstract Adhesive hydrogels are promising to be explored as biomedical sealants, hemostatic agents, and glues in promoting wound healing and tissue regeneration. However, it is challenging to engineer a hydrogel combining instant robust adhesion and high strength. Herein, a high‐strength instantly self‐adhesive organic–inorganic hybrid (OIH) hydrogel by a one‐pot radical polymerization of N‐acryloyl 2‐glycine (ACG), biocompatible glycine derivative vinyl monomer with addition of hydroxyapatite (HAp), naturally occurring mineral is designed and fabricated. The hydrogen bonding from side chain of poly(N‐acryloyl 2‐glycine) (PACG), carboxyl‐Ca 2+ ionic crosslinking together with PACG chain‐HAp physical interactions contribute to automatic self‐repairing high mechanical properties. Importantly, this OIH hydrogel exhibits robust adhesion to diverse substrates, presumably due to synergistic interactions of carboxyl with the substrate surface and the enhanced contact of PACG chains to adherent surfaces facilitated by HAp nanoparticles. Remarkably, the PACG‐HAp OIH hydrogels can instantly self‐adhere to the soft tissues with adhesion strength of 105 kPa, and anastomose the broken intestines, meanwhile promoting wound healing and stopping bleeding. The OIH hydrogel is autolytic in the body without eliciting inflammatory reaction. Further, the ready‐to‐use PACG‐HAp adhesive hydrogel can be properly stored for a long time. This novel hydrogel will find an appealing application as a new adhesive for emergency self‐rescue. |
Author | Liu, Wenguang Wang, Hongbo Liu, Bo Gao, Fei Xu, Ziyang Cui, Chunyan Wu, Tengling Fan, Chuanchuan |
Author_xml | – sequence: 1 givenname: Chunyan surname: Cui fullname: Cui, Chunyan organization: Tianjin University – sequence: 2 givenname: Tengling surname: Wu fullname: Wu, Tengling organization: Tianjin University – sequence: 3 givenname: Fei surname: Gao fullname: Gao, Fei organization: Tianjin University – sequence: 4 givenname: Chuanchuan surname: Fan fullname: Fan, Chuanchuan organization: Tianjin University – sequence: 5 givenname: Ziyang surname: Xu fullname: Xu, Ziyang organization: Tianjin University – sequence: 6 givenname: Hongbo surname: Wang fullname: Wang, Hongbo organization: Tianjin University – sequence: 7 givenname: Bo surname: Liu fullname: Liu, Bo organization: Tianjin University – sequence: 8 givenname: Wenguang surname: Liu fullname: Liu, Wenguang email: wgliu@tju.edu.cn organization: Tianjin University |
BookMark | eNqFkMFKw0AQhhepYK1ePS94Tt3ZpMnmGGprCxXFKnhbks1smpJu6m6q5OYj-Iw-iSmVevQ0P8P3z8B3TnqmNkjIFbAhMMZv0lxvhpyBYEHMRyekDyGEns-46B0zvJ6Rc-fWjEEU-UGfPCaGJrumrtqmVHRWFiu6bCyaolnRuXFNahqa5Ct05TvSWZvbusCK6trSyQZtgUa1dImV_v78ekKndnhBTnVaObz8nQPyMp08j2fe4uFuPk4Wngo4G3laqFznMBJZFOfaR1SRn-oQcs0zEMA1ig4TAWrmZyII0wwgV1qEKXLV7f0BuT7c3dr6bYeuket6Z033UnKAOA5YAH5HDQ-UsrVzFrXc2nKT2lYCk3trcm9NHq11hfhQ-CgrbP-hZXI7vf_r_gBcanQK |
CitedBy_id | crossref_primary_10_1186_s12951_022_01634_z crossref_primary_10_1002_adma_202105120 crossref_primary_10_1002_adma_201905761 crossref_primary_10_1016_j_carbpol_2024_121873 crossref_primary_10_1039_D1TB02215F crossref_primary_10_1016_j_bioactmat_2023_02_020 crossref_primary_10_1039_D1TA08091A crossref_primary_10_1021_acsami_0c01022 crossref_primary_10_1002_adhm_202302700 crossref_primary_10_1002_anbr_202200115 crossref_primary_10_1039_C9MH01844A crossref_primary_10_1016_j_actbio_2022_06_008 crossref_primary_10_1021_acsami_2c10202 crossref_primary_10_1021_acsnano_1c00204 crossref_primary_10_1039_C9TA14224J crossref_primary_10_1016_j_cej_2022_140493 crossref_primary_10_1016_j_actbio_2021_09_056 crossref_primary_10_1002_adhm_202203342 crossref_primary_10_1016_j_ijbiomac_2023_124055 crossref_primary_10_1002_adhm_202203241 crossref_primary_10_1016_j_progpolymsci_2021_101388 crossref_primary_10_1016_j_cej_2021_130610 crossref_primary_10_1021_acsami_1c13744 crossref_primary_10_1016_j_actbio_2023_08_026 crossref_primary_10_1002_adfm_202107226 crossref_primary_10_1016_j_eurpolymj_2022_111548 crossref_primary_10_1007_s40843_023_2763_1 crossref_primary_10_1016_j_ijbiomac_2024_132360 crossref_primary_10_1016_j_bioactmat_2022_05_010 crossref_primary_10_1016_j_ijbiomac_2023_127192 crossref_primary_10_1002_adma_202106842 crossref_primary_10_1007_s12668_024_01314_2 crossref_primary_10_1038_s41467_023_43571_x crossref_primary_10_1039_D0BM00966K crossref_primary_10_1039_D2SC04962G crossref_primary_10_1002_adma_202308701 crossref_primary_10_1002_marc_202300092 crossref_primary_10_1093_burnst_tkac033 crossref_primary_10_3390_app122211404 crossref_primary_10_1016_j_cej_2023_143989 crossref_primary_10_1016_j_compositesb_2023_110964 crossref_primary_10_1021_acsami_2c09706 crossref_primary_10_1007_s10965_022_03130_2 crossref_primary_10_1016_j_cej_2021_132252 crossref_primary_10_1002_SMMD_20220032 crossref_primary_10_1186_s40824_022_00330_1 crossref_primary_10_1002_adfm_202109144 crossref_primary_10_1021_acsnano_3c08625 crossref_primary_10_1016_j_biomaterials_2022_121377 crossref_primary_10_1016_j_carbpol_2023_121738 crossref_primary_10_1007_s40843_021_2004_6 crossref_primary_10_1039_D0BM00770F crossref_primary_10_1016_j_isci_2023_106022 crossref_primary_10_1021_acsnano_1c04206 crossref_primary_10_1016_j_cej_2020_127967 crossref_primary_10_1016_j_cej_2022_136580 crossref_primary_10_1039_D0TB02000A crossref_primary_10_1016_j_porgcoat_2024_108402 crossref_primary_10_1039_D3TB01660A crossref_primary_10_1016_j_xcrp_2021_100623 crossref_primary_10_1002_mame_202100290 crossref_primary_10_1016_j_polymer_2020_122845 crossref_primary_10_1002_adhm_202302538 crossref_primary_10_1007_s42242_022_00191_6 crossref_primary_10_1002_adma_202300394 crossref_primary_10_1016_j_eurpolymj_2024_113260 crossref_primary_10_1039_D0NR03785K crossref_primary_10_1039_D1NR01148K crossref_primary_10_1002_advs_201900867 crossref_primary_10_3389_fbioe_2021_716035 crossref_primary_10_1016_j_carbpol_2021_118382 crossref_primary_10_1039_D0TC02986F crossref_primary_10_1016_j_porgcoat_2024_108635 crossref_primary_10_1016_j_jcis_2019_10_019 crossref_primary_10_1021_acsnano_4c01214 crossref_primary_10_1021_acsbiomaterials_9b00130 crossref_primary_10_1016_j_reactfunctpolym_2021_105151 crossref_primary_10_1007_s11426_022_1243_5 crossref_primary_10_1039_C9BM02029B crossref_primary_10_1021_acs_biomac_1c01387 crossref_primary_10_1038_s41570_021_00323_z crossref_primary_10_1039_D2TA03782C crossref_primary_10_1016_j_cis_2023_102982 crossref_primary_10_1016_j_cej_2020_127069 crossref_primary_10_1016_j_eurpolymj_2023_112252 crossref_primary_10_1016_j_actbio_2022_09_006 crossref_primary_10_1002_anie_202207425 crossref_primary_10_1002_adma_202001628 crossref_primary_10_3390_gels9010002 crossref_primary_10_1039_C9BM01635J crossref_primary_10_1039_D3TB01189E crossref_primary_10_1021_acsami_1c14231 crossref_primary_10_1016_j_matdes_2020_108916 crossref_primary_10_1002_pol_20210896 crossref_primary_10_1039_D0TB00640H crossref_primary_10_1039_C9TA00618D crossref_primary_10_1016_j_colsurfb_2022_112987 crossref_primary_10_1021_acs_iecr_9b01796 crossref_primary_10_1021_acsabm_1c00501 crossref_primary_10_1002_smll_202309900 crossref_primary_10_1021_acsami_1c12505 crossref_primary_10_1039_D0QI01203C crossref_primary_10_1021_acsami_3c04148 crossref_primary_10_1021_acsami_2c00494 crossref_primary_10_1002_pol_20210916 crossref_primary_10_1002_ange_202207425 crossref_primary_10_1016_j_actbio_2021_08_033 crossref_primary_10_1016_j_carbpol_2021_118753 crossref_primary_10_1021_acsabm_3c00807 crossref_primary_10_1002_adhm_202301477 crossref_primary_10_1002_adhm_202300669 crossref_primary_10_1016_j_colsurfa_2020_125443 crossref_primary_10_1039_D0TA06935C crossref_primary_10_1002_adfm_202005689 crossref_primary_10_1021_acsami_0c12090 crossref_primary_10_1021_acs_langmuir_0c01605 crossref_primary_10_1126_sciadv_aaw5643 crossref_primary_10_1021_acsami_9b02556 crossref_primary_10_1002_mame_202200060 crossref_primary_10_1126_sciadv_adg4031 crossref_primary_10_1002_adma_202204581 crossref_primary_10_1016_j_cej_2021_133017 crossref_primary_10_1002_EXP_20210083 crossref_primary_10_1016_j_cej_2023_146244 crossref_primary_10_3390_gels8020115 |
Cites_doi | 10.1002/adfm.201303536 10.1038/nature12806 10.1021/acsami.5b00287 10.1016/j.biomaterials.2015.07.014 10.1002/adfm.201500006 10.1002/anie.201610955 10.1021/ja104996y 10.1021/am504566v 10.1016/j.jsb.2009.09.008 10.1016/j.dental.2011.11.010 10.1021/acsami.8b01082 10.1021/bm101076e 10.1080/21691401.2018.1439842 10.1021/acsami.7b04832 10.1039/C7TB01279A 10.1126/science.1212648 10.1038/nmat4758 10.1021/ma100378r 10.1002/adma.201202343 10.1039/C3TB20696C 10.1039/c3sm52132j 10.1016/j.biotechadv.2011.01.005 10.1021/la4045623 10.1016/j.biomaterials.2009.09.062 10.1016/j.progpolymsci.2014.02.001 10.1002/adfm.201604894 10.1017/S0025315400018786 10.1080/09205063.2018.1466469 10.1039/C5EN00104H 10.1021/acsami.6b00912 10.1016/j.ijadhadh.2011.07.008 10.1093/icb/42.6.1172 10.1038/s41467-017-02387-2 10.1002/mabi.201200362 10.1021/acsnano.6b05318 10.1016/j.biomaterials.2018.04.023 10.1016/j.actbio.2008.12.005 10.1039/c4tb00155a 10.1039/C5CS00499C |
ContentType | Journal Article |
Copyright | 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.201804925 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adfm_201804925 ADFM201804925 |
Genre | article |
GrantInformation_xml | – fundername: National Key research and Development Program funderid: 2016YFC1101301 – fundername: National Natural Science Foundation funderid: 51325305; 51733006 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ AAYXX ACBWZ ASPBG AVWKF AZFZN CITATION FEDTE HF~ HVGLF 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
ID | FETCH-LOGICAL-c4205-f8cdfd158b79df3eec73af61df2b1812fe820584ef03b846ab11dcf86ae2c5843 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Thu Oct 10 20:30:43 EDT 2024 Fri Aug 23 02:45:56 EDT 2024 Sat Aug 24 00:45:53 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 42 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4205-f8cdfd158b79df3eec73af61df2b1812fe820584ef03b846ab11dcf86ae2c5843 |
PQID | 2119940413 |
PQPubID | 2045204 |
PageCount | 12 |
ParticipantIDs | proquest_journals_2119940413 crossref_primary_10_1002_adfm_201804925 wiley_primary_10_1002_adfm_201804925_ADFM201804925 |
PublicationCentury | 2000 |
PublicationDate | October 17, 2018 |
PublicationDateYYYYMMDD | 2018-10-17 |
PublicationDate_xml | – month: 10 year: 2018 text: October 17, 2018 day: 17 |
PublicationDecade | 2010 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2018 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 5 2007; 19 2011; 334 2018; 29 2010; 31 2017; 8 2013; 25 2017; 3 2017; 27 2010; 169 2011; 31 2014; 24 2011; 12 2016; 17 2015; 7 2017; 9 2015; 67 2010; 43 2015; 25 2018; 171 2014; 505 2014; 2 2016; 3 2002; 42 2013; 13 2017; 11 2015; 44 2017; 56 2010; 132 2018 2012; 28 1972; 52 2009; 5 2014; 39 2014; 30 2018; 10 2011; 29 2014; 6 2016; 8 2014; 10 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 Lee H. (e_1_2_7_10_1) 2007; 19 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 Reutenauer P. (e_1_2_7_20_1) 2009; 5 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_1_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_13_1 e_1_2_7_12_1 e_1_2_7_11_1 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 Bhagat V. (e_1_2_7_34_1) 2016; 17 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_36_1 e_1_2_7_37_1 e_1_2_7_38_1 e_1_2_7_39_1 |
References_xml | – volume: 7 start-page: 8533 year: 2015 publication-title: ACS Appl. Mater. Interfaces – volume: 42 start-page: 1172 year: 2002 publication-title: Integr. Comp. Biol. – volume: 2 start-page: 4067 year: 2014 publication-title: J. Mater. Chem. B – volume: 5 start-page: 1893 year: 2009 publication-title: Int. Sci. – volume: 2 start-page: 201 year: 2014 publication-title: J. Mater. Chem. B – volume: 31 start-page: 795 year: 2011 publication-title: Int. J. Adhes. Adhes. – volume: 44 start-page: 8174 year: 2015 publication-title: Chem. Soc. Rev. – volume: 132 start-page: 12531 year: 2010 publication-title: J. Am. Chem. Soc. – volume: 5 start-page: 5588 year: 2017 publication-title: J. Mater. Chem. B – volume: 25 start-page: 3814 year: 2015 publication-title: Adv. Funct. Mater. – volume: 12 start-page: 342 year: 2011 publication-title: Biomacromolecules – volume: 505 start-page: 382 year: 2014 publication-title: Nature – volume: 10 start-page: 2479 year: 2014 publication-title: Soft Matter – volume: 171 start-page: 83 year: 2018 publication-title: Biomaterials – volume: 6 start-page: 16982 year: 2014 publication-title: ACS Appl. Mater. Interfaces – volume: 56 start-page: 1 year: 2017 publication-title: Angew. Chem., Int. Ed. Engl. – volume: 8 start-page: 2218 year: 2017 publication-title: Nat. Commun. – volume: 29 start-page: 322 year: 2011 publication-title: Biotechnol. Adv. – volume: 52 start-page: 429 year: 1972 publication-title: J. Mar. Biol. – volume: 27 start-page: 1604894 year: 2017 publication-title: Adv. Funct. Mater. – volume: 9 start-page: 17645 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 29 start-page: 1463 year: 2018 publication-title: Biomater. Sci. – volume: 19 start-page: 318 year: 2007 publication-title: Science – volume: 3 start-page: 283 year: 2016 publication-title: nviron. Sci. Nano – volume: 11 start-page: 2561 year: 2017 publication-title: ACS Nano – volume: 334 start-page: 965 year: 2011 publication-title: Science – volume: 13 start-page: 59 year: 2013 publication-title: Macromol. Biosci. – volume: 17 start-page: 3016 year: 2016 publication-title: Biomaterials – volume: 30 start-page: 1636 year: 2014 publication-title: Langmuir – volume: 3 start-page: 147 year: 2017 publication-title: Nat. Mater. – volume: 24 start-page: 3259 year: 2014 publication-title: Adv. Funct. Mater. – volume: 43 start-page: 4355 year: 2010 publication-title: Macromolecules – volume: 8 start-page: 8956 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 28 start-page: 369 year: 2012 publication-title: Dent. Mater. – volume: 10 start-page: 10471 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 67 start-page: 11 year: 2015 publication-title: Biomaterials – volume: 5 start-page: 1647 year: 2009 publication-title: Acta Biomater. – volume: 25 start-page: 653 year: 2013 publication-title: Adv. Mater. – volume: 39 start-page: 1375 year: 2014 publication-title: Prog. Polym. Sci. – volume: 169 start-page: 145 year: 2010 publication-title: J. Struct. Biol. – volume: 31 start-page: 420 year: 2010 publication-title: Biomaterials – start-page: 1 year: 2018 publication-title: Artif. Cells Nanomed. Biotechnol. – ident: e_1_2_7_18_1 doi: 10.1002/adfm.201303536 – ident: e_1_2_7_22_1 doi: 10.1038/nature12806 – ident: e_1_2_7_29_1 doi: 10.1021/acsami.5b00287 – ident: e_1_2_7_3_1 doi: 10.1016/j.biomaterials.2015.07.014 – ident: e_1_2_7_9_1 doi: 10.1002/adfm.201500006 – ident: e_1_2_7_24_1 doi: 10.1002/anie.201610955 – ident: e_1_2_7_15_1 doi: 10.1021/ja104996y – ident: e_1_2_7_11_1 doi: 10.1021/am504566v – ident: e_1_2_7_16_1 doi: 10.1016/j.jsb.2009.09.008 – ident: e_1_2_7_33_1 doi: 10.1016/j.dental.2011.11.010 – ident: e_1_2_7_31_1 doi: 10.1021/acsami.8b01082 – ident: e_1_2_7_35_1 doi: 10.1021/bm101076e – volume: 19 start-page: 318 year: 2007 ident: e_1_2_7_10_1 publication-title: Science contributor: fullname: Lee H. – ident: e_1_2_7_39_1 doi: 10.1080/21691401.2018.1439842 – ident: e_1_2_7_40_1 doi: 10.1021/acsami.7b04832 – ident: e_1_2_7_30_1 doi: 10.1039/C7TB01279A – ident: e_1_2_7_21_1 doi: 10.1126/science.1212648 – ident: e_1_2_7_7_1 doi: 10.1038/nmat4758 – ident: e_1_2_7_19_1 doi: 10.1021/ma100378r – ident: e_1_2_7_5_1 doi: 10.1002/adma.201202343 – volume: 17 start-page: 3016 year: 2016 ident: e_1_2_7_34_1 publication-title: Biomaterials contributor: fullname: Bhagat V. – ident: e_1_2_7_4_1 doi: 10.1039/C3TB20696C – ident: e_1_2_7_23_1 doi: 10.1039/c3sm52132j – ident: e_1_2_7_1_1 doi: 10.1016/j.biotechadv.2011.01.005 – ident: e_1_2_7_25_1 doi: 10.1021/la4045623 – ident: e_1_2_7_2_1 doi: 10.1016/j.biomaterials.2009.09.062 – ident: e_1_2_7_13_1 doi: 10.1016/j.progpolymsci.2014.02.001 – ident: e_1_2_7_8_1 doi: 10.1002/adfm.201604894 – ident: e_1_2_7_17_1 doi: 10.1017/S0025315400018786 – ident: e_1_2_7_38_1 doi: 10.1080/09205063.2018.1466469 – ident: e_1_2_7_27_1 doi: 10.1039/C5EN00104H – ident: e_1_2_7_28_1 doi: 10.1021/acsami.6b00912 – ident: e_1_2_7_32_1 doi: 10.1016/j.ijadhadh.2011.07.008 – ident: e_1_2_7_6_1 doi: 10.1093/icb/42.6.1172 – ident: e_1_2_7_36_1 doi: 10.1038/s41467-017-02387-2 – ident: e_1_2_7_26_1 doi: 10.1002/mabi.201200362 – volume: 5 start-page: 1893 year: 2009 ident: e_1_2_7_20_1 publication-title: Int. Sci. contributor: fullname: Reutenauer P. – ident: e_1_2_7_14_1 doi: 10.1021/acsnano.6b05318 – ident: e_1_2_7_41_1 doi: 10.1016/j.biomaterials.2018.04.023 – ident: e_1_2_7_37_1 doi: 10.1016/j.actbio.2008.12.005 – ident: e_1_2_7_12_1 doi: 10.1039/c4tb00155a – ident: e_1_2_7_42_1 doi: 10.1039/C5CS00499C |
SSID | ssj0017734 |
Score | 2.6290808 |
Snippet | Adhesive hydrogels are promising to be explored as biomedical sealants, hemostatic agents, and glues in promoting wound healing and tissue regeneration.... Abstract Adhesive hydrogels are promising to be explored as biomedical sealants, hemostatic agents, and glues in promoting wound healing and tissue... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Publisher |
SubjectTerms | adhesion Adhesive strength Adhesives Biocompatibility Bleeding Calcium ions Crosslinking Glues Glycine High strength high strength hydrogels Hydrogels Hydrogen bonding Hydroxyapatite Intestine Maintenance Materials science Mechanical properties Nanoparticles organic–inorganic hybrids Regeneration Sealants self‐rescue Soft tissues Substrates Tissue engineering Wound healing |
Title | An Autolytic High Strength Instant Adhesive Hydrogel for Emergency Self‐Rescue |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201804925 https://www.proquest.com/docview/2119940413 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV27TsMwFLUQEwy8EYWCPCAxpY3jJE7HiLYqSCBUqNQt8uO6lahS1KZDmfgEvpEvwU6aPliQYEui6yi59vU9js89QeiaMOX7QIUTBcp3_AYXjgiBOwEj2o-4iCKZs3wfw07Pv-8H_bUq_kIfYvnBzUZGPl_bAOdiWl-JhnKlbSU5iVyrr2cmYUKZ5XQ1u0v9KMJYsa0cEkvwIv1StdH16pvNN7PSCmquA9Y847T3ES-ftSCavNZmmajJ9x8yjv95mQO0t4CjOC7GzyHagvQI7a6JFB6jpzjF8Swbj-bGBlteCLZb2ekgG-K7HFxmOFZDsDx43JmryXgAI2ywMG6VpZ34GUb66-OzC1M5gxPUa7debjvO4j8MjvQ9N3B0JJVWJIgEayhNASSjXIdEaU9YgKDBwAgDZEC7VBg8wwUhSuoo5OBJc52eou10nMIZwtIFqQQFJqkyhl7D2AdmdW7ZVoKGooJuyn5I3gq5jaQQVvYS66Nk6aMKqpbdlCzCbppYubqG75rEXEFe7u9f7pLEzfbD8uz8L40u0I49tvmMsCraziYzuDRAJRNX-WD8BhqG4Ro |
link.rule.ids | 315,783,787,1378,27938,27939,46308,46732 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB1BOQAHdkRZfUDiFIjjbD1GQFVWIRaJWxTbY5CoUgTpoZz4BL6RL8GTNGW5IMEx1jhKxp7Mi_3mGWCbR9r3UUgnDrTv-K1MOjLEzAkibvw4k3GsSpbvedi58Y9vg5pNSLUwlT7EaMGNIqP8XlOA04L03qdqaKYNlZLz2CWBvXGYsDEv6BCDg8uRghSPompjOeRE8eK3tW6j6-197_89L32Cza-Qtcw57VmQ9dNWVJOH3X4hd9XLDyHHf73OHMwMESlLqik0D2OYL8D0F53CRbhIcpb0i153YG0YUUMY7Wbnd8U9OyrxZcESfY9EhWedgX7q3WGXWTjMDuvqTnaFXfP--naJz6qPS3DTPrze7zjDoxgc5Xtu4JhYaaN5EMuopY1AVJHITMi18SRhBIMWSVgsg8YV0kKaTHKulYnDDD1l28UyNPJejivAlItKS4GREtoaei1rH9gfdCJcSRHKJuzUA5E-VoobaaWt7KXko3Tkoyas1-OUDiPvOSXFupbv2tzcBK90-C93SZOD9tnoavUvnbZgsnN9dpqeHp2frMEUtVN649E6NIqnPm5Y3FLIzXJmfgA1s-U0 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB2xSAgO7Iiy-oDEKRDHztJjRKnKKsQi9RbF9rhIVCmi6aGc-AS-kS_BTppSuCDBMdbYSsYez0v85gXggIaKc2TCiXzFHV5PhSMCTB0_pJpHqYgiWbB8r4PWAz9v--2JKv5SH2L8wc1GRrFf2wB_Vvr4SzQ0VdpWktPItfp60zDLA-ZaUlfjdiwgRcOwPFcOqGV40XYl2-h6x9_7f09LX1hzErEWKae5BGl1syXT5OlokIsj-fpDx_E_T7MMiyM8SuJyAa3AFGarsDChUrgGN3FG4kHe6w6NDbHEEGLPsrNO_kjOCnSZk1g9oiXCk9ZQvfQ62CUGDJPTqraT3GFXf7y932JfDnAdHpqn9yctZ_QjBkdyz_UdHUmlFfUjEdaVZogyZKkOqNKesAhBo8ERBsmgdpkwgCYVlCqpoyBFT5p2tgEzWS_DTSDSRakEw1AyZQy9urH3zeu5pVsJFogaHFbzkDyXehtJqazsJdZHydhHNdippikZxV0_sXp1de6azFwDr_D3L6MkcaN5Nb7a-kunfZi7aTSTy7Pri22Yt802t9FwB2bylwHuGtCSi71iXX4Cm2_j4w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Autolytic+High+Strength+Instant+Adhesive+Hydrogel+for+Emergency+Self%E2%80%90Rescue&rft.jtitle=Advanced+functional+materials&rft.au=Cui%2C+Chunyan&rft.au=Wu%2C+Tengling&rft.au=Gao%2C+Fei&rft.au=Fan%2C+Chuanchuan&rft.date=2018-10-17&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=28&rft.issue=42&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadfm.201804925&rft.externalDBID=10.1002%252Fadfm.201804925&rft.externalDocID=ADFM201804925 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |