A‐Site Management Prompts the Dynamic Reconstructed Active Phase of Perovskite Oxide OER Catalysts

Perovskites (ABX3) are promising oxygen evolution reaction (OER) catalysts for their highly intrinsic activity. The in‐depth understanding and the adjustment of dynamic reconstruction of active phases for perovskites in OER are still a daunting challenge. Here, a refined A‐site management strategy i...

Full description

Saved in:
Bibliographic Details
Published inAdvanced energy materials Vol. 11; no. 12
Main Authors Sun, Yu, Li, Ran, Chen, Xiaoxuan, Wu, Jing, Xie, Yong, Wang, Xin, Ma, Kaikai, Wang, Li, Zhang, Zheng, Liao, Qingliang, Kang, Zhuo, Zhang, Yue
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.03.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Perovskites (ABX3) are promising oxygen evolution reaction (OER) catalysts for their highly intrinsic activity. The in‐depth understanding and the adjustment of dynamic reconstruction of active phases for perovskites in OER are still a daunting challenge. Here, a refined A‐site management strategy is proposed for perovskite oxides, which facilitates the surface reconstruction of the B‐site element based active phase to enhance the OER performance. Electrocatalyst LaNiO3 displays a dynamic reconstruction feature during OER with the growth of a self‐assembled NiOOH active layer, based on the in situ electrochemical Raman technology. Precise A‐site Ce doping lowers the reconstruction potential for the active phase and the dynamic structure–activity correlation is well established. Theoretical calculations demonstrate that A‐site Ce substitution upshifts the O 2p level for greater structural flexibility with optimized oxygen vacancy content, thereby activating the B‐site atom and promoting the active phase reconstruction. These results suggest that A‐site management prompts the B‐site element based active phase dynamic reconstruction via engineered X‐site content as a bridge. Therefore, indicating the strong correlation of each‐site component in perovskite oxides during OER and deepening the understanding of the fundamental processes of the structural transformation and further benefiting the accurate design of high‐efficiency perovskite OER electrocatalysts. An A‐site management strategy is proposed to prompt the active phase reconstruction of perovskite oxides LaNiO3 via tuning of the oxygen vacancy state, to acquire an elevated oxygen evolution reaction (OER) performance. The findings strengthen the strong correlation of each‐site components in perovskites regarding the structure evolution during their practically catalytic service, thus further guiding the accurate design of perovskite OER electrocatalysts.
AbstractList Perovskites (ABX3) are promising oxygen evolution reaction (OER) catalysts for their highly intrinsic activity. The in‐depth understanding and the adjustment of dynamic reconstruction of active phases for perovskites in OER are still a daunting challenge. Here, a refined A‐site management strategy is proposed for perovskite oxides, which facilitates the surface reconstruction of the B‐site element based active phase to enhance the OER performance. Electrocatalyst LaNiO3 displays a dynamic reconstruction feature during OER with the growth of a self‐assembled NiOOH active layer, based on the in situ electrochemical Raman technology. Precise A‐site Ce doping lowers the reconstruction potential for the active phase and the dynamic structure–activity correlation is well established. Theoretical calculations demonstrate that A‐site Ce substitution upshifts the O 2p level for greater structural flexibility with optimized oxygen vacancy content, thereby activating the B‐site atom and promoting the active phase reconstruction. These results suggest that A‐site management prompts the B‐site element based active phase dynamic reconstruction via engineered X‐site content as a bridge. Therefore, indicating the strong correlation of each‐site component in perovskite oxides during OER and deepening the understanding of the fundamental processes of the structural transformation and further benefiting the accurate design of high‐efficiency perovskite OER electrocatalysts.
Perovskites (ABX 3 ) are promising oxygen evolution reaction (OER) catalysts for their highly intrinsic activity. The in‐depth understanding and the adjustment of dynamic reconstruction of active phases for perovskites in OER are still a daunting challenge. Here, a refined A‐site management strategy is proposed for perovskite oxides, which facilitates the surface reconstruction of the B‐site element based active phase to enhance the OER performance. Electrocatalyst LaNiO 3 displays a dynamic reconstruction feature during OER with the growth of a self‐assembled NiOOH active layer, based on the in situ electrochemical Raman technology. Precise A‐site Ce doping lowers the reconstruction potential for the active phase and the dynamic structure–activity correlation is well established. Theoretical calculations demonstrate that A‐site Ce substitution upshifts the O 2p level for greater structural flexibility with optimized oxygen vacancy content, thereby activating the B‐site atom and promoting the active phase reconstruction. These results suggest that A‐site management prompts the B‐site element based active phase dynamic reconstruction via engineered X‐site content as a bridge. Therefore, indicating the strong correlation of each‐site component in perovskite oxides during OER and deepening the understanding of the fundamental processes of the structural transformation and further benefiting the accurate design of high‐efficiency perovskite OER electrocatalysts.
Perovskites (ABX3) are promising oxygen evolution reaction (OER) catalysts for their highly intrinsic activity. The in‐depth understanding and the adjustment of dynamic reconstruction of active phases for perovskites in OER are still a daunting challenge. Here, a refined A‐site management strategy is proposed for perovskite oxides, which facilitates the surface reconstruction of the B‐site element based active phase to enhance the OER performance. Electrocatalyst LaNiO3 displays a dynamic reconstruction feature during OER with the growth of a self‐assembled NiOOH active layer, based on the in situ electrochemical Raman technology. Precise A‐site Ce doping lowers the reconstruction potential for the active phase and the dynamic structure–activity correlation is well established. Theoretical calculations demonstrate that A‐site Ce substitution upshifts the O 2p level for greater structural flexibility with optimized oxygen vacancy content, thereby activating the B‐site atom and promoting the active phase reconstruction. These results suggest that A‐site management prompts the B‐site element based active phase dynamic reconstruction via engineered X‐site content as a bridge. Therefore, indicating the strong correlation of each‐site component in perovskite oxides during OER and deepening the understanding of the fundamental processes of the structural transformation and further benefiting the accurate design of high‐efficiency perovskite OER electrocatalysts. An A‐site management strategy is proposed to prompt the active phase reconstruction of perovskite oxides LaNiO3 via tuning of the oxygen vacancy state, to acquire an elevated oxygen evolution reaction (OER) performance. The findings strengthen the strong correlation of each‐site components in perovskites regarding the structure evolution during their practically catalytic service, thus further guiding the accurate design of perovskite OER electrocatalysts.
Author Wu, Jing
Sun, Yu
Wang, Li
Zhang, Zheng
Chen, Xiaoxuan
Zhang, Yue
Wang, Xin
Liao, Qingliang
Ma, Kaikai
Li, Ran
Kang, Zhuo
Xie, Yong
Author_xml – sequence: 1
  givenname: Yu
  surname: Sun
  fullname: Sun, Yu
  organization: University of Science and Technology Beijing
– sequence: 2
  givenname: Ran
  surname: Li
  fullname: Li, Ran
  organization: University of Science and Technology Beijing
– sequence: 3
  givenname: Xiaoxuan
  surname: Chen
  fullname: Chen, Xiaoxuan
  organization: University of Science and Technology Beijing
– sequence: 4
  givenname: Jing
  surname: Wu
  fullname: Wu, Jing
  organization: University of Science and Technology Beijing
– sequence: 5
  givenname: Yong
  surname: Xie
  fullname: Xie, Yong
  organization: University of Science and Technology Beijing
– sequence: 6
  givenname: Xin
  surname: Wang
  fullname: Wang, Xin
  organization: University of Science and Technology Beijing
– sequence: 7
  givenname: Kaikai
  surname: Ma
  fullname: Ma, Kaikai
  organization: University of Science and Technology Beijing
– sequence: 8
  givenname: Li
  surname: Wang
  fullname: Wang, Li
  organization: University of Science and Technology Beijing
– sequence: 9
  givenname: Zheng
  surname: Zhang
  fullname: Zhang, Zheng
  organization: University of Science and Technology Beijing
– sequence: 10
  givenname: Qingliang
  surname: Liao
  fullname: Liao, Qingliang
  organization: University of Science and Technology Beijing
– sequence: 11
  givenname: Zhuo
  surname: Kang
  fullname: Kang, Zhuo
  email: zhuokang@ustb.edu.cn
  organization: University of Science and Technology Beijing
– sequence: 12
  givenname: Yue
  orcidid: 0000-0002-8213-1420
  surname: Zhang
  fullname: Zhang, Yue
  email: yuezhang@ustb.edu.cn
  organization: University of Science and Technology Beijing
BookMark eNqFkM1OIzEQhC0EElngytkS54T232TmGIUsuxI_UYDzyOPp2TibsYPtsOS2j7DPuE_CREEgISH60N2H-qqk-kb2nXdIyCmDAQPg5xpdO-DAAcRQqT3SYxmT_SyXsP_2C35ITmJcQDeyYCBEj9Sj_3__3dmE9Fo7_QtbdIlOg29XKdI0R3qxcbq1hs7QeBdTWJuENR2ZZJ-QTuc6IvUNnWLwT_H31uf22dbdnszoWCe93MQUj8lBo5cRT17vEXn4Prkf_-hf3V7-HI-u-kZyUP0Ms5wbAKOGGkVV66GoEFkOXHItawVCCQWVKhivNAjM80YWQyiaqskEilockbOd7yr4xzXGVC78OrgusuQKCq5ykKxTyZ3KBB9jwKY0NulkvUtB22XJoNxWWm4rLd8q7bDBB2wVbKvD5nOg2AF_7BI3X6jL0eTm-p19AS2fi9Q
CitedBy_id crossref_primary_10_1039_D1TA10670H
crossref_primary_10_1039_D3RA04110G
crossref_primary_10_1016_j_ccr_2024_216111
crossref_primary_10_1016_j_ijhydene_2025_02_226
crossref_primary_10_1016_j_ijhydene_2025_02_225
crossref_primary_10_1016_j_jcis_2023_05_205
crossref_primary_10_1007_s12274_021_3917_7
crossref_primary_10_1073_pnas_2219661120
crossref_primary_10_1016_j_cej_2021_134255
crossref_primary_10_1002_cey2_595
crossref_primary_10_1016_j_chempr_2023_06_001
crossref_primary_10_1016_j_ijhydene_2023_01_308
crossref_primary_10_1016_j_seppur_2022_122399
crossref_primary_10_1039_D3CY01248D
crossref_primary_10_1021_acsaem_4c01970
crossref_primary_10_1002_er_8719
crossref_primary_10_1016_j_ijhydene_2023_03_036
crossref_primary_10_1021_acs_iecr_2c03984
crossref_primary_10_1016_j_ijhydene_2024_05_165
crossref_primary_10_1039_D2CC03639H
crossref_primary_10_1016_j_greenca_2024_03_006
crossref_primary_10_1007_s00339_023_07105_y
crossref_primary_10_1002_advs_202305959
crossref_primary_10_1016_j_apcatb_2022_122091
crossref_primary_10_1002_adma_202206576
crossref_primary_10_1039_D4SE00197D
crossref_primary_10_1039_D4RA02680B
crossref_primary_10_1016_j_jallcom_2023_168908
crossref_primary_10_1016_j_cattod_2024_115167
crossref_primary_10_1039_D4QI01536C
crossref_primary_10_1016_j_mattod_2021_05_004
crossref_primary_10_1039_D4NR02985B
crossref_primary_10_1016_j_cej_2023_144839
crossref_primary_10_1063_5_0203381
crossref_primary_10_1002_ange_202218599
crossref_primary_10_1016_j_ijhydene_2024_09_267
crossref_primary_10_1002_aenm_202303261
crossref_primary_10_1021_jacs_3c11907
crossref_primary_10_1039_D2DT00970F
crossref_primary_10_1002_adfm_202407407
crossref_primary_10_1021_acscatal_2c03353
crossref_primary_10_1039_D4LF00260A
crossref_primary_10_1007_s11581_024_05614_1
crossref_primary_10_1021_acsami_2c02861
crossref_primary_10_1021_acs_inorgchem_4c02315
crossref_primary_10_1021_acs_chemrev_3c00332
crossref_primary_10_1016_j_cej_2023_147415
crossref_primary_10_1016_j_matlet_2024_135868
crossref_primary_10_1016_j_cej_2023_144829
crossref_primary_10_1038_s41467_022_33590_5
crossref_primary_10_1002_smll_202411017
crossref_primary_10_1016_j_electacta_2022_140947
crossref_primary_10_1007_s11581_023_04988_y
crossref_primary_10_1016_j_vacuum_2024_113934
crossref_primary_10_1021_acscatal_4c01386
crossref_primary_10_1039_D4NR02289K
crossref_primary_10_1016_j_ijhydene_2024_08_364
crossref_primary_10_1016_j_nanoen_2023_108624
crossref_primary_10_1039_D3TC00825H
crossref_primary_10_1007_s10008_022_05232_9
crossref_primary_10_1021_acs_jpcc_2c06519
crossref_primary_10_1021_acs_inorgchem_2c04462
crossref_primary_10_1016_j_jallcom_2022_168206
crossref_primary_10_1039_D2DT01281B
crossref_primary_10_1016_j_electacta_2021_139180
crossref_primary_10_1016_j_cjche_2022_02_010
crossref_primary_10_1016_j_cej_2022_139105
crossref_primary_10_1016_j_ijhydene_2024_09_246
crossref_primary_10_1007_s12274_022_5369_0
crossref_primary_10_1016_j_jallcom_2024_176636
crossref_primary_10_1039_D5NR00346F
crossref_primary_10_1002_ange_202309107
crossref_primary_10_1016_j_cej_2023_146301
crossref_primary_10_1039_D4EE01483A
crossref_primary_10_1016_j_apsusc_2025_162743
crossref_primary_10_1016_j_jelechem_2024_118270
crossref_primary_10_1007_s11664_024_11148_z
crossref_primary_10_1016_j_apsusc_2022_153071
crossref_primary_10_1002_adfm_202411094
crossref_primary_10_1002_adma_202416362
crossref_primary_10_1016_j_ensm_2023_03_033
crossref_primary_10_1021_acsami_4c05120
crossref_primary_10_1039_D1SE01054A
crossref_primary_10_1021_acs_energyfuels_1c00534
crossref_primary_10_1021_acsmaterialslett_4c00789
crossref_primary_10_1002_anie_202309107
crossref_primary_10_1002_smll_202203148
crossref_primary_10_1016_j_solidstatesciences_2022_107063
crossref_primary_10_1021_acs_inorgchem_2c04325
crossref_primary_10_1063_5_0136851
crossref_primary_10_1021_acs_cgd_4c01025
crossref_primary_10_1021_acs_nanolett_1c03343
crossref_primary_10_1021_acs_inorgchem_1c02931
crossref_primary_10_1039_D4CE00564C
crossref_primary_10_1002_cey2_696
crossref_primary_10_1016_j_mtener_2022_101046
crossref_primary_10_1002_chem_202102672
crossref_primary_10_1016_j_ijhydene_2021_12_055
crossref_primary_10_1021_acsaem_2c01232
crossref_primary_10_1002_aenm_202101937
crossref_primary_10_1002_anie_202214600
crossref_primary_10_1016_j_decarb_2024_100097
crossref_primary_10_1016_j_nanoen_2024_109664
crossref_primary_10_1002_tcr_202200213
crossref_primary_10_1063_5_0139558
crossref_primary_10_1016_j_jallcom_2022_166930
crossref_primary_10_1016_j_ijhydene_2022_05_101
crossref_primary_10_1002_inf2_12609
crossref_primary_10_1016_j_checat_2022_05_003
crossref_primary_10_1002_smll_202204109
crossref_primary_10_1016_j_jallcom_2023_169383
crossref_primary_10_1021_acsomega_2c05627
crossref_primary_10_1016_j_jallcom_2023_170368
crossref_primary_10_1016_j_jallcom_2024_175795
crossref_primary_10_3390_nano12060961
crossref_primary_10_1002_asia_202100735
crossref_primary_10_1016_j_ccr_2023_215029
crossref_primary_10_1016_j_apsusc_2022_155221
crossref_primary_10_1016_j_jcis_2022_03_035
crossref_primary_10_1016_j_jcis_2022_08_095
crossref_primary_10_1016_j_electacta_2024_144339
crossref_primary_10_1039_D3CC01493B
crossref_primary_10_1039_D2SC07034K
crossref_primary_10_1039_D3DT03143H
crossref_primary_10_1016_j_electacta_2022_140779
crossref_primary_10_1039_D3QM00438D
crossref_primary_10_1002_advs_202201916
crossref_primary_10_1016_j_apsusc_2024_160264
crossref_primary_10_1021_jacs_1c07975
crossref_primary_10_1002_smll_202207243
crossref_primary_10_1016_j_apcatb_2023_122661
crossref_primary_10_1002_aenm_202404560
crossref_primary_10_1021_acsami_2c11418
crossref_primary_10_1002_admi_202300760
crossref_primary_10_1007_s40843_023_2734_y
crossref_primary_10_1039_D3EE02360E
crossref_primary_10_1002_aenm_202203913
crossref_primary_10_1016_j_jallcom_2023_170976
crossref_primary_10_1039_D1NR05797A
crossref_primary_10_1039_D3NJ00059A
crossref_primary_10_1016_j_apcata_2024_119772
crossref_primary_10_1039_D2TA05356J
crossref_primary_10_1016_j_coelec_2023_101231
crossref_primary_10_1002_adfm_202306889
crossref_primary_10_1016_j_jcis_2024_12_062
crossref_primary_10_1016_j_seppur_2023_124355
crossref_primary_10_1016_j_fuel_2024_131214
crossref_primary_10_1002_anie_202218599
crossref_primary_10_1002_ange_202214600
crossref_primary_10_1002_smtd_202200377
crossref_primary_10_1039_D4MH01565G
crossref_primary_10_1002_advs_202101299
crossref_primary_10_1039_D4CC03874F
crossref_primary_10_1016_j_colsurfa_2022_130042
crossref_primary_10_1002_smll_202404689
crossref_primary_10_1016_j_jallcom_2023_171916
crossref_primary_10_1002_advs_202207128
crossref_primary_10_1021_acsenergylett_4c01938
crossref_primary_10_1002_er_8664
crossref_primary_10_1016_j_cej_2024_155299
crossref_primary_10_1016_j_jallcom_2024_174957
crossref_primary_10_1021_acsnano_4c05956
crossref_primary_10_1016_j_cej_2024_158325
crossref_primary_10_1016_j_ijhydene_2023_09_266
crossref_primary_10_1039_D4CY00746H
crossref_primary_10_1039_D3DT00516J
crossref_primary_10_1021_acs_energyfuels_2c02017
crossref_primary_10_1016_j_apcatb_2022_122126
crossref_primary_10_1002_adfm_202207116
crossref_primary_10_1002_smll_202304007
crossref_primary_10_1016_j_jcis_2024_03_148
crossref_primary_10_1016_j_surfin_2023_103375
crossref_primary_10_1002_smll_202204784
crossref_primary_10_1002_advs_202207594
crossref_primary_10_1039_D3MA01133J
crossref_primary_10_1002_aenm_202201713
crossref_primary_10_1002_cctc_202401236
crossref_primary_10_1039_D3QI00799E
crossref_primary_10_1039_D3DT02750C
crossref_primary_10_1039_D2GC03315A
crossref_primary_10_1155_2023_3764096
crossref_primary_10_1021_acsnano_2c09396
crossref_primary_10_1038_s41598_023_49836_1
crossref_primary_10_1016_j_mtchem_2023_101800
crossref_primary_10_3390_catal13091230
crossref_primary_10_1021_acs_chemrev_2c00515
crossref_primary_10_1002_tcr_202300109
crossref_primary_10_1016_j_mtchem_2024_102027
crossref_primary_10_1039_D1CP05721A
crossref_primary_10_1002_smll_202402726
crossref_primary_10_1021_acs_chemrev_4c00553
crossref_primary_10_3866_PKU_WHXB202305019
crossref_primary_10_1016_j_jpowsour_2024_236089
crossref_primary_10_1007_s41918_023_00209_2
crossref_primary_10_1016_j_cej_2022_137684
crossref_primary_10_1016_j_ensm_2025_104065
crossref_primary_10_1016_j_ijhydene_2022_09_130
crossref_primary_10_1016_j_cej_2023_141939
crossref_primary_10_1016_j_cej_2024_149383
crossref_primary_10_1039_D1TA09306A
crossref_primary_10_1007_s12274_024_6812_1
crossref_primary_10_1016_j_electacta_2023_142757
crossref_primary_10_1002_adfm_202416705
crossref_primary_10_1002_adma_202302462
crossref_primary_10_1007_s41918_024_00219_8
crossref_primary_10_1021_acs_energyfuels_2c02236
crossref_primary_10_1016_j_cej_2024_151912
crossref_primary_10_1016_j_colsurfa_2022_129766
crossref_primary_10_3390_nano14010064
crossref_primary_10_1039_D3QM00323J
crossref_primary_10_1002_smo_20220005
crossref_primary_10_1016_j_jcis_2023_11_080
crossref_primary_10_1002_chem_202301478
crossref_primary_10_1002_smll_202204723
crossref_primary_10_1021_jacs_4c00863
crossref_primary_10_1002_smll_202407851
crossref_primary_10_1002_adfm_202304303
crossref_primary_10_1021_acssuschemeng_3c00398
crossref_primary_10_1021_jacs_3c08598
crossref_primary_10_1021_acsami_4c12171
crossref_primary_10_1002_eem2_12441
crossref_primary_10_1021_acsaem_3c02149
crossref_primary_10_1016_j_chphma_2022_11_001
crossref_primary_10_1016_j_fuel_2023_128771
crossref_primary_10_1002_chem_202300398
crossref_primary_10_1039_D3NR02131A
crossref_primary_10_3390_catal12060601
crossref_primary_10_1021_acsmaterialslett_4c01471
crossref_primary_10_1002_adfm_202212160
crossref_primary_10_1002_adfm_202111777
crossref_primary_10_1002_celc_202200092
crossref_primary_10_1016_j_jhazmat_2022_129089
crossref_primary_10_1016_j_est_2023_109917
crossref_primary_10_1002_adma_202301166
crossref_primary_10_1016_j_apsusc_2021_152065
crossref_primary_10_1021_acsanm_4c03651
crossref_primary_10_1016_j_ccr_2024_215758
crossref_primary_10_1016_j_ijhydene_2024_06_326
crossref_primary_10_1016_j_jallcom_2024_175708
crossref_primary_10_1016_j_cogsc_2022_100682
crossref_primary_10_1016_j_cej_2024_156219
crossref_primary_10_1021_acsami_1c24966
crossref_primary_10_1039_D4TA07345B
crossref_primary_10_1002_eem2_12668
crossref_primary_10_1021_acsaem_1c02604
crossref_primary_10_1039_D3DT04034H
crossref_primary_10_3390_molecules28248154
crossref_primary_10_1039_D4NR01743A
Cites_doi 10.1039/C7EE00770A
10.1038/s41467-020-15873-x
10.1038/nmat4551
10.1126/science.285.5428.687
10.1002/anie.201812545
10.1103/PhysRevB.49.14251
10.1002/anie.201701531
10.1126/science.1212858
10.1021/acs.chemmater.5b03138
10.1038/ncomms3439
10.1209/0295-5075/93/57002
10.1039/c3cc45416a
10.1021/acs.accounts.8b00449
10.1007/s40843-019-9588-5
10.1039/c3ee43874k
10.1021/ja405351s
10.1021/jz301414z
10.1038/s41467-017-02524-x
10.1039/C4EE03869J
10.1021/jacs.0c01135
10.1038/s41929-020-0457-6
10.1021/acs.nanolett.0c02949
10.1002/aenm.201903693
10.1021/jacs.8b04546
10.1126/science.aaf5050
10.1038/nenergy.2016.53
10.1039/D0EE00092B
10.1103/PhysRevB.54.11169
10.1021/acscatal.0c01104
10.1038/s41929-018-0141-2
10.1038/srep06005
10.1038/s41467-019-08532-3
10.1016/j.apsusc.2006.02.035
10.1038/ncomms11053
10.1016/j.chempr.2018.09.012
10.1038/s41929-018-0182-6
10.1002/smtd.201700395
10.1002/anie.202007077
10.1126/science.aaf1525
10.1038/nmat4938
10.1016/j.apcatb.2009.09.040
10.1016/j.physb.2014.11.069
10.1126/sciadv.aap9360
10.1021/jz502692a
10.1038/nchem.2695
10.1038/35104599
10.1039/C9CS00607A
10.1002/adfm.201601902
10.1021/acs.chemmater.7b04534
10.1126/science.aam7092
10.1126/science.aad4998
10.1002/adfm.202004375
10.1021/acscatal.8b02022
10.1002/advs.201500433
10.1039/c1ee02032c
10.1021/acs.jpcc.0c01401
10.1021/jacs.8b12101
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7TB
8FD
F28
FR3
H8D
L7M
DOI 10.1002/aenm.202003755
DatabaseName CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Aerospace Database
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1614-6840
EndPage n/a
ExternalDocumentID 10_1002_aenm_202003755
AENM202003755
Genre article
GrantInformation_xml – fundername: State Key Laboratory for Advanced Metals and Materials
  funderid: 2018Z‐03; 2019Z‐04
– fundername: Fundamental Research Funds for the Central Universities
  funderid: FRF‐AS‐17‐002; FRF‐TP‐19‐005A2; FRF‐TP‐20‐008A3
– fundername: National Natural Science Foundation of China
  funderid: 51991340; 51991342; 52072031; 51527802; 51702014; 51722203; 51672026
– fundername: Natural Science Foundation of Beijing Municipality
  funderid: Z180011
– fundername: Overseas Expertise Introduction Projects for Discipline Innovation
  funderid: 111 project; B14003
– fundername: National Key Research and Development Program of China
  funderid: 2018YFA0703503; 2016YFA0202701
GroupedDBID 05W
0R~
1OC
33P
4.4
50Y
5VS
8-0
8-1
A00
AAESR
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAXRX
AAYCA
AAZKR
ABCUV
ABJNI
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFWVQ
AFZJQ
AHBTC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
AZVAB
BDRZF
BFHJK
BMXJE
BRXPI
D-A
DCZOG
EBS
G-S
HGLYW
HZ~
KBYEO
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY.
MY~
O9-
P2W
P4E
RNS
ROL
RX1
SUPJJ
WBKPD
WOHZO
WXSBR
WYJ
ZZTAW
~S-
31~
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
GODZA
HVGLF
7SP
7TB
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
F28
FR3
H8D
L7M
ID FETCH-LOGICAL-c4205-6e682c00c57ae3bda73bee180242a4d5035350b5912ba03e88f49709fbf63e3d3
ISSN 1614-6832
IngestDate Fri Jul 25 12:15:00 EDT 2025
Thu Apr 24 22:51:41 EDT 2025
Tue Jul 01 01:43:38 EDT 2025
Wed Jan 22 16:58:09 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c4205-6e682c00c57ae3bda73bee180242a4d5035350b5912ba03e88f49709fbf63e3d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8213-1420
PQID 2509258041
PQPubID 886389
PageCount 11
ParticipantIDs proquest_journals_2509258041
crossref_citationtrail_10_1002_aenm_202003755
crossref_primary_10_1002_aenm_202003755
wiley_primary_10_1002_aenm_202003755_AENM202003755
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-03-01
PublicationDateYYYYMMDD 2021-03-01
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced energy materials
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2015; 460
2019 2013; 58 4
2013; 49
2020; 142
1994 1996; 49 54
2015 2016 2018 2020 2011; 8 352 140 49 334
2018 2006; 4 253
2015 2016 2020 2020; 27 26 59 13
2017; 29
2018 2015 2020; 11 6 20
2020; 124
2020; 10
2011; 4
2019; 141
2017 2020 2020; 358 11 10
2016; 7
2018; 8
2012; 3
2016; 1
1999 2001 2017; 285 414 355
2018; 4
2016; 3
2017 2016; 9 15
2018 2019 2018; 51 63 1
2016 2017; 353 56
2017; 16
2014 2010; 4 93
2011 2018 2018; 93 9 1
2014; 7
2020 2019 2020; 3 10 30
2018 2018 2013; 1 2 135
e_1_2_8_28_1
e_1_2_8_22_3
e_1_2_8_24_1
e_1_2_8_26_1
e_1_2_8_1_3
e_1_2_8_3_1
e_1_2_8_1_2
e_1_2_8_3_3
e_1_2_8_5_1
e_1_2_8_3_2
e_1_2_8_5_3
e_1_2_8_7_1
e_1_2_8_5_2
e_1_2_8_9_1
e_1_2_8_7_2
e_1_2_8_20_1
e_1_2_8_22_1
e_1_2_8_22_2
e_1_2_8_1_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_15_1
e_1_2_8_30_2
e_1_2_8_11_1
e_1_2_8_11_2
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_25_2
e_1_2_8_25_3
e_1_2_8_27_1
e_1_2_8_2_2
e_1_2_8_2_1
e_1_2_8_2_4
e_1_2_8_4_2
e_1_2_8_2_3
e_1_2_8_4_1
e_1_2_8_4_4
e_1_2_8_6_2
e_1_2_8_2_5
e_1_2_8_4_3
e_1_2_8_6_1
e_1_2_8_6_3
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_21_2
e_1_2_8_23_1
e_1_2_8_18_1
e_1_2_8_18_2
e_1_2_8_18_3
e_1_2_8_14_1
e_1_2_8_16_1
e_1_2_8_31_2
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_10_2
e_1_2_8_12_1
References_xml – volume: 8 352 140 49 334
  start-page: 1404 333 7748 2196 1383
  year: 2015 2016 2018 2020 2011
  publication-title: Energy Environ. Sci. Science J. Am. Chem. Soc. Chem. Soc. Rev. Science
– volume: 49
  start-page: 8985
  year: 2013
  publication-title: Chem. Commun.
– volume: 49 54
  year: 1994 1996
  publication-title: Phys. Rev. B: Condens. Matter Phys. Rev. B
– volume: 141
  start-page: 5231
  year: 2019
  publication-title: J. Am. Chem. Soc.
– volume: 9 15
  start-page: 457 121
  year: 2017 2016
  publication-title: Nat. Chem. Nat. Mater.
– volume: 4 93
  start-page: 6005 346
  year: 2014 2010
  publication-title: Sci. Rep. Appl. Catal., B
– volume: 93 9 1
  start-page: 43 711
  year: 2011 2018 2018
  publication-title: Europhys. Lett. Nat. Commun. Nat. Catal.
– volume: 7
  year: 2016
  publication-title: Nat. Commun.
– volume: 4
  year: 2018
  publication-title: Sci. Adv.
– volume: 11 6 20
  start-page: 71 487 8040
  year: 2018 2015 2020
  publication-title: Energy Environ. Sci. J. Phys. Chem. Lett. Nano Lett.
– volume: 3
  year: 2016
  publication-title: Adv. Sci.
– volume: 51 63 1
  start-page: 2968 3 711
  year: 2018 2019 2018
  publication-title: Acc. Chem. Res. Sci. China Mater. Nat. Catal.
– volume: 1 2 135
  start-page: 922
  year: 2018 2018 2013
  publication-title: Nat. Catal. Small Methods J. Am. Chem. Soc.
– volume: 353 56
  start-page: 1011 8539
  year: 2016 2017
  publication-title: Science Angew. Chem., Int. Ed.
– volume: 10
  start-page: 4664
  year: 2020
  publication-title: ACS Catal.
– volume: 358 11 10
  start-page: 751 2002
  year: 2017 2020 2020
  publication-title: Science Nat. Commun. Adv. Energy Mater.
– volume: 58 4
  start-page: 2316 2439
  year: 2019 2013
  publication-title: Angew. Chem., Int. Ed. Nat. Commun.
– volume: 142
  start-page: 7883
  year: 2020
  publication-title: J. Am. Chem. Soc.
– volume: 460
  start-page: 196
  year: 2015
  publication-title: Physica B
– volume: 1
  year: 2016
  publication-title: Nat. Energy
– volume: 3
  start-page: 3264
  year: 2012
  publication-title: J. Phys. Chem. Lett.
– volume: 16
  start-page: 925
  year: 2017
  publication-title: Nat. Mater.
– volume: 27 26 59 13
  start-page: 7662 5862 1408
  year: 2015 2016 2020 2020
  publication-title: Chem. Mater. Adv. Funct. Mater. Angew. Chem., Int. Ed. Energy Environ. Sci.
– volume: 29
  year: 2017
  publication-title: Chem. Mater.
– volume: 4
  start-page: 3966
  year: 2011
  publication-title: Energy Environ. Sci.
– volume: 7
  start-page: 1996
  year: 2014
  publication-title: Energy Environ. Sci.
– volume: 4 253
  start-page: 2902 1489
  year: 2018 2006
  publication-title: Chem Appl. Surf. Sci.
– volume: 124
  start-page: 6562
  year: 2020
  publication-title: J. Phys. Chem. C
– volume: 3 10 30
  start-page: 516 572
  year: 2020 2019 2020
  publication-title: Nat. Catal. Nat. Commun. Adv. Funct. Mater.
– volume: 285 414 355
  start-page: 687 332
  year: 1999 2001 2017
  publication-title: Science Nature Science
– volume: 8
  start-page: 9567
  year: 2018
  publication-title: ACS Catal.
– ident: e_1_2_8_6_1
  doi: 10.1039/C7EE00770A
– ident: e_1_2_8_5_2
  doi: 10.1038/s41467-020-15873-x
– ident: e_1_2_8_30_2
  doi: 10.1038/nmat4551
– ident: e_1_2_8_1_1
  doi: 10.1126/science.285.5428.687
– ident: e_1_2_8_11_1
  doi: 10.1002/anie.201812545
– ident: e_1_2_8_31_1
  doi: 10.1103/PhysRevB.49.14251
– ident: e_1_2_8_7_2
  doi: 10.1002/anie.201701531
– ident: e_1_2_8_2_5
  doi: 10.1126/science.1212858
– ident: e_1_2_8_4_1
  doi: 10.1021/acs.chemmater.5b03138
– ident: e_1_2_8_11_2
  doi: 10.1038/ncomms3439
– ident: e_1_2_8_22_1
  doi: 10.1209/0295-5075/93/57002
– ident: e_1_2_8_28_1
  doi: 10.1039/c3cc45416a
– ident: e_1_2_8_18_1
  doi: 10.1021/acs.accounts.8b00449
– ident: e_1_2_8_18_2
  doi: 10.1007/s40843-019-9588-5
– ident: e_1_2_8_29_1
  doi: 10.1039/c3ee43874k
– ident: e_1_2_8_25_3
  doi: 10.1021/ja405351s
– ident: e_1_2_8_12_1
  doi: 10.1021/jz301414z
– ident: e_1_2_8_22_2
  doi: 10.1038/s41467-017-02524-x
– ident: e_1_2_8_2_1
  doi: 10.1039/C4EE03869J
– ident: e_1_2_8_24_1
  doi: 10.1021/jacs.0c01135
– ident: e_1_2_8_3_1
  doi: 10.1038/s41929-020-0457-6
– ident: e_1_2_8_6_3
  doi: 10.1021/acs.nanolett.0c02949
– ident: e_1_2_8_5_3
  doi: 10.1002/aenm.201903693
– ident: e_1_2_8_2_3
  doi: 10.1021/jacs.8b04546
– ident: e_1_2_8_7_1
  doi: 10.1126/science.aaf5050
– ident: e_1_2_8_23_1
  doi: 10.1038/nenergy.2016.53
– ident: e_1_2_8_4_4
  doi: 10.1039/D0EE00092B
– ident: e_1_2_8_31_2
  doi: 10.1103/PhysRevB.54.11169
– ident: e_1_2_8_9_1
  doi: 10.1021/acscatal.0c01104
– ident: e_1_2_8_18_3
  doi: 10.1038/s41929-018-0141-2
– ident: e_1_2_8_21_1
  doi: 10.1038/srep06005
– ident: e_1_2_8_3_2
  doi: 10.1038/s41467-019-08532-3
– ident: e_1_2_8_10_2
  doi: 10.1016/j.apsusc.2006.02.035
– ident: e_1_2_8_14_1
  doi: 10.1038/ncomms11053
– ident: e_1_2_8_10_1
  doi: 10.1016/j.chempr.2018.09.012
– ident: e_1_2_8_25_1
  doi: 10.1038/s41929-018-0182-6
– ident: e_1_2_8_25_2
  doi: 10.1002/smtd.201700395
– ident: e_1_2_8_4_3
  doi: 10.1002/anie.202007077
– ident: e_1_2_8_2_2
  doi: 10.1126/science.aaf1525
– ident: e_1_2_8_19_1
  doi: 10.1038/nmat4938
– ident: e_1_2_8_21_2
  doi: 10.1016/j.apcatb.2009.09.040
– ident: e_1_2_8_22_3
  doi: 10.1038/s41929-018-0141-2
– ident: e_1_2_8_26_1
  doi: 10.1016/j.physb.2014.11.069
– ident: e_1_2_8_8_1
  doi: 10.1126/sciadv.aap9360
– ident: e_1_2_8_6_2
  doi: 10.1021/jz502692a
– ident: e_1_2_8_30_1
  doi: 10.1038/nchem.2695
– ident: e_1_2_8_1_2
  doi: 10.1038/35104599
– ident: e_1_2_8_2_4
  doi: 10.1039/C9CS00607A
– ident: e_1_2_8_4_2
  doi: 10.1002/adfm.201601902
– ident: e_1_2_8_13_1
  doi: 10.1021/acs.chemmater.7b04534
– ident: e_1_2_8_5_1
  doi: 10.1126/science.aam7092
– ident: e_1_2_8_1_3
  doi: 10.1126/science.aad4998
– ident: e_1_2_8_3_3
  doi: 10.1002/adfm.202004375
– ident: e_1_2_8_17_1
  doi: 10.1021/acscatal.8b02022
– ident: e_1_2_8_27_1
  doi: 10.1002/advs.201500433
– ident: e_1_2_8_16_1
  doi: 10.1039/c1ee02032c
– ident: e_1_2_8_15_1
  doi: 10.1021/acs.jpcc.0c01401
– ident: e_1_2_8_20_1
  doi: 10.1021/jacs.8b12101
SSID ssj0000491033
Score 2.6830902
Snippet Perovskites (ABX3) are promising oxygen evolution reaction (OER) catalysts for their highly intrinsic activity. The in‐depth understanding and the adjustment...
Perovskites (ABX 3 ) are promising oxygen evolution reaction (OER) catalysts for their highly intrinsic activity. The in‐depth understanding and the adjustment...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms active phase
A‐site management
Catalysts
Cerium
dynamic reconstruction
Electrocatalysts
oxygen evolution reaction
Oxygen evolution reactions
perovskite oxides
Perovskites
Reconstruction
Substitution reactions
X‐site atom behavior
Title A‐Site Management Prompts the Dynamic Reconstructed Active Phase of Perovskite Oxide OER Catalysts
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.202003755
https://www.proquest.com/docview/2509258041
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaW7QUOiKdYWpAPSByqgGPHeRyjtqhCbKloK5ZTZDuOWgk2VXcXFU5cuPMb-SWMH3Gy4t2LtfJ6s4rni-eRmW8QesKUigtRZ1Hc1OCgsFRGoilklGlQjnENKth2a5gepPsnycsZn41GXwdZS6ulfKY-_7Ku5CpShTmQq6mS_Q_JhovCBHwG-cIIEobxn2RchlSFI7AcB6ksJv__w_lyYc3KXdd03liIreeLBSuztAfd9uGpcNH8Q33RflyYWO7268uzGkZDmGCCO58Wju0pkNV2aQPa1Q2Czetutn_BZI-yd6uQ7WNTBt70QNzxNSGzM9Fervr5tyuLqk6d-mgEHaRj-QMU1H2U5j5mqYdzjpYpnLrxEF10oICDevrpdHdssULPDYUAte17ea_Hunf3YSX_81rH-rt3MA3fX0MbFLwNOkYb5e701VEI1oEbFRNmizW6--sIQAl9vv4n6wZO77UMfR9rvBzfQje914FLB6HbaKTnd9CNARflXVSX3798MzDCPYywhxEGGGEPI7wGI-xghC2McNvgHkbYwggDjHCA0T108mLveGc_8i04IpVQwqNUpzlVhCieCc1kLTImtTasgQkVSc0J44wTyYuYSkGYzvMmKTJSNLJJmWY1u4_G83auHyAsilypNNaCkiZJdCMYmOKCKSZAKWS0nqCo27dKeX560yblfeWYtWll9rkK-zxBT8P6c8fM8tuVW50YKv_0Liow_QvKDfvWBFErmr9cpVqDysOr_GgTXe-fmS00BlHpR2DTLuVjj7gfANOZRA
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A%E2%80%90Site+Management+Prompts+the+Dynamic+Reconstructed+Active+Phase+of+Perovskite+Oxide+OER+Catalysts&rft.jtitle=Advanced+energy+materials&rft.au=Sun%2C+Yu&rft.au=Li%2C+Ran&rft.au=Chen%2C+Xiaoxuan&rft.au=Wu%2C+Jing&rft.date=2021-03-01&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=11&rft.issue=12&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Faenm.202003755&rft.externalDBID=10.1002%252Faenm.202003755&rft.externalDocID=AENM202003755
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon