A‐Site Management Prompts the Dynamic Reconstructed Active Phase of Perovskite Oxide OER Catalysts
Perovskites (ABX3) are promising oxygen evolution reaction (OER) catalysts for their highly intrinsic activity. The in‐depth understanding and the adjustment of dynamic reconstruction of active phases for perovskites in OER are still a daunting challenge. Here, a refined A‐site management strategy i...
Saved in:
Published in | Advanced energy materials Vol. 11; no. 12 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.03.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Perovskites (ABX3) are promising oxygen evolution reaction (OER) catalysts for their highly intrinsic activity. The in‐depth understanding and the adjustment of dynamic reconstruction of active phases for perovskites in OER are still a daunting challenge. Here, a refined A‐site management strategy is proposed for perovskite oxides, which facilitates the surface reconstruction of the B‐site element based active phase to enhance the OER performance. Electrocatalyst LaNiO3 displays a dynamic reconstruction feature during OER with the growth of a self‐assembled NiOOH active layer, based on the in situ electrochemical Raman technology. Precise A‐site Ce doping lowers the reconstruction potential for the active phase and the dynamic structure–activity correlation is well established. Theoretical calculations demonstrate that A‐site Ce substitution upshifts the O 2p level for greater structural flexibility with optimized oxygen vacancy content, thereby activating the B‐site atom and promoting the active phase reconstruction. These results suggest that A‐site management prompts the B‐site element based active phase dynamic reconstruction via engineered X‐site content as a bridge. Therefore, indicating the strong correlation of each‐site component in perovskite oxides during OER and deepening the understanding of the fundamental processes of the structural transformation and further benefiting the accurate design of high‐efficiency perovskite OER electrocatalysts.
An A‐site management strategy is proposed to prompt the active phase reconstruction of perovskite oxides LaNiO3 via tuning of the oxygen vacancy state, to acquire an elevated oxygen evolution reaction (OER) performance. The findings strengthen the strong correlation of each‐site components in perovskites regarding the structure evolution during their practically catalytic service, thus further guiding the accurate design of perovskite OER electrocatalysts. |
---|---|
AbstractList | Perovskites (ABX3) are promising oxygen evolution reaction (OER) catalysts for their highly intrinsic activity. The in‐depth understanding and the adjustment of dynamic reconstruction of active phases for perovskites in OER are still a daunting challenge. Here, a refined A‐site management strategy is proposed for perovskite oxides, which facilitates the surface reconstruction of the B‐site element based active phase to enhance the OER performance. Electrocatalyst LaNiO3 displays a dynamic reconstruction feature during OER with the growth of a self‐assembled NiOOH active layer, based on the in situ electrochemical Raman technology. Precise A‐site Ce doping lowers the reconstruction potential for the active phase and the dynamic structure–activity correlation is well established. Theoretical calculations demonstrate that A‐site Ce substitution upshifts the O 2p level for greater structural flexibility with optimized oxygen vacancy content, thereby activating the B‐site atom and promoting the active phase reconstruction. These results suggest that A‐site management prompts the B‐site element based active phase dynamic reconstruction via engineered X‐site content as a bridge. Therefore, indicating the strong correlation of each‐site component in perovskite oxides during OER and deepening the understanding of the fundamental processes of the structural transformation and further benefiting the accurate design of high‐efficiency perovskite OER electrocatalysts. Perovskites (ABX 3 ) are promising oxygen evolution reaction (OER) catalysts for their highly intrinsic activity. The in‐depth understanding and the adjustment of dynamic reconstruction of active phases for perovskites in OER are still a daunting challenge. Here, a refined A‐site management strategy is proposed for perovskite oxides, which facilitates the surface reconstruction of the B‐site element based active phase to enhance the OER performance. Electrocatalyst LaNiO 3 displays a dynamic reconstruction feature during OER with the growth of a self‐assembled NiOOH active layer, based on the in situ electrochemical Raman technology. Precise A‐site Ce doping lowers the reconstruction potential for the active phase and the dynamic structure–activity correlation is well established. Theoretical calculations demonstrate that A‐site Ce substitution upshifts the O 2p level for greater structural flexibility with optimized oxygen vacancy content, thereby activating the B‐site atom and promoting the active phase reconstruction. These results suggest that A‐site management prompts the B‐site element based active phase dynamic reconstruction via engineered X‐site content as a bridge. Therefore, indicating the strong correlation of each‐site component in perovskite oxides during OER and deepening the understanding of the fundamental processes of the structural transformation and further benefiting the accurate design of high‐efficiency perovskite OER electrocatalysts. Perovskites (ABX3) are promising oxygen evolution reaction (OER) catalysts for their highly intrinsic activity. The in‐depth understanding and the adjustment of dynamic reconstruction of active phases for perovskites in OER are still a daunting challenge. Here, a refined A‐site management strategy is proposed for perovskite oxides, which facilitates the surface reconstruction of the B‐site element based active phase to enhance the OER performance. Electrocatalyst LaNiO3 displays a dynamic reconstruction feature during OER with the growth of a self‐assembled NiOOH active layer, based on the in situ electrochemical Raman technology. Precise A‐site Ce doping lowers the reconstruction potential for the active phase and the dynamic structure–activity correlation is well established. Theoretical calculations demonstrate that A‐site Ce substitution upshifts the O 2p level for greater structural flexibility with optimized oxygen vacancy content, thereby activating the B‐site atom and promoting the active phase reconstruction. These results suggest that A‐site management prompts the B‐site element based active phase dynamic reconstruction via engineered X‐site content as a bridge. Therefore, indicating the strong correlation of each‐site component in perovskite oxides during OER and deepening the understanding of the fundamental processes of the structural transformation and further benefiting the accurate design of high‐efficiency perovskite OER electrocatalysts. An A‐site management strategy is proposed to prompt the active phase reconstruction of perovskite oxides LaNiO3 via tuning of the oxygen vacancy state, to acquire an elevated oxygen evolution reaction (OER) performance. The findings strengthen the strong correlation of each‐site components in perovskites regarding the structure evolution during their practically catalytic service, thus further guiding the accurate design of perovskite OER electrocatalysts. |
Author | Wu, Jing Sun, Yu Wang, Li Zhang, Zheng Chen, Xiaoxuan Zhang, Yue Wang, Xin Liao, Qingliang Ma, Kaikai Li, Ran Kang, Zhuo Xie, Yong |
Author_xml | – sequence: 1 givenname: Yu surname: Sun fullname: Sun, Yu organization: University of Science and Technology Beijing – sequence: 2 givenname: Ran surname: Li fullname: Li, Ran organization: University of Science and Technology Beijing – sequence: 3 givenname: Xiaoxuan surname: Chen fullname: Chen, Xiaoxuan organization: University of Science and Technology Beijing – sequence: 4 givenname: Jing surname: Wu fullname: Wu, Jing organization: University of Science and Technology Beijing – sequence: 5 givenname: Yong surname: Xie fullname: Xie, Yong organization: University of Science and Technology Beijing – sequence: 6 givenname: Xin surname: Wang fullname: Wang, Xin organization: University of Science and Technology Beijing – sequence: 7 givenname: Kaikai surname: Ma fullname: Ma, Kaikai organization: University of Science and Technology Beijing – sequence: 8 givenname: Li surname: Wang fullname: Wang, Li organization: University of Science and Technology Beijing – sequence: 9 givenname: Zheng surname: Zhang fullname: Zhang, Zheng organization: University of Science and Technology Beijing – sequence: 10 givenname: Qingliang surname: Liao fullname: Liao, Qingliang organization: University of Science and Technology Beijing – sequence: 11 givenname: Zhuo surname: Kang fullname: Kang, Zhuo email: zhuokang@ustb.edu.cn organization: University of Science and Technology Beijing – sequence: 12 givenname: Yue orcidid: 0000-0002-8213-1420 surname: Zhang fullname: Zhang, Yue email: yuezhang@ustb.edu.cn organization: University of Science and Technology Beijing |
BookMark | eNqFkM1OIzEQhC0EElngytkS54T232TmGIUsuxI_UYDzyOPp2TibsYPtsOS2j7DPuE_CREEgISH60N2H-qqk-kb2nXdIyCmDAQPg5xpdO-DAAcRQqT3SYxmT_SyXsP_2C35ITmJcQDeyYCBEj9Sj_3__3dmE9Fo7_QtbdIlOg29XKdI0R3qxcbq1hs7QeBdTWJuENR2ZZJ-QTuc6IvUNnWLwT_H31uf22dbdnszoWCe93MQUj8lBo5cRT17vEXn4Prkf_-hf3V7-HI-u-kZyUP0Ms5wbAKOGGkVV66GoEFkOXHItawVCCQWVKhivNAjM80YWQyiaqskEilockbOd7yr4xzXGVC78OrgusuQKCq5ykKxTyZ3KBB9jwKY0NulkvUtB22XJoNxWWm4rLd8q7bDBB2wVbKvD5nOg2AF_7BI3X6jL0eTm-p19AS2fi9Q |
CitedBy_id | crossref_primary_10_1039_D1TA10670H crossref_primary_10_1039_D3RA04110G crossref_primary_10_1016_j_ccr_2024_216111 crossref_primary_10_1016_j_ijhydene_2025_02_226 crossref_primary_10_1016_j_ijhydene_2025_02_225 crossref_primary_10_1016_j_jcis_2023_05_205 crossref_primary_10_1007_s12274_021_3917_7 crossref_primary_10_1073_pnas_2219661120 crossref_primary_10_1016_j_cej_2021_134255 crossref_primary_10_1002_cey2_595 crossref_primary_10_1016_j_chempr_2023_06_001 crossref_primary_10_1016_j_ijhydene_2023_01_308 crossref_primary_10_1016_j_seppur_2022_122399 crossref_primary_10_1039_D3CY01248D crossref_primary_10_1021_acsaem_4c01970 crossref_primary_10_1002_er_8719 crossref_primary_10_1016_j_ijhydene_2023_03_036 crossref_primary_10_1021_acs_iecr_2c03984 crossref_primary_10_1016_j_ijhydene_2024_05_165 crossref_primary_10_1039_D2CC03639H crossref_primary_10_1016_j_greenca_2024_03_006 crossref_primary_10_1007_s00339_023_07105_y crossref_primary_10_1002_advs_202305959 crossref_primary_10_1016_j_apcatb_2022_122091 crossref_primary_10_1002_adma_202206576 crossref_primary_10_1039_D4SE00197D crossref_primary_10_1039_D4RA02680B crossref_primary_10_1016_j_jallcom_2023_168908 crossref_primary_10_1016_j_cattod_2024_115167 crossref_primary_10_1039_D4QI01536C crossref_primary_10_1016_j_mattod_2021_05_004 crossref_primary_10_1039_D4NR02985B crossref_primary_10_1016_j_cej_2023_144839 crossref_primary_10_1063_5_0203381 crossref_primary_10_1002_ange_202218599 crossref_primary_10_1016_j_ijhydene_2024_09_267 crossref_primary_10_1002_aenm_202303261 crossref_primary_10_1021_jacs_3c11907 crossref_primary_10_1039_D2DT00970F crossref_primary_10_1002_adfm_202407407 crossref_primary_10_1021_acscatal_2c03353 crossref_primary_10_1039_D4LF00260A crossref_primary_10_1007_s11581_024_05614_1 crossref_primary_10_1021_acsami_2c02861 crossref_primary_10_1021_acs_inorgchem_4c02315 crossref_primary_10_1021_acs_chemrev_3c00332 crossref_primary_10_1016_j_cej_2023_147415 crossref_primary_10_1016_j_matlet_2024_135868 crossref_primary_10_1016_j_cej_2023_144829 crossref_primary_10_1038_s41467_022_33590_5 crossref_primary_10_1002_smll_202411017 crossref_primary_10_1016_j_electacta_2022_140947 crossref_primary_10_1007_s11581_023_04988_y crossref_primary_10_1016_j_vacuum_2024_113934 crossref_primary_10_1021_acscatal_4c01386 crossref_primary_10_1039_D4NR02289K crossref_primary_10_1016_j_ijhydene_2024_08_364 crossref_primary_10_1016_j_nanoen_2023_108624 crossref_primary_10_1039_D3TC00825H crossref_primary_10_1007_s10008_022_05232_9 crossref_primary_10_1021_acs_jpcc_2c06519 crossref_primary_10_1021_acs_inorgchem_2c04462 crossref_primary_10_1016_j_jallcom_2022_168206 crossref_primary_10_1039_D2DT01281B crossref_primary_10_1016_j_electacta_2021_139180 crossref_primary_10_1016_j_cjche_2022_02_010 crossref_primary_10_1016_j_cej_2022_139105 crossref_primary_10_1016_j_ijhydene_2024_09_246 crossref_primary_10_1007_s12274_022_5369_0 crossref_primary_10_1016_j_jallcom_2024_176636 crossref_primary_10_1039_D5NR00346F crossref_primary_10_1002_ange_202309107 crossref_primary_10_1016_j_cej_2023_146301 crossref_primary_10_1039_D4EE01483A crossref_primary_10_1016_j_apsusc_2025_162743 crossref_primary_10_1016_j_jelechem_2024_118270 crossref_primary_10_1007_s11664_024_11148_z crossref_primary_10_1016_j_apsusc_2022_153071 crossref_primary_10_1002_adfm_202411094 crossref_primary_10_1002_adma_202416362 crossref_primary_10_1016_j_ensm_2023_03_033 crossref_primary_10_1021_acsami_4c05120 crossref_primary_10_1039_D1SE01054A crossref_primary_10_1021_acs_energyfuels_1c00534 crossref_primary_10_1021_acsmaterialslett_4c00789 crossref_primary_10_1002_anie_202309107 crossref_primary_10_1002_smll_202203148 crossref_primary_10_1016_j_solidstatesciences_2022_107063 crossref_primary_10_1021_acs_inorgchem_2c04325 crossref_primary_10_1063_5_0136851 crossref_primary_10_1021_acs_cgd_4c01025 crossref_primary_10_1021_acs_nanolett_1c03343 crossref_primary_10_1021_acs_inorgchem_1c02931 crossref_primary_10_1039_D4CE00564C crossref_primary_10_1002_cey2_696 crossref_primary_10_1016_j_mtener_2022_101046 crossref_primary_10_1002_chem_202102672 crossref_primary_10_1016_j_ijhydene_2021_12_055 crossref_primary_10_1021_acsaem_2c01232 crossref_primary_10_1002_aenm_202101937 crossref_primary_10_1002_anie_202214600 crossref_primary_10_1016_j_decarb_2024_100097 crossref_primary_10_1016_j_nanoen_2024_109664 crossref_primary_10_1002_tcr_202200213 crossref_primary_10_1063_5_0139558 crossref_primary_10_1016_j_jallcom_2022_166930 crossref_primary_10_1016_j_ijhydene_2022_05_101 crossref_primary_10_1002_inf2_12609 crossref_primary_10_1016_j_checat_2022_05_003 crossref_primary_10_1002_smll_202204109 crossref_primary_10_1016_j_jallcom_2023_169383 crossref_primary_10_1021_acsomega_2c05627 crossref_primary_10_1016_j_jallcom_2023_170368 crossref_primary_10_1016_j_jallcom_2024_175795 crossref_primary_10_3390_nano12060961 crossref_primary_10_1002_asia_202100735 crossref_primary_10_1016_j_ccr_2023_215029 crossref_primary_10_1016_j_apsusc_2022_155221 crossref_primary_10_1016_j_jcis_2022_03_035 crossref_primary_10_1016_j_jcis_2022_08_095 crossref_primary_10_1016_j_electacta_2024_144339 crossref_primary_10_1039_D3CC01493B crossref_primary_10_1039_D2SC07034K crossref_primary_10_1039_D3DT03143H crossref_primary_10_1016_j_electacta_2022_140779 crossref_primary_10_1039_D3QM00438D crossref_primary_10_1002_advs_202201916 crossref_primary_10_1016_j_apsusc_2024_160264 crossref_primary_10_1021_jacs_1c07975 crossref_primary_10_1002_smll_202207243 crossref_primary_10_1016_j_apcatb_2023_122661 crossref_primary_10_1002_aenm_202404560 crossref_primary_10_1021_acsami_2c11418 crossref_primary_10_1002_admi_202300760 crossref_primary_10_1007_s40843_023_2734_y crossref_primary_10_1039_D3EE02360E crossref_primary_10_1002_aenm_202203913 crossref_primary_10_1016_j_jallcom_2023_170976 crossref_primary_10_1039_D1NR05797A crossref_primary_10_1039_D3NJ00059A crossref_primary_10_1016_j_apcata_2024_119772 crossref_primary_10_1039_D2TA05356J crossref_primary_10_1016_j_coelec_2023_101231 crossref_primary_10_1002_adfm_202306889 crossref_primary_10_1016_j_jcis_2024_12_062 crossref_primary_10_1016_j_seppur_2023_124355 crossref_primary_10_1016_j_fuel_2024_131214 crossref_primary_10_1002_anie_202218599 crossref_primary_10_1002_ange_202214600 crossref_primary_10_1002_smtd_202200377 crossref_primary_10_1039_D4MH01565G crossref_primary_10_1002_advs_202101299 crossref_primary_10_1039_D4CC03874F crossref_primary_10_1016_j_colsurfa_2022_130042 crossref_primary_10_1002_smll_202404689 crossref_primary_10_1016_j_jallcom_2023_171916 crossref_primary_10_1002_advs_202207128 crossref_primary_10_1021_acsenergylett_4c01938 crossref_primary_10_1002_er_8664 crossref_primary_10_1016_j_cej_2024_155299 crossref_primary_10_1016_j_jallcom_2024_174957 crossref_primary_10_1021_acsnano_4c05956 crossref_primary_10_1016_j_cej_2024_158325 crossref_primary_10_1016_j_ijhydene_2023_09_266 crossref_primary_10_1039_D4CY00746H crossref_primary_10_1039_D3DT00516J crossref_primary_10_1021_acs_energyfuels_2c02017 crossref_primary_10_1016_j_apcatb_2022_122126 crossref_primary_10_1002_adfm_202207116 crossref_primary_10_1002_smll_202304007 crossref_primary_10_1016_j_jcis_2024_03_148 crossref_primary_10_1016_j_surfin_2023_103375 crossref_primary_10_1002_smll_202204784 crossref_primary_10_1002_advs_202207594 crossref_primary_10_1039_D3MA01133J crossref_primary_10_1002_aenm_202201713 crossref_primary_10_1002_cctc_202401236 crossref_primary_10_1039_D3QI00799E crossref_primary_10_1039_D3DT02750C crossref_primary_10_1039_D2GC03315A crossref_primary_10_1155_2023_3764096 crossref_primary_10_1021_acsnano_2c09396 crossref_primary_10_1038_s41598_023_49836_1 crossref_primary_10_1016_j_mtchem_2023_101800 crossref_primary_10_3390_catal13091230 crossref_primary_10_1021_acs_chemrev_2c00515 crossref_primary_10_1002_tcr_202300109 crossref_primary_10_1016_j_mtchem_2024_102027 crossref_primary_10_1039_D1CP05721A crossref_primary_10_1002_smll_202402726 crossref_primary_10_1021_acs_chemrev_4c00553 crossref_primary_10_3866_PKU_WHXB202305019 crossref_primary_10_1016_j_jpowsour_2024_236089 crossref_primary_10_1007_s41918_023_00209_2 crossref_primary_10_1016_j_cej_2022_137684 crossref_primary_10_1016_j_ensm_2025_104065 crossref_primary_10_1016_j_ijhydene_2022_09_130 crossref_primary_10_1016_j_cej_2023_141939 crossref_primary_10_1016_j_cej_2024_149383 crossref_primary_10_1039_D1TA09306A crossref_primary_10_1007_s12274_024_6812_1 crossref_primary_10_1016_j_electacta_2023_142757 crossref_primary_10_1002_adfm_202416705 crossref_primary_10_1002_adma_202302462 crossref_primary_10_1007_s41918_024_00219_8 crossref_primary_10_1021_acs_energyfuels_2c02236 crossref_primary_10_1016_j_cej_2024_151912 crossref_primary_10_1016_j_colsurfa_2022_129766 crossref_primary_10_3390_nano14010064 crossref_primary_10_1039_D3QM00323J crossref_primary_10_1002_smo_20220005 crossref_primary_10_1016_j_jcis_2023_11_080 crossref_primary_10_1002_chem_202301478 crossref_primary_10_1002_smll_202204723 crossref_primary_10_1021_jacs_4c00863 crossref_primary_10_1002_smll_202407851 crossref_primary_10_1002_adfm_202304303 crossref_primary_10_1021_acssuschemeng_3c00398 crossref_primary_10_1021_jacs_3c08598 crossref_primary_10_1021_acsami_4c12171 crossref_primary_10_1002_eem2_12441 crossref_primary_10_1021_acsaem_3c02149 crossref_primary_10_1016_j_chphma_2022_11_001 crossref_primary_10_1016_j_fuel_2023_128771 crossref_primary_10_1002_chem_202300398 crossref_primary_10_1039_D3NR02131A crossref_primary_10_3390_catal12060601 crossref_primary_10_1021_acsmaterialslett_4c01471 crossref_primary_10_1002_adfm_202212160 crossref_primary_10_1002_adfm_202111777 crossref_primary_10_1002_celc_202200092 crossref_primary_10_1016_j_jhazmat_2022_129089 crossref_primary_10_1016_j_est_2023_109917 crossref_primary_10_1002_adma_202301166 crossref_primary_10_1016_j_apsusc_2021_152065 crossref_primary_10_1021_acsanm_4c03651 crossref_primary_10_1016_j_ccr_2024_215758 crossref_primary_10_1016_j_ijhydene_2024_06_326 crossref_primary_10_1016_j_jallcom_2024_175708 crossref_primary_10_1016_j_cogsc_2022_100682 crossref_primary_10_1016_j_cej_2024_156219 crossref_primary_10_1021_acsami_1c24966 crossref_primary_10_1039_D4TA07345B crossref_primary_10_1002_eem2_12668 crossref_primary_10_1021_acsaem_1c02604 crossref_primary_10_1039_D3DT04034H crossref_primary_10_3390_molecules28248154 crossref_primary_10_1039_D4NR01743A |
Cites_doi | 10.1039/C7EE00770A 10.1038/s41467-020-15873-x 10.1038/nmat4551 10.1126/science.285.5428.687 10.1002/anie.201812545 10.1103/PhysRevB.49.14251 10.1002/anie.201701531 10.1126/science.1212858 10.1021/acs.chemmater.5b03138 10.1038/ncomms3439 10.1209/0295-5075/93/57002 10.1039/c3cc45416a 10.1021/acs.accounts.8b00449 10.1007/s40843-019-9588-5 10.1039/c3ee43874k 10.1021/ja405351s 10.1021/jz301414z 10.1038/s41467-017-02524-x 10.1039/C4EE03869J 10.1021/jacs.0c01135 10.1038/s41929-020-0457-6 10.1021/acs.nanolett.0c02949 10.1002/aenm.201903693 10.1021/jacs.8b04546 10.1126/science.aaf5050 10.1038/nenergy.2016.53 10.1039/D0EE00092B 10.1103/PhysRevB.54.11169 10.1021/acscatal.0c01104 10.1038/s41929-018-0141-2 10.1038/srep06005 10.1038/s41467-019-08532-3 10.1016/j.apsusc.2006.02.035 10.1038/ncomms11053 10.1016/j.chempr.2018.09.012 10.1038/s41929-018-0182-6 10.1002/smtd.201700395 10.1002/anie.202007077 10.1126/science.aaf1525 10.1038/nmat4938 10.1016/j.apcatb.2009.09.040 10.1016/j.physb.2014.11.069 10.1126/sciadv.aap9360 10.1021/jz502692a 10.1038/nchem.2695 10.1038/35104599 10.1039/C9CS00607A 10.1002/adfm.201601902 10.1021/acs.chemmater.7b04534 10.1126/science.aam7092 10.1126/science.aad4998 10.1002/adfm.202004375 10.1021/acscatal.8b02022 10.1002/advs.201500433 10.1039/c1ee02032c 10.1021/acs.jpcc.0c01401 10.1021/jacs.8b12101 |
ContentType | Journal Article |
Copyright | 2021 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2021 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SP 7TB 8FD F28 FR3 H8D L7M |
DOI | 10.1002/aenm.202003755 |
DatabaseName | CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | Aerospace Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1614-6840 |
EndPage | n/a |
ExternalDocumentID | 10_1002_aenm_202003755 AENM202003755 |
Genre | article |
GrantInformation_xml | – fundername: State Key Laboratory for Advanced Metals and Materials funderid: 2018Z‐03; 2019Z‐04 – fundername: Fundamental Research Funds for the Central Universities funderid: FRF‐AS‐17‐002; FRF‐TP‐19‐005A2; FRF‐TP‐20‐008A3 – fundername: National Natural Science Foundation of China funderid: 51991340; 51991342; 52072031; 51527802; 51702014; 51722203; 51672026 – fundername: Natural Science Foundation of Beijing Municipality funderid: Z180011 – fundername: Overseas Expertise Introduction Projects for Discipline Innovation funderid: 111 project; B14003 – fundername: National Key Research and Development Program of China funderid: 2018YFA0703503; 2016YFA0202701 |
GroupedDBID | 05W 0R~ 1OC 33P 4.4 50Y 5VS 8-0 8-1 A00 AAESR AAHHS AAHQN AAIHA AAMNL AANLZ AAXRX AAYCA AAZKR ABCUV ABJNI ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFWVQ AFZJQ AHBTC AIACR AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB AZVAB BDRZF BFHJK BMXJE BRXPI D-A DCZOG EBS G-S HGLYW HZ~ KBYEO LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MY. MY~ O9- P2W P4E RNS ROL RX1 SUPJJ WBKPD WOHZO WXSBR WYJ ZZTAW ~S- 31~ AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE GODZA HVGLF 7SP 7TB 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY F28 FR3 H8D L7M |
ID | FETCH-LOGICAL-c4205-6e682c00c57ae3bda73bee180242a4d5035350b5912ba03e88f49709fbf63e3d3 |
ISSN | 1614-6832 |
IngestDate | Fri Jul 25 12:15:00 EDT 2025 Thu Apr 24 22:51:41 EDT 2025 Tue Jul 01 01:43:38 EDT 2025 Wed Jan 22 16:58:09 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c4205-6e682c00c57ae3bda73bee180242a4d5035350b5912ba03e88f49709fbf63e3d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-8213-1420 |
PQID | 2509258041 |
PQPubID | 886389 |
PageCount | 11 |
ParticipantIDs | proquest_journals_2509258041 crossref_citationtrail_10_1002_aenm_202003755 crossref_primary_10_1002_aenm_202003755 wiley_primary_10_1002_aenm_202003755_AENM202003755 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-03-01 |
PublicationDateYYYYMMDD | 2021-03-01 |
PublicationDate_xml | – month: 03 year: 2021 text: 2021-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Advanced energy materials |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2015; 460 2019 2013; 58 4 2013; 49 2020; 142 1994 1996; 49 54 2015 2016 2018 2020 2011; 8 352 140 49 334 2018 2006; 4 253 2015 2016 2020 2020; 27 26 59 13 2017; 29 2018 2015 2020; 11 6 20 2020; 124 2020; 10 2011; 4 2019; 141 2017 2020 2020; 358 11 10 2016; 7 2018; 8 2012; 3 2016; 1 1999 2001 2017; 285 414 355 2018; 4 2016; 3 2017 2016; 9 15 2018 2019 2018; 51 63 1 2016 2017; 353 56 2017; 16 2014 2010; 4 93 2011 2018 2018; 93 9 1 2014; 7 2020 2019 2020; 3 10 30 2018 2018 2013; 1 2 135 e_1_2_8_28_1 e_1_2_8_22_3 e_1_2_8_24_1 e_1_2_8_26_1 e_1_2_8_1_3 e_1_2_8_3_1 e_1_2_8_1_2 e_1_2_8_3_3 e_1_2_8_5_1 e_1_2_8_3_2 e_1_2_8_5_3 e_1_2_8_7_1 e_1_2_8_5_2 e_1_2_8_9_1 e_1_2_8_7_2 e_1_2_8_20_1 e_1_2_8_22_1 e_1_2_8_22_2 e_1_2_8_1_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_15_1 e_1_2_8_30_2 e_1_2_8_11_1 e_1_2_8_11_2 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_25_2 e_1_2_8_25_3 e_1_2_8_27_1 e_1_2_8_2_2 e_1_2_8_2_1 e_1_2_8_2_4 e_1_2_8_4_2 e_1_2_8_2_3 e_1_2_8_4_1 e_1_2_8_4_4 e_1_2_8_6_2 e_1_2_8_2_5 e_1_2_8_4_3 e_1_2_8_6_1 e_1_2_8_6_3 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_21_2 e_1_2_8_23_1 e_1_2_8_18_1 e_1_2_8_18_2 e_1_2_8_18_3 e_1_2_8_14_1 e_1_2_8_16_1 e_1_2_8_31_2 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_10_2 e_1_2_8_12_1 |
References_xml | – volume: 8 352 140 49 334 start-page: 1404 333 7748 2196 1383 year: 2015 2016 2018 2020 2011 publication-title: Energy Environ. Sci. Science J. Am. Chem. Soc. Chem. Soc. Rev. Science – volume: 49 start-page: 8985 year: 2013 publication-title: Chem. Commun. – volume: 49 54 year: 1994 1996 publication-title: Phys. Rev. B: Condens. Matter Phys. Rev. B – volume: 141 start-page: 5231 year: 2019 publication-title: J. Am. Chem. Soc. – volume: 9 15 start-page: 457 121 year: 2017 2016 publication-title: Nat. Chem. Nat. Mater. – volume: 4 93 start-page: 6005 346 year: 2014 2010 publication-title: Sci. Rep. Appl. Catal., B – volume: 93 9 1 start-page: 43 711 year: 2011 2018 2018 publication-title: Europhys. Lett. Nat. Commun. Nat. Catal. – volume: 7 year: 2016 publication-title: Nat. Commun. – volume: 4 year: 2018 publication-title: Sci. Adv. – volume: 11 6 20 start-page: 71 487 8040 year: 2018 2015 2020 publication-title: Energy Environ. Sci. J. Phys. Chem. Lett. Nano Lett. – volume: 3 year: 2016 publication-title: Adv. Sci. – volume: 51 63 1 start-page: 2968 3 711 year: 2018 2019 2018 publication-title: Acc. Chem. Res. Sci. China Mater. Nat. Catal. – volume: 1 2 135 start-page: 922 year: 2018 2018 2013 publication-title: Nat. Catal. Small Methods J. Am. Chem. Soc. – volume: 353 56 start-page: 1011 8539 year: 2016 2017 publication-title: Science Angew. Chem., Int. Ed. – volume: 10 start-page: 4664 year: 2020 publication-title: ACS Catal. – volume: 358 11 10 start-page: 751 2002 year: 2017 2020 2020 publication-title: Science Nat. Commun. Adv. Energy Mater. – volume: 58 4 start-page: 2316 2439 year: 2019 2013 publication-title: Angew. Chem., Int. Ed. Nat. Commun. – volume: 142 start-page: 7883 year: 2020 publication-title: J. Am. Chem. Soc. – volume: 460 start-page: 196 year: 2015 publication-title: Physica B – volume: 1 year: 2016 publication-title: Nat. Energy – volume: 3 start-page: 3264 year: 2012 publication-title: J. Phys. Chem. Lett. – volume: 16 start-page: 925 year: 2017 publication-title: Nat. Mater. – volume: 27 26 59 13 start-page: 7662 5862 1408 year: 2015 2016 2020 2020 publication-title: Chem. Mater. Adv. Funct. Mater. Angew. Chem., Int. Ed. Energy Environ. Sci. – volume: 29 year: 2017 publication-title: Chem. Mater. – volume: 4 start-page: 3966 year: 2011 publication-title: Energy Environ. Sci. – volume: 7 start-page: 1996 year: 2014 publication-title: Energy Environ. Sci. – volume: 4 253 start-page: 2902 1489 year: 2018 2006 publication-title: Chem Appl. Surf. Sci. – volume: 124 start-page: 6562 year: 2020 publication-title: J. Phys. Chem. C – volume: 3 10 30 start-page: 516 572 year: 2020 2019 2020 publication-title: Nat. Catal. Nat. Commun. Adv. Funct. Mater. – volume: 285 414 355 start-page: 687 332 year: 1999 2001 2017 publication-title: Science Nature Science – volume: 8 start-page: 9567 year: 2018 publication-title: ACS Catal. – ident: e_1_2_8_6_1 doi: 10.1039/C7EE00770A – ident: e_1_2_8_5_2 doi: 10.1038/s41467-020-15873-x – ident: e_1_2_8_30_2 doi: 10.1038/nmat4551 – ident: e_1_2_8_1_1 doi: 10.1126/science.285.5428.687 – ident: e_1_2_8_11_1 doi: 10.1002/anie.201812545 – ident: e_1_2_8_31_1 doi: 10.1103/PhysRevB.49.14251 – ident: e_1_2_8_7_2 doi: 10.1002/anie.201701531 – ident: e_1_2_8_2_5 doi: 10.1126/science.1212858 – ident: e_1_2_8_4_1 doi: 10.1021/acs.chemmater.5b03138 – ident: e_1_2_8_11_2 doi: 10.1038/ncomms3439 – ident: e_1_2_8_22_1 doi: 10.1209/0295-5075/93/57002 – ident: e_1_2_8_28_1 doi: 10.1039/c3cc45416a – ident: e_1_2_8_18_1 doi: 10.1021/acs.accounts.8b00449 – ident: e_1_2_8_18_2 doi: 10.1007/s40843-019-9588-5 – ident: e_1_2_8_29_1 doi: 10.1039/c3ee43874k – ident: e_1_2_8_25_3 doi: 10.1021/ja405351s – ident: e_1_2_8_12_1 doi: 10.1021/jz301414z – ident: e_1_2_8_22_2 doi: 10.1038/s41467-017-02524-x – ident: e_1_2_8_2_1 doi: 10.1039/C4EE03869J – ident: e_1_2_8_24_1 doi: 10.1021/jacs.0c01135 – ident: e_1_2_8_3_1 doi: 10.1038/s41929-020-0457-6 – ident: e_1_2_8_6_3 doi: 10.1021/acs.nanolett.0c02949 – ident: e_1_2_8_5_3 doi: 10.1002/aenm.201903693 – ident: e_1_2_8_2_3 doi: 10.1021/jacs.8b04546 – ident: e_1_2_8_7_1 doi: 10.1126/science.aaf5050 – ident: e_1_2_8_23_1 doi: 10.1038/nenergy.2016.53 – ident: e_1_2_8_4_4 doi: 10.1039/D0EE00092B – ident: e_1_2_8_31_2 doi: 10.1103/PhysRevB.54.11169 – ident: e_1_2_8_9_1 doi: 10.1021/acscatal.0c01104 – ident: e_1_2_8_18_3 doi: 10.1038/s41929-018-0141-2 – ident: e_1_2_8_21_1 doi: 10.1038/srep06005 – ident: e_1_2_8_3_2 doi: 10.1038/s41467-019-08532-3 – ident: e_1_2_8_10_2 doi: 10.1016/j.apsusc.2006.02.035 – ident: e_1_2_8_14_1 doi: 10.1038/ncomms11053 – ident: e_1_2_8_10_1 doi: 10.1016/j.chempr.2018.09.012 – ident: e_1_2_8_25_1 doi: 10.1038/s41929-018-0182-6 – ident: e_1_2_8_25_2 doi: 10.1002/smtd.201700395 – ident: e_1_2_8_4_3 doi: 10.1002/anie.202007077 – ident: e_1_2_8_2_2 doi: 10.1126/science.aaf1525 – ident: e_1_2_8_19_1 doi: 10.1038/nmat4938 – ident: e_1_2_8_21_2 doi: 10.1016/j.apcatb.2009.09.040 – ident: e_1_2_8_22_3 doi: 10.1038/s41929-018-0141-2 – ident: e_1_2_8_26_1 doi: 10.1016/j.physb.2014.11.069 – ident: e_1_2_8_8_1 doi: 10.1126/sciadv.aap9360 – ident: e_1_2_8_6_2 doi: 10.1021/jz502692a – ident: e_1_2_8_30_1 doi: 10.1038/nchem.2695 – ident: e_1_2_8_1_2 doi: 10.1038/35104599 – ident: e_1_2_8_2_4 doi: 10.1039/C9CS00607A – ident: e_1_2_8_4_2 doi: 10.1002/adfm.201601902 – ident: e_1_2_8_13_1 doi: 10.1021/acs.chemmater.7b04534 – ident: e_1_2_8_5_1 doi: 10.1126/science.aam7092 – ident: e_1_2_8_1_3 doi: 10.1126/science.aad4998 – ident: e_1_2_8_3_3 doi: 10.1002/adfm.202004375 – ident: e_1_2_8_17_1 doi: 10.1021/acscatal.8b02022 – ident: e_1_2_8_27_1 doi: 10.1002/advs.201500433 – ident: e_1_2_8_16_1 doi: 10.1039/c1ee02032c – ident: e_1_2_8_15_1 doi: 10.1021/acs.jpcc.0c01401 – ident: e_1_2_8_20_1 doi: 10.1021/jacs.8b12101 |
SSID | ssj0000491033 |
Score | 2.6830902 |
Snippet | Perovskites (ABX3) are promising oxygen evolution reaction (OER) catalysts for their highly intrinsic activity. The in‐depth understanding and the adjustment... Perovskites (ABX 3 ) are promising oxygen evolution reaction (OER) catalysts for their highly intrinsic activity. The in‐depth understanding and the adjustment... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | active phase A‐site management Catalysts Cerium dynamic reconstruction Electrocatalysts oxygen evolution reaction Oxygen evolution reactions perovskite oxides Perovskites Reconstruction Substitution reactions X‐site atom behavior |
Title | A‐Site Management Prompts the Dynamic Reconstructed Active Phase of Perovskite Oxide OER Catalysts |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.202003755 https://www.proquest.com/docview/2509258041 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaW7QUOiKdYWpAPSByqgGPHeRyjtqhCbKloK5ZTZDuOWgk2VXcXFU5cuPMb-SWMH3Gy4t2LtfJ6s4rni-eRmW8QesKUigtRZ1Hc1OCgsFRGoilklGlQjnENKth2a5gepPsnycsZn41GXwdZS6ulfKY-_7Ku5CpShTmQq6mS_Q_JhovCBHwG-cIIEobxn2RchlSFI7AcB6ksJv__w_lyYc3KXdd03liIreeLBSuztAfd9uGpcNH8Q33RflyYWO7268uzGkZDmGCCO58Wju0pkNV2aQPa1Q2Czetutn_BZI-yd6uQ7WNTBt70QNzxNSGzM9Fervr5tyuLqk6d-mgEHaRj-QMU1H2U5j5mqYdzjpYpnLrxEF10oICDevrpdHdssULPDYUAte17ea_Hunf3YSX_81rH-rt3MA3fX0MbFLwNOkYb5e701VEI1oEbFRNmizW6--sIQAl9vv4n6wZO77UMfR9rvBzfQje914FLB6HbaKTnd9CNARflXVSX3798MzDCPYywhxEGGGEPI7wGI-xghC2McNvgHkbYwggDjHCA0T108mLveGc_8i04IpVQwqNUpzlVhCieCc1kLTImtTasgQkVSc0J44wTyYuYSkGYzvMmKTJSNLJJmWY1u4_G83auHyAsilypNNaCkiZJdCMYmOKCKSZAKWS0nqCo27dKeX560yblfeWYtWll9rkK-zxBT8P6c8fM8tuVW50YKv_0Liow_QvKDfvWBFErmr9cpVqDysOr_GgTXe-fmS00BlHpR2DTLuVjj7gfANOZRA |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A%E2%80%90Site+Management+Prompts+the+Dynamic+Reconstructed+Active+Phase+of+Perovskite+Oxide+OER+Catalysts&rft.jtitle=Advanced+energy+materials&rft.au=Sun%2C+Yu&rft.au=Li%2C+Ran&rft.au=Chen%2C+Xiaoxuan&rft.au=Wu%2C+Jing&rft.date=2021-03-01&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=11&rft.issue=12&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Faenm.202003755&rft.externalDBID=10.1002%252Faenm.202003755&rft.externalDocID=AENM202003755 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon |