The use of erythrocyte fragility to assess xenobiotic cytotoxicity
The erythrocytes of mammals represent a good model to evaluate the cytotoxicity of molecules, organic and inorganic, natural or synthetic, by cellular damage measure. Indeed, before any investigation on the mechanism of action of different molecules, it is important to perform a cytotoxicity assay....
Saved in:
Published in | Cell biochemistry and function Vol. 33; no. 6; pp. 351 - 355 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
England
Blackwell Publishing Ltd
01.08.2015
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The erythrocytes of mammals represent a good model to evaluate the cytotoxicity of molecules, organic and inorganic, natural or synthetic, by cellular damage measure. Indeed, before any investigation on the mechanism of action of different molecules, it is important to perform a cytotoxicity assay. Among the different cytotoxicity assays that assess a possible toxicity in the red blood cells is the rate of haemolysis. This essay is based on the evaluation of the alterations of red cell membranes in the presence of an eventual xenobiotic. Red blood cells are the main cells in circulation, and they are responsible for transporting oxygen; in fact, any alterations of this process could be lethal. The plasma membrane of red blood cells is a multi‐component structure such as to confer to these cells their characteristic biconcave shape, high flexibility, elasticity and deformability. However, there are clear signs of cellular suffering if there are any alterations to this structure. One method of toxicity assessment is based on measurement of the efflux of haemoglobin from suspended red blood cells. Haemolysis, and therefore the loss of haemoglobin, is the signal stability of the cell membrane of the erythrocytes. In recent years, the discovery of programmed cell death in mammalian red blood cells presented a diversification of the response to injury by these a‐nucleated cells. This review shows that mammals' erythrocytes might serve well as a model cell to study on the cellular and molecular mechanisms of many treatments. Copyright © 2015 John Wiley & Sons, Ltd. |
---|---|
AbstractList | The erythrocytes of mammals represent a good model to evaluate the cytotoxicity of molecules, organic and inorganic, natural or synthetic, by cellular damage measure. Indeed, before any investigation on the mechanism of action of different molecules, it is important to perform a cytotoxicity assay. Among the different cytotoxicity assays that assess a possible toxicity in the red blood cells is the rate of haemolysis. This essay is based on the evaluation of the alterations of red cell membranes in the presence of an eventual xenobiotic. Red blood cells are the main cells in circulation, and they are responsible for transporting oxygen; in fact, any alterations of this process could be lethal. The plasma membrane of red blood cells is a multi-component structure such as to confer to these cells their characteristic biconcave shape, high flexibility, elasticity and deformability. However, there are clear signs of cellular suffering if there are any alterations to this structure. One method of toxicity assessment is based on measurement of the efflux of haemoglobin from suspended red blood cells. Haemolysis, and therefore the loss of haemoglobin, is the signal stability of the cell membrane of the erythrocytes. In recent years, the discovery of programmed cell death in mammalian red blood cells presented a diversification of the response to injury by these a-nucleated cells. This review shows that mammals' erythrocytes might serve well as a model cell to study on the cellular and molecular mechanisms of many treatments. Copyright © 2015 John Wiley & Sons, Ltd. The erythrocytes of mammals represent a good model to evaluate the cytotoxicity of molecules, organic and inorganic, natural or synthetic, by cellular damage measure. Indeed, before any investigation on the mechanism of action of different molecules, it is important to perform a cytotoxicity assay. Among the different cytotoxicity assays that assess a possible toxicity in the red blood cells is the rate of haemolysis. This essay is based on the evaluation of the alterations of red cell membranes in the presence of an eventual xenobiotic. Red blood cells are the main cells in circulation, and they are responsible for transporting oxygen; in fact, any alterations of this process could be lethal. The plasma membrane of red blood cells is a multi-component structure such as to confer to these cells their characteristic biconcave shape, high flexibility, elasticity and deformability. However, there are clear signs of cellular suffering if there are any alterations to this structure. One method of toxicity assessment is based on measurement of the efflux of haemoglobin from suspended red blood cells. Haemolysis, and therefore the loss of haemoglobin, is the signal stability of the cell membrane of the erythrocytes. In recent years, the discovery of programmed cell death in mammalian red blood cells presented a diversification of the response to injury by these a-nucleated cells. This review shows that mammals' erythrocytes might serve well as a model cell to study on the cellular and molecular mechanisms of many treatments. The erythrocytes of mammals represent a good model to evaluate the cytotoxicity of molecules, organic and inorganic, natural or synthetic, by cellular damage measure. Indeed, before any investigation on the mechanism of action of different molecules, it is important to perform a cytotoxicity assay. Among the different cytotoxicity assays that assess a possible toxicity in the red blood cells is the rate of haemolysis. This essay is based on the evaluation of the alterations of red cell membranes in the presence of an eventual xenobiotic. Red blood cells are the main cells in circulation, and they are responsible for transporting oxygen; in fact, any alterations of this process could be lethal. The plasma membrane of red blood cells is a multi-component structure such as to confer to these cells their characteristic biconcave shape, high flexibility, elasticity and deformability. However, there are clear signs of cellular suffering if there are any alterations to this structure. One method of toxicity assessment is based on measurement of the efflux of haemoglobin from suspended red blood cells. Haemolysis, and therefore the loss of haemoglobin, is the signal stability of the cell membrane of the erythrocytes. In recent years, the discovery of programmed cell death in mammalian red blood cells presented a diversification of the response to injury by these a-nucleated cells. This review shows that mammals' erythrocytes might serve well as a model cell to study on the cellular and molecular mechanisms of many treatments.The erythrocytes of mammals represent a good model to evaluate the cytotoxicity of molecules, organic and inorganic, natural or synthetic, by cellular damage measure. Indeed, before any investigation on the mechanism of action of different molecules, it is important to perform a cytotoxicity assay. Among the different cytotoxicity assays that assess a possible toxicity in the red blood cells is the rate of haemolysis. This essay is based on the evaluation of the alterations of red cell membranes in the presence of an eventual xenobiotic. Red blood cells are the main cells in circulation, and they are responsible for transporting oxygen; in fact, any alterations of this process could be lethal. The plasma membrane of red blood cells is a multi-component structure such as to confer to these cells their characteristic biconcave shape, high flexibility, elasticity and deformability. However, there are clear signs of cellular suffering if there are any alterations to this structure. One method of toxicity assessment is based on measurement of the efflux of haemoglobin from suspended red blood cells. Haemolysis, and therefore the loss of haemoglobin, is the signal stability of the cell membrane of the erythrocytes. In recent years, the discovery of programmed cell death in mammalian red blood cells presented a diversification of the response to injury by these a-nucleated cells. This review shows that mammals' erythrocytes might serve well as a model cell to study on the cellular and molecular mechanisms of many treatments. |
Author | Faggio, Caterina Pagano, Maria |
Author_xml | – sequence: 1 givenname: Maria surname: Pagano fullname: Pagano, Maria organization: Department of Biological and Environmental Sciences, University of Messina Viale Ferdinando Stagno d'Alcontres, S.Agata-Messina, Italy – sequence: 2 givenname: Caterina surname: Faggio fullname: Faggio, Caterina email: Correspondence to: Caterina Faggio, Department of Biological and Environmental Sciences, University of Messina Viale Ferdinando Stagno d'Alcontres, 31-98166 S.Agata-Messina, Italy., cfaggio@unime.it organization: Department of Biological and Environmental Sciences, University of Messina Viale Ferdinando Stagno d'Alcontres, S.Agata-Messina, Italy |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26399850$$D View this record in MEDLINE/PubMed |
BookMark | eNqN0U1v1DAQBmALFdFtqcQvQJG4cMl2_BUnR7qiLVJVDhT1aDnOhLpk42I76ubf42XboiKQOFmyn3nlmTkge6MfkZA3FJYUgB3btl9yyuULsqDQNCXUQuyRBbCKl5WoxT45iPEWAJqKwyuyn--bppawICdXN1hMEQvfFxjmdBO8nRMWfTDf3ODSXCRfmBgxxmKDo2-dT84W2fjkN85m8Zq87M0Q8ejhPCRfTz9erc7Li89nn1YfLkorGMiSW9W2tQHDREs77AwgysaqpmUgJFUVdLzjAnl-7hW2nRSCUgt9V2EuEPyQvN_l3gX_Y8KY9NpFi8NgRvRT1DmilkpxYP9Bad1ALdk29d0f9NZPYcyN_FKsZkzxrN4-qKldY6fvglubMOvHQWaw3AEbfIwBe51HY5LzYwrGDZqC3m5K503p7aZ-f_Gp4DHzL7Tc0Xs34PxPp1cnp8-9iwk3T96E77pSXEl9fXmm2aX4ogQofc5_AjgXrtE |
CitedBy_id | crossref_primary_10_1002_cbdv_202300563 crossref_primary_10_2139_ssrn_4070898 crossref_primary_10_1016_j_tox_2018_10_019 crossref_primary_10_1038_s41598_020_69995_9 crossref_primary_10_1111_bcpt_12547 crossref_primary_10_32900_2312_8402_2021_125_47_59 crossref_primary_10_1002_jbio_202200222 crossref_primary_10_1016_j_ijantimicag_2024_107172 crossref_primary_10_1016_j_molliq_2024_124966 crossref_primary_10_1016_j_ejmech_2021_113271 crossref_primary_10_1016_j_psj_2022_101862 crossref_primary_10_1007_s10637_018_0694_6 crossref_primary_10_1007_s10876_019_01590_z crossref_primary_10_1021_acssuschemeng_9b05507 crossref_primary_10_1016_j_scitotenv_2016_07_099 crossref_primary_10_1002_aoc_6024 crossref_primary_10_1155_2020_7509612 crossref_primary_10_1016_j_cbi_2017_11_007 crossref_primary_10_3390_molecules23113035 crossref_primary_10_1016_j_colsurfb_2019_110636 crossref_primary_10_3390_app10103602 crossref_primary_10_3390_jof4040134 crossref_primary_10_1111_jcmm_12778 crossref_primary_10_1007_s11356_021_15106_8 crossref_primary_10_1038_s41598_021_95430_8 crossref_primary_10_2478_asn_2021_0023 crossref_primary_10_1007_s41742_018_0127_6 crossref_primary_10_3390_polym8050188 crossref_primary_10_1021_acs_jafc_6b03323 crossref_primary_10_3390_ijms21124480 crossref_primary_10_1007_s00232_018_0051_x crossref_primary_10_1016_j_chemosphere_2019_04_008 crossref_primary_10_3390_biom10121594 crossref_primary_10_23950_jcmk_11576 crossref_primary_10_3389_fmicb_2024_1415400 crossref_primary_10_1016_j_blre_2017_06_001 crossref_primary_10_1515_chem_2021_0097 crossref_primary_10_1016_j_fsi_2017_03_034 crossref_primary_10_1159_000484215 crossref_primary_10_2217_fmb_2021_0119 crossref_primary_10_1016_j_msec_2020_111815 crossref_primary_10_1016_j_jinorgbio_2019_110725 crossref_primary_10_3390_ijms20081928 crossref_primary_10_1016_j_fbio_2023_102657 crossref_primary_10_1016_j_ejmech_2023_115400 crossref_primary_10_1016_j_pestbp_2023_105453 crossref_primary_10_1038_s41598_022_07755_7 crossref_primary_10_3390_metabo12111014 crossref_primary_10_1002_ijc_30800 crossref_primary_10_3389_fmicb_2023_1223123 crossref_primary_10_1016_j_fsi_2016_06_039 crossref_primary_10_1007_s10904_021_01998_z crossref_primary_10_3390_md14010004 crossref_primary_10_1016_j_chemosphere_2018_03_161 crossref_primary_10_1111_febs_14606 crossref_primary_10_4155_fmc_2019_0228 crossref_primary_10_1016_j_bse_2023_104748 crossref_primary_10_1016_j_transci_2021_103201 crossref_primary_10_1038_s41598_022_15977_y crossref_primary_10_1007_s42452_024_05928_9 crossref_primary_10_1016_j_tox_2016_05_003 crossref_primary_10_1016_j_jff_2023_105637 crossref_primary_10_1016_j_cbi_2020_109305 crossref_primary_10_1016_j_indcrop_2016_12_011 crossref_primary_10_3390_ijms25094768 crossref_primary_10_1021_acs_macromol_2c01944 crossref_primary_10_1016_j_toxrep_2021_10_011 crossref_primary_10_1016_j_jddst_2022_103429 crossref_primary_10_1155_2018_9405617 crossref_primary_10_1016_j_mvr_2016_04_011 crossref_primary_10_1002_cbf_3992 crossref_primary_10_1002_cbf_3196 crossref_primary_10_3390_ph15030323 crossref_primary_10_1159_000458745 crossref_primary_10_1007_s11274_021_03196_y crossref_primary_10_1016_j_ijbiomac_2019_08_266 crossref_primary_10_1016_j_jep_2022_115147 crossref_primary_10_17816_RCF1735_38 crossref_primary_10_1016_j_scitotenv_2019_03_275 crossref_primary_10_1002_ardp_202400240 crossref_primary_10_1002_cmdc_202100392 crossref_primary_10_1016_j_aninu_2016_08_004 crossref_primary_10_3390_ijms24032914 crossref_primary_10_1016_j_ccr_2022_214919 crossref_primary_10_3390_pharmaceutics16030298 crossref_primary_10_1016_j_bbamcr_2017_08_008 crossref_primary_10_1016_j_foodchem_2023_138281 crossref_primary_10_3390_molecules30030506 crossref_primary_10_1016_j_bbamem_2018_10_009 crossref_primary_10_1016_j_tiv_2018_07_010 crossref_primary_10_1002_cmdc_202400680 crossref_primary_10_22207_JPAM_11_4_07 crossref_primary_10_1016_j_ijbiomac_2025_140476 crossref_primary_10_3390_biom10010095 crossref_primary_10_1159_000458733 crossref_primary_10_1590_1984_3143_ar2021_0013 crossref_primary_10_1080_16546628_2017_1379862 crossref_primary_10_1016_j_jphotobiol_2023_112685 crossref_primary_10_1080_11263504_2023_2293025 crossref_primary_10_18632_oncotarget_7286 crossref_primary_10_1021_acsami_3c14908 crossref_primary_10_1039_C6NJ03904A crossref_primary_10_3390_app13074413 crossref_primary_10_3390_toxics11080669 crossref_primary_10_3390_separations9110359 crossref_primary_10_1016_j_taap_2017_09_008 crossref_primary_10_1111_1750_3841_14957 crossref_primary_10_1155_2024_2970470 crossref_primary_10_1002_mbo3_606 crossref_primary_10_1007_s00128_020_02944_4 crossref_primary_10_1016_j_tiv_2020_104810 crossref_primary_10_1016_j_ecoenv_2020_111730 crossref_primary_10_1007_s10311_024_01717_3 crossref_primary_10_1016_j_marenvres_2023_106294 crossref_primary_10_1016_j_pestbp_2019_12_003 crossref_primary_10_3390_jof7090763 crossref_primary_10_1016_j_cbpc_2023_109645 crossref_primary_10_1016_j_toxrep_2020_07_013 crossref_primary_10_1038_s41598_024_61037_y |
Cites_doi | 10.1016/j.tox.2012.10.006 10.1002/iub.106 10.3390/toxins5101918 10.1016/j.tox.2012.06.007 10.1590/S1516-8913201500400 10.1002/jat.2792 10.1146/annurev.bb.23.060194.004035 10.1007/0-387-23752-6_20 10.1016/S0887-2333(97)00107-0 10.1021/am200428v 10.1080/17415993.2015.1024679 10.1111/bcpt.12171 10.1073/pnas.0909533107 10.1159/000369717 10.1093/toxsci/kfq268 10.1182/blood-2008-07-161166 10.1159/000334163 10.1039/c3ra47913g 10.1111/j.1750-3841.2011.02243.x 10.1159/000315102 10.1159/000369666 10.1159/000342534 10.1007/s12185-014-1605-z 10.1159/000086406 10.1073/pnas.0904614106 10.1517/17425247.2014.889679 10.1080/17415993.2013.778259 10.1111/bcpt.12033 10.1016/j.jsps.2013.06.007 10.1073/pnas.0910785107 10.1016/j.biocel.2012.04.019 10.1016/S1383-5742(03)00015-2 10.1159/000358715 |
ContentType | Journal Article |
Copyright | Copyright © 2015 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: Copyright © 2015 John Wiley & Sons, Ltd. |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QP 7QR 7TK 7TM 7U7 8FD C1K FR3 P64 RC3 7X8 |
DOI | 10.1002/cbf.3135 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Technology Research Database Toxicology Abstracts Nucleic Acids Abstracts Chemoreception Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | Genetics Abstracts Genetics Abstracts CrossRef MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Biology |
EISSN | 1099-0844 |
EndPage | 355 |
ExternalDocumentID | 3824369231 26399850 10_1002_cbf_3135 CBF3135 ark_67375_WNG_2N4S7407_H |
Genre | reviewArticle Journal Article Review |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 29B 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5VS 66C 6J9 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHQN AAIPD AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCZN ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AIACR AIAGR AIDQK AIDYY AITYG AIURR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BLYAC BMXJE BROTX BRXPI BSCLL BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE FUBAC G-S G.N GNP GODZA H.X HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LH6 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NDZJH NF~ O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RX1 RYL SAMSI SUPJJ SV3 TEORI UB1 V2E V8K W8V W99 WBKPD WH7 WIB WIH WIJ WIK WJL WNSPC WOHZO WQJ WXI WXSBR WYISQ XG1 XPP XV2 ZZTAW ~IA ~WT AAHHS ACCFJ ADZOD AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE RBB RWI WRC WSB AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QP 7QR 7TK 7TM 7U7 8FD C1K FR3 P64 RC3 7X8 |
ID | FETCH-LOGICAL-c4205-3c7bb8a0a24b1deda0ee59c79b20451760d3d34e34b1f7ebd54411c0fd6eb1d43 |
IEDL.DBID | DR2 |
ISSN | 0263-6484 1099-0844 |
IngestDate | Fri Jul 11 05:46:37 EDT 2025 Fri Jul 11 03:10:53 EDT 2025 Sun Jul 13 05:12:08 EDT 2025 Mon Jul 21 05:49:31 EDT 2025 Tue Jul 01 02:49:13 EDT 2025 Thu Apr 24 22:51:43 EDT 2025 Wed Jan 22 16:46:09 EST 2025 Wed Aug 20 00:50:16 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | eryptosis erythrocytes haemolysis xenobiotic blood cytotoxicity assay |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor Copyright © 2015 John Wiley & Sons, Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4205-3c7bb8a0a24b1deda0ee59c79b20451760d3d34e34b1f7ebd54411c0fd6eb1d43 |
Notes | ark:/67375/WNG-2N4S7407-H istex:4E1B3FDFA4AA59EFEA89E3D0EEC2627F30796779 ArticleID:CBF3135 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
PMID | 26399850 |
PQID | 1718282273 |
PQPubID | 2029981 |
PageCount | 5 |
ParticipantIDs | proquest_miscellaneous_1768577302 proquest_miscellaneous_1718908524 proquest_journals_1718282273 pubmed_primary_26399850 crossref_citationtrail_10_1002_cbf_3135 crossref_primary_10_1002_cbf_3135 wiley_primary_10_1002_cbf_3135_CBF3135 istex_primary_ark_67375_WNG_2N4S7407_H |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-08 August 2015 2015-08-00 2015-Aug 20150801 |
PublicationDateYYYYMMDD | 2015-08-01 |
PublicationDate_xml | – month: 08 year: 2015 text: 2015-08 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Bognor Regis |
PublicationTitle | Cell biochemistry and function |
PublicationTitleAlternate | Cell Biochem Funct |
PublicationYear | 2015 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
References | Bonaccorsi P, Aversa MC, Barattucci A, et al. Sulfenic acid - derived glycoconjugated disulfides and sulfoxides: a biological evaluation on human red blood cells. J Sulf Chem 2013; 34: 684-691. Arnold M, Lang E, Modicano P, et al. Effect of nitazoxanide on erythrocytes. Basic Clin Pharmacol Toxicol 2014; 114: 421-426. Mineo P, Faggio C, Micali N, Scamporrino E, Villari V. A star polymer based on a polyethylene glycol with a porphyrinic core as a photosensitizing agent for application in photodynamic therapy: tests in vitro on human erythrocytes. RSC Adv 2014; 4: 19389-19395. Mohandas N, Chasis JA, Shohet SB. The influence of membrane skeleton on red cell deformability, membrane material properties, and shape. Sem Hematol 1983; 20: 225-242. Lang F, Lang E, Föller M. Physiology and pathophysiology of eryptosis. Transfus Med Hemother 2012; 39: 308-314. Bissinger R, Modicano P, Alzoubi K, et al. Effect of saponin on erythrocytes. Int J Hematol 2014; 100: 51-59. Park Y, Best CA, Badizadegan K, et al. Measurement of red blood cell mechanics during morphological changes. Proc Natl Acad Sci 2010; 107: 6731-6736. Lang F, Qadri SM. Mechanisms and significance of eryptosis, the suicidal death of erythrocytes. Blood Purif 2012; 33: 125-130. Bruno-Franco M, Mazzei C. The red blood cell membrane: structure and functions. Blood Transf 2004; 2: 160-180. Park Y, Best CA, Auth T, et al. Metabolic remodeling of the human red blood cell membrane. Proc Natl Acad Sci 2010; 107: 1289-1294. Orsine JVC, Costa R, Silva R, Santos M, Novaes M. The acute cytotoxicity and lethal concentration (LC50) of Agaricus sylvaticus through hemolytic activity on human erythrocyte. Int J Nutr Met 2012; 4: 19-23. Lang F, Gulbins E, Lang PA, Zappulla D, Föller M. Ceramide in suicidal death of erythrocytes. Cell Physiol Biochem 2010; 26: 21-28. De Oliveira S, Saldanha C. An overview about erythrocyte membrane. Clin Hemorheol Micro 2010; 44: 63-74. Abed M, Towhid ST, Shaik N, Lang F. Stimulation of suicidal death of erythrocytes by rifampicin. Toxicology 2012; 302: 123-128. Levina A, Codd R, Dillon CT, Lay PA. Chromium in biology: toxicology and nutritional aspects. Progr Inorg Chem 2003; 51: 145-250. Liao K-H, Lin Y-S, Macosko CW, Haynes CL. Cytotoxicity of graphene oxide and graphene in human erythrocytes and skin fibroblasts. ACS Appl Mater Inter 2011; 3: 2607-2615. Budan A, Tessier N, Saunier M, et al. Effect of several saponin containing plant extracts on rumen fermentation in vitro, Tetrahymena pyriformis and sheep erythrocytes. J Food Agric Environ 2013; 11: 576-582. Faggio C, Alzoubi K, Calabrò S, Lang F. Stimulation of suicidal erythrocyte death by PRIMA-1. Cell Physiol Biochem 2015; 35: 529-540. Ceraolo F, Vazzana M, Castriciano M, et al. Spectroscopic characterization and in vitro assay on human blood of novel porphyrin derivatives. J Biol Res 2015; 88: 47-48. Sharma A, Tyagi S, Nag R, Chaturvedi A, Nag T. Antimicrobial activity and cellular toxicity of flavonoid extracts from Pongamia pinnata and vitex negundo. Rom Biotechnol Lett 2011; 16: 6396-6400. Lang E, Modicano P, Arnold M, et al. Effect of thioridazine on erythrocytes. Toxins 2013; 5: 1918-1931. Faggio C, Pagano M, Morabito M, Minicante Armeli S, Arfuso F, Genovese G. In vitro assessment of the effect of Undaria pinnatifida extracts on erythrocytes membrane and blood coagulation parameters of Equus caballus. J Coast Life Med 2014; 2: 614-616. Bonaccorsi P, Barattucci A, Papalia T, Criseo G, Faggio C, Romeo O. Pyrimidine derived disulfides as potential antimicrobial agents: synthesis and evaluation in vitro. J Sulf Chem 2015; 36: 317-325. Mohandas N, Evans E. Mechanical properties of the red cell membrane in relation to molecular structure and genetic defects. Annu Rev Biophys Biomol Struct 1994; 23: 787-818. Chiba K, Kawakami K, Tohyama K. Simultaneous evaluation of cell viability by neutral red, MTT and crystal violet staining assays of the same cells. Toxicol Vitro 1998; 12: 251-258. Zbidah M, Lupescu A, Jilani K, Lang F. Stimulation of suicidal erythrocyte death by fumagillin. Basic Clin Pharmacol Toxicol 2013; 112: 346-351. Mohandas N, Chasis J. Red blood cell deformability, membrane material properties and shape: regulation by transmembrane, skeletal and cytosolic proteins and lipids. Sem Hematol 1993; 30: 171-192. Föller M, Huber SM, Lang F. Erythrocyte programmed cell death. IUBMB Life 2008; 60: 661-668. Finean JB, Coleman R, Michell RH. Membranes and Their Cellular Functions. Blackwell scientific publications: Oxford, 1984. Harisa GI, Ibrahim MF, Alanazi F, Shazly GA. Engineering erythrocytes as a novel carrier for the targeted delivery of the anticancer drug paclitaxel. Saudi Pharmaceut J 2014; 22: 223-230. Betz T, Lenz M, Joanny J-F, Sykes C. ATP-dependent mechanics of red blood cells. Proc Natl Acad Sci 2009; 106: 15320-15325. Kumar G, Karthik L, Rao KVB. Hemolytic activity of Indian medicinal plants towards human erythrocytes: an in vitro study. Elixir Appl Botany 2011; 40: 5534-5537. Lang KS, Lang PA, Bauer C, et al. Mechanisms of suicidal erythrocyte death. Cell physiol Biochem: Int J Exp Cell Physiol, Biochem, Pharmacol 2004; 15: 195-202. Jacobi J, Lang E, Bissinger R, et al. Stimulation of erythrocyte cell membrane scrambling by mitotane. Cell Physiol Biochem 2014; 33: 1516-1516. Lang E, Qadri SM, Lang F. Killing me softly - suicidal erythrocyte death. Int J Biochem Cell Biol 2012; 44: 1236-1243. Babu N. Influence of hypercholesterolemia on deformability and shape parameters of erythrocytes in hyperglycemic subjects. Clin Hemorheol Micro 2009; 41: 169-177. Faggio C, Morabito M, Armeli Minicante S, Lo Piano G, Pagano M, Genovese G. Potential use of polysaccharides from the brown alga Undaria pinnatifida as anticoagulant. Braz Arch Biol Tecnol 2015; 58: 798-804. Bolognesi C. Genotoxicity of pesticides: a review of human biomonitoring studies. Mutat Res/Rev Mutat Res 2003; 543: 251-272. Plasenzotti R, Windberger U, Ulberth F, Osterode W, Losert U. Influence of fatty acid composition in mammalian erythrocytes on cellular aggregation. Clin Hemorheol Micro 2007; 37: 237-243. Kalaivani T, Rajasekaran C, Mathew L. Free radical scavenging, cytotoxic, and hemolytic activities of an active antioxidant compound ethyl gallate from leaves of Acacia nilotica (L.) wild. Ex. Delile subsp. Indica (Benth.) Brenan. J Food Sci 2011; 76: T144-T149. Orrenius S, Nicotera P, Zhivotovsky B. Cell death mechanisms and their implications in toxicology. Toxicol Sci 2011; 119: 3-19. Mohandas N, Gallagher PG. Red cell membrane: past, present, and future. Blood 2008; 112: 3939-3948. Alzoubi K, Calabrò S, Bissinger R, Abed M, Faggio C, Lang F. Stimulation of suicidal erythrocyte death by artesunate. Cell Physiol Biochem 2014; 34: 2232-2244. Kim S, Ryu DY. Silver nanoparticle-induced oxidative stress, genotoxicity and apoptosis in cultured cells and animal tissues. J Appl Toxicol 2013; 33: 78-89. Magnani M, Rossi L. Approaches to erythrocyte-mediated drug delivery. Expert Opin Drug Deliv 2014; 11: 677-687. Lupescu A, Jilani K, Zbidah M, Lang F. Induction of apoptotic erythrocyte death by rotenone. Toxicology 2012; 300: 132-137. 2015; 35 2015; 36 2009; 41 2011; 119 2010; 107 1994; 23 2004; 2 2011; 16 2003; 51 2013; 5 2014; 22 2007; 37 2014; 4 2010; 26 2014; 2 2001 2013; 11 2015; 88 1993; 30 1983; 20 2013; 112 1984 2008; 112 2008; 60 1998; 12 2014; 11 2015; 58 2012; 300 2011; 40 2009 2011; 76 2005 2004 2012; 39 2011; 3 2012; 302 2012; 33 2014; 114 2010; 44 2013; 33 2013; 34 2004; 15 2003; 543 2014; 100 2012; 4 2012; 44 2014; 34 2014; 33 2009; 106 e_1_2_6_51_1 e_1_2_6_32_1 Levina A (e_1_2_6_19_1) 2003; 51 Plasenzotti R (e_1_2_6_13_1) 2007; 37 Bruno‐Franco M (e_1_2_6_5_1) 2004; 2 e_1_2_6_36_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_17_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_43_1 Babu N (e_1_2_6_12_1) 2009; 41 e_1_2_6_41_1 e_1_2_6_9_1 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_22_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_47_1 e_1_2_6_52_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_50_1 Orsine JVC (e_1_2_6_20_1) 2012; 4 Mohandas N (e_1_2_6_3_1) 1983; 20 Finean JB (e_1_2_6_7_1) 1984 Budan A (e_1_2_6_29_1) 2013; 11 Ceraolo F (e_1_2_6_28_1) 2015; 88 Sharma A (e_1_2_6_30_1) 2011; 16 e_1_2_6_35_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_42_1 e_1_2_6_40_1 Faggio C (e_1_2_6_27_1) 2014; 2 De Oliveira S (e_1_2_6_2_1) 2010; 44 e_1_2_6_8_1 e_1_2_6_4_1 Kumar G (e_1_2_6_21_1) 2011; 40 Mohandas N (e_1_2_6_14_1) 1993; 30 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_23_1 e_1_2_6_44_1 e_1_2_6_46_1 |
References_xml | – reference: Plasenzotti R, Windberger U, Ulberth F, Osterode W, Losert U. Influence of fatty acid composition in mammalian erythrocytes on cellular aggregation. Clin Hemorheol Micro 2007; 37: 237-243. – reference: Lang E, Qadri SM, Lang F. Killing me softly - suicidal erythrocyte death. Int J Biochem Cell Biol 2012; 44: 1236-1243. – reference: Liao K-H, Lin Y-S, Macosko CW, Haynes CL. Cytotoxicity of graphene oxide and graphene in human erythrocytes and skin fibroblasts. ACS Appl Mater Inter 2011; 3: 2607-2615. – reference: Bissinger R, Modicano P, Alzoubi K, et al. Effect of saponin on erythrocytes. Int J Hematol 2014; 100: 51-59. – reference: Faggio C, Alzoubi K, Calabrò S, Lang F. Stimulation of suicidal erythrocyte death by PRIMA-1. Cell Physiol Biochem 2015; 35: 529-540. – reference: Mohandas N, Evans E. Mechanical properties of the red cell membrane in relation to molecular structure and genetic defects. Annu Rev Biophys Biomol Struct 1994; 23: 787-818. – reference: Park Y, Best CA, Auth T, et al. Metabolic remodeling of the human red blood cell membrane. Proc Natl Acad Sci 2010; 107: 1289-1294. – reference: Lang F, Gulbins E, Lang PA, Zappulla D, Föller M. Ceramide in suicidal death of erythrocytes. Cell Physiol Biochem 2010; 26: 21-28. – reference: Bonaccorsi P, Barattucci A, Papalia T, Criseo G, Faggio C, Romeo O. Pyrimidine derived disulfides as potential antimicrobial agents: synthesis and evaluation in vitro. J Sulf Chem 2015; 36: 317-325. – reference: Lang F, Qadri SM. Mechanisms and significance of eryptosis, the suicidal death of erythrocytes. Blood Purif 2012; 33: 125-130. – reference: Abed M, Towhid ST, Shaik N, Lang F. Stimulation of suicidal death of erythrocytes by rifampicin. Toxicology 2012; 302: 123-128. – reference: Babu N. Influence of hypercholesterolemia on deformability and shape parameters of erythrocytes in hyperglycemic subjects. Clin Hemorheol Micro 2009; 41: 169-177. – reference: Mohandas N, Gallagher PG. Red cell membrane: past, present, and future. Blood 2008; 112: 3939-3948. – reference: Kalaivani T, Rajasekaran C, Mathew L. Free radical scavenging, cytotoxic, and hemolytic activities of an active antioxidant compound ethyl gallate from leaves of Acacia nilotica (L.) wild. Ex. Delile subsp. Indica (Benth.) Brenan. J Food Sci 2011; 76: T144-T149. – reference: Finean JB, Coleman R, Michell RH. Membranes and Their Cellular Functions. Blackwell scientific publications: Oxford, 1984. – reference: Harisa GI, Ibrahim MF, Alanazi F, Shazly GA. Engineering erythrocytes as a novel carrier for the targeted delivery of the anticancer drug paclitaxel. Saudi Pharmaceut J 2014; 22: 223-230. – reference: Faggio C, Morabito M, Armeli Minicante S, Lo Piano G, Pagano M, Genovese G. Potential use of polysaccharides from the brown alga Undaria pinnatifida as anticoagulant. Braz Arch Biol Tecnol 2015; 58: 798-804. – reference: Lang F, Lang E, Föller M. Physiology and pathophysiology of eryptosis. Transfus Med Hemother 2012; 39: 308-314. – reference: Bruno-Franco M, Mazzei C. The red blood cell membrane: structure and functions. Blood Transf 2004; 2: 160-180. – reference: Alzoubi K, Calabrò S, Bissinger R, Abed M, Faggio C, Lang F. Stimulation of suicidal erythrocyte death by artesunate. Cell Physiol Biochem 2014; 34: 2232-2244. – reference: Budan A, Tessier N, Saunier M, et al. Effect of several saponin containing plant extracts on rumen fermentation in vitro, Tetrahymena pyriformis and sheep erythrocytes. J Food Agric Environ 2013; 11: 576-582. – reference: Zbidah M, Lupescu A, Jilani K, Lang F. Stimulation of suicidal erythrocyte death by fumagillin. Basic Clin Pharmacol Toxicol 2013; 112: 346-351. – reference: Lang E, Modicano P, Arnold M, et al. Effect of thioridazine on erythrocytes. Toxins 2013; 5: 1918-1931. – reference: Kim S, Ryu DY. Silver nanoparticle-induced oxidative stress, genotoxicity and apoptosis in cultured cells and animal tissues. J Appl Toxicol 2013; 33: 78-89. – reference: Magnani M, Rossi L. Approaches to erythrocyte-mediated drug delivery. Expert Opin Drug Deliv 2014; 11: 677-687. – reference: Bolognesi C. Genotoxicity of pesticides: a review of human biomonitoring studies. Mutat Res/Rev Mutat Res 2003; 543: 251-272. – reference: Ceraolo F, Vazzana M, Castriciano M, et al. Spectroscopic characterization and in vitro assay on human blood of novel porphyrin derivatives. J Biol Res 2015; 88: 47-48. – reference: Mohandas N, Chasis J. Red blood cell deformability, membrane material properties and shape: regulation by transmembrane, skeletal and cytosolic proteins and lipids. Sem Hematol 1993; 30: 171-192. – reference: Park Y, Best CA, Badizadegan K, et al. Measurement of red blood cell mechanics during morphological changes. Proc Natl Acad Sci 2010; 107: 6731-6736. – reference: Mineo P, Faggio C, Micali N, Scamporrino E, Villari V. A star polymer based on a polyethylene glycol with a porphyrinic core as a photosensitizing agent for application in photodynamic therapy: tests in vitro on human erythrocytes. RSC Adv 2014; 4: 19389-19395. – reference: De Oliveira S, Saldanha C. An overview about erythrocyte membrane. Clin Hemorheol Micro 2010; 44: 63-74. – reference: Bonaccorsi P, Aversa MC, Barattucci A, et al. Sulfenic acid - derived glycoconjugated disulfides and sulfoxides: a biological evaluation on human red blood cells. J Sulf Chem 2013; 34: 684-691. – reference: Levina A, Codd R, Dillon CT, Lay PA. Chromium in biology: toxicology and nutritional aspects. Progr Inorg Chem 2003; 51: 145-250. – reference: Föller M, Huber SM, Lang F. Erythrocyte programmed cell death. IUBMB Life 2008; 60: 661-668. – reference: Chiba K, Kawakami K, Tohyama K. Simultaneous evaluation of cell viability by neutral red, MTT and crystal violet staining assays of the same cells. Toxicol Vitro 1998; 12: 251-258. – reference: Sharma A, Tyagi S, Nag R, Chaturvedi A, Nag T. Antimicrobial activity and cellular toxicity of flavonoid extracts from Pongamia pinnata and vitex negundo. Rom Biotechnol Lett 2011; 16: 6396-6400. – reference: Jacobi J, Lang E, Bissinger R, et al. Stimulation of erythrocyte cell membrane scrambling by mitotane. Cell Physiol Biochem 2014; 33: 1516-1516. – reference: Orrenius S, Nicotera P, Zhivotovsky B. Cell death mechanisms and their implications in toxicology. Toxicol Sci 2011; 119: 3-19. – reference: Arnold M, Lang E, Modicano P, et al. Effect of nitazoxanide on erythrocytes. Basic Clin Pharmacol Toxicol 2014; 114: 421-426. – reference: Lang KS, Lang PA, Bauer C, et al. Mechanisms of suicidal erythrocyte death. Cell physiol Biochem: Int J Exp Cell Physiol, Biochem, Pharmacol 2004; 15: 195-202. – reference: Orsine JVC, Costa R, Silva R, Santos M, Novaes M. The acute cytotoxicity and lethal concentration (LC50) of Agaricus sylvaticus through hemolytic activity on human erythrocyte. Int J Nutr Met 2012; 4: 19-23. – reference: Mohandas N, Chasis JA, Shohet SB. The influence of membrane skeleton on red cell deformability, membrane material properties, and shape. Sem Hematol 1983; 20: 225-242. – reference: Betz T, Lenz M, Joanny J-F, Sykes C. ATP-dependent mechanics of red blood cells. Proc Natl Acad Sci 2009; 106: 15320-15325. – reference: Kumar G, Karthik L, Rao KVB. Hemolytic activity of Indian medicinal plants towards human erythrocytes: an in vitro study. Elixir Appl Botany 2011; 40: 5534-5537. – reference: Faggio C, Pagano M, Morabito M, Minicante Armeli S, Arfuso F, Genovese G. In vitro assessment of the effect of Undaria pinnatifida extracts on erythrocytes membrane and blood coagulation parameters of Equus caballus. J Coast Life Med 2014; 2: 614-616. – reference: Lupescu A, Jilani K, Zbidah M, Lang F. Induction of apoptotic erythrocyte death by rotenone. Toxicology 2012; 300: 132-137. – year: 2009 – volume: 11 start-page: 677 year: 2014 end-page: 687 article-title: Approaches to erythrocyte‐mediated drug delivery publication-title: Expert Opin Drug Deliv – volume: 4 start-page: 19389 year: 2014 end-page: 19395 article-title: A star polymer based on a polyethylene glycol with a porphyrinic core as a photosensitizing agent for application in photodynamic therapy: tests on human erythrocytes publication-title: RSC Adv – volume: 26 start-page: 21 year: 2010 end-page: 28 article-title: Ceramide in suicidal death of erythrocytes publication-title: Cell Physiol Biochem – start-page: 211 year: 2005 end-page: 217 – volume: 2 start-page: 160 year: 2004 end-page: 180 article-title: The red blood cell membrane: structure and functions publication-title: Blood Transf – year: 2001 – volume: 119 start-page: 3 year: 2011 end-page: 19 article-title: Cell death mechanisms and their implications in toxicology publication-title: Toxicol Sci – volume: 44 start-page: 63 year: 2010 end-page: 74 article-title: An overview about erythrocyte membrane publication-title: Clin Hemorheol Micro – volume: 106 start-page: 15320 year: 2009 end-page: 15325 article-title: ATP‐dependent mechanics of red blood cells publication-title: Proc Natl Acad Sci – volume: 20 start-page: 225 year: 1983 end-page: 242 publication-title: Sem Hematol – volume: 58 start-page: 798 year: 2015 end-page: 804 article-title: Potential use of polysaccharides from the brown alga Undaria pinnatifida as anticoagulant publication-title: Braz Arch Biol Tecnol – volume: 41 start-page: 169 year: 2009 end-page: 177 article-title: Influence of hypercholesterolemia on deformability and shape parameters of erythrocytes in hyperglycemic subjects publication-title: Clin Hemorheol Micro – volume: 543 start-page: 251 year: 2003 end-page: 272 article-title: Genotoxicity of pesticides: a review of human biomonitoring studies publication-title: Mutat Res/Rev Mutat Res – volume: 114 start-page: 421 year: 2014 end-page: 426 article-title: Effect of nitazoxanide on erythrocytes publication-title: Basic Clin Pharmacol Toxicol – volume: 15 start-page: 195 year: 2004 end-page: 202 article-title: Mechanisms of suicidal erythrocyte death publication-title: Cell physiol Biochem: Int J Exp Cell Physiol, Biochem, Pharmacol – volume: 16 start-page: 6396 year: 2011 end-page: 6400 article-title: Antimicrobial activity and cellular toxicity of flavonoid extracts from Pongamia pinnata and vitex negundo publication-title: Rom Biotechnol Lett – volume: 76 start-page: T144 year: 2011 end-page: T149 article-title: Free radical scavenging, cytotoxic, and hemolytic activities of an active antioxidant compound ethyl gallate from leaves of Acacia nilotica (L.) wild. Ex. Delile subsp. Indica (Benth.) Brenan publication-title: J Food Sci – volume: 39 start-page: 308 year: 2012 end-page: 314 article-title: Physiology and pathophysiology of eryptosis publication-title: Transfus Med Hemother – volume: 12 start-page: 251 year: 1998 end-page: 258 article-title: Simultaneous evaluation of cell viability by neutral red, MTT and crystal violet staining assays of the same cells publication-title: Toxicol Vitro – volume: 51 start-page: 145 year: 2003 end-page: 250 article-title: Chromium in biology: toxicology and nutritional aspects publication-title: Progr Inorg Chem – start-page: 133 year: 2009 – volume: 100 start-page: 51 year: 2014 end-page: 59 article-title: Effect of saponin on erythrocytes publication-title: Int J Hematol – volume: 3 start-page: 2607 year: 2011 end-page: 2615 article-title: Cytotoxicity of graphene oxide and graphene in human erythrocytes and skin fibroblasts publication-title: ACS Appl Mater Inter – volume: 88 start-page: 47 year: 2015 end-page: 48 article-title: Spectroscopic characterization and assay on human blood of novel porphyrin derivatives publication-title: J Biol Res – volume: 107 start-page: 6731 year: 2010 end-page: 6736 article-title: Measurement of red blood cell mechanics during morphological changes publication-title: Proc Natl Acad Sci – volume: 4 start-page: 19 year: 2012 end-page: 23 article-title: The acute cytotoxicity and lethal concentration (LC50) of Agaricus sylvaticus through hemolytic activity on human erythrocyte publication-title: Int J Nutr Met – volume: 302 start-page: 123 year: 2012 end-page: 128 article-title: Stimulation of suicidal death of erythrocytes by rifampicin publication-title: Toxicology – volume: 11 start-page: 576 year: 2013 end-page: 582 article-title: Effect of several saponin containing plant extracts on rumen fermentation , Tetrahymena pyriformis and sheep erythrocytes publication-title: J Food Agric Environ – volume: 34 start-page: 2232 year: 2014 end-page: 2244 article-title: Stimulation of suicidal erythrocyte death by artesunate publication-title: Cell Physiol Biochem – volume: 60 start-page: 661 year: 2008 end-page: 668 article-title: Erythrocyte programmed cell death publication-title: IUBMB Life – start-page: i year: 2004 end-page: xvi – volume: 40 start-page: 5534 year: 2011 end-page: 5537 article-title: Hemolytic activity of Indian medicinal plants towards human erythrocytes: an study publication-title: Elixir Appl Botany – volume: 36 start-page: 317 year: 2015 end-page: 325 article-title: Pyrimidine derived disulfides as potential antimicrobial agents: synthesis and evaluation publication-title: J Sulf Chem – volume: 33 start-page: 125 year: 2012 end-page: 130 article-title: Mechanisms and significance of eryptosis, the suicidal death of erythrocytes publication-title: Blood Purif – volume: 37 start-page: 237 year: 2007 end-page: 243 article-title: Influence of fatty acid composition in mammalian erythrocytes on cellular aggregation publication-title: Clin Hemorheol Micro – volume: 33 start-page: 78 year: 2013 end-page: 89 article-title: Silver nanoparticle‐induced oxidative stress, genotoxicity and apoptosis in cultured cells and animal tissues publication-title: J Appl Toxicol – volume: 35 start-page: 529 year: 2015 end-page: 540 article-title: Stimulation of suicidal erythrocyte death by PRIMA‐1 publication-title: Cell Physiol Biochem – volume: 22 start-page: 223 year: 2014 end-page: 230 article-title: Engineering erythrocytes as a novel carrier for the targeted delivery of the anticancer drug paclitaxel publication-title: Saudi Pharmaceut J – volume: 44 start-page: 1236 year: 2012 end-page: 1243 article-title: Killing me softly – suicidal erythrocyte death publication-title: Int J Biochem Cell Biol – volume: 30 start-page: 171 year: 1993 end-page: 192 article-title: Red blood cell deformability, membrane material properties and shape: regulation by transmembrane, skeletal and cytosolic proteins and lipids publication-title: Sem Hematol – volume: 23 start-page: 787 year: 1994 end-page: 818 article-title: Mechanical properties of the red cell membrane in relation to molecular structure and genetic defects publication-title: Annu Rev Biophys Biomol Struct – volume: 107 start-page: 1289 year: 2010 end-page: 1294 article-title: Metabolic remodeling of the human red blood cell membrane publication-title: Proc Natl Acad Sci – year: 1984 – volume: 34 start-page: 684 year: 2013 end-page: 691 article-title: Sulfenic acid – derived glycoconjugated disulfides and sulfoxides: a biological evaluation on human red blood cells publication-title: J Sulf Chem – volume: 300 start-page: 132 year: 2012 end-page: 137 article-title: Induction of apoptotic erythrocyte death by rotenone publication-title: Toxicology – volume: 112 start-page: 346 year: 2013 end-page: 351 article-title: Stimulation of suicidal erythrocyte death by fumagillin publication-title: Basic Clin Pharmacol Toxicol – volume: 33 start-page: 1516 year: 2014 end-page: 1516 article-title: Stimulation of erythrocyte cell membrane scrambling by mitotane publication-title: Cell Physiol Biochem – volume: 5 start-page: 1918 year: 2013 end-page: 1931 article-title: Effect of thioridazine on erythrocytes publication-title: Toxins – volume: 2 start-page: 614 year: 2014 end-page: 616 article-title: assessment of the effect of Undaria pinnatifida extracts on erythrocytes membrane and blood coagulation parameters of Equus caballus publication-title: J Coast Life Med – volume: 112 start-page: 3939 year: 2008 end-page: 3948 article-title: Red cell membrane: past, present, and future publication-title: Blood – ident: e_1_2_6_43_1 doi: 10.1016/j.tox.2012.10.006 – ident: e_1_2_6_23_1 – ident: e_1_2_6_35_1 doi: 10.1002/iub.106 – ident: e_1_2_6_46_1 doi: 10.3390/toxins5101918 – ident: e_1_2_6_41_1 doi: 10.1016/j.tox.2012.06.007 – ident: e_1_2_6_32_1 doi: 10.1590/S1516-8913201500400 – ident: e_1_2_6_18_1 doi: 10.1002/jat.2792 – ident: e_1_2_6_9_1 doi: 10.1146/annurev.bb.23.060194.004035 – ident: e_1_2_6_37_1 doi: 10.1007/0-387-23752-6_20 – ident: e_1_2_6_15_1 doi: 10.1016/S0887-2333(97)00107-0 – ident: e_1_2_6_26_1 doi: 10.1021/am200428v – volume: 37 start-page: 237 year: 2007 ident: e_1_2_6_13_1 article-title: Influence of fatty acid composition in mammalian erythrocytes on cellular aggregation publication-title: Clin Hemorheol Micro – ident: e_1_2_6_22_1 – volume: 4 start-page: 19 year: 2012 ident: e_1_2_6_20_1 article-title: The acute cytotoxicity and lethal concentration (LC50) of Agaricus sylvaticus through hemolytic activity on human erythrocyte publication-title: Int J Nutr Met – ident: e_1_2_6_33_1 doi: 10.1080/17415993.2015.1024679 – ident: e_1_2_6_48_1 doi: 10.1111/bcpt.12171 – ident: e_1_2_6_8_1 doi: 10.1073/pnas.0909533107 – ident: e_1_2_6_49_1 doi: 10.1159/000369717 – ident: e_1_2_6_34_1 doi: 10.1093/toxsci/kfq268 – ident: e_1_2_6_4_1 doi: 10.1182/blood-2008-07-161166 – volume: 88 start-page: 47 year: 2015 ident: e_1_2_6_28_1 article-title: Spectroscopic characterization and in vitro assay on human blood of novel porphyrin derivatives publication-title: J Biol Res – ident: e_1_2_6_39_1 doi: 10.1159/000334163 – volume: 40 start-page: 5534 year: 2011 ident: e_1_2_6_21_1 article-title: Hemolytic activity of Indian medicinal plants towards human erythrocytes: an in vitro study publication-title: Elixir Appl Botany – ident: e_1_2_6_24_1 doi: 10.1039/c3ra47913g – ident: e_1_2_6_31_1 doi: 10.1111/j.1750-3841.2011.02243.x – ident: e_1_2_6_40_1 doi: 10.1159/000315102 – ident: e_1_2_6_6_1 – ident: e_1_2_6_50_1 doi: 10.1159/000369666 – ident: e_1_2_6_45_1 doi: 10.1159/000342534 – volume: 16 start-page: 6396 year: 2011 ident: e_1_2_6_30_1 article-title: Antimicrobial activity and cellular toxicity of flavonoid extracts from Pongamia pinnata and vitex negundo publication-title: Rom Biotechnol Lett – ident: e_1_2_6_47_1 doi: 10.1007/s12185-014-1605-z – volume: 2 start-page: 614 year: 2014 ident: e_1_2_6_27_1 article-title: In vitro assessment of the effect of Undaria pinnatifida extracts on erythrocytes membrane and blood coagulation parameters of Equus caballus publication-title: J Coast Life Med – volume: 41 start-page: 169 year: 2009 ident: e_1_2_6_12_1 article-title: Influence of hypercholesterolemia on deformability and shape parameters of erythrocytes in hyperglycemic subjects publication-title: Clin Hemorheol Micro – volume: 2 start-page: 160 year: 2004 ident: e_1_2_6_5_1 article-title: The red blood cell membrane: structure and functions publication-title: Blood Transf – ident: e_1_2_6_36_1 doi: 10.1159/000086406 – volume-title: Membranes and Their Cellular Functions year: 1984 ident: e_1_2_6_7_1 – ident: e_1_2_6_10_1 doi: 10.1073/pnas.0904614106 – volume: 44 start-page: 63 year: 2010 ident: e_1_2_6_2_1 article-title: An overview about erythrocyte membrane publication-title: Clin Hemorheol Micro – volume: 11 start-page: 576 year: 2013 ident: e_1_2_6_29_1 article-title: Effect of several saponin containing plant extracts on rumen fermentation in vitro, Tetrahymena pyriformis and sheep erythrocytes publication-title: J Food Agric Environ – ident: e_1_2_6_51_1 doi: 10.1517/17425247.2014.889679 – ident: e_1_2_6_25_1 doi: 10.1080/17415993.2013.778259 – volume: 20 start-page: 225 year: 1983 ident: e_1_2_6_3_1 publication-title: Sem Hematol – ident: e_1_2_6_42_1 doi: 10.1111/bcpt.12033 – ident: e_1_2_6_52_1 doi: 10.1016/j.jsps.2013.06.007 – ident: e_1_2_6_11_1 doi: 10.1073/pnas.0910785107 – ident: e_1_2_6_16_1 – ident: e_1_2_6_38_1 doi: 10.1016/j.biocel.2012.04.019 – ident: e_1_2_6_17_1 doi: 10.1016/S1383-5742(03)00015-2 – ident: e_1_2_6_44_1 doi: 10.1159/000358715 – volume: 30 start-page: 171 year: 1993 ident: e_1_2_6_14_1 article-title: Red blood cell deformability, membrane material properties and shape: regulation by transmembrane, skeletal and cytosolic proteins and lipids publication-title: Sem Hematol – volume: 51 start-page: 145 year: 2003 ident: e_1_2_6_19_1 article-title: Chromium in biology: toxicology and nutritional aspects publication-title: Progr Inorg Chem |
SSID | ssj0009630 |
Score | 2.469343 |
SecondaryResourceType | review_article |
Snippet | The erythrocytes of mammals represent a good model to evaluate the cytotoxicity of molecules, organic and inorganic, natural or synthetic, by cellular damage... |
SourceID | proquest pubmed crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 351 |
SubjectTerms | Animals blood Cytotoxicity cytotoxicity assay eryptosis Erythrocyte Membrane - metabolism Erythrocytes Erythrocytes - cytology Erythrocytes - drug effects Erythrocytes - metabolism haemolysis Hemoglobins - metabolism Hemolysis Humans Mammals Toxicity Tests - methods xenobiotic Xenobiotics - metabolism Xenobiotics - toxicity |
Title | The use of erythrocyte fragility to assess xenobiotic cytotoxicity |
URI | https://api.istex.fr/ark:/67375/WNG-2N4S7407-H/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcbf.3135 https://www.ncbi.nlm.nih.gov/pubmed/26399850 https://www.proquest.com/docview/1718282273 https://www.proquest.com/docview/1718908524 https://www.proquest.com/docview/1768577302 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqogouUAqUhYKMhOCUNms7dnJsV2xXSOwBqKjEwfIrVVWUoN2stMuvZyZOUhWVCnHKwZPEjxnPZ3v8DSFvAVIzK41JCmayRHjOk8IEmSgf8FzLetbmWPo0l7Mz8fE8O--iKvEuTOSHGDbc0DLa-RoN3Njl0TVpqLMlLDg53i_HUC3EQ5-vmaNAr7rtFZ5IkYuedzZlR_2LNzzRPezU9W0w8yZqbd3O9BH53lc4RptcHa4ae-h-_cHl-H8t2iUPOzRKj6P6PCZbodojOzE_5WaP3J_06eCekBNQKLpaBlqXNCw2mF7BbZpAy4W5wPjaDW1qatojZLoOFbI7wUcpyNRNvb50IPGUnE0_fJ3Mki4BQ-IEwxNyp6zNTWqYsGMfvElDyAqnCosk9mMlU889F4FDcamC9ZjQbOzS0ktwAV7wZ2S7qqvwnNAcFuFIZsc8L2HaYMaksghGOFaWgns5Iu_7wdCuYyfHJBk_dORVZhp6R2PvjMibQfJnZOS4ReZdO56DgFlcYQSbyvS3-almc_FFwUpWz0bkoB9w3RnvUo_BX2N0reLwr6EYuhvPUkwV6lWUKQCuMnGXjMwzBVMoG5H9qExDhRgiwzxLoaatSvy1KXpyMsXni38VfEkeAKjLYpDiAdluFqvwCoBTY1-3JvIb0GwRyA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VVqhceJTXQgEj8TilTWzHSQ4c6JZlS9s9QKv2ZhzbqaqiBO1mxYa_xF_hRzHOqyoqiEsPnHLwyHE8D3-2J98AvEBITVOhlJdQFXrcMOYlygovMtbda6WG1jWW9idifMg_HIfHS_Cj-xem4YfoD9ycZ9Tx2jm4O5DePGcN1WmGO07WZVTu2uob7tdmb3a2UbkvKR29OxiOvbakgKc5dXe-OkrTWPmK8jQw1ijf2jDRUZI6WvYgEr5hhnHLsDmLbGpcia5A-5kRGNQMZ9jvNVhxBcQdUf_2x3OuKrTk9kCHeYLHvGO69elmN9ILa9-KU-PiMmB7ESfXC93oFvzspqjJbznbmJfphv7-G3vkfzKHt-FmC7jJ28ZD7sCSzdfgelOCs1qD1WFX8e4ubKHPkPnMkiIjdlq5ChK6Ki3JpurEpRBXpCyIqm_JycLmjsAKOyUoU5TF4lSjxD04vJKPuQ_LeZHbh0DiBMNnIHxqWIaRkSrli8QqrmmWcWbEAF532pe6JWB3dUC-yIY6mkrUhnTaGMDzXvJrQzpyicyr2oB6ATU9c0l6USiPJu8lnfBPEW7W5XgA652FyTY-zWSAkMQlEEcM39U343S76yKV22LeyCSIyCn_m4yIwwhXCTqAB4319gOiDvzGoY8jrW3wj58ih1sj93z0r4LPYHV8sL8n93Ymu4_hBmLYsMnJXIflcjq3TxAnlunT2j8JfL5qY_4FXI1w0A |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VVlAuPAqUhQJG4nFKm9iOkxw40F2WLYUVAip6M3bsIFSUVLtZseEn8Vf4U4zzqooK4tIDpxw8chzPw5_tyTcAjxBSUy2U8hKqQo8bxrxEWeFFxrp7LW1oXWPpzVRMDvirw_BwBX50_8I0_BD9gZvzjDpeOwc_NtnOCWloqjPccLIuoXLfVt9wuzZ_tjdC3T6mdPziw3DitRUFvJRTd-WbRlrHyleU68BYo3xrwySNEu1Y2YNI-IYZxi3D5iyy2rgKXUHqZ0ZgTDOcYb8XYI0LP3FlIkbvTqiq0JDb8xzmCR7zjujWpzvdSE8tfWtOi8uzcO1pmFyvc-Or8LOboSa95Wh7Uert9Ptv5JH_xxRegyst3CbPG_-4Dis234CLTQHOagPWh129uxuwix5DFnNLiozYWeXqR6RVaUk2U59dAnFFyoKo-o6cLG3u6KuwU4IyRVksv6QocRMOzuVjbsFqXuT2NpA4weAZCJ8almFcpEr5IrGKpzTLODNiAE875cu0pV93VUC-yoY4mkrUhnTaGMDDXvK4oRw5Q-ZJbT-9gJoduRS9KJQfpy8lnfL3EW7V5WQAW52ByTY6zWWAgMSlD0cM39U343S7yyKV22LRyCSIxyn_m4yIwwjXCDqAzcZ4-wFRB33j0MeR1ib4x0-Rw92xe975V8EHcOntaCxf703378JlBLBhk5C5BavlbGHvIUgs9f3aOwl8Om9b_gWEUW9_ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+use+of+erythrocyte+fragility+to+assess+xenobiotic+cytotoxicity&rft.jtitle=Cell+biochemistry+and+function&rft.au=Pagano%2C+Maria&rft.au=Faggio%2C+Caterina&rft.date=2015-08-01&rft.issn=0263-6484&rft.eissn=1099-0844&rft.volume=33&rft.issue=6&rft.spage=351&rft.epage=355&rft_id=info:doi/10.1002%2Fcbf.3135&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0263-6484&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0263-6484&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0263-6484&client=summon |