The use of erythrocyte fragility to assess xenobiotic cytotoxicity

The erythrocytes of mammals represent a good model to evaluate the cytotoxicity of molecules, organic and inorganic, natural or synthetic, by cellular damage measure. Indeed, before any investigation on the mechanism of action of different molecules, it is important to perform a cytotoxicity assay....

Full description

Saved in:
Bibliographic Details
Published inCell biochemistry and function Vol. 33; no. 6; pp. 351 - 355
Main Authors Pagano, Maria, Faggio, Caterina
Format Journal Article
LanguageEnglish
Published England Blackwell Publishing Ltd 01.08.2015
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The erythrocytes of mammals represent a good model to evaluate the cytotoxicity of molecules, organic and inorganic, natural or synthetic, by cellular damage measure. Indeed, before any investigation on the mechanism of action of different molecules, it is important to perform a cytotoxicity assay. Among the different cytotoxicity assays that assess a possible toxicity in the red blood cells is the rate of haemolysis. This essay is based on the evaluation of the alterations of red cell membranes in the presence of an eventual xenobiotic. Red blood cells are the main cells in circulation, and they are responsible for transporting oxygen; in fact, any alterations of this process could be lethal. The plasma membrane of red blood cells is a multi‐component structure such as to confer to these cells their characteristic biconcave shape, high flexibility, elasticity and deformability. However, there are clear signs of cellular suffering if there are any alterations to this structure. One method of toxicity assessment is based on measurement of the efflux of haemoglobin from suspended red blood cells. Haemolysis, and therefore the loss of haemoglobin, is the signal stability of the cell membrane of the erythrocytes. In recent years, the discovery of programmed cell death in mammalian red blood cells presented a diversification of the response to injury by these a‐nucleated cells. This review shows that mammals' erythrocytes might serve well as a model cell to study on the cellular and molecular mechanisms of many treatments. Copyright © 2015 John Wiley & Sons, Ltd.
AbstractList The erythrocytes of mammals represent a good model to evaluate the cytotoxicity of molecules, organic and inorganic, natural or synthetic, by cellular damage measure. Indeed, before any investigation on the mechanism of action of different molecules, it is important to perform a cytotoxicity assay. Among the different cytotoxicity assays that assess a possible toxicity in the red blood cells is the rate of haemolysis. This essay is based on the evaluation of the alterations of red cell membranes in the presence of an eventual xenobiotic. Red blood cells are the main cells in circulation, and they are responsible for transporting oxygen; in fact, any alterations of this process could be lethal. The plasma membrane of red blood cells is a multi-component structure such as to confer to these cells their characteristic biconcave shape, high flexibility, elasticity and deformability. However, there are clear signs of cellular suffering if there are any alterations to this structure. One method of toxicity assessment is based on measurement of the efflux of haemoglobin from suspended red blood cells. Haemolysis, and therefore the loss of haemoglobin, is the signal stability of the cell membrane of the erythrocytes. In recent years, the discovery of programmed cell death in mammalian red blood cells presented a diversification of the response to injury by these a-nucleated cells. This review shows that mammals' erythrocytes might serve well as a model cell to study on the cellular and molecular mechanisms of many treatments. Copyright © 2015 John Wiley & Sons, Ltd.
The erythrocytes of mammals represent a good model to evaluate the cytotoxicity of molecules, organic and inorganic, natural or synthetic, by cellular damage measure. Indeed, before any investigation on the mechanism of action of different molecules, it is important to perform a cytotoxicity assay. Among the different cytotoxicity assays that assess a possible toxicity in the red blood cells is the rate of haemolysis. This essay is based on the evaluation of the alterations of red cell membranes in the presence of an eventual xenobiotic. Red blood cells are the main cells in circulation, and they are responsible for transporting oxygen; in fact, any alterations of this process could be lethal. The plasma membrane of red blood cells is a multi-component structure such as to confer to these cells their characteristic biconcave shape, high flexibility, elasticity and deformability. However, there are clear signs of cellular suffering if there are any alterations to this structure. One method of toxicity assessment is based on measurement of the efflux of haemoglobin from suspended red blood cells. Haemolysis, and therefore the loss of haemoglobin, is the signal stability of the cell membrane of the erythrocytes. In recent years, the discovery of programmed cell death in mammalian red blood cells presented a diversification of the response to injury by these a-nucleated cells. This review shows that mammals' erythrocytes might serve well as a model cell to study on the cellular and molecular mechanisms of many treatments.
The erythrocytes of mammals represent a good model to evaluate the cytotoxicity of molecules, organic and inorganic, natural or synthetic, by cellular damage measure. Indeed, before any investigation on the mechanism of action of different molecules, it is important to perform a cytotoxicity assay. Among the different cytotoxicity assays that assess a possible toxicity in the red blood cells is the rate of haemolysis. This essay is based on the evaluation of the alterations of red cell membranes in the presence of an eventual xenobiotic. Red blood cells are the main cells in circulation, and they are responsible for transporting oxygen; in fact, any alterations of this process could be lethal. The plasma membrane of red blood cells is a multi-component structure such as to confer to these cells their characteristic biconcave shape, high flexibility, elasticity and deformability. However, there are clear signs of cellular suffering if there are any alterations to this structure. One method of toxicity assessment is based on measurement of the efflux of haemoglobin from suspended red blood cells. Haemolysis, and therefore the loss of haemoglobin, is the signal stability of the cell membrane of the erythrocytes. In recent years, the discovery of programmed cell death in mammalian red blood cells presented a diversification of the response to injury by these a-nucleated cells. This review shows that mammals' erythrocytes might serve well as a model cell to study on the cellular and molecular mechanisms of many treatments.The erythrocytes of mammals represent a good model to evaluate the cytotoxicity of molecules, organic and inorganic, natural or synthetic, by cellular damage measure. Indeed, before any investigation on the mechanism of action of different molecules, it is important to perform a cytotoxicity assay. Among the different cytotoxicity assays that assess a possible toxicity in the red blood cells is the rate of haemolysis. This essay is based on the evaluation of the alterations of red cell membranes in the presence of an eventual xenobiotic. Red blood cells are the main cells in circulation, and they are responsible for transporting oxygen; in fact, any alterations of this process could be lethal. The plasma membrane of red blood cells is a multi-component structure such as to confer to these cells their characteristic biconcave shape, high flexibility, elasticity and deformability. However, there are clear signs of cellular suffering if there are any alterations to this structure. One method of toxicity assessment is based on measurement of the efflux of haemoglobin from suspended red blood cells. Haemolysis, and therefore the loss of haemoglobin, is the signal stability of the cell membrane of the erythrocytes. In recent years, the discovery of programmed cell death in mammalian red blood cells presented a diversification of the response to injury by these a-nucleated cells. This review shows that mammals' erythrocytes might serve well as a model cell to study on the cellular and molecular mechanisms of many treatments.
Author Faggio, Caterina
Pagano, Maria
Author_xml – sequence: 1
  givenname: Maria
  surname: Pagano
  fullname: Pagano, Maria
  organization: Department of Biological and Environmental Sciences, University of Messina Viale Ferdinando Stagno d'Alcontres, S.Agata-Messina, Italy
– sequence: 2
  givenname: Caterina
  surname: Faggio
  fullname: Faggio, Caterina
  email: Correspondence to: Caterina Faggio, Department of Biological and Environmental Sciences, University of Messina Viale Ferdinando Stagno d'Alcontres, 31-98166 S.Agata-Messina, Italy., cfaggio@unime.it
  organization: Department of Biological and Environmental Sciences, University of Messina Viale Ferdinando Stagno d'Alcontres, S.Agata-Messina, Italy
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26399850$$D View this record in MEDLINE/PubMed
BookMark eNqN0U1v1DAQBmALFdFtqcQvQJG4cMl2_BUnR7qiLVJVDhT1aDnOhLpk42I76ubf42XboiKQOFmyn3nlmTkge6MfkZA3FJYUgB3btl9yyuULsqDQNCXUQuyRBbCKl5WoxT45iPEWAJqKwyuyn--bppawICdXN1hMEQvfFxjmdBO8nRMWfTDf3ODSXCRfmBgxxmKDo2-dT84W2fjkN85m8Zq87M0Q8ejhPCRfTz9erc7Li89nn1YfLkorGMiSW9W2tQHDREs77AwgysaqpmUgJFUVdLzjAnl-7hW2nRSCUgt9V2EuEPyQvN_l3gX_Y8KY9NpFi8NgRvRT1DmilkpxYP9Bad1ALdk29d0f9NZPYcyN_FKsZkzxrN4-qKldY6fvglubMOvHQWaw3AEbfIwBe51HY5LzYwrGDZqC3m5K503p7aZ-f_Gp4DHzL7Tc0Xs34PxPp1cnp8-9iwk3T96E77pSXEl9fXmm2aX4ogQofc5_AjgXrtE
CitedBy_id crossref_primary_10_1002_cbdv_202300563
crossref_primary_10_2139_ssrn_4070898
crossref_primary_10_1016_j_tox_2018_10_019
crossref_primary_10_1038_s41598_020_69995_9
crossref_primary_10_1111_bcpt_12547
crossref_primary_10_32900_2312_8402_2021_125_47_59
crossref_primary_10_1002_jbio_202200222
crossref_primary_10_1016_j_ijantimicag_2024_107172
crossref_primary_10_1016_j_molliq_2024_124966
crossref_primary_10_1016_j_ejmech_2021_113271
crossref_primary_10_1016_j_psj_2022_101862
crossref_primary_10_1007_s10637_018_0694_6
crossref_primary_10_1007_s10876_019_01590_z
crossref_primary_10_1021_acssuschemeng_9b05507
crossref_primary_10_1016_j_scitotenv_2016_07_099
crossref_primary_10_1002_aoc_6024
crossref_primary_10_1155_2020_7509612
crossref_primary_10_1016_j_cbi_2017_11_007
crossref_primary_10_3390_molecules23113035
crossref_primary_10_1016_j_colsurfb_2019_110636
crossref_primary_10_3390_app10103602
crossref_primary_10_3390_jof4040134
crossref_primary_10_1111_jcmm_12778
crossref_primary_10_1007_s11356_021_15106_8
crossref_primary_10_1038_s41598_021_95430_8
crossref_primary_10_2478_asn_2021_0023
crossref_primary_10_1007_s41742_018_0127_6
crossref_primary_10_3390_polym8050188
crossref_primary_10_1021_acs_jafc_6b03323
crossref_primary_10_3390_ijms21124480
crossref_primary_10_1007_s00232_018_0051_x
crossref_primary_10_1016_j_chemosphere_2019_04_008
crossref_primary_10_3390_biom10121594
crossref_primary_10_23950_jcmk_11576
crossref_primary_10_3389_fmicb_2024_1415400
crossref_primary_10_1016_j_blre_2017_06_001
crossref_primary_10_1515_chem_2021_0097
crossref_primary_10_1016_j_fsi_2017_03_034
crossref_primary_10_1159_000484215
crossref_primary_10_2217_fmb_2021_0119
crossref_primary_10_1016_j_msec_2020_111815
crossref_primary_10_1016_j_jinorgbio_2019_110725
crossref_primary_10_3390_ijms20081928
crossref_primary_10_1016_j_fbio_2023_102657
crossref_primary_10_1016_j_ejmech_2023_115400
crossref_primary_10_1016_j_pestbp_2023_105453
crossref_primary_10_1038_s41598_022_07755_7
crossref_primary_10_3390_metabo12111014
crossref_primary_10_1002_ijc_30800
crossref_primary_10_3389_fmicb_2023_1223123
crossref_primary_10_1016_j_fsi_2016_06_039
crossref_primary_10_1007_s10904_021_01998_z
crossref_primary_10_3390_md14010004
crossref_primary_10_1016_j_chemosphere_2018_03_161
crossref_primary_10_1111_febs_14606
crossref_primary_10_4155_fmc_2019_0228
crossref_primary_10_1016_j_bse_2023_104748
crossref_primary_10_1016_j_transci_2021_103201
crossref_primary_10_1038_s41598_022_15977_y
crossref_primary_10_1007_s42452_024_05928_9
crossref_primary_10_1016_j_tox_2016_05_003
crossref_primary_10_1016_j_jff_2023_105637
crossref_primary_10_1016_j_cbi_2020_109305
crossref_primary_10_1016_j_indcrop_2016_12_011
crossref_primary_10_3390_ijms25094768
crossref_primary_10_1021_acs_macromol_2c01944
crossref_primary_10_1016_j_toxrep_2021_10_011
crossref_primary_10_1016_j_jddst_2022_103429
crossref_primary_10_1155_2018_9405617
crossref_primary_10_1016_j_mvr_2016_04_011
crossref_primary_10_1002_cbf_3992
crossref_primary_10_1002_cbf_3196
crossref_primary_10_3390_ph15030323
crossref_primary_10_1159_000458745
crossref_primary_10_1007_s11274_021_03196_y
crossref_primary_10_1016_j_ijbiomac_2019_08_266
crossref_primary_10_1016_j_jep_2022_115147
crossref_primary_10_17816_RCF1735_38
crossref_primary_10_1016_j_scitotenv_2019_03_275
crossref_primary_10_1002_ardp_202400240
crossref_primary_10_1002_cmdc_202100392
crossref_primary_10_1016_j_aninu_2016_08_004
crossref_primary_10_3390_ijms24032914
crossref_primary_10_1016_j_ccr_2022_214919
crossref_primary_10_3390_pharmaceutics16030298
crossref_primary_10_1016_j_bbamcr_2017_08_008
crossref_primary_10_1016_j_foodchem_2023_138281
crossref_primary_10_3390_molecules30030506
crossref_primary_10_1016_j_bbamem_2018_10_009
crossref_primary_10_1016_j_tiv_2018_07_010
crossref_primary_10_1002_cmdc_202400680
crossref_primary_10_22207_JPAM_11_4_07
crossref_primary_10_1016_j_ijbiomac_2025_140476
crossref_primary_10_3390_biom10010095
crossref_primary_10_1159_000458733
crossref_primary_10_1590_1984_3143_ar2021_0013
crossref_primary_10_1080_16546628_2017_1379862
crossref_primary_10_1016_j_jphotobiol_2023_112685
crossref_primary_10_1080_11263504_2023_2293025
crossref_primary_10_18632_oncotarget_7286
crossref_primary_10_1021_acsami_3c14908
crossref_primary_10_1039_C6NJ03904A
crossref_primary_10_3390_app13074413
crossref_primary_10_3390_toxics11080669
crossref_primary_10_3390_separations9110359
crossref_primary_10_1016_j_taap_2017_09_008
crossref_primary_10_1111_1750_3841_14957
crossref_primary_10_1155_2024_2970470
crossref_primary_10_1002_mbo3_606
crossref_primary_10_1007_s00128_020_02944_4
crossref_primary_10_1016_j_tiv_2020_104810
crossref_primary_10_1016_j_ecoenv_2020_111730
crossref_primary_10_1007_s10311_024_01717_3
crossref_primary_10_1016_j_marenvres_2023_106294
crossref_primary_10_1016_j_pestbp_2019_12_003
crossref_primary_10_3390_jof7090763
crossref_primary_10_1016_j_cbpc_2023_109645
crossref_primary_10_1016_j_toxrep_2020_07_013
crossref_primary_10_1038_s41598_024_61037_y
Cites_doi 10.1016/j.tox.2012.10.006
10.1002/iub.106
10.3390/toxins5101918
10.1016/j.tox.2012.06.007
10.1590/S1516-8913201500400
10.1002/jat.2792
10.1146/annurev.bb.23.060194.004035
10.1007/0-387-23752-6_20
10.1016/S0887-2333(97)00107-0
10.1021/am200428v
10.1080/17415993.2015.1024679
10.1111/bcpt.12171
10.1073/pnas.0909533107
10.1159/000369717
10.1093/toxsci/kfq268
10.1182/blood-2008-07-161166
10.1159/000334163
10.1039/c3ra47913g
10.1111/j.1750-3841.2011.02243.x
10.1159/000315102
10.1159/000369666
10.1159/000342534
10.1007/s12185-014-1605-z
10.1159/000086406
10.1073/pnas.0904614106
10.1517/17425247.2014.889679
10.1080/17415993.2013.778259
10.1111/bcpt.12033
10.1016/j.jsps.2013.06.007
10.1073/pnas.0910785107
10.1016/j.biocel.2012.04.019
10.1016/S1383-5742(03)00015-2
10.1159/000358715
ContentType Journal Article
Copyright Copyright © 2015 John Wiley & Sons, Ltd.
Copyright_xml – notice: Copyright © 2015 John Wiley & Sons, Ltd.
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7QR
7TK
7TM
7U7
8FD
C1K
FR3
P64
RC3
7X8
DOI 10.1002/cbf.3135
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Technology Research Database
Toxicology Abstracts
Nucleic Acids Abstracts
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList Genetics Abstracts
Genetics Abstracts
CrossRef
MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Biology
EISSN 1099-0844
EndPage 355
ExternalDocumentID 3824369231
26399850
10_1002_cbf_3135
CBF3135
ark_67375_WNG_2N4S7407_H
Genre reviewArticle
Journal Article
Review
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
29B
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHQN
AAIPD
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCZN
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AIACR
AIAGR
AIDQK
AIDYY
AITYG
AIURR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BLYAC
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LH6
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NDZJH
NF~
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
UB1
V2E
V8K
W8V
W99
WBKPD
WH7
WIB
WIH
WIJ
WIK
WJL
WNSPC
WOHZO
WQJ
WXI
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~IA
~WT
AAHHS
ACCFJ
ADZOD
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
RBB
RWI
WRC
WSB
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7QR
7TK
7TM
7U7
8FD
C1K
FR3
P64
RC3
7X8
ID FETCH-LOGICAL-c4205-3c7bb8a0a24b1deda0ee59c79b20451760d3d34e34b1f7ebd54411c0fd6eb1d43
IEDL.DBID DR2
ISSN 0263-6484
1099-0844
IngestDate Fri Jul 11 05:46:37 EDT 2025
Fri Jul 11 03:10:53 EDT 2025
Sun Jul 13 05:12:08 EDT 2025
Mon Jul 21 05:49:31 EDT 2025
Tue Jul 01 02:49:13 EDT 2025
Thu Apr 24 22:51:43 EDT 2025
Wed Jan 22 16:46:09 EST 2025
Wed Aug 20 00:50:16 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords eryptosis
erythrocytes
haemolysis
xenobiotic
blood
cytotoxicity assay
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
Copyright © 2015 John Wiley & Sons, Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4205-3c7bb8a0a24b1deda0ee59c79b20451760d3d34e34b1f7ebd54411c0fd6eb1d43
Notes ark:/67375/WNG-2N4S7407-H
istex:4E1B3FDFA4AA59EFEA89E3D0EEC2627F30796779
ArticleID:CBF3135
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
PMID 26399850
PQID 1718282273
PQPubID 2029981
PageCount 5
ParticipantIDs proquest_miscellaneous_1768577302
proquest_miscellaneous_1718908524
proquest_journals_1718282273
pubmed_primary_26399850
crossref_citationtrail_10_1002_cbf_3135
crossref_primary_10_1002_cbf_3135
wiley_primary_10_1002_cbf_3135_CBF3135
istex_primary_ark_67375_WNG_2N4S7407_H
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-08
August 2015
2015-08-00
2015-Aug
20150801
PublicationDateYYYYMMDD 2015-08-01
PublicationDate_xml – month: 08
  year: 2015
  text: 2015-08
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Bognor Regis
PublicationTitle Cell biochemistry and function
PublicationTitleAlternate Cell Biochem Funct
PublicationYear 2015
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References Bonaccorsi P, Aversa MC, Barattucci A, et al. Sulfenic acid - derived glycoconjugated disulfides and sulfoxides: a biological evaluation on human red blood cells. J Sulf Chem 2013; 34: 684-691.
Arnold M, Lang E, Modicano P, et al. Effect of nitazoxanide on erythrocytes. Basic Clin Pharmacol Toxicol 2014; 114: 421-426.
Mineo P, Faggio C, Micali N, Scamporrino E, Villari V. A star polymer based on a polyethylene glycol with a porphyrinic core as a photosensitizing agent for application in photodynamic therapy: tests in vitro on human erythrocytes. RSC Adv 2014; 4: 19389-19395.
Mohandas N, Chasis JA, Shohet SB. The influence of membrane skeleton on red cell deformability, membrane material properties, and shape. Sem Hematol 1983; 20: 225-242.
Lang F, Lang E, Föller M. Physiology and pathophysiology of eryptosis. Transfus Med Hemother 2012; 39: 308-314.
Bissinger R, Modicano P, Alzoubi K, et al. Effect of saponin on erythrocytes. Int J Hematol 2014; 100: 51-59.
Park Y, Best CA, Badizadegan K, et al. Measurement of red blood cell mechanics during morphological changes. Proc Natl Acad Sci 2010; 107: 6731-6736.
Lang F, Qadri SM. Mechanisms and significance of eryptosis, the suicidal death of erythrocytes. Blood Purif 2012; 33: 125-130.
Bruno-Franco M, Mazzei C. The red blood cell membrane: structure and functions. Blood Transf 2004; 2: 160-180.
Park Y, Best CA, Auth T, et al. Metabolic remodeling of the human red blood cell membrane. Proc Natl Acad Sci 2010; 107: 1289-1294.
Orsine JVC, Costa R, Silva R, Santos M, Novaes M. The acute cytotoxicity and lethal concentration (LC50) of Agaricus sylvaticus through hemolytic activity on human erythrocyte. Int J Nutr Met 2012; 4: 19-23.
Lang F, Gulbins E, Lang PA, Zappulla D, Föller M. Ceramide in suicidal death of erythrocytes. Cell Physiol Biochem 2010; 26: 21-28.
De Oliveira S, Saldanha C. An overview about erythrocyte membrane. Clin Hemorheol Micro 2010; 44: 63-74.
Abed M, Towhid ST, Shaik N, Lang F. Stimulation of suicidal death of erythrocytes by rifampicin. Toxicology 2012; 302: 123-128.
Levina A, Codd R, Dillon CT, Lay PA. Chromium in biology: toxicology and nutritional aspects. Progr Inorg Chem 2003; 51: 145-250.
Liao K-H, Lin Y-S, Macosko CW, Haynes CL. Cytotoxicity of graphene oxide and graphene in human erythrocytes and skin fibroblasts. ACS Appl Mater Inter 2011; 3: 2607-2615.
Budan A, Tessier N, Saunier M, et al. Effect of several saponin containing plant extracts on rumen fermentation in vitro, Tetrahymena pyriformis and sheep erythrocytes. J Food Agric Environ 2013; 11: 576-582.
Faggio C, Alzoubi K, Calabrò S, Lang F. Stimulation of suicidal erythrocyte death by PRIMA-1. Cell Physiol Biochem 2015; 35: 529-540.
Ceraolo F, Vazzana M, Castriciano M, et al. Spectroscopic characterization and in vitro assay on human blood of novel porphyrin derivatives. J Biol Res 2015; 88: 47-48.
Sharma A, Tyagi S, Nag R, Chaturvedi A, Nag T. Antimicrobial activity and cellular toxicity of flavonoid extracts from Pongamia pinnata and vitex negundo. Rom Biotechnol Lett 2011; 16: 6396-6400.
Lang E, Modicano P, Arnold M, et al. Effect of thioridazine on erythrocytes. Toxins 2013; 5: 1918-1931.
Faggio C, Pagano M, Morabito M, Minicante Armeli S, Arfuso F, Genovese G. In vitro assessment of the effect of Undaria pinnatifida extracts on erythrocytes membrane and blood coagulation parameters of Equus caballus. J Coast Life Med 2014; 2: 614-616.
Bonaccorsi P, Barattucci A, Papalia T, Criseo G, Faggio C, Romeo O. Pyrimidine derived disulfides as potential antimicrobial agents: synthesis and evaluation in vitro. J Sulf Chem 2015; 36: 317-325.
Mohandas N, Evans E. Mechanical properties of the red cell membrane in relation to molecular structure and genetic defects. Annu Rev Biophys Biomol Struct 1994; 23: 787-818.
Chiba K, Kawakami K, Tohyama K. Simultaneous evaluation of cell viability by neutral red, MTT and crystal violet staining assays of the same cells. Toxicol Vitro 1998; 12: 251-258.
Zbidah M, Lupescu A, Jilani K, Lang F. Stimulation of suicidal erythrocyte death by fumagillin. Basic Clin Pharmacol Toxicol 2013; 112: 346-351.
Mohandas N, Chasis J. Red blood cell deformability, membrane material properties and shape: regulation by transmembrane, skeletal and cytosolic proteins and lipids. Sem Hematol 1993; 30: 171-192.
Föller M, Huber SM, Lang F. Erythrocyte programmed cell death. IUBMB Life 2008; 60: 661-668.
Finean JB, Coleman R, Michell RH. Membranes and Their Cellular Functions. Blackwell scientific publications: Oxford, 1984.
Harisa GI, Ibrahim MF, Alanazi F, Shazly GA. Engineering erythrocytes as a novel carrier for the targeted delivery of the anticancer drug paclitaxel. Saudi Pharmaceut J 2014; 22: 223-230.
Betz T, Lenz M, Joanny J-F, Sykes C. ATP-dependent mechanics of red blood cells. Proc Natl Acad Sci 2009; 106: 15320-15325.
Kumar G, Karthik L, Rao KVB. Hemolytic activity of Indian medicinal plants towards human erythrocytes: an in vitro study. Elixir Appl Botany 2011; 40: 5534-5537.
Lang KS, Lang PA, Bauer C, et al. Mechanisms of suicidal erythrocyte death. Cell physiol Biochem: Int J Exp Cell Physiol, Biochem, Pharmacol 2004; 15: 195-202.
Jacobi J, Lang E, Bissinger R, et al. Stimulation of erythrocyte cell membrane scrambling by mitotane. Cell Physiol Biochem 2014; 33: 1516-1516.
Lang E, Qadri SM, Lang F. Killing me softly - suicidal erythrocyte death. Int J Biochem Cell Biol 2012; 44: 1236-1243.
Babu N. Influence of hypercholesterolemia on deformability and shape parameters of erythrocytes in hyperglycemic subjects. Clin Hemorheol Micro 2009; 41: 169-177.
Faggio C, Morabito M, Armeli Minicante S, Lo Piano G, Pagano M, Genovese G. Potential use of polysaccharides from the brown alga Undaria pinnatifida as anticoagulant. Braz Arch Biol Tecnol 2015; 58: 798-804.
Bolognesi C. Genotoxicity of pesticides: a review of human biomonitoring studies. Mutat Res/Rev Mutat Res 2003; 543: 251-272.
Plasenzotti R, Windberger U, Ulberth F, Osterode W, Losert U. Influence of fatty acid composition in mammalian erythrocytes on cellular aggregation. Clin Hemorheol Micro 2007; 37: 237-243.
Kalaivani T, Rajasekaran C, Mathew L. Free radical scavenging, cytotoxic, and hemolytic activities of an active antioxidant compound ethyl gallate from leaves of Acacia nilotica (L.) wild. Ex. Delile subsp. Indica (Benth.) Brenan. J Food Sci 2011; 76: T144-T149.
Orrenius S, Nicotera P, Zhivotovsky B. Cell death mechanisms and their implications in toxicology. Toxicol Sci 2011; 119: 3-19.
Mohandas N, Gallagher PG. Red cell membrane: past, present, and future. Blood 2008; 112: 3939-3948.
Alzoubi K, Calabrò S, Bissinger R, Abed M, Faggio C, Lang F. Stimulation of suicidal erythrocyte death by artesunate. Cell Physiol Biochem 2014; 34: 2232-2244.
Kim S, Ryu DY. Silver nanoparticle-induced oxidative stress, genotoxicity and apoptosis in cultured cells and animal tissues. J Appl Toxicol 2013; 33: 78-89.
Magnani M, Rossi L. Approaches to erythrocyte-mediated drug delivery. Expert Opin Drug Deliv 2014; 11: 677-687.
Lupescu A, Jilani K, Zbidah M, Lang F. Induction of apoptotic erythrocyte death by rotenone. Toxicology 2012; 300: 132-137.
2015; 35
2015; 36
2009; 41
2011; 119
2010; 107
1994; 23
2004; 2
2011; 16
2003; 51
2013; 5
2014; 22
2007; 37
2014; 4
2010; 26
2014; 2
2001
2013; 11
2015; 88
1993; 30
1983; 20
2013; 112
1984
2008; 112
2008; 60
1998; 12
2014; 11
2015; 58
2012; 300
2011; 40
2009
2011; 76
2005
2004
2012; 39
2011; 3
2012; 302
2012; 33
2014; 114
2010; 44
2013; 33
2013; 34
2004; 15
2003; 543
2014; 100
2012; 4
2012; 44
2014; 34
2014; 33
2009; 106
e_1_2_6_51_1
e_1_2_6_32_1
Levina A (e_1_2_6_19_1) 2003; 51
Plasenzotti R (e_1_2_6_13_1) 2007; 37
Bruno‐Franco M (e_1_2_6_5_1) 2004; 2
e_1_2_6_36_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_43_1
Babu N (e_1_2_6_12_1) 2009; 41
e_1_2_6_41_1
e_1_2_6_9_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_22_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_52_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
Orsine JVC (e_1_2_6_20_1) 2012; 4
Mohandas N (e_1_2_6_3_1) 1983; 20
Finean JB (e_1_2_6_7_1) 1984
Budan A (e_1_2_6_29_1) 2013; 11
Ceraolo F (e_1_2_6_28_1) 2015; 88
Sharma A (e_1_2_6_30_1) 2011; 16
e_1_2_6_35_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_42_1
e_1_2_6_40_1
Faggio C (e_1_2_6_27_1) 2014; 2
De Oliveira S (e_1_2_6_2_1) 2010; 44
e_1_2_6_8_1
e_1_2_6_4_1
Kumar G (e_1_2_6_21_1) 2011; 40
Mohandas N (e_1_2_6_14_1) 1993; 30
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_44_1
e_1_2_6_46_1
References_xml – reference: Plasenzotti R, Windberger U, Ulberth F, Osterode W, Losert U. Influence of fatty acid composition in mammalian erythrocytes on cellular aggregation. Clin Hemorheol Micro 2007; 37: 237-243.
– reference: Lang E, Qadri SM, Lang F. Killing me softly - suicidal erythrocyte death. Int J Biochem Cell Biol 2012; 44: 1236-1243.
– reference: Liao K-H, Lin Y-S, Macosko CW, Haynes CL. Cytotoxicity of graphene oxide and graphene in human erythrocytes and skin fibroblasts. ACS Appl Mater Inter 2011; 3: 2607-2615.
– reference: Bissinger R, Modicano P, Alzoubi K, et al. Effect of saponin on erythrocytes. Int J Hematol 2014; 100: 51-59.
– reference: Faggio C, Alzoubi K, Calabrò S, Lang F. Stimulation of suicidal erythrocyte death by PRIMA-1. Cell Physiol Biochem 2015; 35: 529-540.
– reference: Mohandas N, Evans E. Mechanical properties of the red cell membrane in relation to molecular structure and genetic defects. Annu Rev Biophys Biomol Struct 1994; 23: 787-818.
– reference: Park Y, Best CA, Auth T, et al. Metabolic remodeling of the human red blood cell membrane. Proc Natl Acad Sci 2010; 107: 1289-1294.
– reference: Lang F, Gulbins E, Lang PA, Zappulla D, Föller M. Ceramide in suicidal death of erythrocytes. Cell Physiol Biochem 2010; 26: 21-28.
– reference: Bonaccorsi P, Barattucci A, Papalia T, Criseo G, Faggio C, Romeo O. Pyrimidine derived disulfides as potential antimicrobial agents: synthesis and evaluation in vitro. J Sulf Chem 2015; 36: 317-325.
– reference: Lang F, Qadri SM. Mechanisms and significance of eryptosis, the suicidal death of erythrocytes. Blood Purif 2012; 33: 125-130.
– reference: Abed M, Towhid ST, Shaik N, Lang F. Stimulation of suicidal death of erythrocytes by rifampicin. Toxicology 2012; 302: 123-128.
– reference: Babu N. Influence of hypercholesterolemia on deformability and shape parameters of erythrocytes in hyperglycemic subjects. Clin Hemorheol Micro 2009; 41: 169-177.
– reference: Mohandas N, Gallagher PG. Red cell membrane: past, present, and future. Blood 2008; 112: 3939-3948.
– reference: Kalaivani T, Rajasekaran C, Mathew L. Free radical scavenging, cytotoxic, and hemolytic activities of an active antioxidant compound ethyl gallate from leaves of Acacia nilotica (L.) wild. Ex. Delile subsp. Indica (Benth.) Brenan. J Food Sci 2011; 76: T144-T149.
– reference: Finean JB, Coleman R, Michell RH. Membranes and Their Cellular Functions. Blackwell scientific publications: Oxford, 1984.
– reference: Harisa GI, Ibrahim MF, Alanazi F, Shazly GA. Engineering erythrocytes as a novel carrier for the targeted delivery of the anticancer drug paclitaxel. Saudi Pharmaceut J 2014; 22: 223-230.
– reference: Faggio C, Morabito M, Armeli Minicante S, Lo Piano G, Pagano M, Genovese G. Potential use of polysaccharides from the brown alga Undaria pinnatifida as anticoagulant. Braz Arch Biol Tecnol 2015; 58: 798-804.
– reference: Lang F, Lang E, Föller M. Physiology and pathophysiology of eryptosis. Transfus Med Hemother 2012; 39: 308-314.
– reference: Bruno-Franco M, Mazzei C. The red blood cell membrane: structure and functions. Blood Transf 2004; 2: 160-180.
– reference: Alzoubi K, Calabrò S, Bissinger R, Abed M, Faggio C, Lang F. Stimulation of suicidal erythrocyte death by artesunate. Cell Physiol Biochem 2014; 34: 2232-2244.
– reference: Budan A, Tessier N, Saunier M, et al. Effect of several saponin containing plant extracts on rumen fermentation in vitro, Tetrahymena pyriformis and sheep erythrocytes. J Food Agric Environ 2013; 11: 576-582.
– reference: Zbidah M, Lupescu A, Jilani K, Lang F. Stimulation of suicidal erythrocyte death by fumagillin. Basic Clin Pharmacol Toxicol 2013; 112: 346-351.
– reference: Lang E, Modicano P, Arnold M, et al. Effect of thioridazine on erythrocytes. Toxins 2013; 5: 1918-1931.
– reference: Kim S, Ryu DY. Silver nanoparticle-induced oxidative stress, genotoxicity and apoptosis in cultured cells and animal tissues. J Appl Toxicol 2013; 33: 78-89.
– reference: Magnani M, Rossi L. Approaches to erythrocyte-mediated drug delivery. Expert Opin Drug Deliv 2014; 11: 677-687.
– reference: Bolognesi C. Genotoxicity of pesticides: a review of human biomonitoring studies. Mutat Res/Rev Mutat Res 2003; 543: 251-272.
– reference: Ceraolo F, Vazzana M, Castriciano M, et al. Spectroscopic characterization and in vitro assay on human blood of novel porphyrin derivatives. J Biol Res 2015; 88: 47-48.
– reference: Mohandas N, Chasis J. Red blood cell deformability, membrane material properties and shape: regulation by transmembrane, skeletal and cytosolic proteins and lipids. Sem Hematol 1993; 30: 171-192.
– reference: Park Y, Best CA, Badizadegan K, et al. Measurement of red blood cell mechanics during morphological changes. Proc Natl Acad Sci 2010; 107: 6731-6736.
– reference: Mineo P, Faggio C, Micali N, Scamporrino E, Villari V. A star polymer based on a polyethylene glycol with a porphyrinic core as a photosensitizing agent for application in photodynamic therapy: tests in vitro on human erythrocytes. RSC Adv 2014; 4: 19389-19395.
– reference: De Oliveira S, Saldanha C. An overview about erythrocyte membrane. Clin Hemorheol Micro 2010; 44: 63-74.
– reference: Bonaccorsi P, Aversa MC, Barattucci A, et al. Sulfenic acid - derived glycoconjugated disulfides and sulfoxides: a biological evaluation on human red blood cells. J Sulf Chem 2013; 34: 684-691.
– reference: Levina A, Codd R, Dillon CT, Lay PA. Chromium in biology: toxicology and nutritional aspects. Progr Inorg Chem 2003; 51: 145-250.
– reference: Föller M, Huber SM, Lang F. Erythrocyte programmed cell death. IUBMB Life 2008; 60: 661-668.
– reference: Chiba K, Kawakami K, Tohyama K. Simultaneous evaluation of cell viability by neutral red, MTT and crystal violet staining assays of the same cells. Toxicol Vitro 1998; 12: 251-258.
– reference: Sharma A, Tyagi S, Nag R, Chaturvedi A, Nag T. Antimicrobial activity and cellular toxicity of flavonoid extracts from Pongamia pinnata and vitex negundo. Rom Biotechnol Lett 2011; 16: 6396-6400.
– reference: Jacobi J, Lang E, Bissinger R, et al. Stimulation of erythrocyte cell membrane scrambling by mitotane. Cell Physiol Biochem 2014; 33: 1516-1516.
– reference: Orrenius S, Nicotera P, Zhivotovsky B. Cell death mechanisms and their implications in toxicology. Toxicol Sci 2011; 119: 3-19.
– reference: Arnold M, Lang E, Modicano P, et al. Effect of nitazoxanide on erythrocytes. Basic Clin Pharmacol Toxicol 2014; 114: 421-426.
– reference: Lang KS, Lang PA, Bauer C, et al. Mechanisms of suicidal erythrocyte death. Cell physiol Biochem: Int J Exp Cell Physiol, Biochem, Pharmacol 2004; 15: 195-202.
– reference: Orsine JVC, Costa R, Silva R, Santos M, Novaes M. The acute cytotoxicity and lethal concentration (LC50) of Agaricus sylvaticus through hemolytic activity on human erythrocyte. Int J Nutr Met 2012; 4: 19-23.
– reference: Mohandas N, Chasis JA, Shohet SB. The influence of membrane skeleton on red cell deformability, membrane material properties, and shape. Sem Hematol 1983; 20: 225-242.
– reference: Betz T, Lenz M, Joanny J-F, Sykes C. ATP-dependent mechanics of red blood cells. Proc Natl Acad Sci 2009; 106: 15320-15325.
– reference: Kumar G, Karthik L, Rao KVB. Hemolytic activity of Indian medicinal plants towards human erythrocytes: an in vitro study. Elixir Appl Botany 2011; 40: 5534-5537.
– reference: Faggio C, Pagano M, Morabito M, Minicante Armeli S, Arfuso F, Genovese G. In vitro assessment of the effect of Undaria pinnatifida extracts on erythrocytes membrane and blood coagulation parameters of Equus caballus. J Coast Life Med 2014; 2: 614-616.
– reference: Lupescu A, Jilani K, Zbidah M, Lang F. Induction of apoptotic erythrocyte death by rotenone. Toxicology 2012; 300: 132-137.
– year: 2009
– volume: 11
  start-page: 677
  year: 2014
  end-page: 687
  article-title: Approaches to erythrocyte‐mediated drug delivery
  publication-title: Expert Opin Drug Deliv
– volume: 4
  start-page: 19389
  year: 2014
  end-page: 19395
  article-title: A star polymer based on a polyethylene glycol with a porphyrinic core as a photosensitizing agent for application in photodynamic therapy: tests on human erythrocytes
  publication-title: RSC Adv
– volume: 26
  start-page: 21
  year: 2010
  end-page: 28
  article-title: Ceramide in suicidal death of erythrocytes
  publication-title: Cell Physiol Biochem
– start-page: 211
  year: 2005
  end-page: 217
– volume: 2
  start-page: 160
  year: 2004
  end-page: 180
  article-title: The red blood cell membrane: structure and functions
  publication-title: Blood Transf
– year: 2001
– volume: 119
  start-page: 3
  year: 2011
  end-page: 19
  article-title: Cell death mechanisms and their implications in toxicology
  publication-title: Toxicol Sci
– volume: 44
  start-page: 63
  year: 2010
  end-page: 74
  article-title: An overview about erythrocyte membrane
  publication-title: Clin Hemorheol Micro
– volume: 106
  start-page: 15320
  year: 2009
  end-page: 15325
  article-title: ATP‐dependent mechanics of red blood cells
  publication-title: Proc Natl Acad Sci
– volume: 20
  start-page: 225
  year: 1983
  end-page: 242
  publication-title: Sem Hematol
– volume: 58
  start-page: 798
  year: 2015
  end-page: 804
  article-title: Potential use of polysaccharides from the brown alga Undaria pinnatifida as anticoagulant
  publication-title: Braz Arch Biol Tecnol
– volume: 41
  start-page: 169
  year: 2009
  end-page: 177
  article-title: Influence of hypercholesterolemia on deformability and shape parameters of erythrocytes in hyperglycemic subjects
  publication-title: Clin Hemorheol Micro
– volume: 543
  start-page: 251
  year: 2003
  end-page: 272
  article-title: Genotoxicity of pesticides: a review of human biomonitoring studies
  publication-title: Mutat Res/Rev Mutat Res
– volume: 114
  start-page: 421
  year: 2014
  end-page: 426
  article-title: Effect of nitazoxanide on erythrocytes
  publication-title: Basic Clin Pharmacol Toxicol
– volume: 15
  start-page: 195
  year: 2004
  end-page: 202
  article-title: Mechanisms of suicidal erythrocyte death
  publication-title: Cell physiol Biochem: Int J Exp Cell Physiol, Biochem, Pharmacol
– volume: 16
  start-page: 6396
  year: 2011
  end-page: 6400
  article-title: Antimicrobial activity and cellular toxicity of flavonoid extracts from Pongamia pinnata and vitex negundo
  publication-title: Rom Biotechnol Lett
– volume: 76
  start-page: T144
  year: 2011
  end-page: T149
  article-title: Free radical scavenging, cytotoxic, and hemolytic activities of an active antioxidant compound ethyl gallate from leaves of Acacia nilotica (L.) wild. Ex. Delile subsp. Indica (Benth.) Brenan
  publication-title: J Food Sci
– volume: 39
  start-page: 308
  year: 2012
  end-page: 314
  article-title: Physiology and pathophysiology of eryptosis
  publication-title: Transfus Med Hemother
– volume: 12
  start-page: 251
  year: 1998
  end-page: 258
  article-title: Simultaneous evaluation of cell viability by neutral red, MTT and crystal violet staining assays of the same cells
  publication-title: Toxicol Vitro
– volume: 51
  start-page: 145
  year: 2003
  end-page: 250
  article-title: Chromium in biology: toxicology and nutritional aspects
  publication-title: Progr Inorg Chem
– start-page: 133
  year: 2009
– volume: 100
  start-page: 51
  year: 2014
  end-page: 59
  article-title: Effect of saponin on erythrocytes
  publication-title: Int J Hematol
– volume: 3
  start-page: 2607
  year: 2011
  end-page: 2615
  article-title: Cytotoxicity of graphene oxide and graphene in human erythrocytes and skin fibroblasts
  publication-title: ACS Appl Mater Inter
– volume: 88
  start-page: 47
  year: 2015
  end-page: 48
  article-title: Spectroscopic characterization and assay on human blood of novel porphyrin derivatives
  publication-title: J Biol Res
– volume: 107
  start-page: 6731
  year: 2010
  end-page: 6736
  article-title: Measurement of red blood cell mechanics during morphological changes
  publication-title: Proc Natl Acad Sci
– volume: 4
  start-page: 19
  year: 2012
  end-page: 23
  article-title: The acute cytotoxicity and lethal concentration (LC50) of Agaricus sylvaticus through hemolytic activity on human erythrocyte
  publication-title: Int J Nutr Met
– volume: 302
  start-page: 123
  year: 2012
  end-page: 128
  article-title: Stimulation of suicidal death of erythrocytes by rifampicin
  publication-title: Toxicology
– volume: 11
  start-page: 576
  year: 2013
  end-page: 582
  article-title: Effect of several saponin containing plant extracts on rumen fermentation , Tetrahymena pyriformis and sheep erythrocytes
  publication-title: J Food Agric Environ
– volume: 34
  start-page: 2232
  year: 2014
  end-page: 2244
  article-title: Stimulation of suicidal erythrocyte death by artesunate
  publication-title: Cell Physiol Biochem
– volume: 60
  start-page: 661
  year: 2008
  end-page: 668
  article-title: Erythrocyte programmed cell death
  publication-title: IUBMB Life
– start-page: i
  year: 2004
  end-page: xvi
– volume: 40
  start-page: 5534
  year: 2011
  end-page: 5537
  article-title: Hemolytic activity of Indian medicinal plants towards human erythrocytes: an study
  publication-title: Elixir Appl Botany
– volume: 36
  start-page: 317
  year: 2015
  end-page: 325
  article-title: Pyrimidine derived disulfides as potential antimicrobial agents: synthesis and evaluation
  publication-title: J Sulf Chem
– volume: 33
  start-page: 125
  year: 2012
  end-page: 130
  article-title: Mechanisms and significance of eryptosis, the suicidal death of erythrocytes
  publication-title: Blood Purif
– volume: 37
  start-page: 237
  year: 2007
  end-page: 243
  article-title: Influence of fatty acid composition in mammalian erythrocytes on cellular aggregation
  publication-title: Clin Hemorheol Micro
– volume: 33
  start-page: 78
  year: 2013
  end-page: 89
  article-title: Silver nanoparticle‐induced oxidative stress, genotoxicity and apoptosis in cultured cells and animal tissues
  publication-title: J Appl Toxicol
– volume: 35
  start-page: 529
  year: 2015
  end-page: 540
  article-title: Stimulation of suicidal erythrocyte death by PRIMA‐1
  publication-title: Cell Physiol Biochem
– volume: 22
  start-page: 223
  year: 2014
  end-page: 230
  article-title: Engineering erythrocytes as a novel carrier for the targeted delivery of the anticancer drug paclitaxel
  publication-title: Saudi Pharmaceut J
– volume: 44
  start-page: 1236
  year: 2012
  end-page: 1243
  article-title: Killing me softly – suicidal erythrocyte death
  publication-title: Int J Biochem Cell Biol
– volume: 30
  start-page: 171
  year: 1993
  end-page: 192
  article-title: Red blood cell deformability, membrane material properties and shape: regulation by transmembrane, skeletal and cytosolic proteins and lipids
  publication-title: Sem Hematol
– volume: 23
  start-page: 787
  year: 1994
  end-page: 818
  article-title: Mechanical properties of the red cell membrane in relation to molecular structure and genetic defects
  publication-title: Annu Rev Biophys Biomol Struct
– volume: 107
  start-page: 1289
  year: 2010
  end-page: 1294
  article-title: Metabolic remodeling of the human red blood cell membrane
  publication-title: Proc Natl Acad Sci
– year: 1984
– volume: 34
  start-page: 684
  year: 2013
  end-page: 691
  article-title: Sulfenic acid – derived glycoconjugated disulfides and sulfoxides: a biological evaluation on human red blood cells
  publication-title: J Sulf Chem
– volume: 300
  start-page: 132
  year: 2012
  end-page: 137
  article-title: Induction of apoptotic erythrocyte death by rotenone
  publication-title: Toxicology
– volume: 112
  start-page: 346
  year: 2013
  end-page: 351
  article-title: Stimulation of suicidal erythrocyte death by fumagillin
  publication-title: Basic Clin Pharmacol Toxicol
– volume: 33
  start-page: 1516
  year: 2014
  end-page: 1516
  article-title: Stimulation of erythrocyte cell membrane scrambling by mitotane
  publication-title: Cell Physiol Biochem
– volume: 5
  start-page: 1918
  year: 2013
  end-page: 1931
  article-title: Effect of thioridazine on erythrocytes
  publication-title: Toxins
– volume: 2
  start-page: 614
  year: 2014
  end-page: 616
  article-title: assessment of the effect of Undaria pinnatifida extracts on erythrocytes membrane and blood coagulation parameters of Equus caballus
  publication-title: J Coast Life Med
– volume: 112
  start-page: 3939
  year: 2008
  end-page: 3948
  article-title: Red cell membrane: past, present, and future
  publication-title: Blood
– ident: e_1_2_6_43_1
  doi: 10.1016/j.tox.2012.10.006
– ident: e_1_2_6_23_1
– ident: e_1_2_6_35_1
  doi: 10.1002/iub.106
– ident: e_1_2_6_46_1
  doi: 10.3390/toxins5101918
– ident: e_1_2_6_41_1
  doi: 10.1016/j.tox.2012.06.007
– ident: e_1_2_6_32_1
  doi: 10.1590/S1516-8913201500400
– ident: e_1_2_6_18_1
  doi: 10.1002/jat.2792
– ident: e_1_2_6_9_1
  doi: 10.1146/annurev.bb.23.060194.004035
– ident: e_1_2_6_37_1
  doi: 10.1007/0-387-23752-6_20
– ident: e_1_2_6_15_1
  doi: 10.1016/S0887-2333(97)00107-0
– ident: e_1_2_6_26_1
  doi: 10.1021/am200428v
– volume: 37
  start-page: 237
  year: 2007
  ident: e_1_2_6_13_1
  article-title: Influence of fatty acid composition in mammalian erythrocytes on cellular aggregation
  publication-title: Clin Hemorheol Micro
– ident: e_1_2_6_22_1
– volume: 4
  start-page: 19
  year: 2012
  ident: e_1_2_6_20_1
  article-title: The acute cytotoxicity and lethal concentration (LC50) of Agaricus sylvaticus through hemolytic activity on human erythrocyte
  publication-title: Int J Nutr Met
– ident: e_1_2_6_33_1
  doi: 10.1080/17415993.2015.1024679
– ident: e_1_2_6_48_1
  doi: 10.1111/bcpt.12171
– ident: e_1_2_6_8_1
  doi: 10.1073/pnas.0909533107
– ident: e_1_2_6_49_1
  doi: 10.1159/000369717
– ident: e_1_2_6_34_1
  doi: 10.1093/toxsci/kfq268
– ident: e_1_2_6_4_1
  doi: 10.1182/blood-2008-07-161166
– volume: 88
  start-page: 47
  year: 2015
  ident: e_1_2_6_28_1
  article-title: Spectroscopic characterization and in vitro assay on human blood of novel porphyrin derivatives
  publication-title: J Biol Res
– ident: e_1_2_6_39_1
  doi: 10.1159/000334163
– volume: 40
  start-page: 5534
  year: 2011
  ident: e_1_2_6_21_1
  article-title: Hemolytic activity of Indian medicinal plants towards human erythrocytes: an in vitro study
  publication-title: Elixir Appl Botany
– ident: e_1_2_6_24_1
  doi: 10.1039/c3ra47913g
– ident: e_1_2_6_31_1
  doi: 10.1111/j.1750-3841.2011.02243.x
– ident: e_1_2_6_40_1
  doi: 10.1159/000315102
– ident: e_1_2_6_6_1
– ident: e_1_2_6_50_1
  doi: 10.1159/000369666
– ident: e_1_2_6_45_1
  doi: 10.1159/000342534
– volume: 16
  start-page: 6396
  year: 2011
  ident: e_1_2_6_30_1
  article-title: Antimicrobial activity and cellular toxicity of flavonoid extracts from Pongamia pinnata and vitex negundo
  publication-title: Rom Biotechnol Lett
– ident: e_1_2_6_47_1
  doi: 10.1007/s12185-014-1605-z
– volume: 2
  start-page: 614
  year: 2014
  ident: e_1_2_6_27_1
  article-title: In vitro assessment of the effect of Undaria pinnatifida extracts on erythrocytes membrane and blood coagulation parameters of Equus caballus
  publication-title: J Coast Life Med
– volume: 41
  start-page: 169
  year: 2009
  ident: e_1_2_6_12_1
  article-title: Influence of hypercholesterolemia on deformability and shape parameters of erythrocytes in hyperglycemic subjects
  publication-title: Clin Hemorheol Micro
– volume: 2
  start-page: 160
  year: 2004
  ident: e_1_2_6_5_1
  article-title: The red blood cell membrane: structure and functions
  publication-title: Blood Transf
– ident: e_1_2_6_36_1
  doi: 10.1159/000086406
– volume-title: Membranes and Their Cellular Functions
  year: 1984
  ident: e_1_2_6_7_1
– ident: e_1_2_6_10_1
  doi: 10.1073/pnas.0904614106
– volume: 44
  start-page: 63
  year: 2010
  ident: e_1_2_6_2_1
  article-title: An overview about erythrocyte membrane
  publication-title: Clin Hemorheol Micro
– volume: 11
  start-page: 576
  year: 2013
  ident: e_1_2_6_29_1
  article-title: Effect of several saponin containing plant extracts on rumen fermentation in vitro, Tetrahymena pyriformis and sheep erythrocytes
  publication-title: J Food Agric Environ
– ident: e_1_2_6_51_1
  doi: 10.1517/17425247.2014.889679
– ident: e_1_2_6_25_1
  doi: 10.1080/17415993.2013.778259
– volume: 20
  start-page: 225
  year: 1983
  ident: e_1_2_6_3_1
  publication-title: Sem Hematol
– ident: e_1_2_6_42_1
  doi: 10.1111/bcpt.12033
– ident: e_1_2_6_52_1
  doi: 10.1016/j.jsps.2013.06.007
– ident: e_1_2_6_11_1
  doi: 10.1073/pnas.0910785107
– ident: e_1_2_6_16_1
– ident: e_1_2_6_38_1
  doi: 10.1016/j.biocel.2012.04.019
– ident: e_1_2_6_17_1
  doi: 10.1016/S1383-5742(03)00015-2
– ident: e_1_2_6_44_1
  doi: 10.1159/000358715
– volume: 30
  start-page: 171
  year: 1993
  ident: e_1_2_6_14_1
  article-title: Red blood cell deformability, membrane material properties and shape: regulation by transmembrane, skeletal and cytosolic proteins and lipids
  publication-title: Sem Hematol
– volume: 51
  start-page: 145
  year: 2003
  ident: e_1_2_6_19_1
  article-title: Chromium in biology: toxicology and nutritional aspects
  publication-title: Progr Inorg Chem
SSID ssj0009630
Score 2.469343
SecondaryResourceType review_article
Snippet The erythrocytes of mammals represent a good model to evaluate the cytotoxicity of molecules, organic and inorganic, natural or synthetic, by cellular damage...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 351
SubjectTerms Animals
blood
Cytotoxicity
cytotoxicity assay
eryptosis
Erythrocyte Membrane - metabolism
Erythrocytes
Erythrocytes - cytology
Erythrocytes - drug effects
Erythrocytes - metabolism
haemolysis
Hemoglobins - metabolism
Hemolysis
Humans
Mammals
Toxicity Tests - methods
xenobiotic
Xenobiotics - metabolism
Xenobiotics - toxicity
Title The use of erythrocyte fragility to assess xenobiotic cytotoxicity
URI https://api.istex.fr/ark:/67375/WNG-2N4S7407-H/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcbf.3135
https://www.ncbi.nlm.nih.gov/pubmed/26399850
https://www.proquest.com/docview/1718282273
https://www.proquest.com/docview/1718908524
https://www.proquest.com/docview/1768577302
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqogouUAqUhYKMhOCUNms7dnJsV2xXSOwBqKjEwfIrVVWUoN2stMuvZyZOUhWVCnHKwZPEjxnPZ3v8DSFvAVIzK41JCmayRHjOk8IEmSgf8FzLetbmWPo0l7Mz8fE8O--iKvEuTOSHGDbc0DLa-RoN3Njl0TVpqLMlLDg53i_HUC3EQ5-vmaNAr7rtFZ5IkYuedzZlR_2LNzzRPezU9W0w8yZqbd3O9BH53lc4RptcHa4ae-h-_cHl-H8t2iUPOzRKj6P6PCZbodojOzE_5WaP3J_06eCekBNQKLpaBlqXNCw2mF7BbZpAy4W5wPjaDW1qatojZLoOFbI7wUcpyNRNvb50IPGUnE0_fJ3Mki4BQ-IEwxNyp6zNTWqYsGMfvElDyAqnCosk9mMlU889F4FDcamC9ZjQbOzS0ktwAV7wZ2S7qqvwnNAcFuFIZsc8L2HaYMaksghGOFaWgns5Iu_7wdCuYyfHJBk_dORVZhp6R2PvjMibQfJnZOS4ReZdO56DgFlcYQSbyvS3-almc_FFwUpWz0bkoB9w3RnvUo_BX2N0reLwr6EYuhvPUkwV6lWUKQCuMnGXjMwzBVMoG5H9qExDhRgiwzxLoaatSvy1KXpyMsXni38VfEkeAKjLYpDiAdluFqvwCoBTY1-3JvIb0GwRyA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VVqhceJTXQgEj8TilTWzHSQ4c6JZlS9s9QKv2ZhzbqaqiBO1mxYa_xF_hRzHOqyoqiEsPnHLwyHE8D3-2J98AvEBITVOhlJdQFXrcMOYlygovMtbda6WG1jWW9idifMg_HIfHS_Cj-xem4YfoD9ycZ9Tx2jm4O5DePGcN1WmGO07WZVTu2uob7tdmb3a2UbkvKR29OxiOvbakgKc5dXe-OkrTWPmK8jQw1ijf2jDRUZI6WvYgEr5hhnHLsDmLbGpcia5A-5kRGNQMZ9jvNVhxBcQdUf_2x3OuKrTk9kCHeYLHvGO69elmN9ILa9-KU-PiMmB7ESfXC93oFvzspqjJbznbmJfphv7-G3vkfzKHt-FmC7jJ28ZD7sCSzdfgelOCs1qD1WFX8e4ubKHPkPnMkiIjdlq5ChK6Ki3JpurEpRBXpCyIqm_JycLmjsAKOyUoU5TF4lSjxD04vJKPuQ_LeZHbh0DiBMNnIHxqWIaRkSrli8QqrmmWcWbEAF532pe6JWB3dUC-yIY6mkrUhnTaGMDzXvJrQzpyicyr2oB6ATU9c0l6USiPJu8lnfBPEW7W5XgA652FyTY-zWSAkMQlEEcM39U343S76yKV22LeyCSIyCn_m4yIwwhXCTqAB4319gOiDvzGoY8jrW3wj58ih1sj93z0r4LPYHV8sL8n93Ymu4_hBmLYsMnJXIflcjq3TxAnlunT2j8JfL5qY_4FXI1w0A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VVlAuPAqUhQJG4nFKm9iOkxw40F2WLYUVAip6M3bsIFSUVLtZseEn8Vf4U4zzqooK4tIDpxw8chzPw5_tyTcAjxBSUy2U8hKqQo8bxrxEWeFFxrp7LW1oXWPpzVRMDvirw_BwBX50_8I0_BD9gZvzjDpeOwc_NtnOCWloqjPccLIuoXLfVt9wuzZ_tjdC3T6mdPziw3DitRUFvJRTd-WbRlrHyleU68BYo3xrwySNEu1Y2YNI-IYZxi3D5iyy2rgKXUHqZ0ZgTDOcYb8XYI0LP3FlIkbvTqiq0JDb8xzmCR7zjujWpzvdSE8tfWtOi8uzcO1pmFyvc-Or8LOboSa95Wh7Uert9Ptv5JH_xxRegyst3CbPG_-4Dis234CLTQHOagPWh129uxuwix5DFnNLiozYWeXqR6RVaUk2U59dAnFFyoKo-o6cLG3u6KuwU4IyRVksv6QocRMOzuVjbsFqXuT2NpA4weAZCJ8almFcpEr5IrGKpzTLODNiAE875cu0pV93VUC-yoY4mkrUhnTaGMDDXvK4oRw5Q-ZJbT-9gJoduRS9KJQfpy8lnfL3EW7V5WQAW52ByTY6zWWAgMSlD0cM39U343S7yyKV22LRyCSIxyn_m4yIwwjXCDqAzcZ4-wFRB33j0MeR1ib4x0-Rw92xe975V8EHcOntaCxf703378JlBLBhk5C5BavlbGHvIUgs9f3aOwl8Om9b_gWEUW9_
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+use+of+erythrocyte+fragility+to+assess+xenobiotic+cytotoxicity&rft.jtitle=Cell+biochemistry+and+function&rft.au=Pagano%2C+Maria&rft.au=Faggio%2C+Caterina&rft.date=2015-08-01&rft.issn=0263-6484&rft.eissn=1099-0844&rft.volume=33&rft.issue=6&rft.spage=351&rft.epage=355&rft_id=info:doi/10.1002%2Fcbf.3135&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0263-6484&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0263-6484&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0263-6484&client=summon