Macroecological patterns of marine bacteria on a global scale

Aim: To test whether within-species and among-species patterns of abundance and latitudinal range in marine bacteria resemble those found for macro-organisms, and whether these patterns differ along latitudinal clines. Location: Global pelagic marine environments. Methods: Taxon-specific sequence ab...

Full description

Saved in:
Bibliographic Details
Published inJournal of biogeography Vol. 40; no. 4; pp. 800 - 811
Main Authors Amend, Anthony S., Oliver, Tom A., Amaral-Zettler, Linda A., Boetius, Antje, Fuhrman, Jed A., Horner-Devine, M. Claire, Huse, Susan M., Welch, David B. Mark, Martiny, Adam C., Ramette, Alban, Zinger, Lucie, Sogin, Mitchell L., Martiny, Jennifer B. H.
Format Journal Article
LanguageEnglish
Published Oxford Blackwell Publishing Ltd 01.04.2013
Blackwell Publishing
Blackwell
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN0305-0270
1365-2699
DOI10.1111/jbi.12034

Cover

Abstract Aim: To test whether within-species and among-species patterns of abundance and latitudinal range in marine bacteria resemble those found for macro-organisms, and whether these patterns differ along latitudinal clines. Location: Global pelagic marine environments. Methods: Taxon-specific sequence abundance and location were retrieved from the open-access V6-rRNA pyrotag sequence data base VAMPS (http://vamps.mbl.edu/), which holds a massive collection of marine bacterial community data sets from the International Census of Marine Microbes sampling effort of global ocean water masses. Data were randomly subsampled to correct for spatial bias and for differences in sampling effort. Results: We show that bacterial latitudinal ranges are narrower than expected by chance. When present in both Northern and Southern hemispheres, taxa occupy restricted ranges at similar latitudes on both sides of the equator. A significant and positive relationship exists between sequence abundance and latitudinal range, although this pattern contains a large amount of variance. Abundant taxa in the tropics and in the Northern Hemisphere generally have smaller ranges than those in the Southern Hemisphere. We show that the mean latitudinal range of bacterial taxa increases with latitude, supporting the existence of a Rapoport effect in marine bacterioplankton. Finally, we show that bacterioplankton communities contain a higher proportion of abundant taxa as they approach the poles. Main conclusions: Macroecological patterns such as the abundance—range relationship, in general, extend to marine bacteria. However, differences in the shape of these relationships between bacteria and macro-organisms call into question whether the processes and their relative importance in shaping global marine bacteria and macro-organism distributions are the same.
AbstractList Aim To test whether within-species and among-species patterns of abundance and latitudinal range in marine bacteria resemble those found for macro-organisms, and whether these patterns differ along latitudinal clines. Location Global pelagic marine environments. Methods Taxon-specific sequence abundance and location were retrieved from the open-access V6-rRNA pyrotag sequence data base VAMPS (http://vamps.mbl.edu/), which holds a massive collection of marine bacterial community data sets from the International Census of Marine Microbes sampling effort of global ocean water masses. Data were randomly subsampled to correct for spatial bias and for differences in sampling effort. Results We show that bacterial latitudinal ranges are narrower than expected by chance. When present in both Northern and Southern hemispheres, taxa occupy restricted ranges at similar latitudes on both sides of the equator. A significant and positive relationship exists between sequence abundance and latitudinal range, although this pattern contains a large amount of variance. Abundant taxa in the tropics and in the Northern Hemisphere generally have smaller ranges than those in the Southern Hemisphere. We show that the mean latitudinal range of bacterial taxa increases with latitude, supporting the existence of a Rapoport effect in marine bacterioplankton. Finally, we show that bacterioplankton communities contain a higher proportion of abundant taxa as they approach the poles. Main conclusions Macroecological patterns such as the abundance-range relationship, in general, extend to marine bacteria. However, differences in the shape of these relationships between bacteria and macro-organisms call into question whether the processes and their relative importance in shaping global marine bacteria and macro-organism distributions are the same. [PUBLICATION ABSTRACT]
Aim To test whether within‐species and among‐species patterns of abundance and latitudinal range in marine bacteria resemble those found for macro‐organisms, and whether these patterns differ along latitudinal clines. Location Global pelagic marine environments. Methods Taxon‐specific sequence abundance and location were retrieved from the open‐access V6‐rRNA pyrotag sequence data base VAMPS (http://vamps.mbl.edu/), which holds a massive collection of marine bacterial community data sets from the International Census of Marine Microbes sampling effort of global ocean water masses. Data were randomly subsampled to correct for spatial bias and for differences in sampling effort. Results We show that bacterial latitudinal ranges are narrower than expected by chance. When present in both Northern and Southern hemispheres, taxa occupy restricted ranges at similar latitudes on both sides of the equator. A significant and positive relationship exists between sequence abundance and latitudinal range, although this pattern contains a large amount of variance. Abundant taxa in the tropics and in the Northern Hemisphere generally have smaller ranges than those in the Southern Hemisphere. We show that the mean latitudinal range of bacterial taxa increases with latitude, supporting the existence of a Rapoport effect in marine bacterioplankton. Finally, we show that bacterioplankton communities contain a higher proportion of abundant taxa as they approach the poles. Main conclusions Macroecological patterns such as the abundance–range relationship, in general, extend to marine bacteria. However, differences in the shape of these relationships between bacteria and macro‐organisms call into question whether the processes and their relative importance in shaping global marine bacteria and macro‐organism distributions are the same.
To test whether within-species and among-species patterns of abundance and latitudinal range in marine bacteria resemble those found for macro-organisms, and whether these patterns differ along latitudinal clines. Global pelagic marine environments. Taxon-specific sequence abundance and location were retrieved from the open-access V6-rRNA pyrotag sequence data base VAMPS (http://vamps.mbl.edu/), which holds a massive collection of marine bacterial community data sets from the International Census of Marine Microbes sampling effort of global ocean water masses. Data were randomly subsampled to correct for spatial bias and for differences in sampling effort. We show that bacterial latitudinal ranges are narrower than expected by chance. When present in both Northern and Southern hemispheres, taxa occupy restricted ranges at similar latitudes on both sides of the equator. A significant and positive relationship exists between sequence abundance and latitudinal range, although this pattern contains a large amount of variance. Abundant taxa in the tropics and in the Northern Hemisphere generally have smaller ranges than those in the Southern Hemisphere. We show that the mean latitudinal range of bacterial taxa increases with latitude, supporting the existence of a Rapoport effect in marine bacterioplankton. Finally, we show that bacterioplankton communities contain a higher proportion of abundant taxa as they approach the poles. Macroecological patterns such as the abundance-range relationship, in general, extend to marine bacteria. However, differences in the shape of these relationships between bacteria and macro-organisms call into question whether the processes and their relative importance in shaping global marine bacteria and macro-organism distributions are the same.
Aim: To test whether within-species and among-species patterns of abundance and latitudinal range in marine bacteria resemble those found for macro-organisms, and whether these patterns differ along latitudinal clines. Location: Global pelagic marine environments. Methods: Taxon-specific sequence abundance and location were retrieved from the open-access V6-rRNA pyrotag sequence data base VAMPS (http://vamps.mbl.edu/), which holds a massive collection of marine bacterial community data sets from the International Census of Marine Microbes sampling effort of global ocean water masses. Data were randomly subsampled to correct for spatial bias and for differences in sampling effort. Results: We show that bacterial latitudinal ranges are narrower than expected by chance. When present in both Northern and Southern hemispheres, taxa occupy restricted ranges at similar latitudes on both sides of the equator. A significant and positive relationship exists between sequence abundance and latitudinal range, although this pattern contains a large amount of variance. Abundant taxa in the tropics and in the Northern Hemisphere generally have smaller ranges than those in the Southern Hemisphere. We show that the mean latitudinal range of bacterial taxa increases with latitude, supporting the existence of a Rapoport effect in marine bacterioplankton. Finally, we show that bacterioplankton communities contain a higher proportion of abundant taxa as they approach the poles. Main conclusions: Macroecological patterns such as the abundance—range relationship, in general, extend to marine bacteria. However, differences in the shape of these relationships between bacteria and macro-organisms call into question whether the processes and their relative importance in shaping global marine bacteria and macro-organism distributions are the same.
Author Martiny, Adam C.
Horner-Devine, M. Claire
Welch, David B. Mark
Huse, Susan M.
Martiny, Jennifer B. H.
Amend, Anthony S.
Ramette, Alban
Oliver, Tom A.
Boetius, Antje
Fuhrman, Jed A.
Zinger, Lucie
Sogin, Mitchell L.
Amaral-Zettler, Linda A.
Author_xml – sequence: 1
  givenname: Anthony S.
  surname: Amend
  fullname: Amend, Anthony S.
  email: Correspondence: Anthony S. Amend, Department of Botany, University of Hawaii at Manoa, 3190 Maile Way, Honolulu, HI 96822, USA., amend@hawaii.edu
  organization: Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, USA
– sequence: 2
  givenname: Tom A.
  surname: Oliver
  fullname: Oliver, Tom A.
  organization: Hawaiian Institute of Marine Biology, University of Hawaii at Manoa, HI, Kaneohe, USA
– sequence: 3
  givenname: Linda A.
  surname: Amaral-Zettler
  fullname: Amaral-Zettler, Linda A.
  organization: Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Woods Hole Marine Biological Laboratory, Woods Hole, MA, USA
– sequence: 4
  givenname: Antje
  surname: Boetius
  fullname: Boetius, Antje
  organization: Microbial Habitat Group, Max Planck Institute for Marine Microbiology, Bremen, Germany
– sequence: 5
  givenname: Jed A.
  surname: Fuhrman
  fullname: Fuhrman, Jed A.
  organization: Department of Biological Sciences, University of Southern California, CA, Los Angeles, USA
– sequence: 6
  givenname: M. Claire
  surname: Horner-Devine
  fullname: Horner-Devine, M. Claire
  organization: School of Aquatic and Fishery Sciences, University of Washington, WA, Seattle, USA
– sequence: 7
  givenname: Susan M.
  surname: Huse
  fullname: Huse, Susan M.
  organization: Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Woods Hole Marine Biological Laboratory, MA, Woods Hole, USA
– sequence: 8
  givenname: David B. Mark
  surname: Welch
  fullname: Welch, David B. Mark
  organization: Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Woods Hole Marine Biological Laboratory, MA, Woods Hole, USA
– sequence: 9
  givenname: Adam C.
  surname: Martiny
  fullname: Martiny, Adam C.
  organization: Department of Ecology and Evolutionary Biology, University of California, CA, Irvine, USA
– sequence: 10
  givenname: Alban
  surname: Ramette
  fullname: Ramette, Alban
  organization: Microbial Habitat Group, Max Planck Institute for Marine Microbiology, Bremen, Germany
– sequence: 11
  givenname: Lucie
  surname: Zinger
  fullname: Zinger, Lucie
  organization: Microbial Habitat Group, Max Planck Institute for Marine Microbiology, Bremen, Germany
– sequence: 12
  givenname: Mitchell L.
  surname: Sogin
  fullname: Sogin, Mitchell L.
  organization: Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Woods Hole Marine Biological Laboratory, MA, Woods Hole, USA
– sequence: 13
  givenname: Jennifer B. H.
  surname: Martiny
  fullname: Martiny, Jennifer B. H.
  organization: Department of Ecology and Evolutionary Biology, University of California, CA, Irvine, USA
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27146659$$DView record in Pascal Francis
BookMark eNp1kV9rFDEUxYNUcLv64AcQBkSwD9Pm5u_kwYdaaltZ9UFF8CXczSQl63SyJrNov71Zd6tQNC-BnN853HtySA7GNHpCngI9hnpOVst4DIxy8YDMgCvZMmXMAZlRTmVLmaaPyGEpK0qpkVzMyKt36HLyLg3pOjocmjVOk89jaVJobjDH0TdLdPUpYpPGBpvrIS0rVyrsH5OHAYfin-zvOfn85vzT2WW7-HBxdXa6aJ1gVLQepNHQd51Cg67vA_TBMI3coOkoQtBSBwqqN93SdRJQOSaCNqbrtRMAfE5e7nLXOX3f-DLZm1icHwYcfdoUC5zxDqgEVdHn99BV2uSxTlcp0Ao0r_CcvNhTuF0kZBxdLHadY9351jINQilpKney42pJpWQfrIsTTjGNU8Y4WKB2W7uttdvftVfH0T3HXei_2H36jzj42_-D9u3rqzvHs51jVaaU_87LheJK0Kq3Oz2Wyf_8o2P-ZpXmWtov7y_s4ivbfsul_ch_AXY2qS8
CODEN JBIODN
CitedBy_id crossref_primary_10_3389_fmicb_2017_00882
crossref_primary_10_1111_1365_2435_13004
crossref_primary_10_1111_ele_12587
crossref_primary_10_1111_mec_12640
crossref_primary_10_1128_AEM_02456_15
crossref_primary_10_3390_microorganisms10071339
crossref_primary_10_1016_j_jhazmat_2025_137135
crossref_primary_10_1126_sciadv_ade8352
crossref_primary_10_1016_j_margen_2014_03_002
crossref_primary_10_3389_fenvs_2018_00021
crossref_primary_10_1073_pnas_2204146119
crossref_primary_10_1111_jbi_13785
crossref_primary_10_1146_annurev_virology_031413_085540
crossref_primary_10_1038_s41396_021_01120_8
crossref_primary_10_1002_lob_10108
crossref_primary_10_3389_fevo_2021_633155
crossref_primary_10_1007_s10750_014_2002_6
crossref_primary_10_1186_1471_2105_15_41
crossref_primary_10_1111_1462_2920_13797
crossref_primary_10_3389_fgene_2019_01344
crossref_primary_10_1111_mec_13365
crossref_primary_10_1093_femsec_fiae137
crossref_primary_10_3354_ame01985
crossref_primary_10_1111_geb_12918
crossref_primary_10_1002_bes2_1645
crossref_primary_10_3354_ame01801
crossref_primary_10_1088_1755_1315_1463_1_012013
crossref_primary_10_3389_fmicb_2020_01847
crossref_primary_10_1038_s41559_019_0798_1
crossref_primary_10_1371_journal_pone_0148016
crossref_primary_10_1111_jbi_14243
crossref_primary_10_1016_j_funeco_2015_09_003
crossref_primary_10_1016_j_jip_2015_07_006
crossref_primary_10_1890_14_1510_1
crossref_primary_10_1038_s41467_020_18529_y
crossref_primary_10_1016_j_gecco_2022_e02304
crossref_primary_10_1038_s41467_023_41909_z
crossref_primary_10_1073_pnas_1719335115
crossref_primary_10_1093_plankt_fbt115
crossref_primary_10_3389_fmicb_2017_00947
crossref_primary_10_1038_ismej_2014_21
crossref_primary_10_1073_pnas_1421865112
Cites_doi 10.1046/j.1461-0248.2002.00297.x
10.1086/284267
10.1111/j.1466-8238.2006.00303.x
10.1086/285695
10.1086/403797
10.1002/9781444325508.ch12
10.1038/ismej.2010.77
10.1126/science.1118176
10.1016/S0169-5347(97)01236-6
10.1086/285526
10.1046/j.1365-2664.2000.00485.x
10.1111/j.1365-294X.2010.04898.x
10.1111/j.1462-2920.2010.02315.x
10.1007/s10393-010-0290-5
10.1111/j.1365-294X.2006.03189.x
10.1371/journal.pgen.1000255
10.1007/978-0-387-98141-3
10.1111/j.1758-2229.2011.00308.x
10.1111/j.0014-3820.2004.tb01713.x
10.2307/3545224
10.2307/1938812
10.1046/j.1365-2699.1996.00977.x
10.2307/2844717
10.1371/journal.pone.0024570
10.1086/282130
10.1073/pnas.0605127103
10.1073/pnas.1016308108
10.1073/pnas.0803070105
10.1111/j.1461-0248.2009.01413.x
10.1080/09670269500650771
10.5962/bhl.title.82303
10.1017/S0094837300010629
10.1186/gb-2007-8-7-r143
10.1111/j.1462-2920.2009.02051.x
10.1038/ismej.2011.119
10.1111/j.1095-8312.1991.tb00549.x
10.1111/j.1365-2699.2004.01117.x
10.2307/3544021
10.1111/j.0022-3646.1992.00428.x
10.1126/science.1111318
10.2307/2999704
10.1007/s002270050010
10.1038/nature03073
10.1086/368296
10.1111/j.1462-2920.2010.02193.x
10.1073/pnas.1000454107
ContentType Journal Article
Copyright Copyright © 2013 Blackwell Publishing Ltd.
2012 Blackwell Publishing Ltd
2014 INIST-CNRS
Copyright © 2013 Blackwell Publishing Ltd
Copyright_xml – notice: Copyright © 2013 Blackwell Publishing Ltd.
– notice: 2012 Blackwell Publishing Ltd
– notice: 2014 INIST-CNRS
– notice: Copyright © 2013 Blackwell Publishing Ltd
DBID BSCLL
AAYXX
CITATION
IQODW
7SN
7SS
8FD
C1K
FR3
P64
RC3
7QL
7ST
7TN
7U6
F1W
H95
L.G
SOI
DOI 10.1111/jbi.12034
DatabaseName Istex
CrossRef
Pascal-Francis
Ecology Abstracts
Entomology Abstracts (Full archive)
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
Environment Abstracts
Oceanic Abstracts
Sustainability Science Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Environment Abstracts
DatabaseTitle CrossRef
Entomology Abstracts
Genetics Abstracts
Technology Research Database
Engineering Research Database
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Oceanic Abstracts
Sustainability Science Abstracts
Bacteriology Abstracts (Microbiology B)
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Environment Abstracts
DatabaseTitleList Entomology Abstracts

Aquatic Science & Fisheries Abstracts (ASFA) Professional

DeliveryMethod fulltext_linktorsrc
Discipline Geography
Biology
Ecology
EISSN 1365-2699
Editor Lambshead, John
Editor_xml – sequence: 14
  givenname: John
  surname: Lambshead
  fullname: Lambshead, John
EndPage 811
ExternalDocumentID 2920799201
27146659
10_1111_jbi_12034
JBI12034
23463640
ark_67375_WNG_LZ24204H_S
Genre article
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1OC
29J
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHKG
AAHQN
AAISJ
AAKGQ
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABBHK
ABCQN
ABCUV
ABEML
ABJNI
ABLJU
ABPLY
ABPPZ
ABPVW
ABSQW
ABTLG
ABXSQ
ACAHQ
ACBWZ
ACCZN
ACGFS
ACHIC
ACPOU
ACPRK
ACRPL
ACSCC
ACSTJ
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADULT
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUPB
AEUYR
AEYWJ
AFAZZ
AFBPY
AFEBI
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGUYK
AGXDD
AGYGG
AHBTC
AHXOZ
AI.
AIDQK
AIDYY
AILXY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ANHSF
AQVQM
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CAG
CBGCD
COF
CS3
CUYZI
D-E
D-F
DCZOG
DEVKO
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GODZA
GTFYD
H.T
H.X
HF~
HGD
HGLYW
HQ2
HTVGU
HVGLF
HZI
HZ~
H~9
IHE
IPSME
IX1
J0M
JAAYA
JBMMH
JBS
JEB
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JST
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
ROL
RX1
SA0
SUPJJ
TN5
UB1
VH1
VOH
VQP
W8V
W99
WBKPD
WIH
WIK
WMRSR
WOHZO
WQJ
WSUWO
WXSBR
XG1
YQT
ZZTAW
~02
~IA
~KM
~WT
AAHHS
AAYXX
ACCFJ
ADZOD
AEEZP
AEQDE
AIWBW
AJBDE
CITATION
IQODW
7SN
7SS
8FD
C1K
FR3
P64
RC3
7QL
7ST
7TN
7U6
F1W
H95
L.G
SOI
ID FETCH-LOGICAL-c4204-e15971d886a9acddf1df927a39a980a1f757f016d98bc851a6c24f7998d7c4113
IEDL.DBID DR2
ISSN 0305-0270
IngestDate Fri Jul 11 08:44:30 EDT 2025
Fri Jul 25 10:18:21 EDT 2025
Mon Jul 21 09:10:51 EDT 2025
Tue Jul 01 01:14:07 EDT 2025
Thu Apr 24 23:01:56 EDT 2025
Tue Sep 09 05:11:53 EDT 2025
Sun Aug 24 12:10:41 EDT 2025
Tue Sep 09 05:32:45 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Abundance-range relationship
Latitudinal gradient
Biogeography
macro-organisms
Abundance
Ecology
micro-organisms
Marine environment
macro-ecology
Bacterioplankton
Macroecology
Bacteria
Rapoport's rule
marine microbes
Microorganism
Rapoport rule
rarity
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4204-e15971d886a9acddf1df927a39a980a1f757f016d98bc851a6c24f7998d7c4113
Notes ArticleID:JBI12034
ark:/67375/WNG-LZ24204H-S
istex:ADC5F5ECD7033DFB52C83A6FDDD4743978409F09
ObjectType-Article-1
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Feature-2
content type line 23
PQID 1317617332
PQPubID 1086398
PageCount 12
ParticipantIDs proquest_miscellaneous_1323810516
proquest_journals_1317617332
pascalfrancis_primary_27146659
crossref_citationtrail_10_1111_jbi_12034
crossref_primary_10_1111_jbi_12034
wiley_primary_10_1111_jbi_12034_JBI12034
jstor_primary_23463640
istex_primary_ark_67375_WNG_LZ24204H_S
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2013
PublicationDateYYYYMMDD 2013-04-01
PublicationDate_xml – month: 04
  year: 2013
  text: April 2013
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Journal of biogeography
PublicationTitleAlternate J. Biogeogr
PublicationYear 2013
Publisher Blackwell Publishing Ltd
Blackwell Publishing
Blackwell
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Blackwell Publishing
– name: Blackwell
– name: Wiley Subscription Services, Inc
References Ruggiero, A. & Werenkraut, V. (2007) One-dimensional analyses of Rapoport's rule reviewed through meta-analysis. Global Ecology and Biogeography, 16, 401-414.
Gaston, K.J. (1994) Rarity. Chapman & Hall, London.
Oksanen, J., Blanchet, J.F., Kindt, R., Legendre, P., O'Hara, R.B. et al. (2011) The vegan package. R package version 1.17-6. Available at: http://cran.r-project.org/package=vegan.
Wickham, H. (2009) ggplot2: elegant graphics for data analysis. Springer, New York.
Bischoff, B. & Wiencke, C. (1995) Temperature ecotypes and biogeography of Acrosiphoniales (Chlorophyta) with Arctic-Antarctic disjunct and Arctic/cold-temperature distributions. European Journal of Phycology, 30, 19-27.
Brown, J.H. (1995) Macroecology. University of Chicago Press, Chicago, IL.
Barberán, A., Bates, S.T., Casamayor, E.O. & Fierer, N. (2012) Using network analysis to explore co-occurrence patterns in soil microbial communities. The ISME Journal, 6, 343-351.
Hilbish, T.J., Mullinax, A., Dolven, S.I., Meyer, A., Koehn, R.K. & Rawson, P.D. (2000) Origin of the antitropical distribution pattern in marine mussels (Mytilus spp.): routes and timing of transequatorial migration. Marine Biology, 136, 69-77.
Gaston, K.J. & Lawton, J.H. (1990) Effects of scale and habitat on the relationship between regional distribution and local abundance. Oikos, 58, 329-335.
Furrer, R. & Sain, S.R. (2008) spam: a sparse matrix R package with emphasis on MCMC methods for Gaussian Markov random fields. Journal of Statistical Software, 36, 1-25.
Bell, T. (2010) Experimental tests of the bacterial distance-decay relationship. The ISME Journal, 4, 1357-1365.
Bell, T., Ager, D., Song, J.-I., Newman, J.A., Thompson, I.P., Lilley, A.K. & van der Gast, C.J. (2005) Larger islands house more bacterial taxa. Science, 308, 1884.
Hanski, I. (1991) Single-species metapopulation dynamics: concepts, models and observations. Biological Journal of the Linnean Society, 42, 17-38.
Huse, S.M., Dethlefsen, L., Huber, J.A., Welch, D.M., Relman, D.A. & Sogin, M.L. (2008) Exploring microbial diversity and taxonomy using SSU rRNA hypervariable tag sequencing. PLoS Genetics, 4, e1000255.
Amend, A.S., Seifert, K.A., Samson, R. & Bruns, T.D. (2010b) Indoor fungal composition is geographically patterned and more diverse in temperate zones than in the tropics. Proceedings of the National Academy of Sciences USA, 107, 13748-13753.
Stevens, G.C. (1996) Extending Rapoport's rule to Pacific marine fishes. Journal of Biogeography, 23, 149-154.
Nemergut, D.R., Costello, E.K., Hamady, M., Lozupone, C., Jiang, L., Schmidt, S.K., Fierer, N., Townsend, A.R., Cleveland, C.C., Stanish, L. & Knight, R. (2011) Global patterns in the biogeography of bacterial taxa. Environmental Microbiology, 13, 135-144.
Ekman, S. (1953) Zoogeography of the sea. Sidgwick & Jackson, London.
Huse, S.M., Huber, J.A., Morrison, H.G., Sogin, M.L. & Welch, D.M. (2007) Accuracy and quality of massively parallel DNA pyrosequencing. Genome Biology, 8, R143.
Bock, C.E. (1987) Distribution-abundance relationships of some Arizona landbirds: a matter of scale? Ecology, 68, 124-129.
Hanski, I. (1982) Dynamics of regional distribution: the core and satellite species hypothesis. Oikos, 38, 210-221.
Lindberg, D.R. (1991) Marine biotic interchange between the northern and southern hemispheres. Paleobiology, 17, 308-324.
Stevens, G.C. (1989) The latitudinal gradient in geographical range: how so many species coexist in the tropics. The American Naturalist, 133, 240-256.
Gaston, K.J., Blackburn, T.M. & Spicer, J.I. (1998) Rapoport's rule: time for an epitaph? Trends in Ecology and Evolution, 13, 70-74.
Brown, J.H. (1984) On the relationship between abundance and distribution of species. The American Naturalist, 124, 255-279.
Klopfer, P.H. & MacArthur, R.H. (1960) Niche size and faunal diversity. The American Naturalist, 94, 293-300.
Hengeveld, R. & Haeck, J. (1982) The distribution of abundance. I. Measurements. Journal of Biogeography, 9, 303-316.
Pommier, T., Canbäck, B., Riemann, L., Boström, K., Simu, K., Lundberg, P., Tunlid, A. & Hagström, Å. (2007) Global patterns of diversity and community structure in marine bacterioplankton. Molecular Ecology, 16, 867-880.
Soininen, J. (2012) Macroecology of unicellular organisms - patterns and processes. Environmental Microbiology Reports, 4, 10-22.
Huse, S.M., Welch, D.M., Morrison, H.G. & Sogin, M.L. (2010) Ironing out the wrinkles in the rare biosphere through improved OTU clustering. Environmental Microbiology, 12, 1889-1898.
Kunin, V., Engelbrektson, A., Ochman, H. & Hugenholtz, P. (2010) Wrinkles in the rare biosphere: pyrosequencing errors can lead to artificial inflation of diversity estimates. Environmental Microbiology, 12, 118-123.
Fuhrman, J.A., Steele, J.A., Hewson, I., Schwalbach, M.S., Brown, M.V., Green, J.L. & Brown, J.H. (2008) A latitudinal diversity gradient in planktonic marine bacteria. Proceedings of the National Academy of Sciences USA, 105, 7774-7778.
Furrer, R., Nychka, D. & Sain, S. (2009) Fields - tools for spatial data. R Package Version 6.3. Available at: http://www.image.ucar.edu/GSP/Software/Fields/.
Peters, A.F. & Breeman, A.M. (1992) Temperature responses of disjunct temperate brown algae indicate long-distance dispersal of microthalli across the tropics. Journal of Phycology, 28, 428-438.
Amend, A.S., Seifert, K.A. & Bruns, T.D. (2010a) Quantifying microbial communities with 454 pyrosequencing: does read abundance count? Molecular Ecology, 19, 5555-5565.
Gaston, K.J., Blackburn, T.M., Greenwood, J.J.D., Gregory, R.D., Quinn, R.M. & Lawton, J.H. (2000) Abundance-occupancy relationships. Journal of Applied Ecology, 37(Suppl. 1), 39-59.
Darwin, C. (1859) On the origin of species by means of natural selection, or, the preservation of favoured races in the struggle for life. John Murray, London.
Zinger, L., Amaral-Zettler, L.A., Fuhrman, J.A., Horner-Devine, M.C., Huse, S.M., Welch, D.B.M., Martiny, J.B.H., Sogin, M., Boetius, A. & Ramette, A. (2011) Global patterns of bacterial beta-diversity in seafloor and seawater ecosystems. PLoS ONE, 6, e24570.
Sagarin, R.D. & Gaines, S.D. (2002) The 'abundant centre' distribution: to what extent is it a biogeographical rule? Ecology Letters, 5, 137-147.
Colwell, R.K. & Hurtt, G.C. (1994) Nonbiological gradients in species richness and a spurious Rapoport effect. The American Naturalist, 144, 570-595.
Horner-Devine, M.C., Lage, M., Hughes, J.B. & Bohannan, B.J.M. (2004) A taxa-area relationship for bacteria. Nature, 432, 750-753.
R Development Core Team (2010) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
Martiny, J.B.H., Eisen, J.A., Penn, K., Allison, S.D. & Horner-Devine, M.C. (2011) Drivers of bacterial β-diversity depend on spatial scale. Proceedings of the National Academy of Sciences USA, 108, 7850-7854.
Webb, T.J. & Gaston, K.J. (2003) On the heritability of geographic range sizes. The American Naturalist, 161, 553-566.
Östman, Ö., Drakare, S., Kritzberg, E.S., Langenheder, S., Logue, J.B. & Lindström, E.S. (2010) Regional invariance among microbial communities. Ecology Letters, 13, 118-127.
Rohde, K. (1996) Rapoport's Rule is a local phenomenon and cannot explain latitudinal gradients in species diversity. Biodiversity Letters, 3, 10-13.
Curtis, T.P. & Sloan, W.T. (2005) Exploring microbial diversity - a vast below. Science, 309, 1331-1333.
Lewin-Koh, N.J. & Bivand, R. (2009) Maptools: tools for reading and handling spatial objects. R package version 0.7-38. Available at: http://cran.r-project.org/package=maptools.
Sogin, M.L., Morrison, H.G., Huber, J.A., Welch, D.M., Huse, S.M., Neal, P.R., Arrieta, J.M. & Herndl, G.J. (2006) Microbial diversity in the deep sea and the underexplored "rare biosphere". Proceedings of the National Academy of Sciences USA, 103, 12115-12120.
Fortes, R.R. & Absalão, R.S. (2004) The applicability of Rapoport's rule to the marine molluscs of the Americas. Journal of Biogeography, 31, 1909-1916.
Guernier, V. & Guégan, J.-F. (2009) May Rapoport's rule apply to human associated pathogens? EcoHealth, 6, 509-521.
Raven, P.H. (1963) Amphitropical relationships in the floras of North and South America. Quarterly Review of Biology, 38, 151-177.
Rohde, K., Heap, M. & Heap, D. (1993) Rapoport's rule does not apply to marine teleosts and cannot explain latitudinal gradients in species richness. The American Naturalist, 142, 1-16.
2010; 12
1995; 30
1991; 17
1990; 58
2010; 13
1984; 124
2000; 136
2008; 36
2008; 105
2011; 13
2008; 4
1859
1994; 144
2004; 31
1963; 38
1991; 42
1982; 9
2007; 8
2003; 161
2005; 308
2005; 309
1981
2010; 4
1996; 3
1996; 23
1998; 13
1960; 94
1982; 38
2011
2010
2002; 5
1989; 133
2009
1953
1952
2010a; 19
1995
1994
2011; 6
1993; 142
2007; 16
1987; 68
2011; 108
2004; 432
2000; 37
1992; 28
2010b; 107
2009; 6
2012; 6
2012; 4
2006; 103
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_17_1
e_1_2_7_41_1
e_1_2_7_13_1
e_1_2_7_43_1
Lewin‐Koh N.J. (e_1_2_7_36_1) 2009
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
Furrer R. (e_1_2_7_18_1) 2008; 36
e_1_2_7_50_1
Ekman S. (e_1_2_7_15_1) 1953
e_1_2_7_25_1
e_1_2_7_31_1
Oksanen J. (e_1_2_7_40_1) 2011
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
Rabinowitz D. (e_1_2_7_45_1) 1981
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_39_1
e_1_2_7_6_1
Brown J.H. (e_1_2_7_11_1) 1995
Hubbs C.L. (e_1_2_7_30_1) 1952
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_12_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_51_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_38_1
R Development Core Team (e_1_2_7_44_1) 2010
Furrer R. (e_1_2_7_19_1) 2009
References_xml – reference: Rohde, K. (1996) Rapoport's Rule is a local phenomenon and cannot explain latitudinal gradients in species diversity. Biodiversity Letters, 3, 10-13.
– reference: Furrer, R. & Sain, S.R. (2008) spam: a sparse matrix R package with emphasis on MCMC methods for Gaussian Markov random fields. Journal of Statistical Software, 36, 1-25.
– reference: Gaston, K.J. & Lawton, J.H. (1990) Effects of scale and habitat on the relationship between regional distribution and local abundance. Oikos, 58, 329-335.
– reference: Ekman, S. (1953) Zoogeography of the sea. Sidgwick & Jackson, London.
– reference: Amend, A.S., Seifert, K.A. & Bruns, T.D. (2010a) Quantifying microbial communities with 454 pyrosequencing: does read abundance count? Molecular Ecology, 19, 5555-5565.
– reference: Lindberg, D.R. (1991) Marine biotic interchange between the northern and southern hemispheres. Paleobiology, 17, 308-324.
– reference: Amend, A.S., Seifert, K.A., Samson, R. & Bruns, T.D. (2010b) Indoor fungal composition is geographically patterned and more diverse in temperate zones than in the tropics. Proceedings of the National Academy of Sciences USA, 107, 13748-13753.
– reference: Curtis, T.P. & Sloan, W.T. (2005) Exploring microbial diversity - a vast below. Science, 309, 1331-1333.
– reference: Kunin, V., Engelbrektson, A., Ochman, H. & Hugenholtz, P. (2010) Wrinkles in the rare biosphere: pyrosequencing errors can lead to artificial inflation of diversity estimates. Environmental Microbiology, 12, 118-123.
– reference: Bock, C.E. (1987) Distribution-abundance relationships of some Arizona landbirds: a matter of scale? Ecology, 68, 124-129.
– reference: Huse, S.M., Welch, D.M., Morrison, H.G. & Sogin, M.L. (2010) Ironing out the wrinkles in the rare biosphere through improved OTU clustering. Environmental Microbiology, 12, 1889-1898.
– reference: Fortes, R.R. & Absalão, R.S. (2004) The applicability of Rapoport's rule to the marine molluscs of the Americas. Journal of Biogeography, 31, 1909-1916.
– reference: Martiny, J.B.H., Eisen, J.A., Penn, K., Allison, S.D. & Horner-Devine, M.C. (2011) Drivers of bacterial β-diversity depend on spatial scale. Proceedings of the National Academy of Sciences USA, 108, 7850-7854.
– reference: Raven, P.H. (1963) Amphitropical relationships in the floras of North and South America. Quarterly Review of Biology, 38, 151-177.
– reference: Sogin, M.L., Morrison, H.G., Huber, J.A., Welch, D.M., Huse, S.M., Neal, P.R., Arrieta, J.M. & Herndl, G.J. (2006) Microbial diversity in the deep sea and the underexplored "rare biosphere". Proceedings of the National Academy of Sciences USA, 103, 12115-12120.
– reference: Bell, T., Ager, D., Song, J.-I., Newman, J.A., Thompson, I.P., Lilley, A.K. & van der Gast, C.J. (2005) Larger islands house more bacterial taxa. Science, 308, 1884.
– reference: Hanski, I. (1982) Dynamics of regional distribution: the core and satellite species hypothesis. Oikos, 38, 210-221.
– reference: Darwin, C. (1859) On the origin of species by means of natural selection, or, the preservation of favoured races in the struggle for life. John Murray, London.
– reference: Gaston, K.J. (1994) Rarity. Chapman & Hall, London.
– reference: Hengeveld, R. & Haeck, J. (1982) The distribution of abundance. I. Measurements. Journal of Biogeography, 9, 303-316.
– reference: Huse, S.M., Dethlefsen, L., Huber, J.A., Welch, D.M., Relman, D.A. & Sogin, M.L. (2008) Exploring microbial diversity and taxonomy using SSU rRNA hypervariable tag sequencing. PLoS Genetics, 4, e1000255.
– reference: Pommier, T., Canbäck, B., Riemann, L., Boström, K., Simu, K., Lundberg, P., Tunlid, A. & Hagström, Å. (2007) Global patterns of diversity and community structure in marine bacterioplankton. Molecular Ecology, 16, 867-880.
– reference: Furrer, R., Nychka, D. & Sain, S. (2009) Fields - tools for spatial data. R Package Version 6.3. Available at: http://www.image.ucar.edu/GSP/Software/Fields/.
– reference: Lewin-Koh, N.J. & Bivand, R. (2009) Maptools: tools for reading and handling spatial objects. R package version 0.7-38. Available at: http://cran.r-project.org/package=maptools.
– reference: Stevens, G.C. (1996) Extending Rapoport's rule to Pacific marine fishes. Journal of Biogeography, 23, 149-154.
– reference: Nemergut, D.R., Costello, E.K., Hamady, M., Lozupone, C., Jiang, L., Schmidt, S.K., Fierer, N., Townsend, A.R., Cleveland, C.C., Stanish, L. & Knight, R. (2011) Global patterns in the biogeography of bacterial taxa. Environmental Microbiology, 13, 135-144.
– reference: Oksanen, J., Blanchet, J.F., Kindt, R., Legendre, P., O'Hara, R.B. et al. (2011) The vegan package. R package version 1.17-6. Available at: http://cran.r-project.org/package=vegan.
– reference: Horner-Devine, M.C., Lage, M., Hughes, J.B. & Bohannan, B.J.M. (2004) A taxa-area relationship for bacteria. Nature, 432, 750-753.
– reference: Bell, T. (2010) Experimental tests of the bacterial distance-decay relationship. The ISME Journal, 4, 1357-1365.
– reference: Stevens, G.C. (1989) The latitudinal gradient in geographical range: how so many species coexist in the tropics. The American Naturalist, 133, 240-256.
– reference: Huse, S.M., Huber, J.A., Morrison, H.G., Sogin, M.L. & Welch, D.M. (2007) Accuracy and quality of massively parallel DNA pyrosequencing. Genome Biology, 8, R143.
– reference: Guernier, V. & Guégan, J.-F. (2009) May Rapoport's rule apply to human associated pathogens? EcoHealth, 6, 509-521.
– reference: Hilbish, T.J., Mullinax, A., Dolven, S.I., Meyer, A., Koehn, R.K. & Rawson, P.D. (2000) Origin of the antitropical distribution pattern in marine mussels (Mytilus spp.): routes and timing of transequatorial migration. Marine Biology, 136, 69-77.
– reference: Östman, Ö., Drakare, S., Kritzberg, E.S., Langenheder, S., Logue, J.B. & Lindström, E.S. (2010) Regional invariance among microbial communities. Ecology Letters, 13, 118-127.
– reference: Webb, T.J. & Gaston, K.J. (2003) On the heritability of geographic range sizes. The American Naturalist, 161, 553-566.
– reference: Zinger, L., Amaral-Zettler, L.A., Fuhrman, J.A., Horner-Devine, M.C., Huse, S.M., Welch, D.B.M., Martiny, J.B.H., Sogin, M., Boetius, A. & Ramette, A. (2011) Global patterns of bacterial beta-diversity in seafloor and seawater ecosystems. PLoS ONE, 6, e24570.
– reference: Bischoff, B. & Wiencke, C. (1995) Temperature ecotypes and biogeography of Acrosiphoniales (Chlorophyta) with Arctic-Antarctic disjunct and Arctic/cold-temperature distributions. European Journal of Phycology, 30, 19-27.
– reference: Colwell, R.K. & Hurtt, G.C. (1994) Nonbiological gradients in species richness and a spurious Rapoport effect. The American Naturalist, 144, 570-595.
– reference: Gaston, K.J., Blackburn, T.M. & Spicer, J.I. (1998) Rapoport's rule: time for an epitaph? Trends in Ecology and Evolution, 13, 70-74.
– reference: Brown, J.H. (1984) On the relationship between abundance and distribution of species. The American Naturalist, 124, 255-279.
– reference: Rohde, K., Heap, M. & Heap, D. (1993) Rapoport's rule does not apply to marine teleosts and cannot explain latitudinal gradients in species richness. The American Naturalist, 142, 1-16.
– reference: Barberán, A., Bates, S.T., Casamayor, E.O. & Fierer, N. (2012) Using network analysis to explore co-occurrence patterns in soil microbial communities. The ISME Journal, 6, 343-351.
– reference: R Development Core Team (2010) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
– reference: Peters, A.F. & Breeman, A.M. (1992) Temperature responses of disjunct temperate brown algae indicate long-distance dispersal of microthalli across the tropics. Journal of Phycology, 28, 428-438.
– reference: Klopfer, P.H. & MacArthur, R.H. (1960) Niche size and faunal diversity. The American Naturalist, 94, 293-300.
– reference: Soininen, J. (2012) Macroecology of unicellular organisms - patterns and processes. Environmental Microbiology Reports, 4, 10-22.
– reference: Hanski, I. (1991) Single-species metapopulation dynamics: concepts, models and observations. Biological Journal of the Linnean Society, 42, 17-38.
– reference: Gaston, K.J., Blackburn, T.M., Greenwood, J.J.D., Gregory, R.D., Quinn, R.M. & Lawton, J.H. (2000) Abundance-occupancy relationships. Journal of Applied Ecology, 37(Suppl. 1), 39-59.
– reference: Ruggiero, A. & Werenkraut, V. (2007) One-dimensional analyses of Rapoport's rule reviewed through meta-analysis. Global Ecology and Biogeography, 16, 401-414.
– reference: Brown, J.H. (1995) Macroecology. University of Chicago Press, Chicago, IL.
– reference: Fuhrman, J.A., Steele, J.A., Hewson, I., Schwalbach, M.S., Brown, M.V., Green, J.L. & Brown, J.H. (2008) A latitudinal diversity gradient in planktonic marine bacteria. Proceedings of the National Academy of Sciences USA, 105, 7774-7778.
– reference: Sagarin, R.D. & Gaines, S.D. (2002) The 'abundant centre' distribution: to what extent is it a biogeographical rule? Ecology Letters, 5, 137-147.
– reference: Wickham, H. (2009) ggplot2: elegant graphics for data analysis. Springer, New York.
– year: 2011
– year: 2009
– volume: 42
  start-page: 17
  year: 1991
  end-page: 38
  article-title: Single‐species metapopulation dynamics: concepts, models and observations
  publication-title: Biological Journal of the Linnean Society
– volume: 309
  start-page: 1331
  year: 2005
  end-page: 1333
  article-title: Exploring microbial diversity – a vast below
  publication-title: Science
– volume: 12
  start-page: 1889
  year: 2010
  end-page: 1898
  article-title: Ironing out the wrinkles in the rare biosphere through improved OTU clustering
  publication-title: Environmental Microbiology
– volume: 13
  start-page: 70
  year: 1998
  end-page: 74
  article-title: Rapoport's rule: time for an epitaph?
  publication-title: Trends in Ecology and Evolution
– volume: 38
  start-page: 151
  year: 1963
  end-page: 177
  article-title: Amphitropical relationships in the floras of North and South America
  publication-title: Quarterly Review of Biology
– volume: 16
  start-page: 867
  year: 2007
  end-page: 880
  article-title: Global patterns of diversity and community structure in marine bacterioplankton
  publication-title: Molecular Ecology
– volume: 13
  start-page: 135
  year: 2011
  end-page: 144
  article-title: Global patterns in the biogeography of bacterial taxa
  publication-title: Environmental Microbiology
– volume: 8
  start-page: R143
  year: 2007
  article-title: Accuracy and quality of massively parallel DNA pyrosequencing
  publication-title: Genome Biology
– volume: 308
  start-page: 1884
  year: 2005
  article-title: Larger islands house more bacterial taxa
  publication-title: Science
– volume: 432
  start-page: 750
  year: 2004
  end-page: 753
  article-title: A taxa–area relationship for bacteria
  publication-title: Nature
– volume: 6
  start-page: 343
  year: 2012
  end-page: 351
  article-title: Using network analysis to explore co‐occurrence patterns in soil microbial communities
  publication-title: The ISME Journal
– year: 1994
– volume: 5
  start-page: 137
  year: 2002
  end-page: 147
  article-title: The ‘abundant centre’ distribution: to what extent is it a biogeographical rule?
  publication-title: Ecology Letters
– volume: 38
  start-page: 210
  year: 1982
  end-page: 221
  article-title: Dynamics of regional distribution: the core and satellite species hypothesis
  publication-title: Oikos
– volume: 3
  start-page: 10
  year: 1996
  end-page: 13
  article-title: Rapoport's Rule is a local phenomenon and cannot explain latitudinal gradients in species diversity
  publication-title: Biodiversity Letters
– start-page: 221
  year: 2010
  end-page: 245
– volume: 37
  start-page: 39
  issue: Suppl. 1
  year: 2000
  end-page: 59
  article-title: Abundance–occupancy relationships
  publication-title: Journal of Applied Ecology
– volume: 9
  start-page: 303
  year: 1982
  end-page: 316
  article-title: The distribution of abundance. I. Measurements
  publication-title: Journal of Biogeography
– volume: 144
  start-page: 570
  year: 1994
  end-page: 595
  article-title: Nonbiological gradients in species richness and a spurious Rapoport effect
  publication-title: The American Naturalist
– volume: 4
  start-page: e1000255
  year: 2008
  article-title: Exploring microbial diversity and taxonomy using SSU rRNA hypervariable tag sequencing
  publication-title: PLoS Genetics
– volume: 6
  start-page: e24570
  year: 2011
  article-title: Global patterns of bacterial beta‐diversity in seafloor and seawater ecosystems
  publication-title: PLoS ONE
– volume: 161
  start-page: 553
  year: 2003
  end-page: 566
  article-title: On the heritability of geographic range sizes
  publication-title: The American Naturalist
– volume: 36
  start-page: 1
  year: 2008
  end-page: 25
  article-title: spam: a sparse matrix R package with emphasis on MCMC methods for Gaussian Markov random fields
  publication-title: Journal of Statistical Software
– volume: 31
  start-page: 1909
  year: 2004
  end-page: 1916
  article-title: The applicability of Rapoport's rule to the marine molluscs of the Americas
  publication-title: Journal of Biogeography
– volume: 4
  start-page: 10
  year: 2012
  end-page: 22
  article-title: Macroecology of unicellular organisms – patterns and processes
  publication-title: Environmental Microbiology Reports
– year: 1859
– volume: 12
  start-page: 118
  year: 2010
  end-page: 123
  article-title: Wrinkles in the rare biosphere: pyrosequencing errors can lead to artificial inflation of diversity estimates
  publication-title: Environmental Microbiology
– volume: 136
  start-page: 69
  year: 2000
  end-page: 77
  article-title: Origin of the antitropical distribution pattern in marine mussels ( spp.): routes and timing of transequatorial migration
  publication-title: Marine Biology
– volume: 108
  start-page: 7850
  year: 2011
  end-page: 7854
  article-title: Drivers of bacterial β‐diversity depend on spatial scale
  publication-title: Proceedings of the National Academy of Sciences USA
– volume: 13
  start-page: 118
  year: 2010
  end-page: 127
  article-title: Regional invariance among microbial communities
  publication-title: Ecology Letters
– start-page: 324
  year: 1952
  end-page: 329
– volume: 16
  start-page: 401
  year: 2007
  end-page: 414
  article-title: One‐dimensional analyses of Rapoport's rule reviewed through meta‐analysis
  publication-title: Global Ecology and Biogeography
– volume: 94
  start-page: 293
  year: 1960
  end-page: 300
  article-title: Niche size and faunal diversity
  publication-title: The American Naturalist
– year: 2010
– volume: 124
  start-page: 255
  year: 1984
  end-page: 279
  article-title: On the relationship between abundance and distribution of species
  publication-title: The American Naturalist
– volume: 23
  start-page: 149
  year: 1996
  end-page: 154
  article-title: Extending Rapoport's rule to Pacific marine fishes
  publication-title: Journal of Biogeography
– volume: 19
  start-page: 5555
  year: 2010a
  end-page: 5565
  article-title: Quantifying microbial communities with 454 pyrosequencing: does read abundance count?
  publication-title: Molecular Ecology
– volume: 68
  start-page: 124
  year: 1987
  end-page: 129
  article-title: Distribution–abundance relationships of some Arizona landbirds: a matter of scale?
  publication-title: Ecology
– volume: 17
  start-page: 308
  year: 1991
  end-page: 324
  article-title: Marine biotic interchange between the northern and southern hemispheres
  publication-title: Paleobiology
– start-page: 205
  year: 1981
  end-page: 217
– volume: 58
  start-page: 329
  year: 1990
  end-page: 335
  article-title: Effects of scale and habitat on the relationship between regional distribution and local abundance
  publication-title: Oikos
– volume: 30
  start-page: 19
  year: 1995
  end-page: 27
  article-title: Temperature ecotypes and biogeography of Acrosiphoniales (Chlorophyta) with Arctic–Antarctic disjunct and Arctic/cold‐temperature distributions
  publication-title: European Journal of Phycology
– volume: 28
  start-page: 428
  year: 1992
  end-page: 438
  article-title: Temperature responses of disjunct temperate brown algae indicate long‐distance dispersal of microthalli across the tropics
  publication-title: Journal of Phycology
– volume: 107
  start-page: 13748
  year: 2010b
  end-page: 13753
  article-title: Indoor fungal composition is geographically patterned and more diverse in temperate zones than in the tropics
  publication-title: Proceedings of the National Academy of Sciences USA
– year: 1995
– volume: 105
  start-page: 7774
  year: 2008
  end-page: 7778
  article-title: A latitudinal diversity gradient in planktonic marine bacteria
  publication-title: Proceedings of the National Academy of Sciences USA
– volume: 142
  start-page: 1
  year: 1993
  end-page: 16
  article-title: Rapoport's rule does not apply to marine teleosts and cannot explain latitudinal gradients in species richness
  publication-title: The American Naturalist
– volume: 103
  start-page: 12115
  year: 2006
  end-page: 12120
  article-title: Microbial diversity in the deep sea and the underexplored “rare biosphere”
  publication-title: Proceedings of the National Academy of Sciences USA
– year: 1953
– volume: 6
  start-page: 509
  year: 2009
  end-page: 521
  article-title: May Rapoport's rule apply to human associated pathogens?
  publication-title: EcoHealth
– volume: 133
  start-page: 240
  year: 1989
  end-page: 256
  article-title: The latitudinal gradient in geographical range: how so many species coexist in the tropics
  publication-title: The American Naturalist
– volume: 4
  start-page: 1357
  year: 2010
  end-page: 1365
  article-title: Experimental tests of the bacterial distance–decay relationship
  publication-title: The ISME Journal
– volume-title: The vegan package. R package version 1.17‐6
  year: 2011
  ident: e_1_2_7_40_1
– ident: e_1_2_7_50_1
  doi: 10.1046/j.1461-0248.2002.00297.x
– ident: e_1_2_7_10_1
  doi: 10.1086/284267
– start-page: 324
  volume-title: Proceedings of the 7th Pacific Science Congress of the Pacific Science Association. Vol. III: Meteorology and Oceanography
  year: 1952
  ident: e_1_2_7_30_1
– ident: e_1_2_7_49_1
  doi: 10.1111/j.1466-8238.2006.00303.x
– ident: e_1_2_7_12_1
  doi: 10.1086/285695
– volume-title: Macroecology
  year: 1995
  ident: e_1_2_7_11_1
– ident: e_1_2_7_46_1
  doi: 10.1086/403797
– volume-title: Fields – tools for spatial data
  year: 2009
  ident: e_1_2_7_19_1
– ident: e_1_2_7_2_1
  doi: 10.1002/9781444325508.ch12
– ident: e_1_2_7_6_1
  doi: 10.1038/ismej.2010.77
– ident: e_1_2_7_13_1
  doi: 10.1126/science.1118176
– ident: e_1_2_7_22_1
  doi: 10.1016/S0169-5347(97)01236-6
– volume-title: R: a language and environment for statistical computing
  year: 2010
  ident: e_1_2_7_44_1
– ident: e_1_2_7_48_1
  doi: 10.1086/285526
– volume-title: Zoogeography of the sea
  year: 1953
  ident: e_1_2_7_15_1
– ident: e_1_2_7_23_1
  doi: 10.1046/j.1365-2664.2000.00485.x
– ident: e_1_2_7_3_1
  doi: 10.1111/j.1365-294X.2010.04898.x
– ident: e_1_2_7_39_1
  doi: 10.1111/j.1462-2920.2010.02315.x
– start-page: 205
  volume-title: The biological aspects of rare plant conservation
  year: 1981
  ident: e_1_2_7_45_1
– ident: e_1_2_7_24_1
  doi: 10.1007/s10393-010-0290-5
– ident: e_1_2_7_43_1
  doi: 10.1111/j.1365-294X.2006.03189.x
– ident: e_1_2_7_32_1
  doi: 10.1371/journal.pgen.1000255
– ident: e_1_2_7_56_1
  doi: 10.1007/978-0-387-98141-3
– ident: e_1_2_7_52_1
  doi: 10.1111/j.1758-2229.2011.00308.x
– volume-title: Maptools: tools for reading and handling spatial objects. R package version 0.7‐38
  year: 2009
  ident: e_1_2_7_36_1
– ident: e_1_2_7_20_1
  doi: 10.1111/j.0014-3820.2004.tb01713.x
– ident: e_1_2_7_21_1
  doi: 10.2307/3545224
– ident: e_1_2_7_9_1
  doi: 10.2307/1938812
– ident: e_1_2_7_54_1
  doi: 10.1046/j.1365-2699.1996.00977.x
– ident: e_1_2_7_27_1
  doi: 10.2307/2844717
– ident: e_1_2_7_57_1
  doi: 10.1371/journal.pone.0024570
– ident: e_1_2_7_34_1
  doi: 10.1086/282130
– ident: e_1_2_7_51_1
  doi: 10.1073/pnas.0605127103
– ident: e_1_2_7_38_1
  doi: 10.1073/pnas.1016308108
– ident: e_1_2_7_17_1
  doi: 10.1073/pnas.0803070105
– ident: e_1_2_7_41_1
  doi: 10.1111/j.1461-0248.2009.01413.x
– ident: e_1_2_7_8_1
  doi: 10.1080/09670269500650771
– ident: e_1_2_7_14_1
  doi: 10.5962/bhl.title.82303
– ident: e_1_2_7_37_1
  doi: 10.1017/S0094837300010629
– ident: e_1_2_7_31_1
  doi: 10.1186/gb-2007-8-7-r143
– ident: e_1_2_7_35_1
  doi: 10.1111/j.1462-2920.2009.02051.x
– ident: e_1_2_7_5_1
  doi: 10.1038/ismej.2011.119
– ident: e_1_2_7_26_1
  doi: 10.1111/j.1095-8312.1991.tb00549.x
– ident: e_1_2_7_16_1
  doi: 10.1111/j.1365-2699.2004.01117.x
– ident: e_1_2_7_25_1
  doi: 10.2307/3544021
– ident: e_1_2_7_42_1
  doi: 10.1111/j.0022-3646.1992.00428.x
– ident: e_1_2_7_7_1
  doi: 10.1126/science.1111318
– volume: 36
  start-page: 1
  year: 2008
  ident: e_1_2_7_18_1
  article-title: spam: a sparse matrix R package with emphasis on MCMC methods for Gaussian Markov random fields
  publication-title: Journal of Statistical Software
– ident: e_1_2_7_47_1
  doi: 10.2307/2999704
– ident: e_1_2_7_28_1
  doi: 10.1007/s002270050010
– ident: e_1_2_7_29_1
  doi: 10.1038/nature03073
– ident: e_1_2_7_55_1
  doi: 10.1086/368296
– ident: e_1_2_7_33_1
  doi: 10.1111/j.1462-2920.2010.02193.x
– ident: e_1_2_7_53_1
  doi: 10.1046/j.1365-2699.1996.00977.x
– ident: e_1_2_7_4_1
  doi: 10.1073/pnas.1000454107
SSID ssj0009534
Score 2.2789438
Snippet Aim: To test whether within-species and among-species patterns of abundance and latitudinal range in marine bacteria resemble those found for macro-organisms,...
Aim To test whether within‐species and among‐species patterns of abundance and latitudinal range in marine bacteria resemble those found for macro‐organisms,...
Aim To test whether within-species and among-species patterns of abundance and latitudinal range in marine bacteria resemble those found for macro-organisms,...
To test whether within-species and among-species patterns of abundance and latitudinal range in marine bacteria resemble those found for macro-organisms, and...
SourceID proquest
pascalfrancis
crossref
wiley
jstor
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 800
SubjectTerms Abundance-range relationship
Animal and plant ecology
Animal, plant and microbial ecology
Bacteria
Bacterioplankton
Biogeography
Biological and medical sciences
Datasets
Equator
Fundamental and applied biological sciences. Psychology
General aspects
Geodetic position
Hemispheres
Latitude
latitudinal gradient
macro-organisms
macroecology
Marine biogeography
Marine environment
marine microbes
micro-organisms
Microbiology
Rapoport's rule
rarity
Sea water ecosystems
Southern hemisphere
Species
Synecology
Taxa
Tropical environments
Title Macroecological patterns of marine bacteria on a global scale
URI https://api.istex.fr/ark:/67375/WNG-LZ24204H-S/fulltext.pdf
https://www.jstor.org/stable/23463640
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjbi.12034
https://www.proquest.com/docview/1317617332
https://www.proquest.com/docview/1323810516
Volume 40
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3ba9YwFD-MieiL97Fuc0QR8aUfzaVNi09eNj-H7kEdDhFCmiY4pu34LuD8681J2vp9oiBSCoGePpzkXH5NT34H4JE0Ikcau5TXrkmFyaq05Nql_i5sRZm1Bs8Ovz0upifi6DQ_3YCnw1mYyA8xbrihZ4R4jQ6u6_mqk9dnE8oyjlyglBfIm__yHVsh3OWROgqL05jMelahUMUzvLmWi67gtH4fyhKxRlLP_TS52N9iDYCuwtiQhw5vwudBg1h-cj5ZLuqJ-fEbueN_qngLbvT4lDyLBnUbNmx7B67GjpWXfnRg-tG1vn36l8u7gPvZs86aIZCSi8Da2c5J58g3jQcMSR1poTXpWqJJ5CEhqLq9ByeHBx9eTNO-L0NqBMtEaj0EkrQpy0JX2jSNo42rmNS80lWZaepkLp2Hkk1V1sYjOl0YJpz0H3aNNw1K-RZstl1rt4Fo4y9aSC4MF9a6ykrW1LQRuTA-bdoEngwrpExPWo69M76q8eOlPlNhjhJ4OIpeRKaOPwk9Dss8SujZOZa2yVx9PH6l3nxiqOFUvU9gK9jBKMg4UquJLIH9NcP4JSB90inyKoG9wVJUHw_minqY5rEi5yyBB-Nj78n4e0a3tluiDMInHyQLr3Uwi7_roY6evw6DnX8X3YXrLPTywLKjPdhczJb2vkdUi3o_uM5PW5AYSw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9RAFD7UFqkv3ovRWkcR8SVL5pLMBnzx0rqt233QFosgw2QyQ0trUvYC1l_vnMnFXVEQCYGBnDycybl8MznzHYDn0ogUaexiXrgyFibJ4yHXLvZ3ZnPKrDV4dvhwko2OxcFJerIGr7qzMA0_RL_hhp4R4jU6OG5IL3t5cTagLOHiGmwIDzRw6fXuI1ui3OUNeRSWpzGZtLxCoY6ne3UlG23gxH7vChOxSlLP_ES5psPFCgRdBrIhE-3dgq-dDk0ByvlgMS8G5sdv9I7_q-RtuNlCVPK6sak7sGaru3C9aVp55Ue7ph1tth3UT6_uAW5pT2trulhKLgNxZzUjtSPfNJ4xJEXDDK1JXRFNGioSgrrb-3C8t3v0dhS3rRliI1giYutRkKTlcJjpXJuydLR0OZOa5zofJpo6mUrn0WSZDwvjQZ3ODBNO-rVd6a2DUr4F61Vd2QdAtPEXzSQXhgtrXW4lKwtailQYnzltBC-7T6RMy1uO7TMuVL9-Kc5UmKMInvWilw1Zx5-EXoTv3Evo6TlWt8lUfZ68V-MvDDUcqU8RbAVD6AUZR3Y1kUSws2IZvwSkzztZmkew3ZmKakPCTFGP1Dxc5JxF8LR_7J0Z_9DoytYLlEEE5eNk5rUOdvF3PdTBm_0wePjvok9gc3R0OFbj_cmHR3CDhdYeWIW0Devz6cI-9gBrXuwEP_oJ4uQcag
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3pa9RAFH_UFo8v3sXYw1FE_JIlcyST4CetXbe1LqKWFhGGyRxYqsmyB7T-9c5MDndFQSQEBvLy4c2845fJm98DeMoVSz2NXUxLq2OmkiLOqbSxuzNTYGKM8meH342z0TE7PE1P1-BFdxam4YfoN9y8Z4R47R18ou2yk5dnA0wSyq7ABssckvCI6ANZYtylDXeUr04jPGlphUIZT_fqSjLa8PN60dUl-iJJOXPzZJsGFysIdBnHhkQ0vAVfOhWa-pPzwWJeDtSP39gd_1PH23CzBajoZWNRd2DNVHfhatOy8tKN9lU7ut72T_96eQ_8hva0NqqLpGgSaDurGaot-i79CUNUNrzQEtUVkqghIkFedXMfjof7n_ZGcduYIVaMJCw2DgNxrPM8k4VUWlusbUG4pIUs8kRiy1NuHZbURV4qB-lkpgiz3H3ZaWcbGNNNWK_qyjwAJJW7cMYpU5QZYwvDiS6xZilTLm-aCJ53KyRUy1rum2d8E_3XS3kmwhxF8KQXnTRUHX8SehaWuZeQ03Nf28ZTcTJ-I44-E6_hSHyMYDPYQS9IqOdWY0kEuyuG8UuAu6yTpUUE252liDYgzAR2OM2BRUpJBI_7x86V_f8ZWZl64WU8fnJRMnNaB7P4ux7i8NVBGDz8d9FHcO3966E4Ohi_3YIbJPT18CVI27A-ny7MjkNX83I3eNFPcpAbGQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Macroecological+patterns+of+marine+bacteria+on+a+global+scale&rft.jtitle=Journal+of+biogeography&rft.au=Amend%2C+Anthony+S.&rft.au=Oliver%2C+Tom+A.&rft.au=Amaral-Zettler%2C+Linda+A.&rft.au=Boetius%2C+Antje&rft.date=2013-04-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0305-0270&rft.eissn=1365-2699&rft.volume=40&rft.issue=4&rft.spage=800&rft.epage=811&rft_id=info:doi/10.1111%2Fjbi.12034&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_LZ24204H_S
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-0270&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-0270&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-0270&client=summon