Macroecological patterns of marine bacteria on a global scale
Aim: To test whether within-species and among-species patterns of abundance and latitudinal range in marine bacteria resemble those found for macro-organisms, and whether these patterns differ along latitudinal clines. Location: Global pelagic marine environments. Methods: Taxon-specific sequence ab...
Saved in:
Published in | Journal of biogeography Vol. 40; no. 4; pp. 800 - 811 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Blackwell Publishing Ltd
01.04.2013
Blackwell Publishing Blackwell Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
ISSN | 0305-0270 1365-2699 |
DOI | 10.1111/jbi.12034 |
Cover
Abstract | Aim: To test whether within-species and among-species patterns of abundance and latitudinal range in marine bacteria resemble those found for macro-organisms, and whether these patterns differ along latitudinal clines. Location: Global pelagic marine environments. Methods: Taxon-specific sequence abundance and location were retrieved from the open-access V6-rRNA pyrotag sequence data base VAMPS (http://vamps.mbl.edu/), which holds a massive collection of marine bacterial community data sets from the International Census of Marine Microbes sampling effort of global ocean water masses. Data were randomly subsampled to correct for spatial bias and for differences in sampling effort. Results: We show that bacterial latitudinal ranges are narrower than expected by chance. When present in both Northern and Southern hemispheres, taxa occupy restricted ranges at similar latitudes on both sides of the equator. A significant and positive relationship exists between sequence abundance and latitudinal range, although this pattern contains a large amount of variance. Abundant taxa in the tropics and in the Northern Hemisphere generally have smaller ranges than those in the Southern Hemisphere. We show that the mean latitudinal range of bacterial taxa increases with latitude, supporting the existence of a Rapoport effect in marine bacterioplankton. Finally, we show that bacterioplankton communities contain a higher proportion of abundant taxa as they approach the poles. Main conclusions: Macroecological patterns such as the abundance—range relationship, in general, extend to marine bacteria. However, differences in the shape of these relationships between bacteria and macro-organisms call into question whether the processes and their relative importance in shaping global marine bacteria and macro-organism distributions are the same. |
---|---|
AbstractList | Aim To test whether within-species and among-species patterns of abundance and latitudinal range in marine bacteria resemble those found for macro-organisms, and whether these patterns differ along latitudinal clines. Location Global pelagic marine environments. Methods Taxon-specific sequence abundance and location were retrieved from the open-access V6-rRNA pyrotag sequence data base VAMPS (http://vamps.mbl.edu/), which holds a massive collection of marine bacterial community data sets from the International Census of Marine Microbes sampling effort of global ocean water masses. Data were randomly subsampled to correct for spatial bias and for differences in sampling effort. Results We show that bacterial latitudinal ranges are narrower than expected by chance. When present in both Northern and Southern hemispheres, taxa occupy restricted ranges at similar latitudes on both sides of the equator. A significant and positive relationship exists between sequence abundance and latitudinal range, although this pattern contains a large amount of variance. Abundant taxa in the tropics and in the Northern Hemisphere generally have smaller ranges than those in the Southern Hemisphere. We show that the mean latitudinal range of bacterial taxa increases with latitude, supporting the existence of a Rapoport effect in marine bacterioplankton. Finally, we show that bacterioplankton communities contain a higher proportion of abundant taxa as they approach the poles. Main conclusions Macroecological patterns such as the abundance-range relationship, in general, extend to marine bacteria. However, differences in the shape of these relationships between bacteria and macro-organisms call into question whether the processes and their relative importance in shaping global marine bacteria and macro-organism distributions are the same. [PUBLICATION ABSTRACT] Aim To test whether within‐species and among‐species patterns of abundance and latitudinal range in marine bacteria resemble those found for macro‐organisms, and whether these patterns differ along latitudinal clines. Location Global pelagic marine environments. Methods Taxon‐specific sequence abundance and location were retrieved from the open‐access V6‐rRNA pyrotag sequence data base VAMPS (http://vamps.mbl.edu/), which holds a massive collection of marine bacterial community data sets from the International Census of Marine Microbes sampling effort of global ocean water masses. Data were randomly subsampled to correct for spatial bias and for differences in sampling effort. Results We show that bacterial latitudinal ranges are narrower than expected by chance. When present in both Northern and Southern hemispheres, taxa occupy restricted ranges at similar latitudes on both sides of the equator. A significant and positive relationship exists between sequence abundance and latitudinal range, although this pattern contains a large amount of variance. Abundant taxa in the tropics and in the Northern Hemisphere generally have smaller ranges than those in the Southern Hemisphere. We show that the mean latitudinal range of bacterial taxa increases with latitude, supporting the existence of a Rapoport effect in marine bacterioplankton. Finally, we show that bacterioplankton communities contain a higher proportion of abundant taxa as they approach the poles. Main conclusions Macroecological patterns such as the abundance–range relationship, in general, extend to marine bacteria. However, differences in the shape of these relationships between bacteria and macro‐organisms call into question whether the processes and their relative importance in shaping global marine bacteria and macro‐organism distributions are the same. To test whether within-species and among-species patterns of abundance and latitudinal range in marine bacteria resemble those found for macro-organisms, and whether these patterns differ along latitudinal clines. Global pelagic marine environments. Taxon-specific sequence abundance and location were retrieved from the open-access V6-rRNA pyrotag sequence data base VAMPS (http://vamps.mbl.edu/), which holds a massive collection of marine bacterial community data sets from the International Census of Marine Microbes sampling effort of global ocean water masses. Data were randomly subsampled to correct for spatial bias and for differences in sampling effort. We show that bacterial latitudinal ranges are narrower than expected by chance. When present in both Northern and Southern hemispheres, taxa occupy restricted ranges at similar latitudes on both sides of the equator. A significant and positive relationship exists between sequence abundance and latitudinal range, although this pattern contains a large amount of variance. Abundant taxa in the tropics and in the Northern Hemisphere generally have smaller ranges than those in the Southern Hemisphere. We show that the mean latitudinal range of bacterial taxa increases with latitude, supporting the existence of a Rapoport effect in marine bacterioplankton. Finally, we show that bacterioplankton communities contain a higher proportion of abundant taxa as they approach the poles. Macroecological patterns such as the abundance-range relationship, in general, extend to marine bacteria. However, differences in the shape of these relationships between bacteria and macro-organisms call into question whether the processes and their relative importance in shaping global marine bacteria and macro-organism distributions are the same. Aim: To test whether within-species and among-species patterns of abundance and latitudinal range in marine bacteria resemble those found for macro-organisms, and whether these patterns differ along latitudinal clines. Location: Global pelagic marine environments. Methods: Taxon-specific sequence abundance and location were retrieved from the open-access V6-rRNA pyrotag sequence data base VAMPS (http://vamps.mbl.edu/), which holds a massive collection of marine bacterial community data sets from the International Census of Marine Microbes sampling effort of global ocean water masses. Data were randomly subsampled to correct for spatial bias and for differences in sampling effort. Results: We show that bacterial latitudinal ranges are narrower than expected by chance. When present in both Northern and Southern hemispheres, taxa occupy restricted ranges at similar latitudes on both sides of the equator. A significant and positive relationship exists between sequence abundance and latitudinal range, although this pattern contains a large amount of variance. Abundant taxa in the tropics and in the Northern Hemisphere generally have smaller ranges than those in the Southern Hemisphere. We show that the mean latitudinal range of bacterial taxa increases with latitude, supporting the existence of a Rapoport effect in marine bacterioplankton. Finally, we show that bacterioplankton communities contain a higher proportion of abundant taxa as they approach the poles. Main conclusions: Macroecological patterns such as the abundance—range relationship, in general, extend to marine bacteria. However, differences in the shape of these relationships between bacteria and macro-organisms call into question whether the processes and their relative importance in shaping global marine bacteria and macro-organism distributions are the same. |
Author | Martiny, Adam C. Horner-Devine, M. Claire Welch, David B. Mark Huse, Susan M. Martiny, Jennifer B. H. Amend, Anthony S. Ramette, Alban Oliver, Tom A. Boetius, Antje Fuhrman, Jed A. Zinger, Lucie Sogin, Mitchell L. Amaral-Zettler, Linda A. |
Author_xml | – sequence: 1 givenname: Anthony S. surname: Amend fullname: Amend, Anthony S. email: Correspondence: Anthony S. Amend, Department of Botany, University of Hawaii at Manoa, 3190 Maile Way, Honolulu, HI 96822, USA., amend@hawaii.edu organization: Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, USA – sequence: 2 givenname: Tom A. surname: Oliver fullname: Oliver, Tom A. organization: Hawaiian Institute of Marine Biology, University of Hawaii at Manoa, HI, Kaneohe, USA – sequence: 3 givenname: Linda A. surname: Amaral-Zettler fullname: Amaral-Zettler, Linda A. organization: Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Woods Hole Marine Biological Laboratory, Woods Hole, MA, USA – sequence: 4 givenname: Antje surname: Boetius fullname: Boetius, Antje organization: Microbial Habitat Group, Max Planck Institute for Marine Microbiology, Bremen, Germany – sequence: 5 givenname: Jed A. surname: Fuhrman fullname: Fuhrman, Jed A. organization: Department of Biological Sciences, University of Southern California, CA, Los Angeles, USA – sequence: 6 givenname: M. Claire surname: Horner-Devine fullname: Horner-Devine, M. Claire organization: School of Aquatic and Fishery Sciences, University of Washington, WA, Seattle, USA – sequence: 7 givenname: Susan M. surname: Huse fullname: Huse, Susan M. organization: Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Woods Hole Marine Biological Laboratory, MA, Woods Hole, USA – sequence: 8 givenname: David B. Mark surname: Welch fullname: Welch, David B. Mark organization: Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Woods Hole Marine Biological Laboratory, MA, Woods Hole, USA – sequence: 9 givenname: Adam C. surname: Martiny fullname: Martiny, Adam C. organization: Department of Ecology and Evolutionary Biology, University of California, CA, Irvine, USA – sequence: 10 givenname: Alban surname: Ramette fullname: Ramette, Alban organization: Microbial Habitat Group, Max Planck Institute for Marine Microbiology, Bremen, Germany – sequence: 11 givenname: Lucie surname: Zinger fullname: Zinger, Lucie organization: Microbial Habitat Group, Max Planck Institute for Marine Microbiology, Bremen, Germany – sequence: 12 givenname: Mitchell L. surname: Sogin fullname: Sogin, Mitchell L. organization: Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Woods Hole Marine Biological Laboratory, MA, Woods Hole, USA – sequence: 13 givenname: Jennifer B. H. surname: Martiny fullname: Martiny, Jennifer B. H. organization: Department of Ecology and Evolutionary Biology, University of California, CA, Irvine, USA |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27146659$$DView record in Pascal Francis |
BookMark | eNp1kV9rFDEUxYNUcLv64AcQBkSwD9Pm5u_kwYdaaltZ9UFF8CXczSQl63SyJrNov71Zd6tQNC-BnN853HtySA7GNHpCngI9hnpOVst4DIxy8YDMgCvZMmXMAZlRTmVLmaaPyGEpK0qpkVzMyKt36HLyLg3pOjocmjVOk89jaVJobjDH0TdLdPUpYpPGBpvrIS0rVyrsH5OHAYfin-zvOfn85vzT2WW7-HBxdXa6aJ1gVLQepNHQd51Cg67vA_TBMI3coOkoQtBSBwqqN93SdRJQOSaCNqbrtRMAfE5e7nLXOX3f-DLZm1icHwYcfdoUC5zxDqgEVdHn99BV2uSxTlcp0Ao0r_CcvNhTuF0kZBxdLHadY9351jINQilpKney42pJpWQfrIsTTjGNU8Y4WKB2W7uttdvftVfH0T3HXei_2H36jzj42_-D9u3rqzvHs51jVaaU_87LheJK0Kq3Oz2Wyf_8o2P-ZpXmWtov7y_s4ivbfsul_ch_AXY2qS8 |
CODEN | JBIODN |
CitedBy_id | crossref_primary_10_3389_fmicb_2017_00882 crossref_primary_10_1111_1365_2435_13004 crossref_primary_10_1111_ele_12587 crossref_primary_10_1111_mec_12640 crossref_primary_10_1128_AEM_02456_15 crossref_primary_10_3390_microorganisms10071339 crossref_primary_10_1016_j_jhazmat_2025_137135 crossref_primary_10_1126_sciadv_ade8352 crossref_primary_10_1016_j_margen_2014_03_002 crossref_primary_10_3389_fenvs_2018_00021 crossref_primary_10_1073_pnas_2204146119 crossref_primary_10_1111_jbi_13785 crossref_primary_10_1146_annurev_virology_031413_085540 crossref_primary_10_1038_s41396_021_01120_8 crossref_primary_10_1002_lob_10108 crossref_primary_10_3389_fevo_2021_633155 crossref_primary_10_1007_s10750_014_2002_6 crossref_primary_10_1186_1471_2105_15_41 crossref_primary_10_1111_1462_2920_13797 crossref_primary_10_3389_fgene_2019_01344 crossref_primary_10_1111_mec_13365 crossref_primary_10_1093_femsec_fiae137 crossref_primary_10_3354_ame01985 crossref_primary_10_1111_geb_12918 crossref_primary_10_1002_bes2_1645 crossref_primary_10_3354_ame01801 crossref_primary_10_1088_1755_1315_1463_1_012013 crossref_primary_10_3389_fmicb_2020_01847 crossref_primary_10_1038_s41559_019_0798_1 crossref_primary_10_1371_journal_pone_0148016 crossref_primary_10_1111_jbi_14243 crossref_primary_10_1016_j_funeco_2015_09_003 crossref_primary_10_1016_j_jip_2015_07_006 crossref_primary_10_1890_14_1510_1 crossref_primary_10_1038_s41467_020_18529_y crossref_primary_10_1016_j_gecco_2022_e02304 crossref_primary_10_1038_s41467_023_41909_z crossref_primary_10_1073_pnas_1719335115 crossref_primary_10_1093_plankt_fbt115 crossref_primary_10_3389_fmicb_2017_00947 crossref_primary_10_1038_ismej_2014_21 crossref_primary_10_1073_pnas_1421865112 |
Cites_doi | 10.1046/j.1461-0248.2002.00297.x 10.1086/284267 10.1111/j.1466-8238.2006.00303.x 10.1086/285695 10.1086/403797 10.1002/9781444325508.ch12 10.1038/ismej.2010.77 10.1126/science.1118176 10.1016/S0169-5347(97)01236-6 10.1086/285526 10.1046/j.1365-2664.2000.00485.x 10.1111/j.1365-294X.2010.04898.x 10.1111/j.1462-2920.2010.02315.x 10.1007/s10393-010-0290-5 10.1111/j.1365-294X.2006.03189.x 10.1371/journal.pgen.1000255 10.1007/978-0-387-98141-3 10.1111/j.1758-2229.2011.00308.x 10.1111/j.0014-3820.2004.tb01713.x 10.2307/3545224 10.2307/1938812 10.1046/j.1365-2699.1996.00977.x 10.2307/2844717 10.1371/journal.pone.0024570 10.1086/282130 10.1073/pnas.0605127103 10.1073/pnas.1016308108 10.1073/pnas.0803070105 10.1111/j.1461-0248.2009.01413.x 10.1080/09670269500650771 10.5962/bhl.title.82303 10.1017/S0094837300010629 10.1186/gb-2007-8-7-r143 10.1111/j.1462-2920.2009.02051.x 10.1038/ismej.2011.119 10.1111/j.1095-8312.1991.tb00549.x 10.1111/j.1365-2699.2004.01117.x 10.2307/3544021 10.1111/j.0022-3646.1992.00428.x 10.1126/science.1111318 10.2307/2999704 10.1007/s002270050010 10.1038/nature03073 10.1086/368296 10.1111/j.1462-2920.2010.02193.x 10.1073/pnas.1000454107 |
ContentType | Journal Article |
Copyright | Copyright © 2013 Blackwell Publishing Ltd. 2012 Blackwell Publishing Ltd 2014 INIST-CNRS Copyright © 2013 Blackwell Publishing Ltd |
Copyright_xml | – notice: Copyright © 2013 Blackwell Publishing Ltd. – notice: 2012 Blackwell Publishing Ltd – notice: 2014 INIST-CNRS – notice: Copyright © 2013 Blackwell Publishing Ltd |
DBID | BSCLL AAYXX CITATION IQODW 7SN 7SS 8FD C1K FR3 P64 RC3 7QL 7ST 7TN 7U6 F1W H95 L.G SOI |
DOI | 10.1111/jbi.12034 |
DatabaseName | Istex CrossRef Pascal-Francis Ecology Abstracts Entomology Abstracts (Full archive) Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts Bacteriology Abstracts (Microbiology B) Environment Abstracts Oceanic Abstracts Sustainability Science Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Environment Abstracts |
DatabaseTitle | CrossRef Entomology Abstracts Genetics Abstracts Technology Research Database Engineering Research Database Ecology Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Aquatic Science & Fisheries Abstracts (ASFA) Professional Oceanic Abstracts Sustainability Science Abstracts Bacteriology Abstracts (Microbiology B) ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Environment Abstracts |
DatabaseTitleList | Entomology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Biology Ecology |
EISSN | 1365-2699 |
Editor | Lambshead, John |
Editor_xml | – sequence: 14 givenname: John surname: Lambshead fullname: Lambshead, John |
EndPage | 811 |
ExternalDocumentID | 2920799201 27146659 10_1111_jbi_12034 JBI12034 23463640 ark_67375_WNG_LZ24204H_S |
Genre | article |
GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 1OC 29J 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHKG AAHQN AAISJ AAKGQ AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABBHK ABCQN ABCUV ABEML ABJNI ABLJU ABPLY ABPPZ ABPVW ABSQW ABTLG ABXSQ ACAHQ ACBWZ ACCZN ACGFS ACHIC ACPOU ACPRK ACRPL ACSCC ACSTJ ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADULT ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUPB AEUYR AEYWJ AFAZZ AFBPY AFEBI AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGUYK AGXDD AGYGG AHBTC AHXOZ AI. AIDQK AIDYY AILXY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ANHSF AQVQM ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CAG CBGCD COF CS3 CUYZI D-E D-F DCZOG DEVKO DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD F00 F01 F04 F5P FEDTE G-S G.N GODZA GTFYD H.T H.X HF~ HGD HGLYW HQ2 HTVGU HVGLF HZI HZ~ H~9 IHE IPSME IX1 J0M JAAYA JBMMH JBS JEB JENOY JHFFW JKQEH JLS JLXEF JPM JST K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 R.K ROL RX1 SA0 SUPJJ TN5 UB1 VH1 VOH VQP W8V W99 WBKPD WIH WIK WMRSR WOHZO WQJ WSUWO WXSBR XG1 YQT ZZTAW ~02 ~IA ~KM ~WT AAHHS AAYXX ACCFJ ADZOD AEEZP AEQDE AIWBW AJBDE CITATION IQODW 7SN 7SS 8FD C1K FR3 P64 RC3 7QL 7ST 7TN 7U6 F1W H95 L.G SOI |
ID | FETCH-LOGICAL-c4204-e15971d886a9acddf1df927a39a980a1f757f016d98bc851a6c24f7998d7c4113 |
IEDL.DBID | DR2 |
ISSN | 0305-0270 |
IngestDate | Fri Jul 11 08:44:30 EDT 2025 Fri Jul 25 10:18:21 EDT 2025 Mon Jul 21 09:10:51 EDT 2025 Tue Jul 01 01:14:07 EDT 2025 Thu Apr 24 23:01:56 EDT 2025 Tue Sep 09 05:11:53 EDT 2025 Sun Aug 24 12:10:41 EDT 2025 Tue Sep 09 05:32:45 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Abundance-range relationship Latitudinal gradient Biogeography macro-organisms Abundance Ecology micro-organisms Marine environment macro-ecology Bacterioplankton Macroecology Bacteria Rapoport's rule marine microbes Microorganism Rapoport rule rarity |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4204-e15971d886a9acddf1df927a39a980a1f757f016d98bc851a6c24f7998d7c4113 |
Notes | ArticleID:JBI12034 ark:/67375/WNG-LZ24204H-S istex:ADC5F5ECD7033DFB52C83A6FDDD4743978409F09 ObjectType-Article-1 SourceType-Scholarly Journals-1 content type line 14 ObjectType-Feature-2 content type line 23 |
PQID | 1317617332 |
PQPubID | 1086398 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_1323810516 proquest_journals_1317617332 pascalfrancis_primary_27146659 crossref_citationtrail_10_1111_jbi_12034 crossref_primary_10_1111_jbi_12034 wiley_primary_10_1111_jbi_12034_JBI12034 jstor_primary_23463640 istex_primary_ark_67375_WNG_LZ24204H_S |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2013 |
PublicationDateYYYYMMDD | 2013-04-01 |
PublicationDate_xml | – month: 04 year: 2013 text: April 2013 |
PublicationDecade | 2010 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Journal of biogeography |
PublicationTitleAlternate | J. Biogeogr |
PublicationYear | 2013 |
Publisher | Blackwell Publishing Ltd Blackwell Publishing Blackwell Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Blackwell Publishing – name: Blackwell – name: Wiley Subscription Services, Inc |
References | Ruggiero, A. & Werenkraut, V. (2007) One-dimensional analyses of Rapoport's rule reviewed through meta-analysis. Global Ecology and Biogeography, 16, 401-414. Gaston, K.J. (1994) Rarity. Chapman & Hall, London. Oksanen, J., Blanchet, J.F., Kindt, R., Legendre, P., O'Hara, R.B. et al. (2011) The vegan package. R package version 1.17-6. Available at: http://cran.r-project.org/package=vegan. Wickham, H. (2009) ggplot2: elegant graphics for data analysis. Springer, New York. Bischoff, B. & Wiencke, C. (1995) Temperature ecotypes and biogeography of Acrosiphoniales (Chlorophyta) with Arctic-Antarctic disjunct and Arctic/cold-temperature distributions. European Journal of Phycology, 30, 19-27. Brown, J.H. (1995) Macroecology. University of Chicago Press, Chicago, IL. Barberán, A., Bates, S.T., Casamayor, E.O. & Fierer, N. (2012) Using network analysis to explore co-occurrence patterns in soil microbial communities. The ISME Journal, 6, 343-351. Hilbish, T.J., Mullinax, A., Dolven, S.I., Meyer, A., Koehn, R.K. & Rawson, P.D. (2000) Origin of the antitropical distribution pattern in marine mussels (Mytilus spp.): routes and timing of transequatorial migration. Marine Biology, 136, 69-77. Gaston, K.J. & Lawton, J.H. (1990) Effects of scale and habitat on the relationship between regional distribution and local abundance. Oikos, 58, 329-335. Furrer, R. & Sain, S.R. (2008) spam: a sparse matrix R package with emphasis on MCMC methods for Gaussian Markov random fields. Journal of Statistical Software, 36, 1-25. Bell, T. (2010) Experimental tests of the bacterial distance-decay relationship. The ISME Journal, 4, 1357-1365. Bell, T., Ager, D., Song, J.-I., Newman, J.A., Thompson, I.P., Lilley, A.K. & van der Gast, C.J. (2005) Larger islands house more bacterial taxa. Science, 308, 1884. Hanski, I. (1991) Single-species metapopulation dynamics: concepts, models and observations. Biological Journal of the Linnean Society, 42, 17-38. Huse, S.M., Dethlefsen, L., Huber, J.A., Welch, D.M., Relman, D.A. & Sogin, M.L. (2008) Exploring microbial diversity and taxonomy using SSU rRNA hypervariable tag sequencing. PLoS Genetics, 4, e1000255. Amend, A.S., Seifert, K.A., Samson, R. & Bruns, T.D. (2010b) Indoor fungal composition is geographically patterned and more diverse in temperate zones than in the tropics. Proceedings of the National Academy of Sciences USA, 107, 13748-13753. Stevens, G.C. (1996) Extending Rapoport's rule to Pacific marine fishes. Journal of Biogeography, 23, 149-154. Nemergut, D.R., Costello, E.K., Hamady, M., Lozupone, C., Jiang, L., Schmidt, S.K., Fierer, N., Townsend, A.R., Cleveland, C.C., Stanish, L. & Knight, R. (2011) Global patterns in the biogeography of bacterial taxa. Environmental Microbiology, 13, 135-144. Ekman, S. (1953) Zoogeography of the sea. Sidgwick & Jackson, London. Huse, S.M., Huber, J.A., Morrison, H.G., Sogin, M.L. & Welch, D.M. (2007) Accuracy and quality of massively parallel DNA pyrosequencing. Genome Biology, 8, R143. Bock, C.E. (1987) Distribution-abundance relationships of some Arizona landbirds: a matter of scale? Ecology, 68, 124-129. Hanski, I. (1982) Dynamics of regional distribution: the core and satellite species hypothesis. Oikos, 38, 210-221. Lindberg, D.R. (1991) Marine biotic interchange between the northern and southern hemispheres. Paleobiology, 17, 308-324. Stevens, G.C. (1989) The latitudinal gradient in geographical range: how so many species coexist in the tropics. The American Naturalist, 133, 240-256. Gaston, K.J., Blackburn, T.M. & Spicer, J.I. (1998) Rapoport's rule: time for an epitaph? Trends in Ecology and Evolution, 13, 70-74. Brown, J.H. (1984) On the relationship between abundance and distribution of species. The American Naturalist, 124, 255-279. Klopfer, P.H. & MacArthur, R.H. (1960) Niche size and faunal diversity. The American Naturalist, 94, 293-300. Hengeveld, R. & Haeck, J. (1982) The distribution of abundance. I. Measurements. Journal of Biogeography, 9, 303-316. Pommier, T., Canbäck, B., Riemann, L., Boström, K., Simu, K., Lundberg, P., Tunlid, A. & Hagström, Å. (2007) Global patterns of diversity and community structure in marine bacterioplankton. Molecular Ecology, 16, 867-880. Soininen, J. (2012) Macroecology of unicellular organisms - patterns and processes. Environmental Microbiology Reports, 4, 10-22. Huse, S.M., Welch, D.M., Morrison, H.G. & Sogin, M.L. (2010) Ironing out the wrinkles in the rare biosphere through improved OTU clustering. Environmental Microbiology, 12, 1889-1898. Kunin, V., Engelbrektson, A., Ochman, H. & Hugenholtz, P. (2010) Wrinkles in the rare biosphere: pyrosequencing errors can lead to artificial inflation of diversity estimates. Environmental Microbiology, 12, 118-123. Fuhrman, J.A., Steele, J.A., Hewson, I., Schwalbach, M.S., Brown, M.V., Green, J.L. & Brown, J.H. (2008) A latitudinal diversity gradient in planktonic marine bacteria. Proceedings of the National Academy of Sciences USA, 105, 7774-7778. Furrer, R., Nychka, D. & Sain, S. (2009) Fields - tools for spatial data. R Package Version 6.3. Available at: http://www.image.ucar.edu/GSP/Software/Fields/. Peters, A.F. & Breeman, A.M. (1992) Temperature responses of disjunct temperate brown algae indicate long-distance dispersal of microthalli across the tropics. Journal of Phycology, 28, 428-438. Amend, A.S., Seifert, K.A. & Bruns, T.D. (2010a) Quantifying microbial communities with 454 pyrosequencing: does read abundance count? Molecular Ecology, 19, 5555-5565. Gaston, K.J., Blackburn, T.M., Greenwood, J.J.D., Gregory, R.D., Quinn, R.M. & Lawton, J.H. (2000) Abundance-occupancy relationships. Journal of Applied Ecology, 37(Suppl. 1), 39-59. Darwin, C. (1859) On the origin of species by means of natural selection, or, the preservation of favoured races in the struggle for life. John Murray, London. Zinger, L., Amaral-Zettler, L.A., Fuhrman, J.A., Horner-Devine, M.C., Huse, S.M., Welch, D.B.M., Martiny, J.B.H., Sogin, M., Boetius, A. & Ramette, A. (2011) Global patterns of bacterial beta-diversity in seafloor and seawater ecosystems. PLoS ONE, 6, e24570. Sagarin, R.D. & Gaines, S.D. (2002) The 'abundant centre' distribution: to what extent is it a biogeographical rule? Ecology Letters, 5, 137-147. Colwell, R.K. & Hurtt, G.C. (1994) Nonbiological gradients in species richness and a spurious Rapoport effect. The American Naturalist, 144, 570-595. Horner-Devine, M.C., Lage, M., Hughes, J.B. & Bohannan, B.J.M. (2004) A taxa-area relationship for bacteria. Nature, 432, 750-753. R Development Core Team (2010) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Martiny, J.B.H., Eisen, J.A., Penn, K., Allison, S.D. & Horner-Devine, M.C. (2011) Drivers of bacterial β-diversity depend on spatial scale. Proceedings of the National Academy of Sciences USA, 108, 7850-7854. Webb, T.J. & Gaston, K.J. (2003) On the heritability of geographic range sizes. The American Naturalist, 161, 553-566. Östman, Ö., Drakare, S., Kritzberg, E.S., Langenheder, S., Logue, J.B. & Lindström, E.S. (2010) Regional invariance among microbial communities. Ecology Letters, 13, 118-127. Rohde, K. (1996) Rapoport's Rule is a local phenomenon and cannot explain latitudinal gradients in species diversity. Biodiversity Letters, 3, 10-13. Curtis, T.P. & Sloan, W.T. (2005) Exploring microbial diversity - a vast below. Science, 309, 1331-1333. Lewin-Koh, N.J. & Bivand, R. (2009) Maptools: tools for reading and handling spatial objects. R package version 0.7-38. Available at: http://cran.r-project.org/package=maptools. Sogin, M.L., Morrison, H.G., Huber, J.A., Welch, D.M., Huse, S.M., Neal, P.R., Arrieta, J.M. & Herndl, G.J. (2006) Microbial diversity in the deep sea and the underexplored "rare biosphere". Proceedings of the National Academy of Sciences USA, 103, 12115-12120. Fortes, R.R. & Absalão, R.S. (2004) The applicability of Rapoport's rule to the marine molluscs of the Americas. Journal of Biogeography, 31, 1909-1916. Guernier, V. & Guégan, J.-F. (2009) May Rapoport's rule apply to human associated pathogens? EcoHealth, 6, 509-521. Raven, P.H. (1963) Amphitropical relationships in the floras of North and South America. Quarterly Review of Biology, 38, 151-177. Rohde, K., Heap, M. & Heap, D. (1993) Rapoport's rule does not apply to marine teleosts and cannot explain latitudinal gradients in species richness. The American Naturalist, 142, 1-16. 2010; 12 1995; 30 1991; 17 1990; 58 2010; 13 1984; 124 2000; 136 2008; 36 2008; 105 2011; 13 2008; 4 1859 1994; 144 2004; 31 1963; 38 1991; 42 1982; 9 2007; 8 2003; 161 2005; 308 2005; 309 1981 2010; 4 1996; 3 1996; 23 1998; 13 1960; 94 1982; 38 2011 2010 2002; 5 1989; 133 2009 1953 1952 2010a; 19 1995 1994 2011; 6 1993; 142 2007; 16 1987; 68 2011; 108 2004; 432 2000; 37 1992; 28 2010b; 107 2009; 6 2012; 6 2012; 4 2006; 103 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_17_1 e_1_2_7_41_1 e_1_2_7_13_1 e_1_2_7_43_1 Lewin‐Koh N.J. (e_1_2_7_36_1) 2009 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 Furrer R. (e_1_2_7_18_1) 2008; 36 e_1_2_7_50_1 Ekman S. (e_1_2_7_15_1) 1953 e_1_2_7_25_1 e_1_2_7_31_1 Oksanen J. (e_1_2_7_40_1) 2011 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 Rabinowitz D. (e_1_2_7_45_1) 1981 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_39_1 e_1_2_7_6_1 Brown J.H. (e_1_2_7_11_1) 1995 Hubbs C.L. (e_1_2_7_30_1) 1952 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_16_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_12_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_51_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_38_1 R Development Core Team (e_1_2_7_44_1) 2010 Furrer R. (e_1_2_7_19_1) 2009 |
References_xml | – reference: Rohde, K. (1996) Rapoport's Rule is a local phenomenon and cannot explain latitudinal gradients in species diversity. Biodiversity Letters, 3, 10-13. – reference: Furrer, R. & Sain, S.R. (2008) spam: a sparse matrix R package with emphasis on MCMC methods for Gaussian Markov random fields. Journal of Statistical Software, 36, 1-25. – reference: Gaston, K.J. & Lawton, J.H. (1990) Effects of scale and habitat on the relationship between regional distribution and local abundance. Oikos, 58, 329-335. – reference: Ekman, S. (1953) Zoogeography of the sea. Sidgwick & Jackson, London. – reference: Amend, A.S., Seifert, K.A. & Bruns, T.D. (2010a) Quantifying microbial communities with 454 pyrosequencing: does read abundance count? Molecular Ecology, 19, 5555-5565. – reference: Lindberg, D.R. (1991) Marine biotic interchange between the northern and southern hemispheres. Paleobiology, 17, 308-324. – reference: Amend, A.S., Seifert, K.A., Samson, R. & Bruns, T.D. (2010b) Indoor fungal composition is geographically patterned and more diverse in temperate zones than in the tropics. Proceedings of the National Academy of Sciences USA, 107, 13748-13753. – reference: Curtis, T.P. & Sloan, W.T. (2005) Exploring microbial diversity - a vast below. Science, 309, 1331-1333. – reference: Kunin, V., Engelbrektson, A., Ochman, H. & Hugenholtz, P. (2010) Wrinkles in the rare biosphere: pyrosequencing errors can lead to artificial inflation of diversity estimates. Environmental Microbiology, 12, 118-123. – reference: Bock, C.E. (1987) Distribution-abundance relationships of some Arizona landbirds: a matter of scale? Ecology, 68, 124-129. – reference: Huse, S.M., Welch, D.M., Morrison, H.G. & Sogin, M.L. (2010) Ironing out the wrinkles in the rare biosphere through improved OTU clustering. Environmental Microbiology, 12, 1889-1898. – reference: Fortes, R.R. & Absalão, R.S. (2004) The applicability of Rapoport's rule to the marine molluscs of the Americas. Journal of Biogeography, 31, 1909-1916. – reference: Martiny, J.B.H., Eisen, J.A., Penn, K., Allison, S.D. & Horner-Devine, M.C. (2011) Drivers of bacterial β-diversity depend on spatial scale. Proceedings of the National Academy of Sciences USA, 108, 7850-7854. – reference: Raven, P.H. (1963) Amphitropical relationships in the floras of North and South America. Quarterly Review of Biology, 38, 151-177. – reference: Sogin, M.L., Morrison, H.G., Huber, J.A., Welch, D.M., Huse, S.M., Neal, P.R., Arrieta, J.M. & Herndl, G.J. (2006) Microbial diversity in the deep sea and the underexplored "rare biosphere". Proceedings of the National Academy of Sciences USA, 103, 12115-12120. – reference: Bell, T., Ager, D., Song, J.-I., Newman, J.A., Thompson, I.P., Lilley, A.K. & van der Gast, C.J. (2005) Larger islands house more bacterial taxa. Science, 308, 1884. – reference: Hanski, I. (1982) Dynamics of regional distribution: the core and satellite species hypothesis. Oikos, 38, 210-221. – reference: Darwin, C. (1859) On the origin of species by means of natural selection, or, the preservation of favoured races in the struggle for life. John Murray, London. – reference: Gaston, K.J. (1994) Rarity. Chapman & Hall, London. – reference: Hengeveld, R. & Haeck, J. (1982) The distribution of abundance. I. Measurements. Journal of Biogeography, 9, 303-316. – reference: Huse, S.M., Dethlefsen, L., Huber, J.A., Welch, D.M., Relman, D.A. & Sogin, M.L. (2008) Exploring microbial diversity and taxonomy using SSU rRNA hypervariable tag sequencing. PLoS Genetics, 4, e1000255. – reference: Pommier, T., Canbäck, B., Riemann, L., Boström, K., Simu, K., Lundberg, P., Tunlid, A. & Hagström, Å. (2007) Global patterns of diversity and community structure in marine bacterioplankton. Molecular Ecology, 16, 867-880. – reference: Furrer, R., Nychka, D. & Sain, S. (2009) Fields - tools for spatial data. R Package Version 6.3. Available at: http://www.image.ucar.edu/GSP/Software/Fields/. – reference: Lewin-Koh, N.J. & Bivand, R. (2009) Maptools: tools for reading and handling spatial objects. R package version 0.7-38. Available at: http://cran.r-project.org/package=maptools. – reference: Stevens, G.C. (1996) Extending Rapoport's rule to Pacific marine fishes. Journal of Biogeography, 23, 149-154. – reference: Nemergut, D.R., Costello, E.K., Hamady, M., Lozupone, C., Jiang, L., Schmidt, S.K., Fierer, N., Townsend, A.R., Cleveland, C.C., Stanish, L. & Knight, R. (2011) Global patterns in the biogeography of bacterial taxa. Environmental Microbiology, 13, 135-144. – reference: Oksanen, J., Blanchet, J.F., Kindt, R., Legendre, P., O'Hara, R.B. et al. (2011) The vegan package. R package version 1.17-6. Available at: http://cran.r-project.org/package=vegan. – reference: Horner-Devine, M.C., Lage, M., Hughes, J.B. & Bohannan, B.J.M. (2004) A taxa-area relationship for bacteria. Nature, 432, 750-753. – reference: Bell, T. (2010) Experimental tests of the bacterial distance-decay relationship. The ISME Journal, 4, 1357-1365. – reference: Stevens, G.C. (1989) The latitudinal gradient in geographical range: how so many species coexist in the tropics. The American Naturalist, 133, 240-256. – reference: Huse, S.M., Huber, J.A., Morrison, H.G., Sogin, M.L. & Welch, D.M. (2007) Accuracy and quality of massively parallel DNA pyrosequencing. Genome Biology, 8, R143. – reference: Guernier, V. & Guégan, J.-F. (2009) May Rapoport's rule apply to human associated pathogens? EcoHealth, 6, 509-521. – reference: Hilbish, T.J., Mullinax, A., Dolven, S.I., Meyer, A., Koehn, R.K. & Rawson, P.D. (2000) Origin of the antitropical distribution pattern in marine mussels (Mytilus spp.): routes and timing of transequatorial migration. Marine Biology, 136, 69-77. – reference: Östman, Ö., Drakare, S., Kritzberg, E.S., Langenheder, S., Logue, J.B. & Lindström, E.S. (2010) Regional invariance among microbial communities. Ecology Letters, 13, 118-127. – reference: Webb, T.J. & Gaston, K.J. (2003) On the heritability of geographic range sizes. The American Naturalist, 161, 553-566. – reference: Zinger, L., Amaral-Zettler, L.A., Fuhrman, J.A., Horner-Devine, M.C., Huse, S.M., Welch, D.B.M., Martiny, J.B.H., Sogin, M., Boetius, A. & Ramette, A. (2011) Global patterns of bacterial beta-diversity in seafloor and seawater ecosystems. PLoS ONE, 6, e24570. – reference: Bischoff, B. & Wiencke, C. (1995) Temperature ecotypes and biogeography of Acrosiphoniales (Chlorophyta) with Arctic-Antarctic disjunct and Arctic/cold-temperature distributions. European Journal of Phycology, 30, 19-27. – reference: Colwell, R.K. & Hurtt, G.C. (1994) Nonbiological gradients in species richness and a spurious Rapoport effect. The American Naturalist, 144, 570-595. – reference: Gaston, K.J., Blackburn, T.M. & Spicer, J.I. (1998) Rapoport's rule: time for an epitaph? Trends in Ecology and Evolution, 13, 70-74. – reference: Brown, J.H. (1984) On the relationship between abundance and distribution of species. The American Naturalist, 124, 255-279. – reference: Rohde, K., Heap, M. & Heap, D. (1993) Rapoport's rule does not apply to marine teleosts and cannot explain latitudinal gradients in species richness. The American Naturalist, 142, 1-16. – reference: Barberán, A., Bates, S.T., Casamayor, E.O. & Fierer, N. (2012) Using network analysis to explore co-occurrence patterns in soil microbial communities. The ISME Journal, 6, 343-351. – reference: R Development Core Team (2010) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. – reference: Peters, A.F. & Breeman, A.M. (1992) Temperature responses of disjunct temperate brown algae indicate long-distance dispersal of microthalli across the tropics. Journal of Phycology, 28, 428-438. – reference: Klopfer, P.H. & MacArthur, R.H. (1960) Niche size and faunal diversity. The American Naturalist, 94, 293-300. – reference: Soininen, J. (2012) Macroecology of unicellular organisms - patterns and processes. Environmental Microbiology Reports, 4, 10-22. – reference: Hanski, I. (1991) Single-species metapopulation dynamics: concepts, models and observations. Biological Journal of the Linnean Society, 42, 17-38. – reference: Gaston, K.J., Blackburn, T.M., Greenwood, J.J.D., Gregory, R.D., Quinn, R.M. & Lawton, J.H. (2000) Abundance-occupancy relationships. Journal of Applied Ecology, 37(Suppl. 1), 39-59. – reference: Ruggiero, A. & Werenkraut, V. (2007) One-dimensional analyses of Rapoport's rule reviewed through meta-analysis. Global Ecology and Biogeography, 16, 401-414. – reference: Brown, J.H. (1995) Macroecology. University of Chicago Press, Chicago, IL. – reference: Fuhrman, J.A., Steele, J.A., Hewson, I., Schwalbach, M.S., Brown, M.V., Green, J.L. & Brown, J.H. (2008) A latitudinal diversity gradient in planktonic marine bacteria. Proceedings of the National Academy of Sciences USA, 105, 7774-7778. – reference: Sagarin, R.D. & Gaines, S.D. (2002) The 'abundant centre' distribution: to what extent is it a biogeographical rule? Ecology Letters, 5, 137-147. – reference: Wickham, H. (2009) ggplot2: elegant graphics for data analysis. Springer, New York. – year: 2011 – year: 2009 – volume: 42 start-page: 17 year: 1991 end-page: 38 article-title: Single‐species metapopulation dynamics: concepts, models and observations publication-title: Biological Journal of the Linnean Society – volume: 309 start-page: 1331 year: 2005 end-page: 1333 article-title: Exploring microbial diversity – a vast below publication-title: Science – volume: 12 start-page: 1889 year: 2010 end-page: 1898 article-title: Ironing out the wrinkles in the rare biosphere through improved OTU clustering publication-title: Environmental Microbiology – volume: 13 start-page: 70 year: 1998 end-page: 74 article-title: Rapoport's rule: time for an epitaph? publication-title: Trends in Ecology and Evolution – volume: 38 start-page: 151 year: 1963 end-page: 177 article-title: Amphitropical relationships in the floras of North and South America publication-title: Quarterly Review of Biology – volume: 16 start-page: 867 year: 2007 end-page: 880 article-title: Global patterns of diversity and community structure in marine bacterioplankton publication-title: Molecular Ecology – volume: 13 start-page: 135 year: 2011 end-page: 144 article-title: Global patterns in the biogeography of bacterial taxa publication-title: Environmental Microbiology – volume: 8 start-page: R143 year: 2007 article-title: Accuracy and quality of massively parallel DNA pyrosequencing publication-title: Genome Biology – volume: 308 start-page: 1884 year: 2005 article-title: Larger islands house more bacterial taxa publication-title: Science – volume: 432 start-page: 750 year: 2004 end-page: 753 article-title: A taxa–area relationship for bacteria publication-title: Nature – volume: 6 start-page: 343 year: 2012 end-page: 351 article-title: Using network analysis to explore co‐occurrence patterns in soil microbial communities publication-title: The ISME Journal – year: 1994 – volume: 5 start-page: 137 year: 2002 end-page: 147 article-title: The ‘abundant centre’ distribution: to what extent is it a biogeographical rule? publication-title: Ecology Letters – volume: 38 start-page: 210 year: 1982 end-page: 221 article-title: Dynamics of regional distribution: the core and satellite species hypothesis publication-title: Oikos – volume: 3 start-page: 10 year: 1996 end-page: 13 article-title: Rapoport's Rule is a local phenomenon and cannot explain latitudinal gradients in species diversity publication-title: Biodiversity Letters – start-page: 221 year: 2010 end-page: 245 – volume: 37 start-page: 39 issue: Suppl. 1 year: 2000 end-page: 59 article-title: Abundance–occupancy relationships publication-title: Journal of Applied Ecology – volume: 9 start-page: 303 year: 1982 end-page: 316 article-title: The distribution of abundance. I. Measurements publication-title: Journal of Biogeography – volume: 144 start-page: 570 year: 1994 end-page: 595 article-title: Nonbiological gradients in species richness and a spurious Rapoport effect publication-title: The American Naturalist – volume: 4 start-page: e1000255 year: 2008 article-title: Exploring microbial diversity and taxonomy using SSU rRNA hypervariable tag sequencing publication-title: PLoS Genetics – volume: 6 start-page: e24570 year: 2011 article-title: Global patterns of bacterial beta‐diversity in seafloor and seawater ecosystems publication-title: PLoS ONE – volume: 161 start-page: 553 year: 2003 end-page: 566 article-title: On the heritability of geographic range sizes publication-title: The American Naturalist – volume: 36 start-page: 1 year: 2008 end-page: 25 article-title: spam: a sparse matrix R package with emphasis on MCMC methods for Gaussian Markov random fields publication-title: Journal of Statistical Software – volume: 31 start-page: 1909 year: 2004 end-page: 1916 article-title: The applicability of Rapoport's rule to the marine molluscs of the Americas publication-title: Journal of Biogeography – volume: 4 start-page: 10 year: 2012 end-page: 22 article-title: Macroecology of unicellular organisms – patterns and processes publication-title: Environmental Microbiology Reports – year: 1859 – volume: 12 start-page: 118 year: 2010 end-page: 123 article-title: Wrinkles in the rare biosphere: pyrosequencing errors can lead to artificial inflation of diversity estimates publication-title: Environmental Microbiology – volume: 136 start-page: 69 year: 2000 end-page: 77 article-title: Origin of the antitropical distribution pattern in marine mussels ( spp.): routes and timing of transequatorial migration publication-title: Marine Biology – volume: 108 start-page: 7850 year: 2011 end-page: 7854 article-title: Drivers of bacterial β‐diversity depend on spatial scale publication-title: Proceedings of the National Academy of Sciences USA – volume: 13 start-page: 118 year: 2010 end-page: 127 article-title: Regional invariance among microbial communities publication-title: Ecology Letters – start-page: 324 year: 1952 end-page: 329 – volume: 16 start-page: 401 year: 2007 end-page: 414 article-title: One‐dimensional analyses of Rapoport's rule reviewed through meta‐analysis publication-title: Global Ecology and Biogeography – volume: 94 start-page: 293 year: 1960 end-page: 300 article-title: Niche size and faunal diversity publication-title: The American Naturalist – year: 2010 – volume: 124 start-page: 255 year: 1984 end-page: 279 article-title: On the relationship between abundance and distribution of species publication-title: The American Naturalist – volume: 23 start-page: 149 year: 1996 end-page: 154 article-title: Extending Rapoport's rule to Pacific marine fishes publication-title: Journal of Biogeography – volume: 19 start-page: 5555 year: 2010a end-page: 5565 article-title: Quantifying microbial communities with 454 pyrosequencing: does read abundance count? publication-title: Molecular Ecology – volume: 68 start-page: 124 year: 1987 end-page: 129 article-title: Distribution–abundance relationships of some Arizona landbirds: a matter of scale? publication-title: Ecology – volume: 17 start-page: 308 year: 1991 end-page: 324 article-title: Marine biotic interchange between the northern and southern hemispheres publication-title: Paleobiology – start-page: 205 year: 1981 end-page: 217 – volume: 58 start-page: 329 year: 1990 end-page: 335 article-title: Effects of scale and habitat on the relationship between regional distribution and local abundance publication-title: Oikos – volume: 30 start-page: 19 year: 1995 end-page: 27 article-title: Temperature ecotypes and biogeography of Acrosiphoniales (Chlorophyta) with Arctic–Antarctic disjunct and Arctic/cold‐temperature distributions publication-title: European Journal of Phycology – volume: 28 start-page: 428 year: 1992 end-page: 438 article-title: Temperature responses of disjunct temperate brown algae indicate long‐distance dispersal of microthalli across the tropics publication-title: Journal of Phycology – volume: 107 start-page: 13748 year: 2010b end-page: 13753 article-title: Indoor fungal composition is geographically patterned and more diverse in temperate zones than in the tropics publication-title: Proceedings of the National Academy of Sciences USA – year: 1995 – volume: 105 start-page: 7774 year: 2008 end-page: 7778 article-title: A latitudinal diversity gradient in planktonic marine bacteria publication-title: Proceedings of the National Academy of Sciences USA – volume: 142 start-page: 1 year: 1993 end-page: 16 article-title: Rapoport's rule does not apply to marine teleosts and cannot explain latitudinal gradients in species richness publication-title: The American Naturalist – volume: 103 start-page: 12115 year: 2006 end-page: 12120 article-title: Microbial diversity in the deep sea and the underexplored “rare biosphere” publication-title: Proceedings of the National Academy of Sciences USA – year: 1953 – volume: 6 start-page: 509 year: 2009 end-page: 521 article-title: May Rapoport's rule apply to human associated pathogens? publication-title: EcoHealth – volume: 133 start-page: 240 year: 1989 end-page: 256 article-title: The latitudinal gradient in geographical range: how so many species coexist in the tropics publication-title: The American Naturalist – volume: 4 start-page: 1357 year: 2010 end-page: 1365 article-title: Experimental tests of the bacterial distance–decay relationship publication-title: The ISME Journal – volume-title: The vegan package. R package version 1.17‐6 year: 2011 ident: e_1_2_7_40_1 – ident: e_1_2_7_50_1 doi: 10.1046/j.1461-0248.2002.00297.x – ident: e_1_2_7_10_1 doi: 10.1086/284267 – start-page: 324 volume-title: Proceedings of the 7th Pacific Science Congress of the Pacific Science Association. Vol. III: Meteorology and Oceanography year: 1952 ident: e_1_2_7_30_1 – ident: e_1_2_7_49_1 doi: 10.1111/j.1466-8238.2006.00303.x – ident: e_1_2_7_12_1 doi: 10.1086/285695 – volume-title: Macroecology year: 1995 ident: e_1_2_7_11_1 – ident: e_1_2_7_46_1 doi: 10.1086/403797 – volume-title: Fields – tools for spatial data year: 2009 ident: e_1_2_7_19_1 – ident: e_1_2_7_2_1 doi: 10.1002/9781444325508.ch12 – ident: e_1_2_7_6_1 doi: 10.1038/ismej.2010.77 – ident: e_1_2_7_13_1 doi: 10.1126/science.1118176 – ident: e_1_2_7_22_1 doi: 10.1016/S0169-5347(97)01236-6 – volume-title: R: a language and environment for statistical computing year: 2010 ident: e_1_2_7_44_1 – ident: e_1_2_7_48_1 doi: 10.1086/285526 – volume-title: Zoogeography of the sea year: 1953 ident: e_1_2_7_15_1 – ident: e_1_2_7_23_1 doi: 10.1046/j.1365-2664.2000.00485.x – ident: e_1_2_7_3_1 doi: 10.1111/j.1365-294X.2010.04898.x – ident: e_1_2_7_39_1 doi: 10.1111/j.1462-2920.2010.02315.x – start-page: 205 volume-title: The biological aspects of rare plant conservation year: 1981 ident: e_1_2_7_45_1 – ident: e_1_2_7_24_1 doi: 10.1007/s10393-010-0290-5 – ident: e_1_2_7_43_1 doi: 10.1111/j.1365-294X.2006.03189.x – ident: e_1_2_7_32_1 doi: 10.1371/journal.pgen.1000255 – ident: e_1_2_7_56_1 doi: 10.1007/978-0-387-98141-3 – ident: e_1_2_7_52_1 doi: 10.1111/j.1758-2229.2011.00308.x – volume-title: Maptools: tools for reading and handling spatial objects. R package version 0.7‐38 year: 2009 ident: e_1_2_7_36_1 – ident: e_1_2_7_20_1 doi: 10.1111/j.0014-3820.2004.tb01713.x – ident: e_1_2_7_21_1 doi: 10.2307/3545224 – ident: e_1_2_7_9_1 doi: 10.2307/1938812 – ident: e_1_2_7_54_1 doi: 10.1046/j.1365-2699.1996.00977.x – ident: e_1_2_7_27_1 doi: 10.2307/2844717 – ident: e_1_2_7_57_1 doi: 10.1371/journal.pone.0024570 – ident: e_1_2_7_34_1 doi: 10.1086/282130 – ident: e_1_2_7_51_1 doi: 10.1073/pnas.0605127103 – ident: e_1_2_7_38_1 doi: 10.1073/pnas.1016308108 – ident: e_1_2_7_17_1 doi: 10.1073/pnas.0803070105 – ident: e_1_2_7_41_1 doi: 10.1111/j.1461-0248.2009.01413.x – ident: e_1_2_7_8_1 doi: 10.1080/09670269500650771 – ident: e_1_2_7_14_1 doi: 10.5962/bhl.title.82303 – ident: e_1_2_7_37_1 doi: 10.1017/S0094837300010629 – ident: e_1_2_7_31_1 doi: 10.1186/gb-2007-8-7-r143 – ident: e_1_2_7_35_1 doi: 10.1111/j.1462-2920.2009.02051.x – ident: e_1_2_7_5_1 doi: 10.1038/ismej.2011.119 – ident: e_1_2_7_26_1 doi: 10.1111/j.1095-8312.1991.tb00549.x – ident: e_1_2_7_16_1 doi: 10.1111/j.1365-2699.2004.01117.x – ident: e_1_2_7_25_1 doi: 10.2307/3544021 – ident: e_1_2_7_42_1 doi: 10.1111/j.0022-3646.1992.00428.x – ident: e_1_2_7_7_1 doi: 10.1126/science.1111318 – volume: 36 start-page: 1 year: 2008 ident: e_1_2_7_18_1 article-title: spam: a sparse matrix R package with emphasis on MCMC methods for Gaussian Markov random fields publication-title: Journal of Statistical Software – ident: e_1_2_7_47_1 doi: 10.2307/2999704 – ident: e_1_2_7_28_1 doi: 10.1007/s002270050010 – ident: e_1_2_7_29_1 doi: 10.1038/nature03073 – ident: e_1_2_7_55_1 doi: 10.1086/368296 – ident: e_1_2_7_33_1 doi: 10.1111/j.1462-2920.2010.02193.x – ident: e_1_2_7_53_1 doi: 10.1046/j.1365-2699.1996.00977.x – ident: e_1_2_7_4_1 doi: 10.1073/pnas.1000454107 |
SSID | ssj0009534 |
Score | 2.2789438 |
Snippet | Aim: To test whether within-species and among-species patterns of abundance and latitudinal range in marine bacteria resemble those found for macro-organisms,... Aim To test whether within‐species and among‐species patterns of abundance and latitudinal range in marine bacteria resemble those found for macro‐organisms,... Aim To test whether within-species and among-species patterns of abundance and latitudinal range in marine bacteria resemble those found for macro-organisms,... To test whether within-species and among-species patterns of abundance and latitudinal range in marine bacteria resemble those found for macro-organisms, and... |
SourceID | proquest pascalfrancis crossref wiley jstor istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 800 |
SubjectTerms | Abundance-range relationship Animal and plant ecology Animal, plant and microbial ecology Bacteria Bacterioplankton Biogeography Biological and medical sciences Datasets Equator Fundamental and applied biological sciences. Psychology General aspects Geodetic position Hemispheres Latitude latitudinal gradient macro-organisms macroecology Marine biogeography Marine environment marine microbes micro-organisms Microbiology Rapoport's rule rarity Sea water ecosystems Southern hemisphere Species Synecology Taxa Tropical environments |
Title | Macroecological patterns of marine bacteria on a global scale |
URI | https://api.istex.fr/ark:/67375/WNG-LZ24204H-S/fulltext.pdf https://www.jstor.org/stable/23463640 https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjbi.12034 https://www.proquest.com/docview/1317617332 https://www.proquest.com/docview/1323810516 |
Volume | 40 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3ba9YwFD-MieiL97Fuc0QR8aUfzaVNi09eNj-H7kEdDhFCmiY4pu34LuD8681J2vp9oiBSCoGePpzkXH5NT34H4JE0Ikcau5TXrkmFyaq05Nql_i5sRZm1Bs8Ovz0upifi6DQ_3YCnw1mYyA8xbrihZ4R4jQ6u6_mqk9dnE8oyjlyglBfIm__yHVsh3OWROgqL05jMelahUMUzvLmWi67gtH4fyhKxRlLP_TS52N9iDYCuwtiQhw5vwudBg1h-cj5ZLuqJ-fEbueN_qngLbvT4lDyLBnUbNmx7B67GjpWXfnRg-tG1vn36l8u7gPvZs86aIZCSi8Da2c5J58g3jQcMSR1poTXpWqJJ5CEhqLq9ByeHBx9eTNO-L0NqBMtEaj0EkrQpy0JX2jSNo42rmNS80lWZaepkLp2Hkk1V1sYjOl0YJpz0H3aNNw1K-RZstl1rt4Fo4y9aSC4MF9a6ykrW1LQRuTA-bdoEngwrpExPWo69M76q8eOlPlNhjhJ4OIpeRKaOPwk9Dss8SujZOZa2yVx9PH6l3nxiqOFUvU9gK9jBKMg4UquJLIH9NcP4JSB90inyKoG9wVJUHw_minqY5rEi5yyBB-Nj78n4e0a3tluiDMInHyQLr3Uwi7_roY6evw6DnX8X3YXrLPTywLKjPdhczJb2vkdUi3o_uM5PW5AYSw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9RAFD7UFqkv3ovRWkcR8SVL5pLMBnzx0rqt233QFosgw2QyQ0trUvYC1l_vnMnFXVEQCYGBnDycybl8MznzHYDn0ogUaexiXrgyFibJ4yHXLvZ3ZnPKrDV4dvhwko2OxcFJerIGr7qzMA0_RL_hhp4R4jU6OG5IL3t5cTagLOHiGmwIDzRw6fXuI1ui3OUNeRSWpzGZtLxCoY6ne3UlG23gxH7vChOxSlLP_ES5psPFCgRdBrIhE-3dgq-dDk0ByvlgMS8G5sdv9I7_q-RtuNlCVPK6sak7sGaru3C9aVp55Ue7ph1tth3UT6_uAW5pT2trulhKLgNxZzUjtSPfNJ4xJEXDDK1JXRFNGioSgrrb-3C8t3v0dhS3rRliI1giYutRkKTlcJjpXJuydLR0OZOa5zofJpo6mUrn0WSZDwvjQZ3ODBNO-rVd6a2DUr4F61Vd2QdAtPEXzSQXhgtrXW4lKwtailQYnzltBC-7T6RMy1uO7TMuVL9-Kc5UmKMInvWilw1Zx5-EXoTv3Evo6TlWt8lUfZ68V-MvDDUcqU8RbAVD6AUZR3Y1kUSws2IZvwSkzztZmkew3ZmKakPCTFGP1Dxc5JxF8LR_7J0Z_9DoytYLlEEE5eNk5rUOdvF3PdTBm_0wePjvok9gc3R0OFbj_cmHR3CDhdYeWIW0Devz6cI-9gBrXuwEP_oJ4uQcag |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3pa9RAFH_UFo8v3sXYw1FE_JIlcyST4CetXbe1LqKWFhGGyRxYqsmyB7T-9c5MDndFQSQEBvLy4c2845fJm98DeMoVSz2NXUxLq2OmkiLOqbSxuzNTYGKM8meH342z0TE7PE1P1-BFdxam4YfoN9y8Z4R47R18ou2yk5dnA0wSyq7ABssckvCI6ANZYtylDXeUr04jPGlphUIZT_fqSjLa8PN60dUl-iJJOXPzZJsGFysIdBnHhkQ0vAVfOhWa-pPzwWJeDtSP39gd_1PH23CzBajoZWNRd2DNVHfhatOy8tKN9lU7ut72T_96eQ_8hva0NqqLpGgSaDurGaot-i79CUNUNrzQEtUVkqghIkFedXMfjof7n_ZGcduYIVaMJCw2DgNxrPM8k4VUWlusbUG4pIUs8kRiy1NuHZbURV4qB-lkpgiz3H3ZaWcbGNNNWK_qyjwAJJW7cMYpU5QZYwvDiS6xZilTLm-aCJ53KyRUy1rum2d8E_3XS3kmwhxF8KQXnTRUHX8SehaWuZeQ03Nf28ZTcTJ-I44-E6_hSHyMYDPYQS9IqOdWY0kEuyuG8UuAu6yTpUUE252liDYgzAR2OM2BRUpJBI_7x86V_f8ZWZl64WU8fnJRMnNaB7P4ux7i8NVBGDz8d9FHcO3966E4Ohi_3YIbJPT18CVI27A-ny7MjkNX83I3eNFPcpAbGQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Macroecological+patterns+of+marine+bacteria+on+a+global+scale&rft.jtitle=Journal+of+biogeography&rft.au=Amend%2C+Anthony+S.&rft.au=Oliver%2C+Tom+A.&rft.au=Amaral-Zettler%2C+Linda+A.&rft.au=Boetius%2C+Antje&rft.date=2013-04-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0305-0270&rft.eissn=1365-2699&rft.volume=40&rft.issue=4&rft.spage=800&rft.epage=811&rft_id=info:doi/10.1111%2Fjbi.12034&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_LZ24204H_S |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-0270&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-0270&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-0270&client=summon |