Antitransgene Rejection Responses Contribute to Attenuated Persistence of Adoptively Transferred CD20/CD19-Specific Chimeric Antigen Receptor Redirected T Cells in Humans

Immunotherapeutic ablation of lymphoma is a conceptually attractive treatment strategy that is the subject of intense translational research. Cytotoxic T lymphocytes (CTLs) that are genetically modified to express CD19- or CD20-specific, single-chain antibody–derived chimeric antigen receptors (CARs...

Full description

Saved in:
Bibliographic Details
Published inBiology of blood and marrow transplantation Vol. 16; no. 9; pp. 1245 - 1256
Main Authors Jensen, Michael C., Popplewell, Leslie, Cooper, Laurence J., DiGiusto, David, Kalos, Michael, Ostberg, Julie R., Forman, Stephen J.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.09.2010
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Immunotherapeutic ablation of lymphoma is a conceptually attractive treatment strategy that is the subject of intense translational research. Cytotoxic T lymphocytes (CTLs) that are genetically modified to express CD19- or CD20-specific, single-chain antibody–derived chimeric antigen receptors (CARs) display HLA-independent antigen-specific recognition/killing of lymphoma targets. Here, we describe our initial experience in applying CAR-redirected autologous CTL adoptive therapy to patients with recurrent lymphoma. Using plasmid vector electrotransfer/drug selection systems, cloned and polyclonal CAR + CTLs were generated from autologous peripheral blood mononuclear cells and expanded in vitro to cell numbers sufficient for clinical use. In 2 FDA-authorized trials, patients with recurrent diffuse large cell lymphoma were treated with cloned CD8 + CTLs expressing a CD20-specific CAR (along with NeoR) after autologous hematopoietic stem cell transplantation, and patients with refractory follicular lymphoma were treated with polyclonal T cell preparations expressing a CD19-specific CAR (along with HyTK, a fusion of hygromycin resistance and HSV-1 thymidine kinase suicide genes) and low-dose s.c. recombinant human interleukin-2. A total of 15 infusions were administered (5 at 10 8cells/m 2, 7 at 10 9cells/m 2, and 3 at 2 × 10 9cells/m 2) to 4 patients. Overt toxicities attributable to CTL administration were not observed; however, detection of transferred CTLs in the circulation, as measured by quantitative polymerase chain reaction, was short (24 hours to 7 days), and cellular antitransgene immune rejection responses were noted in 2 patients. These studies reveal the primary barrier to therapeutic efficacy is limited persistence, and provide the rationale to prospectively define T cell populations intrinsically programmed for survival after adoptive transfer and to modulate the immune status of recipients to prevent/delay antitransgene rejection responses.
AbstractList Immunotherapeutic ablation of lymphoma is a conceptually attractive treatment strategy that is the subject of intense translational research. Cytotoxic T lymphocytes (CTLs) that are genetically modified to express CD19- or CD20-specific, single-chain antibody–derived chimeric antigen receptors (CARs) display HLA-independent antigen-specific recognition/killing of lymphoma targets. Here, we describe our initial experience in applying CAR-redirected autologous CTL adoptive therapy to patients with recurrent lymphoma. Using plasmid vector electrotransfer/drug selection systems, cloned and polyclonal CAR+ CTLs were generated from autologous peripheral blood mononuclear cells and expanded in vitro to cell numbers sufficient for clinical use. In 2 FDA-authorized trials, patients with recurrent diffuse large cell lymphoma were treated with cloned CD8+ CTLs expressing a CD20-specific CAR (along with NeoR) after autologous hematopoietic stem cell transplantation, and patients with refractory follicular lymphoma were treated with polyclonal T cell preparations expressing a CD19-specific CAR (along with HyTK, a fusion of hygromycin resistance and HSV-1 thymidine kinase suicide genes) and low-dose s.c. recombinant human interleukin-2. A total of 15 infusions were administered (5 at 108 cells/m2 , 7 at 109 cells/m2 , and 3 at 2 × 109 cells/m2 ) to 4 patients. Overt toxicities attributable to CTL administration were not observed; however, detection of transferred CTLs in the circulation, as measured by quantitative polymerase chain reaction, was short (24 hours to 7 days), and cellular antitransgene immune rejection responses were noted in 2 patients. These studies reveal the primary barrier to therapeutic efficacy is limited persistence, and provide the rationale to prospectively define T cell populations intrinsically programmed for survival after adoptive transfer and to modulate the immune status of recipients to prevent/delay antitransgene rejection responses.
Immunotherapeutic ablation of lymphoma is a conceptually attractive treatment strategy that is the subject of intense translational research. Cytotoxic T lymphocytes (CTLs) that are genetically modified to express CD19- or CD20-specific, single-chain antibody–derived chimeric antigen receptors (CARs) display HLA-independent antigen-specific recognition/killing of lymphoma targets. Here, we describe our initial experience in applying CAR-redirected autologous CTL adoptive therapy to patients with recurrent lymphoma. Using plasmid vector electrotransfer/drug selection systems, cloned and polyclonal CAR + CTLs were generated from autologous peripheral blood mononuclear cells and expanded in vitro to cell numbers sufficient for clinical use. In 2 FDA-authorized trials, patients with recurrent diffuse large cell lymphoma were treated with cloned CD8 + CTLs expressing a CD20-specific CAR (along with NeoR) after autologous hematopoietic stem cell transplantation, and patients with refractory follicular lymphoma were treated with polyclonal T cell preparations expressing a CD19-specific CAR (along with HyTK, a fusion of hygromycin resistance and HSV-1 thymidine kinase suicide genes) and low-dose s.c. recombinant human interleukin-2. A total of 15 infusions were administered (5 at 10 8cells/m 2, 7 at 10 9cells/m 2, and 3 at 2 × 10 9cells/m 2) to 4 patients. Overt toxicities attributable to CTL administration were not observed; however, detection of transferred CTLs in the circulation, as measured by quantitative polymerase chain reaction, was short (24 hours to 7 days), and cellular antitransgene immune rejection responses were noted in 2 patients. These studies reveal the primary barrier to therapeutic efficacy is limited persistence, and provide the rationale to prospectively define T cell populations intrinsically programmed for survival after adoptive transfer and to modulate the immune status of recipients to prevent/delay antitransgene rejection responses.
Immunotherapeutic ablation of lymphoma is a conceptually attractive treatment strategy that is the subject of intense translational research. Cytotoxic T lymphocytes (CTLs) that are genetically modified to express CD19- or CD20-specific, single-chain antibody-derived chimeric antigen receptors (CARs) display HLA-independent antigen-specific recognition/killing of lymphoma targets. Here, we describe our initial experience in applying CAR-redirected autologous CTL adoptive therapy to patients with recurrent lymphoma. Using plasmid vector electrotransfer/drug selection systems, cloned and polyclonal CAR(+) CTLs were generated from autologous peripheral blood mononuclear cells and expanded in vitro to cell numbers sufficient for clinical use. In 2 FDA-authorized trials, patients with recurrent diffuse large cell lymphoma were treated with cloned CD8(+) CTLs expressing a CD20-specific CAR (along with NeoR) after autologous hematopoietic stem cell transplantation, and patients with refractory follicular lymphoma were treated with polyclonal T cell preparations expressing a CD19-specific CAR (along with HyTK, a fusion of hygromycin resistance and HSV-1 thymidine kinase suicide genes) and low-dose s.c. recombinant human interleukin-2. A total of 15 infusions were administered (5 at 10(8)cells/m(2), 7 at 10(9)cells/m(2), and 3 at 2 x 10(9)cells/m(2)) to 4 patients. Overt toxicities attributable to CTL administration were not observed; however, detection of transferred CTLs in the circulation, as measured by quantitative polymerase chain reaction, was short (24 hours to 7 days), and cellular antitransgene immune rejection responses were noted in 2 patients. These studies reveal the primary barrier to therapeutic efficacy is limited persistence, and provide the rationale to prospectively define T cell populations intrinsically programmed for survival after adoptive transfer and to modulate the immune status of recipients to prevent/delay antitransgene rejection responses.Immunotherapeutic ablation of lymphoma is a conceptually attractive treatment strategy that is the subject of intense translational research. Cytotoxic T lymphocytes (CTLs) that are genetically modified to express CD19- or CD20-specific, single-chain antibody-derived chimeric antigen receptors (CARs) display HLA-independent antigen-specific recognition/killing of lymphoma targets. Here, we describe our initial experience in applying CAR-redirected autologous CTL adoptive therapy to patients with recurrent lymphoma. Using plasmid vector electrotransfer/drug selection systems, cloned and polyclonal CAR(+) CTLs were generated from autologous peripheral blood mononuclear cells and expanded in vitro to cell numbers sufficient for clinical use. In 2 FDA-authorized trials, patients with recurrent diffuse large cell lymphoma were treated with cloned CD8(+) CTLs expressing a CD20-specific CAR (along with NeoR) after autologous hematopoietic stem cell transplantation, and patients with refractory follicular lymphoma were treated with polyclonal T cell preparations expressing a CD19-specific CAR (along with HyTK, a fusion of hygromycin resistance and HSV-1 thymidine kinase suicide genes) and low-dose s.c. recombinant human interleukin-2. A total of 15 infusions were administered (5 at 10(8)cells/m(2), 7 at 10(9)cells/m(2), and 3 at 2 x 10(9)cells/m(2)) to 4 patients. Overt toxicities attributable to CTL administration were not observed; however, detection of transferred CTLs in the circulation, as measured by quantitative polymerase chain reaction, was short (24 hours to 7 days), and cellular antitransgene immune rejection responses were noted in 2 patients. These studies reveal the primary barrier to therapeutic efficacy is limited persistence, and provide the rationale to prospectively define T cell populations intrinsically programmed for survival after adoptive transfer and to modulate the immune status of recipients to prevent/delay antitransgene rejection responses.
Immunotherapeutic ablation of lymphoma is a conceptually attractive treatment strategy that is the subject of intense translational research. Cytotoxic T lymphocytes (CTLs) that are genetically modified to express CD19- or CD20-specific, single-chain antibody-derived chimeric antigen receptors (CARs) display HLA-independent antigen-specific recognition/killing of lymphoma targets. Here, we describe our initial experience in applying CAR-redirected autologous CTL adoptive therapy to patients with recurrent lymphoma. Using plasmid vector electrotransfer/drug selection systems, cloned and polyclonal CAR(+) CTLs were generated from autologous peripheral blood mononuclear cells and expanded in vitro to cell numbers sufficient for clinical use. In 2 FDA-authorized trials, patients with recurrent diffuse large cell lymphoma were treated with cloned CD8(+) CTLs expressing a CD20-specific CAR (along with NeoR) after autologous hematopoietic stem cell transplantation, and patients with refractory follicular lymphoma were treated with polyclonal T cell preparations expressing a CD19-specific CAR (along with HyTK, a fusion of hygromycin resistance and HSV-1 thymidine kinase suicide genes) and low-dose s.c. recombinant human interleukin-2. A total of 15 infusions were administered (5 at 10(8)cells/m(2), 7 at 10(9)cells/m(2), and 3 at 2 x 10(9)cells/m(2)) to 4 patients. Overt toxicities attributable to CTL administration were not observed; however, detection of transferred CTLs in the circulation, as measured by quantitative polymerase chain reaction, was short (24 hours to 7 days), and cellular antitransgene immune rejection responses were noted in 2 patients. These studies reveal the primary barrier to therapeutic efficacy is limited persistence, and provide the rationale to prospectively define T cell populations intrinsically programmed for survival after adoptive transfer and to modulate the immune status of recipients to prevent/delay antitransgene rejection responses.
Author Popplewell, Leslie
DiGiusto, David
Jensen, Michael C.
Cooper, Laurence J.
Kalos, Michael
Forman, Stephen J.
Ostberg, Julie R.
Author_xml – sequence: 1
  givenname: Michael C.
  surname: Jensen
  fullname: Jensen, Michael C.
  email: mjensen@coh.org
  organization: Department of Cancer Immunotherapeutics and Tumor Immunology, Beckman Research Institute, City of Hope National Medical Center, Duarte, California
– sequence: 2
  givenname: Leslie
  surname: Popplewell
  fullname: Popplewell, Leslie
  organization: Department of Hematology and Hematopoietic Cell Transplant, Beckman Research Institute, City of Hope National Medical Center, Duarte, California
– sequence: 3
  givenname: Laurence J.
  surname: Cooper
  fullname: Cooper, Laurence J.
  organization: Department of Hematology and Hematopoietic Cell Transplant, Beckman Research Institute, City of Hope National Medical Center, Duarte, California
– sequence: 4
  givenname: David
  surname: DiGiusto
  fullname: DiGiusto, David
  organization: Department of Hematology and Hematopoietic Cell Transplant, Beckman Research Institute, City of Hope National Medical Center, Duarte, California
– sequence: 5
  givenname: Michael
  surname: Kalos
  fullname: Kalos, Michael
  organization: Department of Cancer Immunotherapeutics and Tumor Immunology, Beckman Research Institute, City of Hope National Medical Center, Duarte, California
– sequence: 6
  givenname: Julie R.
  surname: Ostberg
  fullname: Ostberg, Julie R.
  organization: Department of Cancer Immunotherapeutics and Tumor Immunology, Beckman Research Institute, City of Hope National Medical Center, Duarte, California
– sequence: 7
  givenname: Stephen J.
  surname: Forman
  fullname: Forman, Stephen J.
  organization: Department of Cancer Immunotherapeutics and Tumor Immunology, Beckman Research Institute, City of Hope National Medical Center, Duarte, California
BackLink https://www.ncbi.nlm.nih.gov/pubmed/20304086$$D View this record in MEDLINE/PubMed
BookMark eNqFUk1v1DAQjVAR_YA_wAH5xilb28kmDkJIqxRapEogupytxBmDl8RObafS_iV-JWNty6ES5TRj6703o_fmNDuyzkKWvWZ0xSirznervp_iilP8oMWKsvJZdsLWvMirdVEdYU9FkYu6YcfZaQg7SmldiuZFdsxpQUsqqpPs98ZGE31nww-wQL7BDlQ0zmIXZmcDBNI6G73plwgkOrKJEezSRRjIV_DBBHwqIE6TzeDmaO5g3JNtEtTgPaLaC07P2wvW5DczKKONIu1PM4HHJg3HuThMwRydx2YwHjdA3pa0MI6BGEuulgn1XmbPdTcGeHVfz7Lvnz5u26v8-svl53ZznauS0zKvxaA0Ez1AUfelRqMKDVSkUpQUKr6GNeuogF5D3TcceMXVmgsx6FoPDSvOsrcH3dm72wVClJMJCnfpLLglyORhxeu6QOSbe-TSTzDI2Zup83v5YC8C-AGgvAvBg_4LYVSmDOVOpgxlylDSQmKGSBKPSMrELoWCOZnxaer7AxXQnzsDXgZlUj4HV-XgzNP0D4_oajTWqG78BXsIO7d4i85LJgOXVN6k-0rnxfCyGGsaFHj3b4H_Tf8D29Dhgg
CitedBy_id crossref_primary_10_1007_s12185_013_1493_7
crossref_primary_10_3389_fimmu_2020_00888
crossref_primary_10_1007_s00262_012_1254_0
crossref_primary_10_1016_j_ymthe_2017_07_009
crossref_primary_10_1182_bloodadvances_2016000034
crossref_primary_10_1002_ijc_31147
crossref_primary_10_1007_s12026_011_8253_7
crossref_primary_10_3390_jcm8020207
crossref_primary_10_1007_s11427_016_5025_6
crossref_primary_10_1016_j_beha_2016_08_011
crossref_primary_10_3389_fonc_2021_802876
crossref_primary_10_1080_1354750X_2021_2016973
crossref_primary_10_1016_j_jtauto_2024_100264
crossref_primary_10_1146_annurev_cancerbio_050216_034351
crossref_primary_10_1007_s12032_023_02019_4
crossref_primary_10_3109_10428194_2012_727417
crossref_primary_10_3390_ijms21218305
crossref_primary_10_1016_j_hoc_2017_06_005
crossref_primary_10_1080_10428194_2024_2438802
crossref_primary_10_1007_s13238_017_0400_z
crossref_primary_10_3389_fimmu_2018_01740
crossref_primary_10_1038_gt_2015_4
crossref_primary_10_1016_j_ymthe_2017_07_013
crossref_primary_10_1016_j_bulcan_2021_09_002
crossref_primary_10_2217_imt_2019_0137
crossref_primary_10_3390_cancers15051592
crossref_primary_10_3390_cancers14061403
crossref_primary_10_1080_14712598_2017_1339687
crossref_primary_10_1111_sji_12331
crossref_primary_10_1038_nrclinonc_2013_46
crossref_primary_10_1089_hum_2016_097
crossref_primary_10_2217_fon_14_288
crossref_primary_10_1007_s11899_018_0457_7
crossref_primary_10_1038_mt_2013_262
crossref_primary_10_1038_s41577_024_01022_8
crossref_primary_10_1136_jitc_2023_008417
crossref_primary_10_1111_bjh_17153
crossref_primary_10_1182_blood_2020006770
crossref_primary_10_2147_BTT_S291768
crossref_primary_10_1155_2017_5604891
crossref_primary_10_3389_fimmu_2018_02380
crossref_primary_10_1016_j_eng_2021_10_018
crossref_primary_10_3390_jcm8020200
crossref_primary_10_1002_jgm_2604
crossref_primary_10_1182_blood_2016_04_703751
crossref_primary_10_1007_s11899_012_0145_y
crossref_primary_10_1517_14712598_2011_573476
crossref_primary_10_1007_s12017_021_08689_5
crossref_primary_10_18632_oncotarget_5582
crossref_primary_10_1093_jnci_djv439
crossref_primary_10_5045_br_2020_55_1_10
crossref_primary_10_1111_bjh_13340
crossref_primary_10_1007_s11899_015_0251_8
crossref_primary_10_1038_s41419_018_0918_x
crossref_primary_10_2217_fon_12_203
crossref_primary_10_1007_s12185_013_1479_5
crossref_primary_10_1172_JCI86721
crossref_primary_10_1002_cam4_4064
crossref_primary_10_1517_14712598_2016_1150996
crossref_primary_10_3389_fonc_2022_884782
crossref_primary_10_1155_2020_4241864
crossref_primary_10_3389_fimmu_2022_952231
crossref_primary_10_1182_asheducation_2016_1_390
crossref_primary_10_3389_fimmu_2015_00605
crossref_primary_10_1007_s11899_013_0197_7
crossref_primary_10_1517_14712598_2011_566853
crossref_primary_10_3109_14653249_2012_694420
crossref_primary_10_3390_ijms20246223
crossref_primary_10_3390_jcm11082158
crossref_primary_10_1186_s12935_024_03479_y
crossref_primary_10_3389_fimmu_2020_01704
crossref_primary_10_1038_s41467_021_25735_9
crossref_primary_10_1158_2159_8290_CD_19_0945
crossref_primary_10_1111_bjh_15753
crossref_primary_10_1038_s41571_021_00476_2
crossref_primary_10_1007_s12185_016_2039_6
crossref_primary_10_2217_imt_2020_0221
crossref_primary_10_1097_CJI_0000000000000052
crossref_primary_10_1097_PPO_0000000000000514
crossref_primary_10_1146_annurev_immunol_032713_120136
crossref_primary_10_1007_s40778_015_0026_0
crossref_primary_10_3390_ph8020230
crossref_primary_10_1038_mt_2014_62
crossref_primary_10_1016_j_beha_2018_04_001
crossref_primary_10_1111_imm_12935
crossref_primary_10_3390_jcm12196124
crossref_primary_10_1007_s11864_020_00772_6
crossref_primary_10_3390_genes14051008
crossref_primary_10_1016_j_hoc_2012_12_004
crossref_primary_10_1038_s41591_019_0564_6
crossref_primary_10_1158_1078_0432_CCR_15_2023
crossref_primary_10_1097_COH_0000000000000665
crossref_primary_10_3389_fphar_2014_00235
crossref_primary_10_34172_apb_2024_034
crossref_primary_10_1007_s11899_016_0336_z
crossref_primary_10_1016_j_imlet_2019_06_002
crossref_primary_10_1016_j_retram_2017_08_003
crossref_primary_10_1200_JCO_20_01749
crossref_primary_10_1016_j_jcyt_2013_10_002
crossref_primary_10_4161_onci_22524
crossref_primary_10_1517_14712598_2014_860442
crossref_primary_10_3390_ijms221910828
crossref_primary_10_1097_CCO_0000000000000408
crossref_primary_10_3109_10428194_2012_715350
crossref_primary_10_1007_s11912_019_0789_z
crossref_primary_10_1039_C7TB01833A
crossref_primary_10_1016_j_ymthe_2021_06_022
crossref_primary_10_1089_hum_2012_143
crossref_primary_10_1016_j_trsl_2012_11_002
crossref_primary_10_1016_j_clim_2020_108382
crossref_primary_10_3389_fimmu_2022_887471
crossref_primary_10_1126_scitranslmed_3005930
crossref_primary_10_3389_fimmu_2023_1112059
crossref_primary_10_1016_j_jcyt_2014_12_002
crossref_primary_10_1097_PPO_0000000000000153
crossref_primary_10_1038_gt_2017_81
crossref_primary_10_1016_j_bcp_2024_116349
crossref_primary_10_1038_s41392_023_01521_5
crossref_primary_10_1038_s41571_021_00530_z
crossref_primary_10_1089_hgtb_2014_004
crossref_primary_10_3389_fped_2021_784024
crossref_primary_10_1158_2767_9764_CRC_22_0176
crossref_primary_10_1038_s41434_018_0007_x
crossref_primary_10_1158_1078_0432_CCR_15_0428
crossref_primary_10_1016_j_jcyt_2019_04_005
crossref_primary_10_1177_2040620715588916
crossref_primary_10_1016_j_bbcan_2015_12_001
crossref_primary_10_15252_emmm_201607485
crossref_primary_10_1182_blood_2013_11_492231
crossref_primary_10_1111_bjh_13792
crossref_primary_10_1016_j_jcyt_2016_09_001
crossref_primary_10_1038_mto_2016_11
crossref_primary_10_1189_jlb_5BT1115_524R
crossref_primary_10_1111_imr_12773
crossref_primary_10_1038_cr_2016_154
crossref_primary_10_4103_1319_2442_390259
crossref_primary_10_1038_mt_2014_148
crossref_primary_10_1038_mto_2016_14
crossref_primary_10_3389_fonc_2020_01243
crossref_primary_10_1016_j_molmed_2017_03_002
crossref_primary_10_1016_j_apsb_2020_10_020
crossref_primary_10_1186_s12967_022_03747_3
crossref_primary_10_1182_blood_2011_12_398719
crossref_primary_10_1182_blood_2013_08_519413
crossref_primary_10_1080_02648725_2018_1430465
crossref_primary_10_1007_s00005_020_00599_x
crossref_primary_10_1111_bjh_14078
crossref_primary_10_3389_fonc_2023_1200914
crossref_primary_10_3109_21691401_2015_1052465
crossref_primary_10_1002_cti2_1147
crossref_primary_10_1007_s00262_014_1641_9
crossref_primary_10_1016_j_coi_2021_09_009
crossref_primary_10_1016_j_jtct_2023_04_007
crossref_primary_10_1038_mtna_2013_32
crossref_primary_10_1002_acg2_54
crossref_primary_10_1016_j_bbmt_2015_10_014
crossref_primary_10_1080_25785826_2019_1698261
crossref_primary_10_1002_jgm_2637
crossref_primary_10_35754_0234_5730_2022_67_1_8_28
crossref_primary_10_1002_imed_1039
crossref_primary_10_4155_bio_2022_0081
crossref_primary_10_1007_s40259_019_00384_z
crossref_primary_10_1097_MD_0000000000017506
crossref_primary_10_1007_s10637_016_0349_4
crossref_primary_10_1182_blood_2011_07_366419
crossref_primary_10_3389_fimmu_2018_01717
crossref_primary_10_1126_scitranslmed_abc6401
crossref_primary_10_1182_blood_2010_04_281931
crossref_primary_10_1038_s43018_021_00241_5
crossref_primary_10_1097_PPO_0000000000000166
crossref_primary_10_1007_s00262_019_02359_z
crossref_primary_10_1371_journal_pone_0199414
crossref_primary_10_4111_icu_20220103
crossref_primary_10_1146_annurev_med_060512_150254
crossref_primary_10_3109_08830185_2015_1018419
crossref_primary_10_1056_NEJMoa1215134
crossref_primary_10_1080_13543784_2018_1492549
crossref_primary_10_1158_2326_6066_CIR_17_0126
crossref_primary_10_1007_s00262_023_03422_6
crossref_primary_10_1016_j_intimp_2019_01_010
crossref_primary_10_1038_mt_2011_1
crossref_primary_10_4155_bio_2024_0024
crossref_primary_10_5939_sjws_250008
crossref_primary_10_1007_s12094_023_03122_8
crossref_primary_10_1007_s13402_021_00593_1
crossref_primary_10_1007_s12185_013_1490_x
crossref_primary_10_1038_nrc3565
crossref_primary_10_1182_blood_2010_07_294520
crossref_primary_10_3389_fvets_2023_1130182
crossref_primary_10_1158_2326_6066_CIR_20_0470
crossref_primary_10_1016_j_canlet_2013_10_004
crossref_primary_10_1155_2018_2386187
crossref_primary_10_3389_fimmu_2022_903562
crossref_primary_10_15212_HOD_2022_0009
crossref_primary_10_1016_j_bbmt_2010_09_019
crossref_primary_10_3390_cimb45040220
crossref_primary_10_3390_cancers13112816
crossref_primary_10_1016_j_prp_2021_153723
crossref_primary_10_1038_s41423_020_00555_x
crossref_primary_10_1016_j_it_2012_08_004
crossref_primary_10_1159_000357163
crossref_primary_10_1016_j_blre_2018_11_002
crossref_primary_10_1177_1758835920962963
crossref_primary_10_1016_j_addr_2019_01_007
crossref_primary_10_1136_jitc_2021_003486
crossref_primary_10_3892_ijo_2022_5338
crossref_primary_10_1038_celldisc_2015_40
crossref_primary_10_1038_nrclinonc_2015_187
crossref_primary_10_1038_s41587_019_0403_9
crossref_primary_10_1042_BSR20160332
crossref_primary_10_3389_fonc_2024_1394057
crossref_primary_10_1038_s41587_022_01540_7
crossref_primary_10_1007_s11899_018_0476_4
crossref_primary_10_1007_s12185_021_03209_4
crossref_primary_10_1016_j_jcyt_2023_01_008
crossref_primary_10_1038_nrd4597
crossref_primary_10_1038_mt_2016_63
crossref_primary_10_3389_fimmu_2025_1512494
crossref_primary_10_1016_j_bbmt_2016_01_005
crossref_primary_10_1016_j_drudis_2024_104239
crossref_primary_10_1038_nrclinonc_2016_36
crossref_primary_10_3390_cancers12010125
crossref_primary_10_1134_S0006297919070022
crossref_primary_10_1038_nrc_2016_97
crossref_primary_10_1158_0008_5472_CAN_10_3843
crossref_primary_10_3390_ph7121049
crossref_primary_10_1007_s00262_016_1842_5
crossref_primary_10_3389_fped_2020_00284
crossref_primary_10_1186_s13045_017_0453_8
crossref_primary_10_1208_s12248_025_01017_w
crossref_primary_10_3389_fimmu_2021_693016
crossref_primary_10_1186_1479_5876_9_138
crossref_primary_10_3390_cells8050472
crossref_primary_10_46989_001c_94386
crossref_primary_10_1016_j_beha_2021_101306
crossref_primary_10_2139_ssrn_3155793
crossref_primary_10_1111_bcp_14281
crossref_primary_10_1016_j_beha_2021_101304
crossref_primary_10_1177_09636897231204724
crossref_primary_10_1016_j_leukres_2017_06_011
crossref_primary_10_3390_jpm13081261
crossref_primary_10_1007_s40778_017_0077_5
crossref_primary_10_3389_fimmu_2017_00829
crossref_primary_10_1158_2159_8290_CD_12_0548
crossref_primary_10_1097_CM9_0000000000000568
crossref_primary_10_1016_j_immuni_2013_07_002
crossref_primary_10_1016_j_ymthe_2016_11_011
crossref_primary_10_1097_PPO_0000000000000375
crossref_primary_10_1002_cam4_5551
crossref_primary_10_1182_asheducation_V2012_1_143_3798224
crossref_primary_10_1007_s00262_017_2007_x
crossref_primary_10_1016_j_copbio_2018_01_025
crossref_primary_10_1016_j_semcancer_2019_12_002
crossref_primary_10_1002_ajh_26506
crossref_primary_10_1038_mt_2011_223
crossref_primary_10_1182_blood_2010_04_278218
crossref_primary_10_3389_fimmu_2017_00267
crossref_primary_10_3389_fimmu_2023_1303935
crossref_primary_10_1186_s40364_020_00197_1
crossref_primary_10_2217_imt_15_23
crossref_primary_10_7759_cureus_59951
crossref_primary_10_1007_s00262_022_03163_y
crossref_primary_10_1111_bjh_13976
crossref_primary_10_5402_2012_278093
crossref_primary_10_1016_j_molmed_2012_04_009
crossref_primary_10_1159_000442170
crossref_primary_10_1093_hmg_ddr102
crossref_primary_10_1371_journal_pone_0061338
crossref_primary_10_3389_fonc_2019_00917
crossref_primary_10_1016_j_ymthe_2024_02_030
crossref_primary_10_1158_1078_0432_CCR_12_2422
crossref_primary_10_1136_jitc_2022_005701
crossref_primary_10_1093_neuros_nyaa584
crossref_primary_10_1007_s00262_011_1173_5
crossref_primary_10_1038_nrclinonc_2017_128
crossref_primary_10_1016_j_beha_2017_07_009
crossref_primary_10_1182_blood_2018_01_785840
crossref_primary_10_3389_fimmu_2020_618427
crossref_primary_10_1182_blood_2011_10_384388
crossref_primary_10_21320_2500_2139_2018_11_1_1_9
crossref_primary_10_1016_j_molimm_2017_03_017
crossref_primary_10_1182_blood_2011_04_348540
crossref_primary_10_1146_annurev_pathol_052016_100304
crossref_primary_10_2217_fon_2020_1013
crossref_primary_10_1016_j_blre_2015_10_003
crossref_primary_10_1182_asheducation_2016_1_567
crossref_primary_10_1007_s40259_019_00354_5
crossref_primary_10_1172_JCI81217
crossref_primary_10_1186_s40364_022_00417_w
crossref_primary_10_3389_fimmu_2022_886546
crossref_primary_10_1007_s00432_022_04017_x
crossref_primary_10_1016_j_clml_2021_06_003
crossref_primary_10_1016_j_jcyt_2013_02_007
crossref_primary_10_1038_s41577_020_0306_5
crossref_primary_10_3390_cancers13010038
crossref_primary_10_1007_s11684_021_0904_z
crossref_primary_10_1038_s41392_019_0070_9
crossref_primary_10_1097_CCO_0000000000000128
crossref_primary_10_1158_1078_0432_CCR_16_2680
crossref_primary_10_1182_blood_2010_05_283309
crossref_primary_10_1200_EDBK_200549
crossref_primary_10_3389_fimmu_2020_581116
crossref_primary_10_1038_cti_2014_7
crossref_primary_10_1007_s40265_017_0690_8
crossref_primary_10_1136_bmjopen_2018_026644
crossref_primary_10_4049_jimmunol_1601494
crossref_primary_10_1186_s12885_018_4817_4
crossref_primary_10_4110_in_2023_23_e44
crossref_primary_10_1007_s11427_016_0017_3
crossref_primary_10_1016_j_ymthe_2018_01_022
crossref_primary_10_1186_s12943_015_0474_2
crossref_primary_10_1038_leu_2014_174
crossref_primary_10_1186_s12967_022_03437_0
crossref_primary_10_1111_bjh_12981
crossref_primary_10_2217_imt_2017_0062
crossref_primary_10_1146_annurev_chembioeng_092120_092914
crossref_primary_10_1146_annurev_med_051914_021702
crossref_primary_10_1016_j_immuni_2020_07_011
crossref_primary_10_1016_j_jaut_2017_08_003
crossref_primary_10_1111_ejh_12602
crossref_primary_10_3889_seejim_2024_6063
crossref_primary_10_1016_j_canlet_2020_12_004
crossref_primary_10_1200_JCO_2014_58_0225
crossref_primary_10_1038_mt_2013_185
crossref_primary_10_1111_imr_12139
crossref_primary_10_1111_imr_12136
crossref_primary_10_1016_j_imlet_2012_01_014
crossref_primary_10_1038_s41409_023_02041_0
crossref_primary_10_1080_14656566_2017_1340938
crossref_primary_10_1111_imr_12131
crossref_primary_10_1007_s11899_017_0396_8
crossref_primary_10_1172_JCI94306
crossref_primary_10_3390_cancers14020299
crossref_primary_10_1080_2162402X_2019_1676615
crossref_primary_10_3389_fimmu_2021_670286
crossref_primary_10_2478_amb_2021_0048
crossref_primary_10_3390_biom12091303
crossref_primary_10_3389_fimmu_2020_00702
crossref_primary_10_1111_bjh_14475
crossref_primary_10_2217_imt_2019_0046
crossref_primary_10_1016_j_mehy_2012_01_038
crossref_primary_10_1172_JCI46110
crossref_primary_10_1111_ajt_12934
crossref_primary_10_1007_s11899_021_00615_7
crossref_primary_10_1016_j_bcp_2020_114051
crossref_primary_10_1182_blood_2011_02_337360
crossref_primary_10_1182_blood_2011_10_387969
crossref_primary_10_1111_bjh_14470
crossref_primary_10_1111_bjh_17186
crossref_primary_10_1016_j_nec_2020_06_014
crossref_primary_10_1111_cts_13349
crossref_primary_10_1172_jci_insight_96976
crossref_primary_10_1097_CCO_0000000000000232
crossref_primary_10_1177_2040620719841581
crossref_primary_10_1111_imr_12126
crossref_primary_10_1177_2040620715594736
crossref_primary_10_1016_j_cdtm_2018_08_002
crossref_primary_10_1002_cncr_30491
crossref_primary_10_1111_imr_12243
crossref_primary_10_1016_j_jid_2018_09_002
crossref_primary_10_1016_j_trsl_2017_06_011
crossref_primary_10_3390_cancers5030815
crossref_primary_10_1200_JCO_2014_57_5472
crossref_primary_10_1002_ajh_24238
crossref_primary_10_1158_1078_0432_CCR_12_2982
crossref_primary_10_1158_2159_8290_CD_20_0556
crossref_primary_10_3389_fimmu_2021_681984
crossref_primary_10_3389_fimmu_2021_689697
crossref_primary_10_1002_cpt_950
crossref_primary_10_1038_mt_2014_208
crossref_primary_10_3389_fimmu_2022_925985
crossref_primary_10_1016_j_hoc_2020_02_006
crossref_primary_10_1186_s40164_017_0070_9
crossref_primary_10_1016_j_jcyt_2013_01_002
crossref_primary_10_1182_blood_2020008936
crossref_primary_10_1097_TP_0000000000003617
crossref_primary_10_1002_med_21818
crossref_primary_10_1080_14712598_2024_2371034
crossref_primary_10_1016_j_stem_2023_10_003
crossref_primary_10_1146_annurev_med_061119_015600
crossref_primary_10_2174_0929867324666170801101842
crossref_primary_10_3389_fonc_2021_627549
Cites_doi 10.2174/138945006778559120
10.3816/CLM.2007.s.021
10.1097/MOH.0b013e328302c9c5
10.1007/s10238-009-0037-1
10.1182/blood-2002-07-1989
10.1080/10428190701435275
10.1182/asheducation-2007.1.250
10.1007/BF02986612
10.1158/0008-5472.CAN-07-5600
10.1159/000088416
10.1038/nm.1882
10.1172/JCI32103
10.1128/JVI.75.2.799-808.2001
10.1002/jgm.489
10.1038/nri1842
10.1053/bbmt.1998.v4.pm9763110
10.1146/annurev.med.59.060906.220345
10.1016/j.critrevonc.2005.10.001
10.1007/s11764-007-0004-3
10.1080/14653240600620176
10.1016/S0022-1759(03)00265-5
10.1080/10428190600923140
10.1126/science.1062589
10.1016/j.coi.2009.02.009
10.1182/blood-2005-08-3503
10.1016/j.soncn.2006.01.002
10.1038/sj.bmt.1705868
10.1016/S1525-0016(16)38759-7
10.1038/ni889
10.1038/sj.mt.6300104
10.1034/j.1399-0039.1999.530202.x
10.1097/01.moh.0000138682.13354.da
10.1002/ijc.22719
10.1006/mthe.1999.0012
ContentType Journal Article
Copyright 2010 American Society for Blood and Marrow Transplantation
American Society for Blood and Marrow Transplantation
Copyright (c) 2010 American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2010 American Society for Blood and Marrow Transplantation
– notice: American Society for Blood and Marrow Transplantation
– notice: Copyright (c) 2010 American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.bbmt.2010.03.014
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1523-6536
EndPage 1256
ExternalDocumentID 20304086
10_1016_j_bbmt_2010_03_014
S1083879110001199
1_s2_0_S1083879110001199
Genre Clinical Trial
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: P01 CA030206
– fundername: NCI NIH HHS
  grantid: P50 CA107399
– fundername: NCI NIH HHS
  grantid: P01 CA30206
– fundername: NCI NIH HHS
  grantid: R01 CA141303
– fundername: NCI NIH HHS
  grantid: R01 CA124782
– fundername: NCRR NIH HHS
  grantid: M01 RR0004
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
1B1
1P~
1~.
23N
4.4
457
4G.
53G
5GY
5VS
7-5
8P~
AAAJQ
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQQT
AAQXK
AARKO
AATTM
AAXKI
AAXUO
AAYWO
ABBQC
ABFNM
ABGSF
ABJNI
ABLJU
ABMAC
ABMZM
ABUDA
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADUVX
ADVLN
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AEXQZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGEKW
AGHFR
AGQPQ
AGRDE
AGUBO
AGYEJ
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
C5W
CJTIS
CS3
DU5
EBS
EFJIC
EJD
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
KOM
LUGTX
M41
MO0
NQ-
O-L
O9-
OAUVE
OC~
OK1
OO-
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SDF
SEL
SES
SEW
SJN
SPCBC
SSH
SSZ
T5K
UDS
UHS
XH2
Z5R
~G-
0SF
1RT
6I.
AACTN
AAFTH
ABVKL
AEHWI
AFKWA
AJOXV
AMFUW
NCXOZ
RIG
SSI
SSU
AAIAV
AAQFI
ABLVK
ABYKQ
AJBFU
DOVZS
LCYCR
ZA5
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c4204-78dcf18bee37b4f0163fe08163f340e625e51a08ebfe7b92e262c5288df7fd913
IEDL.DBID AIKHN
ISSN 1083-8791
1523-6536
IngestDate Fri Jul 11 10:29:24 EDT 2025
Sat May 31 02:11:49 EDT 2025
Tue Jul 01 03:30:56 EDT 2025
Thu Apr 24 23:01:06 EDT 2025
Fri Feb 23 02:31:00 EST 2024
Sun Feb 23 10:19:50 EST 2025
Tue Aug 26 20:11:58 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Issue 9
Keywords Clinical trial
Cellular immunotherapy
T lymphocyte
Adoptive therapy
Language English
License http://creativecommons.org/licenses/by-nc-nd/4.0
https://www.elsevier.com/tdm/userlicense/1.0
Copyright (c) 2010 American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4204-78dcf18bee37b4f0163fe08163f340e625e51a08ebfe7b92e262c5288df7fd913
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1083879110001199
PMID 20304086
PQID 748962773
PQPubID 23479
PageCount 12
ParticipantIDs proquest_miscellaneous_748962773
pubmed_primary_20304086
crossref_primary_10_1016_j_bbmt_2010_03_014
crossref_citationtrail_10_1016_j_bbmt_2010_03_014
elsevier_sciencedirect_doi_10_1016_j_bbmt_2010_03_014
elsevier_clinicalkeyesjournals_1_s2_0_S1083879110001199
elsevier_clinicalkey_doi_10_1016_j_bbmt_2010_03_014
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-09-01
PublicationDateYYYYMMDD 2010-09-01
PublicationDate_xml – month: 09
  year: 2010
  text: 2010-09-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Biology of blood and marrow transplantation
PublicationTitleAlternate Biol Blood Marrow Transplant
PublicationYear 2010
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Jensen, Tan, Forman (bib7) 1998; 4
Berger, Flowers, Warren (bib27) 2006; 107
Berger, Jensen, Lansdorp (bib34) 2008; 118
Cesco-Gaspere, Morris, Stauss (bib3) 2009; 9
Park, Digiusto, Slovak (bib12) 2007; 15
Bertoni, Zucca, Cavalli (bib22) 2004; 11
Brody, Advani (bib23) 2006; 58
Goy, Feldman (bib24) 2007; 7
Jensen, Clarke, Tan (bib9) 2000; 1
Singh, Manuri, Olivares (bib29) 2008; 68
Kofler, Mayr, Wendtner (bib1) 2006; 7
Alexander, Mink, Adami (bib15) 2007; 120
Brentjens, Riviere, Hollyman (bib26) 2009; 17
Gisselbrecht, Bethge, Duarte (bib18) 2007; 40
Gattinoni, Powell, Rosenberg (bib31) 2006; 6
Betts, Brenchley, Price (bib14) 2003; 281
Sadelain, Brentjens, Riviere (bib5) 2009; 21
Santos, Kharfan-Dabaja, Ayala (bib20) 2006; 47
Akatsuka, Martin, Madonik (bib13) 1999; 53
Pule, Savoldo, Myers (bib33) 2008; 14
Smith (bib25) 2008; 15
Paolo, Lucia, Anna (bib19) 2007; 48
Zinzani (bib21) 2005; 114
Molina (bib2) 2008; 59
Wherry, Teichgraber, Becker (bib30) 2003; 4
Fearon, Manders, Wagner (bib32) 2001; 293
Riddell (bib6) 2007
Cooper, Ausubel, Gutierrez (bib11) 2006; 8
Cooper, Topp, Serrano (bib8) 2003; 101
Gonzalez, Naranjo, Serrano (bib10) 2004; 6
Timmerman (bib4) 2003; 77
Arora, Hamilton, Potosky (bib17) 2007; 1
Rogers (bib16) 2006; 22
Berger, Huang, Gough (bib28) 2001; 75
Molina (10.1016/j.bbmt.2010.03.014_bib2) 2008; 59
Akatsuka (10.1016/j.bbmt.2010.03.014_bib13) 1999; 53
Kofler (10.1016/j.bbmt.2010.03.014_bib1) 2006; 7
Smith (10.1016/j.bbmt.2010.03.014_bib25) 2008; 15
Gattinoni (10.1016/j.bbmt.2010.03.014_bib31) 2006; 6
Berger (10.1016/j.bbmt.2010.03.014_bib27) 2006; 107
Timmerman (10.1016/j.bbmt.2010.03.014_bib4) 2003; 77
Riddell (10.1016/j.bbmt.2010.03.014_bib6) 2007
Brody (10.1016/j.bbmt.2010.03.014_bib23) 2006; 58
Gisselbrecht (10.1016/j.bbmt.2010.03.014_bib18) 2007; 40
Paolo (10.1016/j.bbmt.2010.03.014_bib19) 2007; 48
Zinzani (10.1016/j.bbmt.2010.03.014_bib21) 2005; 114
Rogers (10.1016/j.bbmt.2010.03.014_bib16) 2006; 22
Santos (10.1016/j.bbmt.2010.03.014_bib20) 2006; 47
Cooper (10.1016/j.bbmt.2010.03.014_bib8) 2003; 101
Cesco-Gaspere (10.1016/j.bbmt.2010.03.014_bib3) 2009; 9
Singh (10.1016/j.bbmt.2010.03.014_bib29) 2008; 68
Park (10.1016/j.bbmt.2010.03.014_bib12) 2007; 15
Berger (10.1016/j.bbmt.2010.03.014_bib28) 2001; 75
Gonzalez (10.1016/j.bbmt.2010.03.014_bib10) 2004; 6
Goy (10.1016/j.bbmt.2010.03.014_bib24) 2007; 7
Cooper (10.1016/j.bbmt.2010.03.014_bib11) 2006; 8
Pule (10.1016/j.bbmt.2010.03.014_bib33) 2008; 14
Berger (10.1016/j.bbmt.2010.03.014_bib34) 2008; 118
Alexander (10.1016/j.bbmt.2010.03.014_bib15) 2007; 120
Jensen (10.1016/j.bbmt.2010.03.014_bib7) 1998; 4
Bertoni (10.1016/j.bbmt.2010.03.014_bib22) 2004; 11
Fearon (10.1016/j.bbmt.2010.03.014_bib32) 2001; 293
Sadelain (10.1016/j.bbmt.2010.03.014_bib5) 2009; 21
Arora (10.1016/j.bbmt.2010.03.014_bib17) 2007; 1
Jensen (10.1016/j.bbmt.2010.03.014_bib9) 2000; 1
Wherry (10.1016/j.bbmt.2010.03.014_bib30) 2003; 4
Betts (10.1016/j.bbmt.2010.03.014_bib14) 2003; 281
Brentjens (10.1016/j.bbmt.2010.03.014_bib26) 2009; 17
References_xml – volume: 77
  start-page: 444
  year: 2003
  end-page: 455
  ident: bib4
  article-title: Immunotherapy for lymphomas
  publication-title: Int J Hematol
– volume: 68
  start-page: 2961
  year: 2008
  end-page: 2971
  ident: bib29
  article-title: Redirecting specificity of T-cell populations for CD19 using the Sleeping Beauty system
  publication-title: Cancer Res
– start-page: 250
  year: 2007
  end-page: 256
  ident: bib6
  article-title: Engineering antitumor immunity by T-cell adoptive immunotherapy
  publication-title: Hematol Am Soc Hematol Educ Progr
– volume: 48
  start-page: 1496
  year: 2007
  end-page: 1501
  ident: bib19
  article-title: Hematopoietic stem cell transplantation in peripheral T-cell lymphomas
  publication-title: Leuk Lymphoma
– volume: 15
  start-page: 415
  year: 2008
  end-page: 421
  ident: bib25
  article-title: Mantle cell lymphoma: advances in biology and therapy
  publication-title: Curr Opin Hematol
– volume: 17
  start-page: S157
  year: 2009
  ident: bib26
  article-title: Unexpected toxicity of cyclophosphamide followed by adoptively transferred CD19-targeted T cells in a patient with bulky CLL
  publication-title: Mol Ther
– volume: 11
  start-page: 411
  year: 2004
  end-page: 418
  ident: bib22
  article-title: Mantle cell lymphoma
  publication-title: Curr Opin Hematol
– volume: 14
  start-page: 1264
  year: 2008
  end-page: 1270
  ident: bib33
  article-title: Virus-specific T cells engineered to coexpress tumor-specific receptors: persistence and antitumor activity in individuals with neuroblastoma
  publication-title: Nat Med
– volume: 4
  start-page: 75
  year: 1998
  end-page: 83
  ident: bib7
  article-title: CD20 is a molecular target for scFvFc:zeta receptor redirected T cells: implications for cellular immunotherapy of CD20
  publication-title: Biol Blood Marrow Transplant
– volume: 53
  start-page: 122
  year: 1999
  end-page: 134
  ident: bib13
  article-title: Rapid screening of T-cell receptor (TCR) variable gene usage by multiplex PCR: application for assessment of clonal composition
  publication-title: Tissue Antigens
– volume: 1
  start-page: 49
  year: 2007
  end-page: 63
  ident: bib17
  article-title: Population-based survivorship research using cancer registries: a study of non-Hodgkin's lymphoma survivors
  publication-title: J Cancer Surviv
– volume: 1
  start-page: 49
  year: 2000
  end-page: 55
  ident: bib9
  article-title: Human T lymphocyte genetic modification with naked DNA
  publication-title: J Mol Ther
– volume: 118
  start-page: 294
  year: 2008
  end-page: 305
  ident: bib34
  article-title: Adoptive transfer of effector CD8 T cells derived from central memory cells establishes persistent T cell memory in primates
  publication-title: J Clin Invest
– volume: 22
  start-page: 67
  year: 2006
  end-page: 72
  ident: bib16
  article-title: Overview of non-Hodgkin's lymphoma
  publication-title: Semin Oncol Nurs
– volume: 7
  start-page: S184
  year: 2007
  end-page: S191
  ident: bib24
  article-title: Expanding therapeutic options in mantle cell lymphoma
  publication-title: Clin Lymphoma Myeloma
– volume: 101
  start-page: 1637
  year: 2003
  end-page: 1644
  ident: bib8
  article-title: T-cell clones can be rendered specific for CD19: toward the selective augmentation of the graft-versus-B-lineage leukemia effect
  publication-title: Blood
– volume: 58
  start-page: 257
  year: 2006
  end-page: 265
  ident: bib23
  article-title: Treatment of mantle cell lymphoma: current approach and future directions
  publication-title: Crit Rev Oncol Hematol
– volume: 281
  start-page: 65
  year: 2003
  end-page: 78
  ident: bib14
  article-title: Sensitive and viable identification of antigen-specific CD8+ T cells by a flow cytometric assay for degranulation
  publication-title: J Immunol Methods
– volume: 6
  start-page: 383
  year: 2006
  end-page: 393
  ident: bib31
  article-title: Adoptive immunotherapy for cancer: building on success
  publication-title: Nat Rev Immunol
– volume: 4
  start-page: 225
  year: 2003
  end-page: 234
  ident: bib30
  article-title: Lineage relationship and protective immunity of memory CD8 T cell subsets
  publication-title: Nat Immunol
– volume: 15
  start-page: 825
  year: 2007
  end-page: 833
  ident: bib12
  article-title: Adoptive transfer of chimeric antigen receptor re-directed cytolytic T lymphocyte clones in patients with neuroblastoma
  publication-title: Mol Ther
– volume: 107
  start-page: 2294
  year: 2006
  end-page: 2302
  ident: bib27
  article-title: Analysis of transgene-specific immune responses that limit the in vivo persistence of adoptively transferred HSV-TK–modified donor T cells after allogeneic hematopoietic cell transplantation
  publication-title: Blood
– volume: 293
  start-page: 248
  year: 2001
  end-page: 250
  ident: bib32
  article-title: Arrested differentiation, the self-renewing memory lymphocyte, and vaccination
  publication-title: Science
– volume: 59
  start-page: 237
  year: 2008
  end-page: 250
  ident: bib2
  article-title: A decade of rituximab: improving survival outcomes in non-Hodgkin's lymphoma
  publication-title: Annu Rev Med
– volume: 7
  start-page: 1371
  year: 2006
  end-page: 1374
  ident: bib1
  article-title: Current status of immunotherapy in B cell malignancies
  publication-title: Curr Drug Targets
– volume: 114
  start-page: 255
  year: 2005
  end-page: 259
  ident: bib21
  article-title: Autologous hematopoietic stem cell transplantation in non-Hodgkin's lymphomas
  publication-title: Acta Haematol
– volume: 6
  start-page: 704
  year: 2004
  end-page: 711
  ident: bib10
  article-title: Genetic engineering of cytolytic T lymphocytes for adoptive T-cell therapy of neuroblastoma
  publication-title: J Gene Med
– volume: 40
  start-page: 1007
  year: 2007
  end-page: 1017
  ident: bib18
  article-title: Current status and future perspectives for yttrium-90 ((90)Y)-ibritumomab tiuxetan in stem cell transplantation for non-Hodgkin's lymphoma
  publication-title: Bone Marrow Transplant
– volume: 120
  start-page: 1
  year: 2007
  end-page: 39
  ident: bib15
  article-title: The non-Hodgkin lymphomas: a review of the epidemiologic literature
  publication-title: Int J Cancer
– volume: 21
  start-page: 215
  year: 2009
  end-page: 223
  ident: bib5
  article-title: The promise and potential pitfalls of chimeric antigen receptors
  publication-title: Curr Opin Immunol
– volume: 47
  year: 2006
  ident: bib20
  article-title: Current results and future applications of radioimmunotherapy management of non-Hodgkin's lymphoma
  publication-title: Leuk Lymphoma
– volume: 75
  start-page: 799
  year: 2001
  end-page: 808
  ident: bib28
  article-title: Nonmyeloablative immunosuppressive regimen prolongs in vivo persistence of gene-modified autologous T cells in a nonhuman primate model
  publication-title: J Virol
– volume: 8
  start-page: 105
  year: 2006
  end-page: 117
  ident: bib11
  article-title: Manufacturing of gene-modified cytotoxic T lymphocytes for autologous cellular therapy for lymphoma
  publication-title: Cytotherapy
– volume: 9
  start-page: 81
  year: 2009
  end-page: 92
  ident: bib3
  article-title: Immunomodulation in the treatment of haematological malignancies
  publication-title: Clin Exp Med
– volume: 7
  start-page: 1371
  year: 2006
  ident: 10.1016/j.bbmt.2010.03.014_bib1
  article-title: Current status of immunotherapy in B cell malignancies
  publication-title: Curr Drug Targets
  doi: 10.2174/138945006778559120
– volume: 7
  start-page: S184
  issue: Suppl 5
  year: 2007
  ident: 10.1016/j.bbmt.2010.03.014_bib24
  article-title: Expanding therapeutic options in mantle cell lymphoma
  publication-title: Clin Lymphoma Myeloma
  doi: 10.3816/CLM.2007.s.021
– volume: 15
  start-page: 415
  year: 2008
  ident: 10.1016/j.bbmt.2010.03.014_bib25
  article-title: Mantle cell lymphoma: advances in biology and therapy
  publication-title: Curr Opin Hematol
  doi: 10.1097/MOH.0b013e328302c9c5
– volume: 9
  start-page: 81
  year: 2009
  ident: 10.1016/j.bbmt.2010.03.014_bib3
  article-title: Immunomodulation in the treatment of haematological malignancies
  publication-title: Clin Exp Med
  doi: 10.1007/s10238-009-0037-1
– volume: 101
  start-page: 1637
  year: 2003
  ident: 10.1016/j.bbmt.2010.03.014_bib8
  article-title: T-cell clones can be rendered specific for CD19: toward the selective augmentation of the graft-versus-B-lineage leukemia effect
  publication-title: Blood
  doi: 10.1182/blood-2002-07-1989
– volume: 48
  start-page: 1496
  year: 2007
  ident: 10.1016/j.bbmt.2010.03.014_bib19
  article-title: Hematopoietic stem cell transplantation in peripheral T-cell lymphomas
  publication-title: Leuk Lymphoma
  doi: 10.1080/10428190701435275
– start-page: 250
  year: 2007
  ident: 10.1016/j.bbmt.2010.03.014_bib6
  article-title: Engineering antitumor immunity by T-cell adoptive immunotherapy
  publication-title: Hematol Am Soc Hematol Educ Progr
  doi: 10.1182/asheducation-2007.1.250
– volume: 77
  start-page: 444
  year: 2003
  ident: 10.1016/j.bbmt.2010.03.014_bib4
  article-title: Immunotherapy for lymphomas
  publication-title: Int J Hematol
  doi: 10.1007/BF02986612
– volume: 68
  start-page: 2961
  year: 2008
  ident: 10.1016/j.bbmt.2010.03.014_bib29
  article-title: Redirecting specificity of T-cell populations for CD19 using the Sleeping Beauty system
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-07-5600
– volume: 114
  start-page: 255
  year: 2005
  ident: 10.1016/j.bbmt.2010.03.014_bib21
  article-title: Autologous hematopoietic stem cell transplantation in non-Hodgkin's lymphomas
  publication-title: Acta Haematol
  doi: 10.1159/000088416
– volume: 14
  start-page: 1264
  year: 2008
  ident: 10.1016/j.bbmt.2010.03.014_bib33
  article-title: Virus-specific T cells engineered to coexpress tumor-specific receptors: persistence and antitumor activity in individuals with neuroblastoma
  publication-title: Nat Med
  doi: 10.1038/nm.1882
– volume: 118
  start-page: 294
  year: 2008
  ident: 10.1016/j.bbmt.2010.03.014_bib34
  article-title: Adoptive transfer of effector CD8 T cells derived from central memory cells establishes persistent T cell memory in primates
  publication-title: J Clin Invest
  doi: 10.1172/JCI32103
– volume: 75
  start-page: 799
  year: 2001
  ident: 10.1016/j.bbmt.2010.03.014_bib28
  article-title: Nonmyeloablative immunosuppressive regimen prolongs in vivo persistence of gene-modified autologous T cells in a nonhuman primate model
  publication-title: J Virol
  doi: 10.1128/JVI.75.2.799-808.2001
– volume: 6
  start-page: 704
  year: 2004
  ident: 10.1016/j.bbmt.2010.03.014_bib10
  article-title: Genetic engineering of cytolytic T lymphocytes for adoptive T-cell therapy of neuroblastoma
  publication-title: J Gene Med
  doi: 10.1002/jgm.489
– volume: 6
  start-page: 383
  year: 2006
  ident: 10.1016/j.bbmt.2010.03.014_bib31
  article-title: Adoptive immunotherapy for cancer: building on success
  publication-title: Nat Rev Immunol
  doi: 10.1038/nri1842
– volume: 4
  start-page: 75
  year: 1998
  ident: 10.1016/j.bbmt.2010.03.014_bib7
  article-title: CD20 is a molecular target for scFvFc:zeta receptor redirected T cells: implications for cellular immunotherapy of CD20+ malignancy
  publication-title: Biol Blood Marrow Transplant
  doi: 10.1053/bbmt.1998.v4.pm9763110
– volume: 59
  start-page: 237
  year: 2008
  ident: 10.1016/j.bbmt.2010.03.014_bib2
  article-title: A decade of rituximab: improving survival outcomes in non-Hodgkin's lymphoma
  publication-title: Annu Rev Med
  doi: 10.1146/annurev.med.59.060906.220345
– volume: 58
  start-page: 257
  year: 2006
  ident: 10.1016/j.bbmt.2010.03.014_bib23
  article-title: Treatment of mantle cell lymphoma: current approach and future directions
  publication-title: Crit Rev Oncol Hematol
  doi: 10.1016/j.critrevonc.2005.10.001
– volume: 1
  start-page: 49
  year: 2007
  ident: 10.1016/j.bbmt.2010.03.014_bib17
  article-title: Population-based survivorship research using cancer registries: a study of non-Hodgkin's lymphoma survivors
  publication-title: J Cancer Surviv
  doi: 10.1007/s11764-007-0004-3
– volume: 8
  start-page: 105
  year: 2006
  ident: 10.1016/j.bbmt.2010.03.014_bib11
  article-title: Manufacturing of gene-modified cytotoxic T lymphocytes for autologous cellular therapy for lymphoma
  publication-title: Cytotherapy
  doi: 10.1080/14653240600620176
– volume: 281
  start-page: 65
  year: 2003
  ident: 10.1016/j.bbmt.2010.03.014_bib14
  article-title: Sensitive and viable identification of antigen-specific CD8+ T cells by a flow cytometric assay for degranulation
  publication-title: J Immunol Methods
  doi: 10.1016/S0022-1759(03)00265-5
– volume: 47
  year: 2006
  ident: 10.1016/j.bbmt.2010.03.014_bib20
  article-title: Current results and future applications of radioimmunotherapy management of non-Hodgkin's lymphoma
  publication-title: Leuk Lymphoma
  doi: 10.1080/10428190600923140
– volume: 293
  start-page: 248
  year: 2001
  ident: 10.1016/j.bbmt.2010.03.014_bib32
  article-title: Arrested differentiation, the self-renewing memory lymphocyte, and vaccination
  publication-title: Science
  doi: 10.1126/science.1062589
– volume: 21
  start-page: 215
  year: 2009
  ident: 10.1016/j.bbmt.2010.03.014_bib5
  article-title: The promise and potential pitfalls of chimeric antigen receptors
  publication-title: Curr Opin Immunol
  doi: 10.1016/j.coi.2009.02.009
– volume: 107
  start-page: 2294
  year: 2006
  ident: 10.1016/j.bbmt.2010.03.014_bib27
  article-title: Analysis of transgene-specific immune responses that limit the in vivo persistence of adoptively transferred HSV-TK–modified donor T cells after allogeneic hematopoietic cell transplantation
  publication-title: Blood
  doi: 10.1182/blood-2005-08-3503
– volume: 22
  start-page: 67
  year: 2006
  ident: 10.1016/j.bbmt.2010.03.014_bib16
  article-title: Overview of non-Hodgkin's lymphoma
  publication-title: Semin Oncol Nurs
  doi: 10.1016/j.soncn.2006.01.002
– volume: 40
  start-page: 1007
  year: 2007
  ident: 10.1016/j.bbmt.2010.03.014_bib18
  article-title: Current status and future perspectives for yttrium-90 ((90)Y)-ibritumomab tiuxetan in stem cell transplantation for non-Hodgkin's lymphoma
  publication-title: Bone Marrow Transplant
  doi: 10.1038/sj.bmt.1705868
– volume: 17
  start-page: S157
  year: 2009
  ident: 10.1016/j.bbmt.2010.03.014_bib26
  article-title: Unexpected toxicity of cyclophosphamide followed by adoptively transferred CD19-targeted T cells in a patient with bulky CLL
  publication-title: Mol Ther
  doi: 10.1016/S1525-0016(16)38759-7
– volume: 4
  start-page: 225
  year: 2003
  ident: 10.1016/j.bbmt.2010.03.014_bib30
  article-title: Lineage relationship and protective immunity of memory CD8 T cell subsets
  publication-title: Nat Immunol
  doi: 10.1038/ni889
– volume: 15
  start-page: 825
  year: 2007
  ident: 10.1016/j.bbmt.2010.03.014_bib12
  article-title: Adoptive transfer of chimeric antigen receptor re-directed cytolytic T lymphocyte clones in patients with neuroblastoma
  publication-title: Mol Ther
  doi: 10.1038/sj.mt.6300104
– volume: 53
  start-page: 122
  year: 1999
  ident: 10.1016/j.bbmt.2010.03.014_bib13
  article-title: Rapid screening of T-cell receptor (TCR) variable gene usage by multiplex PCR: application for assessment of clonal composition
  publication-title: Tissue Antigens
  doi: 10.1034/j.1399-0039.1999.530202.x
– volume: 11
  start-page: 411
  year: 2004
  ident: 10.1016/j.bbmt.2010.03.014_bib22
  article-title: Mantle cell lymphoma
  publication-title: Curr Opin Hematol
  doi: 10.1097/01.moh.0000138682.13354.da
– volume: 120
  start-page: 1
  issue: Suppl 12
  year: 2007
  ident: 10.1016/j.bbmt.2010.03.014_bib15
  article-title: The non-Hodgkin lymphomas: a review of the epidemiologic literature
  publication-title: Int J Cancer
  doi: 10.1002/ijc.22719
– volume: 1
  start-page: 49
  year: 2000
  ident: 10.1016/j.bbmt.2010.03.014_bib9
  article-title: Human T lymphocyte genetic modification with naked DNA
  publication-title: J Mol Ther
  doi: 10.1006/mthe.1999.0012
SSID ssj0007489
Score 2.1678183
Snippet Immunotherapeutic ablation of lymphoma is a conceptually attractive treatment strategy that is the subject of intense translational research. Cytotoxic T...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1245
SubjectTerms Adoptive therapy
Adoptive Transfer - methods
Antigens, CD19 - biosynthesis
Antigens, CD19 - genetics
Antigens, CD19 - immunology
Antigens, CD20 - biosynthesis
Antigens, CD20 - genetics
Antigens, CD20 - immunology
Cellular immunotherapy
Clinical trial
Hematology, Oncology and Palliative Medicine
Humans
Immune Tolerance
Lymphoma, B-Cell - immunology
Lymphoma, B-Cell - therapy
Lymphoma, Follicular - immunology
Lymphoma, Follicular - therapy
Lymphoma, Large B-Cell, Diffuse - immunology
Lymphoma, Large B-Cell, Diffuse - therapy
Receptors, Antigen, T-Cell - biosynthesis
Receptors, Antigen, T-Cell - genetics
Receptors, Antigen, T-Cell - immunology
T lymphocyte
T-Lymphocytes, Cytotoxic - immunology
T-Lymphocytes, Cytotoxic - physiology
T-Lymphocytes, Cytotoxic - transplantation
Transfection
Transgenes - immunology
Title Antitransgene Rejection Responses Contribute to Attenuated Persistence of Adoptively Transferred CD20/CD19-Specific Chimeric Antigen Receptor Redirected T Cells in Humans
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1083879110001199
https://www.clinicalkey.es/playcontent/1-s2.0-S1083879110001199
https://dx.doi.org/10.1016/j.bbmt.2010.03.014
https://www.ncbi.nlm.nih.gov/pubmed/20304086
https://www.proquest.com/docview/748962773
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9xADB7ygNJL6bvbxzKH3oqznhk_j8Zp2D4SSppAboPH1hCHrb2svYde-oP6KyvZ44XSJoXeBmMhW9JIGvSNxNhbo0QkyzL0CiXAC2wReQUGOo_aQZVVWEk7tGs6PYuWl8HHq_Bqj-XTXRiCVTrfP_r0wVu7JwsnzcW6rhdfBWYPSZxSzzNqXJbus0Op0ghN-zD78Gl5tnPI1GBlxNkrjwjc3ZkR5mXMt94hvNSRL4Lb4tNt-ecQh04esgcugeTZ-I2P2B40j9m9U1cif8J-ZnTxliIQmgbwc7gZwFYNrgY0LHScOlINc66A9y3Pekybt5hyVpzg8KR2FAJvLc-qdk3ecPWdDyHNwmaDb-XH0l_kxyL1huH1ti55fl0PlR9OzJEvMiO4TLvBxShgpLvgOaxWHa8bPpQOuqfs8uT9Rb703EAGrwykH3hxUpVWJAZAxSawKEBlgSZ3KKsCH_AoBaEo_ASMhdikEiTaQSiTpLKxrVKhnrGDpm3gBSGqTBCpkgZ9hEGEEVNGZVoUFVgT-jZKZkxMatCl61ZOQzNWeoKl3WhSnSbVaV9pVN2MvdvRrMdeHXe-rSbt6ukWKvpNjaHkTqr4b1TQua3faaE7qX39h3nOWLij_M3C_8mRT6ancetTPadooN12muw6knGsZuz5aJK735ZU8cbT6sv_ZPqK3R9hEgSme80O-s0W3mD21Zs52z_6Iea4x_Lzz1_mbq_9AnmqL9A
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6VIgEXxJvw3AM35Mb78OsYuVQBmh4glXpbee1Z4SrYUZwcuPCD-JXMrO0gBC0St5W1o7F3ntZ8O8PYG6tELMsyCgolINCuiIMCA11A7aDKKqqk8-2aFmfx_Fx_uIguDlg-3oUhWOXg-3uf7r318GQ6nOZ0XdfTzwKzhzTJqOcZNS7LbrCbGs2XrPPo-y-cB7VX6VH2KqDtw82ZHuRl7dftgO9SR6HQV0Wnq7JPH4VO7rG7Q_rIZ_0b3mcH0DxgtxZDgfwh-zGja7cUf1AxgH-CSw-1anDlsbDQcepH5adcAd-2fLbFpHmHCWfFCQxPQscj4K3js6pdky9cfeM-oDnYbHBXfizDaX4sssCPrnd1yfMvta_7cGKOfJEZgWXaDS7640W6Jc9htep43XBfOOgesfOTd8t8HgzjGIJSy1AHSVqVTqQWQCVWOzxA5YDmdiindAj4IwWRKMIUrIPEZhIkakEk07RyiasyoR6zw6Zt4CnhqayOVUljPiIdY7yUcZkVRQXORqGL0wkToxhMOfQqp5EZKzOC0i4Nic6Q6EyoDIpuwt7uadZ9p45rd6tRuma8g4pe02AguZYq-RsVdIPhd0aYTprQ_KGcExbtKX_T739y5KPqGTR8quYUDbS7zpBexzJJ1IQ96VVy_9mS6t34r_rsP5m-Zrfny8WpOX1_9vE5u9MDJghW94Idbjc7eIl52Na-8nb2E3_JLv8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Antitransgene+rejection+responses+contribute+to+attenuated+persistence+of+adoptively+transferred+CD20%2FCD19-specific+chimeric+antigen+receptor+redirected+T+cells+in+humans&rft.jtitle=Biology+of+blood+and+marrow+transplantation&rft.au=Jensen%2C+Michael+C&rft.au=Popplewell%2C+Leslie&rft.au=Cooper%2C+Laurence+J&rft.au=DiGiusto%2C+David&rft.date=2010-09-01&rft.eissn=1523-6536&rft.volume=16&rft.issue=9&rft.spage=1245&rft_id=info:doi/10.1016%2Fj.bbmt.2010.03.014&rft_id=info%3Apmid%2F20304086&rft.externalDocID=20304086
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F10838791%2FS1083879110X00088%2Fcov150h.gif