Antitransgene Rejection Responses Contribute to Attenuated Persistence of Adoptively Transferred CD20/CD19-Specific Chimeric Antigen Receptor Redirected T Cells in Humans
Immunotherapeutic ablation of lymphoma is a conceptually attractive treatment strategy that is the subject of intense translational research. Cytotoxic T lymphocytes (CTLs) that are genetically modified to express CD19- or CD20-specific, single-chain antibody–derived chimeric antigen receptors (CARs...
Saved in:
Published in | Biology of blood and marrow transplantation Vol. 16; no. 9; pp. 1245 - 1256 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.09.2010
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Immunotherapeutic ablation of lymphoma is a conceptually attractive treatment strategy that is the subject of intense translational research. Cytotoxic T lymphocytes (CTLs) that are genetically modified to express CD19- or CD20-specific, single-chain antibody–derived chimeric antigen receptors (CARs) display HLA-independent antigen-specific recognition/killing of lymphoma targets. Here, we describe our initial experience in applying CAR-redirected autologous CTL adoptive therapy to patients with recurrent lymphoma. Using plasmid vector electrotransfer/drug selection systems, cloned and polyclonal CAR
+ CTLs were generated from autologous peripheral blood mononuclear cells and expanded in vitro to cell numbers sufficient for clinical use. In 2 FDA-authorized trials, patients with recurrent diffuse large cell lymphoma were treated with cloned CD8
+ CTLs expressing a CD20-specific CAR (along with NeoR) after autologous hematopoietic stem cell transplantation, and patients with refractory follicular lymphoma were treated with polyclonal T cell preparations expressing a CD19-specific CAR (along with HyTK, a fusion of hygromycin resistance and HSV-1 thymidine kinase suicide genes) and low-dose s.c. recombinant human interleukin-2. A total of 15 infusions were administered (5 at 10
8cells/m
2, 7 at 10
9cells/m
2, and 3 at 2 × 10
9cells/m
2) to 4 patients. Overt toxicities attributable to CTL administration were not observed; however, detection of transferred CTLs in the circulation, as measured by quantitative polymerase chain reaction, was short (24 hours to 7 days), and cellular antitransgene immune rejection responses were noted in 2 patients. These studies reveal the primary barrier to therapeutic efficacy is limited persistence, and provide the rationale to prospectively define T cell populations intrinsically programmed for survival after adoptive transfer and to modulate the immune status of recipients to prevent/delay antitransgene rejection responses. |
---|---|
AbstractList | Immunotherapeutic ablation of lymphoma is a conceptually attractive treatment strategy that is the subject of intense translational research. Cytotoxic T lymphocytes (CTLs) that are genetically modified to express CD19- or CD20-specific, single-chain antibody–derived chimeric antigen receptors (CARs) display HLA-independent antigen-specific recognition/killing of lymphoma targets. Here, we describe our initial experience in applying CAR-redirected autologous CTL adoptive therapy to patients with recurrent lymphoma. Using plasmid vector electrotransfer/drug selection systems, cloned and polyclonal CAR+ CTLs were generated from autologous peripheral blood mononuclear cells and expanded in vitro to cell numbers sufficient for clinical use. In 2 FDA-authorized trials, patients with recurrent diffuse large cell lymphoma were treated with cloned CD8+ CTLs expressing a CD20-specific CAR (along with NeoR) after autologous hematopoietic stem cell transplantation, and patients with refractory follicular lymphoma were treated with polyclonal T cell preparations expressing a CD19-specific CAR (along with HyTK, a fusion of hygromycin resistance and HSV-1 thymidine kinase suicide genes) and low-dose s.c. recombinant human interleukin-2. A total of 15 infusions were administered (5 at 108 cells/m2 , 7 at 109 cells/m2 , and 3 at 2 × 109 cells/m2 ) to 4 patients. Overt toxicities attributable to CTL administration were not observed; however, detection of transferred CTLs in the circulation, as measured by quantitative polymerase chain reaction, was short (24 hours to 7 days), and cellular antitransgene immune rejection responses were noted in 2 patients. These studies reveal the primary barrier to therapeutic efficacy is limited persistence, and provide the rationale to prospectively define T cell populations intrinsically programmed for survival after adoptive transfer and to modulate the immune status of recipients to prevent/delay antitransgene rejection responses. Immunotherapeutic ablation of lymphoma is a conceptually attractive treatment strategy that is the subject of intense translational research. Cytotoxic T lymphocytes (CTLs) that are genetically modified to express CD19- or CD20-specific, single-chain antibody–derived chimeric antigen receptors (CARs) display HLA-independent antigen-specific recognition/killing of lymphoma targets. Here, we describe our initial experience in applying CAR-redirected autologous CTL adoptive therapy to patients with recurrent lymphoma. Using plasmid vector electrotransfer/drug selection systems, cloned and polyclonal CAR + CTLs were generated from autologous peripheral blood mononuclear cells and expanded in vitro to cell numbers sufficient for clinical use. In 2 FDA-authorized trials, patients with recurrent diffuse large cell lymphoma were treated with cloned CD8 + CTLs expressing a CD20-specific CAR (along with NeoR) after autologous hematopoietic stem cell transplantation, and patients with refractory follicular lymphoma were treated with polyclonal T cell preparations expressing a CD19-specific CAR (along with HyTK, a fusion of hygromycin resistance and HSV-1 thymidine kinase suicide genes) and low-dose s.c. recombinant human interleukin-2. A total of 15 infusions were administered (5 at 10 8cells/m 2, 7 at 10 9cells/m 2, and 3 at 2 × 10 9cells/m 2) to 4 patients. Overt toxicities attributable to CTL administration were not observed; however, detection of transferred CTLs in the circulation, as measured by quantitative polymerase chain reaction, was short (24 hours to 7 days), and cellular antitransgene immune rejection responses were noted in 2 patients. These studies reveal the primary barrier to therapeutic efficacy is limited persistence, and provide the rationale to prospectively define T cell populations intrinsically programmed for survival after adoptive transfer and to modulate the immune status of recipients to prevent/delay antitransgene rejection responses. Immunotherapeutic ablation of lymphoma is a conceptually attractive treatment strategy that is the subject of intense translational research. Cytotoxic T lymphocytes (CTLs) that are genetically modified to express CD19- or CD20-specific, single-chain antibody-derived chimeric antigen receptors (CARs) display HLA-independent antigen-specific recognition/killing of lymphoma targets. Here, we describe our initial experience in applying CAR-redirected autologous CTL adoptive therapy to patients with recurrent lymphoma. Using plasmid vector electrotransfer/drug selection systems, cloned and polyclonal CAR(+) CTLs were generated from autologous peripheral blood mononuclear cells and expanded in vitro to cell numbers sufficient for clinical use. In 2 FDA-authorized trials, patients with recurrent diffuse large cell lymphoma were treated with cloned CD8(+) CTLs expressing a CD20-specific CAR (along with NeoR) after autologous hematopoietic stem cell transplantation, and patients with refractory follicular lymphoma were treated with polyclonal T cell preparations expressing a CD19-specific CAR (along with HyTK, a fusion of hygromycin resistance and HSV-1 thymidine kinase suicide genes) and low-dose s.c. recombinant human interleukin-2. A total of 15 infusions were administered (5 at 10(8)cells/m(2), 7 at 10(9)cells/m(2), and 3 at 2 x 10(9)cells/m(2)) to 4 patients. Overt toxicities attributable to CTL administration were not observed; however, detection of transferred CTLs in the circulation, as measured by quantitative polymerase chain reaction, was short (24 hours to 7 days), and cellular antitransgene immune rejection responses were noted in 2 patients. These studies reveal the primary barrier to therapeutic efficacy is limited persistence, and provide the rationale to prospectively define T cell populations intrinsically programmed for survival after adoptive transfer and to modulate the immune status of recipients to prevent/delay antitransgene rejection responses.Immunotherapeutic ablation of lymphoma is a conceptually attractive treatment strategy that is the subject of intense translational research. Cytotoxic T lymphocytes (CTLs) that are genetically modified to express CD19- or CD20-specific, single-chain antibody-derived chimeric antigen receptors (CARs) display HLA-independent antigen-specific recognition/killing of lymphoma targets. Here, we describe our initial experience in applying CAR-redirected autologous CTL adoptive therapy to patients with recurrent lymphoma. Using plasmid vector electrotransfer/drug selection systems, cloned and polyclonal CAR(+) CTLs were generated from autologous peripheral blood mononuclear cells and expanded in vitro to cell numbers sufficient for clinical use. In 2 FDA-authorized trials, patients with recurrent diffuse large cell lymphoma were treated with cloned CD8(+) CTLs expressing a CD20-specific CAR (along with NeoR) after autologous hematopoietic stem cell transplantation, and patients with refractory follicular lymphoma were treated with polyclonal T cell preparations expressing a CD19-specific CAR (along with HyTK, a fusion of hygromycin resistance and HSV-1 thymidine kinase suicide genes) and low-dose s.c. recombinant human interleukin-2. A total of 15 infusions were administered (5 at 10(8)cells/m(2), 7 at 10(9)cells/m(2), and 3 at 2 x 10(9)cells/m(2)) to 4 patients. Overt toxicities attributable to CTL administration were not observed; however, detection of transferred CTLs in the circulation, as measured by quantitative polymerase chain reaction, was short (24 hours to 7 days), and cellular antitransgene immune rejection responses were noted in 2 patients. These studies reveal the primary barrier to therapeutic efficacy is limited persistence, and provide the rationale to prospectively define T cell populations intrinsically programmed for survival after adoptive transfer and to modulate the immune status of recipients to prevent/delay antitransgene rejection responses. Immunotherapeutic ablation of lymphoma is a conceptually attractive treatment strategy that is the subject of intense translational research. Cytotoxic T lymphocytes (CTLs) that are genetically modified to express CD19- or CD20-specific, single-chain antibody-derived chimeric antigen receptors (CARs) display HLA-independent antigen-specific recognition/killing of lymphoma targets. Here, we describe our initial experience in applying CAR-redirected autologous CTL adoptive therapy to patients with recurrent lymphoma. Using plasmid vector electrotransfer/drug selection systems, cloned and polyclonal CAR(+) CTLs were generated from autologous peripheral blood mononuclear cells and expanded in vitro to cell numbers sufficient for clinical use. In 2 FDA-authorized trials, patients with recurrent diffuse large cell lymphoma were treated with cloned CD8(+) CTLs expressing a CD20-specific CAR (along with NeoR) after autologous hematopoietic stem cell transplantation, and patients with refractory follicular lymphoma were treated with polyclonal T cell preparations expressing a CD19-specific CAR (along with HyTK, a fusion of hygromycin resistance and HSV-1 thymidine kinase suicide genes) and low-dose s.c. recombinant human interleukin-2. A total of 15 infusions were administered (5 at 10(8)cells/m(2), 7 at 10(9)cells/m(2), and 3 at 2 x 10(9)cells/m(2)) to 4 patients. Overt toxicities attributable to CTL administration were not observed; however, detection of transferred CTLs in the circulation, as measured by quantitative polymerase chain reaction, was short (24 hours to 7 days), and cellular antitransgene immune rejection responses were noted in 2 patients. These studies reveal the primary barrier to therapeutic efficacy is limited persistence, and provide the rationale to prospectively define T cell populations intrinsically programmed for survival after adoptive transfer and to modulate the immune status of recipients to prevent/delay antitransgene rejection responses. |
Author | Popplewell, Leslie DiGiusto, David Jensen, Michael C. Cooper, Laurence J. Kalos, Michael Forman, Stephen J. Ostberg, Julie R. |
Author_xml | – sequence: 1 givenname: Michael C. surname: Jensen fullname: Jensen, Michael C. email: mjensen@coh.org organization: Department of Cancer Immunotherapeutics and Tumor Immunology, Beckman Research Institute, City of Hope National Medical Center, Duarte, California – sequence: 2 givenname: Leslie surname: Popplewell fullname: Popplewell, Leslie organization: Department of Hematology and Hematopoietic Cell Transplant, Beckman Research Institute, City of Hope National Medical Center, Duarte, California – sequence: 3 givenname: Laurence J. surname: Cooper fullname: Cooper, Laurence J. organization: Department of Hematology and Hematopoietic Cell Transplant, Beckman Research Institute, City of Hope National Medical Center, Duarte, California – sequence: 4 givenname: David surname: DiGiusto fullname: DiGiusto, David organization: Department of Hematology and Hematopoietic Cell Transplant, Beckman Research Institute, City of Hope National Medical Center, Duarte, California – sequence: 5 givenname: Michael surname: Kalos fullname: Kalos, Michael organization: Department of Cancer Immunotherapeutics and Tumor Immunology, Beckman Research Institute, City of Hope National Medical Center, Duarte, California – sequence: 6 givenname: Julie R. surname: Ostberg fullname: Ostberg, Julie R. organization: Department of Cancer Immunotherapeutics and Tumor Immunology, Beckman Research Institute, City of Hope National Medical Center, Duarte, California – sequence: 7 givenname: Stephen J. surname: Forman fullname: Forman, Stephen J. organization: Department of Cancer Immunotherapeutics and Tumor Immunology, Beckman Research Institute, City of Hope National Medical Center, Duarte, California |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/20304086$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUk1v1DAQjVAR_YA_wAH5xilb28kmDkJIqxRapEogupytxBmDl8RObafS_iV-JWNty6ES5TRj6703o_fmNDuyzkKWvWZ0xSirznervp_iilP8oMWKsvJZdsLWvMirdVEdYU9FkYu6YcfZaQg7SmldiuZFdsxpQUsqqpPs98ZGE31nww-wQL7BDlQ0zmIXZmcDBNI6G73plwgkOrKJEezSRRjIV_DBBHwqIE6TzeDmaO5g3JNtEtTgPaLaC07P2wvW5DczKKONIu1PM4HHJg3HuThMwRydx2YwHjdA3pa0MI6BGEuulgn1XmbPdTcGeHVfz7Lvnz5u26v8-svl53ZznauS0zKvxaA0Ez1AUfelRqMKDVSkUpQUKr6GNeuogF5D3TcceMXVmgsx6FoPDSvOsrcH3dm72wVClJMJCnfpLLglyORhxeu6QOSbe-TSTzDI2Zup83v5YC8C-AGgvAvBg_4LYVSmDOVOpgxlylDSQmKGSBKPSMrELoWCOZnxaer7AxXQnzsDXgZlUj4HV-XgzNP0D4_oajTWqG78BXsIO7d4i85LJgOXVN6k-0rnxfCyGGsaFHj3b4H_Tf8D29Dhgg |
CitedBy_id | crossref_primary_10_1007_s12185_013_1493_7 crossref_primary_10_3389_fimmu_2020_00888 crossref_primary_10_1007_s00262_012_1254_0 crossref_primary_10_1016_j_ymthe_2017_07_009 crossref_primary_10_1182_bloodadvances_2016000034 crossref_primary_10_1002_ijc_31147 crossref_primary_10_1007_s12026_011_8253_7 crossref_primary_10_3390_jcm8020207 crossref_primary_10_1007_s11427_016_5025_6 crossref_primary_10_1016_j_beha_2016_08_011 crossref_primary_10_3389_fonc_2021_802876 crossref_primary_10_1080_1354750X_2021_2016973 crossref_primary_10_1016_j_jtauto_2024_100264 crossref_primary_10_1146_annurev_cancerbio_050216_034351 crossref_primary_10_1007_s12032_023_02019_4 crossref_primary_10_3109_10428194_2012_727417 crossref_primary_10_3390_ijms21218305 crossref_primary_10_1016_j_hoc_2017_06_005 crossref_primary_10_1080_10428194_2024_2438802 crossref_primary_10_1007_s13238_017_0400_z crossref_primary_10_3389_fimmu_2018_01740 crossref_primary_10_1038_gt_2015_4 crossref_primary_10_1016_j_ymthe_2017_07_013 crossref_primary_10_1016_j_bulcan_2021_09_002 crossref_primary_10_2217_imt_2019_0137 crossref_primary_10_3390_cancers15051592 crossref_primary_10_3390_cancers14061403 crossref_primary_10_1080_14712598_2017_1339687 crossref_primary_10_1111_sji_12331 crossref_primary_10_1038_nrclinonc_2013_46 crossref_primary_10_1089_hum_2016_097 crossref_primary_10_2217_fon_14_288 crossref_primary_10_1007_s11899_018_0457_7 crossref_primary_10_1038_mt_2013_262 crossref_primary_10_1038_s41577_024_01022_8 crossref_primary_10_1136_jitc_2023_008417 crossref_primary_10_1111_bjh_17153 crossref_primary_10_1182_blood_2020006770 crossref_primary_10_2147_BTT_S291768 crossref_primary_10_1155_2017_5604891 crossref_primary_10_3389_fimmu_2018_02380 crossref_primary_10_1016_j_eng_2021_10_018 crossref_primary_10_3390_jcm8020200 crossref_primary_10_1002_jgm_2604 crossref_primary_10_1182_blood_2016_04_703751 crossref_primary_10_1007_s11899_012_0145_y crossref_primary_10_1517_14712598_2011_573476 crossref_primary_10_1007_s12017_021_08689_5 crossref_primary_10_18632_oncotarget_5582 crossref_primary_10_1093_jnci_djv439 crossref_primary_10_5045_br_2020_55_1_10 crossref_primary_10_1111_bjh_13340 crossref_primary_10_1007_s11899_015_0251_8 crossref_primary_10_1038_s41419_018_0918_x crossref_primary_10_2217_fon_12_203 crossref_primary_10_1007_s12185_013_1479_5 crossref_primary_10_1172_JCI86721 crossref_primary_10_1002_cam4_4064 crossref_primary_10_1517_14712598_2016_1150996 crossref_primary_10_3389_fonc_2022_884782 crossref_primary_10_1155_2020_4241864 crossref_primary_10_3389_fimmu_2022_952231 crossref_primary_10_1182_asheducation_2016_1_390 crossref_primary_10_3389_fimmu_2015_00605 crossref_primary_10_1007_s11899_013_0197_7 crossref_primary_10_1517_14712598_2011_566853 crossref_primary_10_3109_14653249_2012_694420 crossref_primary_10_3390_ijms20246223 crossref_primary_10_3390_jcm11082158 crossref_primary_10_1186_s12935_024_03479_y crossref_primary_10_3389_fimmu_2020_01704 crossref_primary_10_1038_s41467_021_25735_9 crossref_primary_10_1158_2159_8290_CD_19_0945 crossref_primary_10_1111_bjh_15753 crossref_primary_10_1038_s41571_021_00476_2 crossref_primary_10_1007_s12185_016_2039_6 crossref_primary_10_2217_imt_2020_0221 crossref_primary_10_1097_CJI_0000000000000052 crossref_primary_10_1097_PPO_0000000000000514 crossref_primary_10_1146_annurev_immunol_032713_120136 crossref_primary_10_1007_s40778_015_0026_0 crossref_primary_10_3390_ph8020230 crossref_primary_10_1038_mt_2014_62 crossref_primary_10_1016_j_beha_2018_04_001 crossref_primary_10_1111_imm_12935 crossref_primary_10_3390_jcm12196124 crossref_primary_10_1007_s11864_020_00772_6 crossref_primary_10_3390_genes14051008 crossref_primary_10_1016_j_hoc_2012_12_004 crossref_primary_10_1038_s41591_019_0564_6 crossref_primary_10_1158_1078_0432_CCR_15_2023 crossref_primary_10_1097_COH_0000000000000665 crossref_primary_10_3389_fphar_2014_00235 crossref_primary_10_34172_apb_2024_034 crossref_primary_10_1007_s11899_016_0336_z crossref_primary_10_1016_j_imlet_2019_06_002 crossref_primary_10_1016_j_retram_2017_08_003 crossref_primary_10_1200_JCO_20_01749 crossref_primary_10_1016_j_jcyt_2013_10_002 crossref_primary_10_4161_onci_22524 crossref_primary_10_1517_14712598_2014_860442 crossref_primary_10_3390_ijms221910828 crossref_primary_10_1097_CCO_0000000000000408 crossref_primary_10_3109_10428194_2012_715350 crossref_primary_10_1007_s11912_019_0789_z crossref_primary_10_1039_C7TB01833A crossref_primary_10_1016_j_ymthe_2021_06_022 crossref_primary_10_1089_hum_2012_143 crossref_primary_10_1016_j_trsl_2012_11_002 crossref_primary_10_1016_j_clim_2020_108382 crossref_primary_10_3389_fimmu_2022_887471 crossref_primary_10_1126_scitranslmed_3005930 crossref_primary_10_3389_fimmu_2023_1112059 crossref_primary_10_1016_j_jcyt_2014_12_002 crossref_primary_10_1097_PPO_0000000000000153 crossref_primary_10_1038_gt_2017_81 crossref_primary_10_1016_j_bcp_2024_116349 crossref_primary_10_1038_s41392_023_01521_5 crossref_primary_10_1038_s41571_021_00530_z crossref_primary_10_1089_hgtb_2014_004 crossref_primary_10_3389_fped_2021_784024 crossref_primary_10_1158_2767_9764_CRC_22_0176 crossref_primary_10_1038_s41434_018_0007_x crossref_primary_10_1158_1078_0432_CCR_15_0428 crossref_primary_10_1016_j_jcyt_2019_04_005 crossref_primary_10_1177_2040620715588916 crossref_primary_10_1016_j_bbcan_2015_12_001 crossref_primary_10_15252_emmm_201607485 crossref_primary_10_1182_blood_2013_11_492231 crossref_primary_10_1111_bjh_13792 crossref_primary_10_1016_j_jcyt_2016_09_001 crossref_primary_10_1038_mto_2016_11 crossref_primary_10_1189_jlb_5BT1115_524R crossref_primary_10_1111_imr_12773 crossref_primary_10_1038_cr_2016_154 crossref_primary_10_4103_1319_2442_390259 crossref_primary_10_1038_mt_2014_148 crossref_primary_10_1038_mto_2016_14 crossref_primary_10_3389_fonc_2020_01243 crossref_primary_10_1016_j_molmed_2017_03_002 crossref_primary_10_1016_j_apsb_2020_10_020 crossref_primary_10_1186_s12967_022_03747_3 crossref_primary_10_1182_blood_2011_12_398719 crossref_primary_10_1182_blood_2013_08_519413 crossref_primary_10_1080_02648725_2018_1430465 crossref_primary_10_1007_s00005_020_00599_x crossref_primary_10_1111_bjh_14078 crossref_primary_10_3389_fonc_2023_1200914 crossref_primary_10_3109_21691401_2015_1052465 crossref_primary_10_1002_cti2_1147 crossref_primary_10_1007_s00262_014_1641_9 crossref_primary_10_1016_j_coi_2021_09_009 crossref_primary_10_1016_j_jtct_2023_04_007 crossref_primary_10_1038_mtna_2013_32 crossref_primary_10_1002_acg2_54 crossref_primary_10_1016_j_bbmt_2015_10_014 crossref_primary_10_1080_25785826_2019_1698261 crossref_primary_10_1002_jgm_2637 crossref_primary_10_35754_0234_5730_2022_67_1_8_28 crossref_primary_10_1002_imed_1039 crossref_primary_10_4155_bio_2022_0081 crossref_primary_10_1007_s40259_019_00384_z crossref_primary_10_1097_MD_0000000000017506 crossref_primary_10_1007_s10637_016_0349_4 crossref_primary_10_1182_blood_2011_07_366419 crossref_primary_10_3389_fimmu_2018_01717 crossref_primary_10_1126_scitranslmed_abc6401 crossref_primary_10_1182_blood_2010_04_281931 crossref_primary_10_1038_s43018_021_00241_5 crossref_primary_10_1097_PPO_0000000000000166 crossref_primary_10_1007_s00262_019_02359_z crossref_primary_10_1371_journal_pone_0199414 crossref_primary_10_4111_icu_20220103 crossref_primary_10_1146_annurev_med_060512_150254 crossref_primary_10_3109_08830185_2015_1018419 crossref_primary_10_1056_NEJMoa1215134 crossref_primary_10_1080_13543784_2018_1492549 crossref_primary_10_1158_2326_6066_CIR_17_0126 crossref_primary_10_1007_s00262_023_03422_6 crossref_primary_10_1016_j_intimp_2019_01_010 crossref_primary_10_1038_mt_2011_1 crossref_primary_10_4155_bio_2024_0024 crossref_primary_10_5939_sjws_250008 crossref_primary_10_1007_s12094_023_03122_8 crossref_primary_10_1007_s13402_021_00593_1 crossref_primary_10_1007_s12185_013_1490_x crossref_primary_10_1038_nrc3565 crossref_primary_10_1182_blood_2010_07_294520 crossref_primary_10_3389_fvets_2023_1130182 crossref_primary_10_1158_2326_6066_CIR_20_0470 crossref_primary_10_1016_j_canlet_2013_10_004 crossref_primary_10_1155_2018_2386187 crossref_primary_10_3389_fimmu_2022_903562 crossref_primary_10_15212_HOD_2022_0009 crossref_primary_10_1016_j_bbmt_2010_09_019 crossref_primary_10_3390_cimb45040220 crossref_primary_10_3390_cancers13112816 crossref_primary_10_1016_j_prp_2021_153723 crossref_primary_10_1038_s41423_020_00555_x crossref_primary_10_1016_j_it_2012_08_004 crossref_primary_10_1159_000357163 crossref_primary_10_1016_j_blre_2018_11_002 crossref_primary_10_1177_1758835920962963 crossref_primary_10_1016_j_addr_2019_01_007 crossref_primary_10_1136_jitc_2021_003486 crossref_primary_10_3892_ijo_2022_5338 crossref_primary_10_1038_celldisc_2015_40 crossref_primary_10_1038_nrclinonc_2015_187 crossref_primary_10_1038_s41587_019_0403_9 crossref_primary_10_1042_BSR20160332 crossref_primary_10_3389_fonc_2024_1394057 crossref_primary_10_1038_s41587_022_01540_7 crossref_primary_10_1007_s11899_018_0476_4 crossref_primary_10_1007_s12185_021_03209_4 crossref_primary_10_1016_j_jcyt_2023_01_008 crossref_primary_10_1038_nrd4597 crossref_primary_10_1038_mt_2016_63 crossref_primary_10_3389_fimmu_2025_1512494 crossref_primary_10_1016_j_bbmt_2016_01_005 crossref_primary_10_1016_j_drudis_2024_104239 crossref_primary_10_1038_nrclinonc_2016_36 crossref_primary_10_3390_cancers12010125 crossref_primary_10_1134_S0006297919070022 crossref_primary_10_1038_nrc_2016_97 crossref_primary_10_1158_0008_5472_CAN_10_3843 crossref_primary_10_3390_ph7121049 crossref_primary_10_1007_s00262_016_1842_5 crossref_primary_10_3389_fped_2020_00284 crossref_primary_10_1186_s13045_017_0453_8 crossref_primary_10_1208_s12248_025_01017_w crossref_primary_10_3389_fimmu_2021_693016 crossref_primary_10_1186_1479_5876_9_138 crossref_primary_10_3390_cells8050472 crossref_primary_10_46989_001c_94386 crossref_primary_10_1016_j_beha_2021_101306 crossref_primary_10_2139_ssrn_3155793 crossref_primary_10_1111_bcp_14281 crossref_primary_10_1016_j_beha_2021_101304 crossref_primary_10_1177_09636897231204724 crossref_primary_10_1016_j_leukres_2017_06_011 crossref_primary_10_3390_jpm13081261 crossref_primary_10_1007_s40778_017_0077_5 crossref_primary_10_3389_fimmu_2017_00829 crossref_primary_10_1158_2159_8290_CD_12_0548 crossref_primary_10_1097_CM9_0000000000000568 crossref_primary_10_1016_j_immuni_2013_07_002 crossref_primary_10_1016_j_ymthe_2016_11_011 crossref_primary_10_1097_PPO_0000000000000375 crossref_primary_10_1002_cam4_5551 crossref_primary_10_1182_asheducation_V2012_1_143_3798224 crossref_primary_10_1007_s00262_017_2007_x crossref_primary_10_1016_j_copbio_2018_01_025 crossref_primary_10_1016_j_semcancer_2019_12_002 crossref_primary_10_1002_ajh_26506 crossref_primary_10_1038_mt_2011_223 crossref_primary_10_1182_blood_2010_04_278218 crossref_primary_10_3389_fimmu_2017_00267 crossref_primary_10_3389_fimmu_2023_1303935 crossref_primary_10_1186_s40364_020_00197_1 crossref_primary_10_2217_imt_15_23 crossref_primary_10_7759_cureus_59951 crossref_primary_10_1007_s00262_022_03163_y crossref_primary_10_1111_bjh_13976 crossref_primary_10_5402_2012_278093 crossref_primary_10_1016_j_molmed_2012_04_009 crossref_primary_10_1159_000442170 crossref_primary_10_1093_hmg_ddr102 crossref_primary_10_1371_journal_pone_0061338 crossref_primary_10_3389_fonc_2019_00917 crossref_primary_10_1016_j_ymthe_2024_02_030 crossref_primary_10_1158_1078_0432_CCR_12_2422 crossref_primary_10_1136_jitc_2022_005701 crossref_primary_10_1093_neuros_nyaa584 crossref_primary_10_1007_s00262_011_1173_5 crossref_primary_10_1038_nrclinonc_2017_128 crossref_primary_10_1016_j_beha_2017_07_009 crossref_primary_10_1182_blood_2018_01_785840 crossref_primary_10_3389_fimmu_2020_618427 crossref_primary_10_1182_blood_2011_10_384388 crossref_primary_10_21320_2500_2139_2018_11_1_1_9 crossref_primary_10_1016_j_molimm_2017_03_017 crossref_primary_10_1182_blood_2011_04_348540 crossref_primary_10_1146_annurev_pathol_052016_100304 crossref_primary_10_2217_fon_2020_1013 crossref_primary_10_1016_j_blre_2015_10_003 crossref_primary_10_1182_asheducation_2016_1_567 crossref_primary_10_1007_s40259_019_00354_5 crossref_primary_10_1172_JCI81217 crossref_primary_10_1186_s40364_022_00417_w crossref_primary_10_3389_fimmu_2022_886546 crossref_primary_10_1007_s00432_022_04017_x crossref_primary_10_1016_j_clml_2021_06_003 crossref_primary_10_1016_j_jcyt_2013_02_007 crossref_primary_10_1038_s41577_020_0306_5 crossref_primary_10_3390_cancers13010038 crossref_primary_10_1007_s11684_021_0904_z crossref_primary_10_1038_s41392_019_0070_9 crossref_primary_10_1097_CCO_0000000000000128 crossref_primary_10_1158_1078_0432_CCR_16_2680 crossref_primary_10_1182_blood_2010_05_283309 crossref_primary_10_1200_EDBK_200549 crossref_primary_10_3389_fimmu_2020_581116 crossref_primary_10_1038_cti_2014_7 crossref_primary_10_1007_s40265_017_0690_8 crossref_primary_10_1136_bmjopen_2018_026644 crossref_primary_10_4049_jimmunol_1601494 crossref_primary_10_1186_s12885_018_4817_4 crossref_primary_10_4110_in_2023_23_e44 crossref_primary_10_1007_s11427_016_0017_3 crossref_primary_10_1016_j_ymthe_2018_01_022 crossref_primary_10_1186_s12943_015_0474_2 crossref_primary_10_1038_leu_2014_174 crossref_primary_10_1186_s12967_022_03437_0 crossref_primary_10_1111_bjh_12981 crossref_primary_10_2217_imt_2017_0062 crossref_primary_10_1146_annurev_chembioeng_092120_092914 crossref_primary_10_1146_annurev_med_051914_021702 crossref_primary_10_1016_j_immuni_2020_07_011 crossref_primary_10_1016_j_jaut_2017_08_003 crossref_primary_10_1111_ejh_12602 crossref_primary_10_3889_seejim_2024_6063 crossref_primary_10_1016_j_canlet_2020_12_004 crossref_primary_10_1200_JCO_2014_58_0225 crossref_primary_10_1038_mt_2013_185 crossref_primary_10_1111_imr_12139 crossref_primary_10_1111_imr_12136 crossref_primary_10_1016_j_imlet_2012_01_014 crossref_primary_10_1038_s41409_023_02041_0 crossref_primary_10_1080_14656566_2017_1340938 crossref_primary_10_1111_imr_12131 crossref_primary_10_1007_s11899_017_0396_8 crossref_primary_10_1172_JCI94306 crossref_primary_10_3390_cancers14020299 crossref_primary_10_1080_2162402X_2019_1676615 crossref_primary_10_3389_fimmu_2021_670286 crossref_primary_10_2478_amb_2021_0048 crossref_primary_10_3390_biom12091303 crossref_primary_10_3389_fimmu_2020_00702 crossref_primary_10_1111_bjh_14475 crossref_primary_10_2217_imt_2019_0046 crossref_primary_10_1016_j_mehy_2012_01_038 crossref_primary_10_1172_JCI46110 crossref_primary_10_1111_ajt_12934 crossref_primary_10_1007_s11899_021_00615_7 crossref_primary_10_1016_j_bcp_2020_114051 crossref_primary_10_1182_blood_2011_02_337360 crossref_primary_10_1182_blood_2011_10_387969 crossref_primary_10_1111_bjh_14470 crossref_primary_10_1111_bjh_17186 crossref_primary_10_1016_j_nec_2020_06_014 crossref_primary_10_1111_cts_13349 crossref_primary_10_1172_jci_insight_96976 crossref_primary_10_1097_CCO_0000000000000232 crossref_primary_10_1177_2040620719841581 crossref_primary_10_1111_imr_12126 crossref_primary_10_1177_2040620715594736 crossref_primary_10_1016_j_cdtm_2018_08_002 crossref_primary_10_1002_cncr_30491 crossref_primary_10_1111_imr_12243 crossref_primary_10_1016_j_jid_2018_09_002 crossref_primary_10_1016_j_trsl_2017_06_011 crossref_primary_10_3390_cancers5030815 crossref_primary_10_1200_JCO_2014_57_5472 crossref_primary_10_1002_ajh_24238 crossref_primary_10_1158_1078_0432_CCR_12_2982 crossref_primary_10_1158_2159_8290_CD_20_0556 crossref_primary_10_3389_fimmu_2021_681984 crossref_primary_10_3389_fimmu_2021_689697 crossref_primary_10_1002_cpt_950 crossref_primary_10_1038_mt_2014_208 crossref_primary_10_3389_fimmu_2022_925985 crossref_primary_10_1016_j_hoc_2020_02_006 crossref_primary_10_1186_s40164_017_0070_9 crossref_primary_10_1016_j_jcyt_2013_01_002 crossref_primary_10_1182_blood_2020008936 crossref_primary_10_1097_TP_0000000000003617 crossref_primary_10_1002_med_21818 crossref_primary_10_1080_14712598_2024_2371034 crossref_primary_10_1016_j_stem_2023_10_003 crossref_primary_10_1146_annurev_med_061119_015600 crossref_primary_10_2174_0929867324666170801101842 crossref_primary_10_3389_fonc_2021_627549 |
Cites_doi | 10.2174/138945006778559120 10.3816/CLM.2007.s.021 10.1097/MOH.0b013e328302c9c5 10.1007/s10238-009-0037-1 10.1182/blood-2002-07-1989 10.1080/10428190701435275 10.1182/asheducation-2007.1.250 10.1007/BF02986612 10.1158/0008-5472.CAN-07-5600 10.1159/000088416 10.1038/nm.1882 10.1172/JCI32103 10.1128/JVI.75.2.799-808.2001 10.1002/jgm.489 10.1038/nri1842 10.1053/bbmt.1998.v4.pm9763110 10.1146/annurev.med.59.060906.220345 10.1016/j.critrevonc.2005.10.001 10.1007/s11764-007-0004-3 10.1080/14653240600620176 10.1016/S0022-1759(03)00265-5 10.1080/10428190600923140 10.1126/science.1062589 10.1016/j.coi.2009.02.009 10.1182/blood-2005-08-3503 10.1016/j.soncn.2006.01.002 10.1038/sj.bmt.1705868 10.1016/S1525-0016(16)38759-7 10.1038/ni889 10.1038/sj.mt.6300104 10.1034/j.1399-0039.1999.530202.x 10.1097/01.moh.0000138682.13354.da 10.1002/ijc.22719 10.1006/mthe.1999.0012 |
ContentType | Journal Article |
Copyright | 2010 American Society for Blood and Marrow Transplantation American Society for Blood and Marrow Transplantation Copyright (c) 2010 American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2010 American Society for Blood and Marrow Transplantation – notice: American Society for Blood and Marrow Transplantation – notice: Copyright (c) 2010 American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1016/j.bbmt.2010.03.014 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1523-6536 |
EndPage | 1256 |
ExternalDocumentID | 20304086 10_1016_j_bbmt_2010_03_014 S1083879110001199 1_s2_0_S1083879110001199 |
Genre | Clinical Trial Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NCI NIH HHS grantid: P01 CA030206 – fundername: NCI NIH HHS grantid: P50 CA107399 – fundername: NCI NIH HHS grantid: P01 CA30206 – fundername: NCI NIH HHS grantid: R01 CA141303 – fundername: NCI NIH HHS grantid: R01 CA124782 – fundername: NCRR NIH HHS grantid: M01 RR0004 |
GroupedDBID | --- --K --M .1- .FO .~1 0R~ 1B1 1P~ 1~. 23N 4.4 457 4G. 53G 5GY 5VS 7-5 8P~ AAAJQ AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQQT AAQXK AARKO AATTM AAXKI AAXUO AAYWO ABBQC ABFNM ABGSF ABJNI ABLJU ABMAC ABMZM ABUDA ABWVN ABXDB ACDAQ ACGFS ACIEU ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADUVX ADVLN AEBSH AEIPS AEKER AENEX AEUPX AEVXI AEXQZ AFPUW AFRHN AFTJW AFXIZ AGEKW AGHFR AGQPQ AGRDE AGUBO AGYEJ AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV C5W CJTIS CS3 DU5 EBS EFJIC EJD F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W KOM LUGTX M41 MO0 NQ- O-L O9- OAUVE OC~ OK1 OO- P-8 P-9 P2P PC. Q38 R2- ROL RPZ SDF SEL SES SEW SJN SPCBC SSH SSZ T5K UDS UHS XH2 Z5R ~G- 0SF 1RT 6I. AACTN AAFTH ABVKL AEHWI AFKWA AJOXV AMFUW NCXOZ RIG SSI SSU AAIAV AAQFI ABLVK ABYKQ AJBFU DOVZS LCYCR ZA5 AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c4204-78dcf18bee37b4f0163fe08163f340e625e51a08ebfe7b92e262c5288df7fd913 |
IEDL.DBID | AIKHN |
ISSN | 1083-8791 1523-6536 |
IngestDate | Fri Jul 11 10:29:24 EDT 2025 Sat May 31 02:11:49 EDT 2025 Tue Jul 01 03:30:56 EDT 2025 Thu Apr 24 23:01:06 EDT 2025 Fri Feb 23 02:31:00 EST 2024 Sun Feb 23 10:19:50 EST 2025 Tue Aug 26 20:11:58 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Issue | 9 |
Keywords | Clinical trial Cellular immunotherapy T lymphocyte Adoptive therapy |
Language | English |
License | http://creativecommons.org/licenses/by-nc-nd/4.0 https://www.elsevier.com/tdm/userlicense/1.0 Copyright (c) 2010 American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4204-78dcf18bee37b4f0163fe08163f340e625e51a08ebfe7b92e262c5288df7fd913 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1083879110001199 |
PMID | 20304086 |
PQID | 748962773 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_748962773 pubmed_primary_20304086 crossref_primary_10_1016_j_bbmt_2010_03_014 crossref_citationtrail_10_1016_j_bbmt_2010_03_014 elsevier_sciencedirect_doi_10_1016_j_bbmt_2010_03_014 elsevier_clinicalkeyesjournals_1_s2_0_S1083879110001199 elsevier_clinicalkey_doi_10_1016_j_bbmt_2010_03_014 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2010-09-01 |
PublicationDateYYYYMMDD | 2010-09-01 |
PublicationDate_xml | – month: 09 year: 2010 text: 2010-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Biology of blood and marrow transplantation |
PublicationTitleAlternate | Biol Blood Marrow Transplant |
PublicationYear | 2010 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Jensen, Tan, Forman (bib7) 1998; 4 Berger, Flowers, Warren (bib27) 2006; 107 Berger, Jensen, Lansdorp (bib34) 2008; 118 Cesco-Gaspere, Morris, Stauss (bib3) 2009; 9 Park, Digiusto, Slovak (bib12) 2007; 15 Bertoni, Zucca, Cavalli (bib22) 2004; 11 Brody, Advani (bib23) 2006; 58 Goy, Feldman (bib24) 2007; 7 Jensen, Clarke, Tan (bib9) 2000; 1 Singh, Manuri, Olivares (bib29) 2008; 68 Kofler, Mayr, Wendtner (bib1) 2006; 7 Alexander, Mink, Adami (bib15) 2007; 120 Brentjens, Riviere, Hollyman (bib26) 2009; 17 Gisselbrecht, Bethge, Duarte (bib18) 2007; 40 Gattinoni, Powell, Rosenberg (bib31) 2006; 6 Betts, Brenchley, Price (bib14) 2003; 281 Sadelain, Brentjens, Riviere (bib5) 2009; 21 Santos, Kharfan-Dabaja, Ayala (bib20) 2006; 47 Akatsuka, Martin, Madonik (bib13) 1999; 53 Pule, Savoldo, Myers (bib33) 2008; 14 Smith (bib25) 2008; 15 Paolo, Lucia, Anna (bib19) 2007; 48 Zinzani (bib21) 2005; 114 Molina (bib2) 2008; 59 Wherry, Teichgraber, Becker (bib30) 2003; 4 Fearon, Manders, Wagner (bib32) 2001; 293 Riddell (bib6) 2007 Cooper, Ausubel, Gutierrez (bib11) 2006; 8 Cooper, Topp, Serrano (bib8) 2003; 101 Gonzalez, Naranjo, Serrano (bib10) 2004; 6 Timmerman (bib4) 2003; 77 Arora, Hamilton, Potosky (bib17) 2007; 1 Rogers (bib16) 2006; 22 Berger, Huang, Gough (bib28) 2001; 75 Molina (10.1016/j.bbmt.2010.03.014_bib2) 2008; 59 Akatsuka (10.1016/j.bbmt.2010.03.014_bib13) 1999; 53 Kofler (10.1016/j.bbmt.2010.03.014_bib1) 2006; 7 Smith (10.1016/j.bbmt.2010.03.014_bib25) 2008; 15 Gattinoni (10.1016/j.bbmt.2010.03.014_bib31) 2006; 6 Berger (10.1016/j.bbmt.2010.03.014_bib27) 2006; 107 Timmerman (10.1016/j.bbmt.2010.03.014_bib4) 2003; 77 Riddell (10.1016/j.bbmt.2010.03.014_bib6) 2007 Brody (10.1016/j.bbmt.2010.03.014_bib23) 2006; 58 Gisselbrecht (10.1016/j.bbmt.2010.03.014_bib18) 2007; 40 Paolo (10.1016/j.bbmt.2010.03.014_bib19) 2007; 48 Zinzani (10.1016/j.bbmt.2010.03.014_bib21) 2005; 114 Rogers (10.1016/j.bbmt.2010.03.014_bib16) 2006; 22 Santos (10.1016/j.bbmt.2010.03.014_bib20) 2006; 47 Cooper (10.1016/j.bbmt.2010.03.014_bib8) 2003; 101 Cesco-Gaspere (10.1016/j.bbmt.2010.03.014_bib3) 2009; 9 Singh (10.1016/j.bbmt.2010.03.014_bib29) 2008; 68 Park (10.1016/j.bbmt.2010.03.014_bib12) 2007; 15 Berger (10.1016/j.bbmt.2010.03.014_bib28) 2001; 75 Gonzalez (10.1016/j.bbmt.2010.03.014_bib10) 2004; 6 Goy (10.1016/j.bbmt.2010.03.014_bib24) 2007; 7 Cooper (10.1016/j.bbmt.2010.03.014_bib11) 2006; 8 Pule (10.1016/j.bbmt.2010.03.014_bib33) 2008; 14 Berger (10.1016/j.bbmt.2010.03.014_bib34) 2008; 118 Alexander (10.1016/j.bbmt.2010.03.014_bib15) 2007; 120 Jensen (10.1016/j.bbmt.2010.03.014_bib7) 1998; 4 Bertoni (10.1016/j.bbmt.2010.03.014_bib22) 2004; 11 Fearon (10.1016/j.bbmt.2010.03.014_bib32) 2001; 293 Sadelain (10.1016/j.bbmt.2010.03.014_bib5) 2009; 21 Arora (10.1016/j.bbmt.2010.03.014_bib17) 2007; 1 Jensen (10.1016/j.bbmt.2010.03.014_bib9) 2000; 1 Wherry (10.1016/j.bbmt.2010.03.014_bib30) 2003; 4 Betts (10.1016/j.bbmt.2010.03.014_bib14) 2003; 281 Brentjens (10.1016/j.bbmt.2010.03.014_bib26) 2009; 17 |
References_xml | – volume: 77 start-page: 444 year: 2003 end-page: 455 ident: bib4 article-title: Immunotherapy for lymphomas publication-title: Int J Hematol – volume: 68 start-page: 2961 year: 2008 end-page: 2971 ident: bib29 article-title: Redirecting specificity of T-cell populations for CD19 using the Sleeping Beauty system publication-title: Cancer Res – start-page: 250 year: 2007 end-page: 256 ident: bib6 article-title: Engineering antitumor immunity by T-cell adoptive immunotherapy publication-title: Hematol Am Soc Hematol Educ Progr – volume: 48 start-page: 1496 year: 2007 end-page: 1501 ident: bib19 article-title: Hematopoietic stem cell transplantation in peripheral T-cell lymphomas publication-title: Leuk Lymphoma – volume: 15 start-page: 415 year: 2008 end-page: 421 ident: bib25 article-title: Mantle cell lymphoma: advances in biology and therapy publication-title: Curr Opin Hematol – volume: 17 start-page: S157 year: 2009 ident: bib26 article-title: Unexpected toxicity of cyclophosphamide followed by adoptively transferred CD19-targeted T cells in a patient with bulky CLL publication-title: Mol Ther – volume: 11 start-page: 411 year: 2004 end-page: 418 ident: bib22 article-title: Mantle cell lymphoma publication-title: Curr Opin Hematol – volume: 14 start-page: 1264 year: 2008 end-page: 1270 ident: bib33 article-title: Virus-specific T cells engineered to coexpress tumor-specific receptors: persistence and antitumor activity in individuals with neuroblastoma publication-title: Nat Med – volume: 4 start-page: 75 year: 1998 end-page: 83 ident: bib7 article-title: CD20 is a molecular target for scFvFc:zeta receptor redirected T cells: implications for cellular immunotherapy of CD20 publication-title: Biol Blood Marrow Transplant – volume: 53 start-page: 122 year: 1999 end-page: 134 ident: bib13 article-title: Rapid screening of T-cell receptor (TCR) variable gene usage by multiplex PCR: application for assessment of clonal composition publication-title: Tissue Antigens – volume: 1 start-page: 49 year: 2007 end-page: 63 ident: bib17 article-title: Population-based survivorship research using cancer registries: a study of non-Hodgkin's lymphoma survivors publication-title: J Cancer Surviv – volume: 1 start-page: 49 year: 2000 end-page: 55 ident: bib9 article-title: Human T lymphocyte genetic modification with naked DNA publication-title: J Mol Ther – volume: 118 start-page: 294 year: 2008 end-page: 305 ident: bib34 article-title: Adoptive transfer of effector CD8 T cells derived from central memory cells establishes persistent T cell memory in primates publication-title: J Clin Invest – volume: 22 start-page: 67 year: 2006 end-page: 72 ident: bib16 article-title: Overview of non-Hodgkin's lymphoma publication-title: Semin Oncol Nurs – volume: 7 start-page: S184 year: 2007 end-page: S191 ident: bib24 article-title: Expanding therapeutic options in mantle cell lymphoma publication-title: Clin Lymphoma Myeloma – volume: 101 start-page: 1637 year: 2003 end-page: 1644 ident: bib8 article-title: T-cell clones can be rendered specific for CD19: toward the selective augmentation of the graft-versus-B-lineage leukemia effect publication-title: Blood – volume: 58 start-page: 257 year: 2006 end-page: 265 ident: bib23 article-title: Treatment of mantle cell lymphoma: current approach and future directions publication-title: Crit Rev Oncol Hematol – volume: 281 start-page: 65 year: 2003 end-page: 78 ident: bib14 article-title: Sensitive and viable identification of antigen-specific CD8+ T cells by a flow cytometric assay for degranulation publication-title: J Immunol Methods – volume: 6 start-page: 383 year: 2006 end-page: 393 ident: bib31 article-title: Adoptive immunotherapy for cancer: building on success publication-title: Nat Rev Immunol – volume: 4 start-page: 225 year: 2003 end-page: 234 ident: bib30 article-title: Lineage relationship and protective immunity of memory CD8 T cell subsets publication-title: Nat Immunol – volume: 15 start-page: 825 year: 2007 end-page: 833 ident: bib12 article-title: Adoptive transfer of chimeric antigen receptor re-directed cytolytic T lymphocyte clones in patients with neuroblastoma publication-title: Mol Ther – volume: 107 start-page: 2294 year: 2006 end-page: 2302 ident: bib27 article-title: Analysis of transgene-specific immune responses that limit the in vivo persistence of adoptively transferred HSV-TK–modified donor T cells after allogeneic hematopoietic cell transplantation publication-title: Blood – volume: 293 start-page: 248 year: 2001 end-page: 250 ident: bib32 article-title: Arrested differentiation, the self-renewing memory lymphocyte, and vaccination publication-title: Science – volume: 59 start-page: 237 year: 2008 end-page: 250 ident: bib2 article-title: A decade of rituximab: improving survival outcomes in non-Hodgkin's lymphoma publication-title: Annu Rev Med – volume: 7 start-page: 1371 year: 2006 end-page: 1374 ident: bib1 article-title: Current status of immunotherapy in B cell malignancies publication-title: Curr Drug Targets – volume: 114 start-page: 255 year: 2005 end-page: 259 ident: bib21 article-title: Autologous hematopoietic stem cell transplantation in non-Hodgkin's lymphomas publication-title: Acta Haematol – volume: 6 start-page: 704 year: 2004 end-page: 711 ident: bib10 article-title: Genetic engineering of cytolytic T lymphocytes for adoptive T-cell therapy of neuroblastoma publication-title: J Gene Med – volume: 40 start-page: 1007 year: 2007 end-page: 1017 ident: bib18 article-title: Current status and future perspectives for yttrium-90 ((90)Y)-ibritumomab tiuxetan in stem cell transplantation for non-Hodgkin's lymphoma publication-title: Bone Marrow Transplant – volume: 120 start-page: 1 year: 2007 end-page: 39 ident: bib15 article-title: The non-Hodgkin lymphomas: a review of the epidemiologic literature publication-title: Int J Cancer – volume: 21 start-page: 215 year: 2009 end-page: 223 ident: bib5 article-title: The promise and potential pitfalls of chimeric antigen receptors publication-title: Curr Opin Immunol – volume: 47 year: 2006 ident: bib20 article-title: Current results and future applications of radioimmunotherapy management of non-Hodgkin's lymphoma publication-title: Leuk Lymphoma – volume: 75 start-page: 799 year: 2001 end-page: 808 ident: bib28 article-title: Nonmyeloablative immunosuppressive regimen prolongs in vivo persistence of gene-modified autologous T cells in a nonhuman primate model publication-title: J Virol – volume: 8 start-page: 105 year: 2006 end-page: 117 ident: bib11 article-title: Manufacturing of gene-modified cytotoxic T lymphocytes for autologous cellular therapy for lymphoma publication-title: Cytotherapy – volume: 9 start-page: 81 year: 2009 end-page: 92 ident: bib3 article-title: Immunomodulation in the treatment of haematological malignancies publication-title: Clin Exp Med – volume: 7 start-page: 1371 year: 2006 ident: 10.1016/j.bbmt.2010.03.014_bib1 article-title: Current status of immunotherapy in B cell malignancies publication-title: Curr Drug Targets doi: 10.2174/138945006778559120 – volume: 7 start-page: S184 issue: Suppl 5 year: 2007 ident: 10.1016/j.bbmt.2010.03.014_bib24 article-title: Expanding therapeutic options in mantle cell lymphoma publication-title: Clin Lymphoma Myeloma doi: 10.3816/CLM.2007.s.021 – volume: 15 start-page: 415 year: 2008 ident: 10.1016/j.bbmt.2010.03.014_bib25 article-title: Mantle cell lymphoma: advances in biology and therapy publication-title: Curr Opin Hematol doi: 10.1097/MOH.0b013e328302c9c5 – volume: 9 start-page: 81 year: 2009 ident: 10.1016/j.bbmt.2010.03.014_bib3 article-title: Immunomodulation in the treatment of haematological malignancies publication-title: Clin Exp Med doi: 10.1007/s10238-009-0037-1 – volume: 101 start-page: 1637 year: 2003 ident: 10.1016/j.bbmt.2010.03.014_bib8 article-title: T-cell clones can be rendered specific for CD19: toward the selective augmentation of the graft-versus-B-lineage leukemia effect publication-title: Blood doi: 10.1182/blood-2002-07-1989 – volume: 48 start-page: 1496 year: 2007 ident: 10.1016/j.bbmt.2010.03.014_bib19 article-title: Hematopoietic stem cell transplantation in peripheral T-cell lymphomas publication-title: Leuk Lymphoma doi: 10.1080/10428190701435275 – start-page: 250 year: 2007 ident: 10.1016/j.bbmt.2010.03.014_bib6 article-title: Engineering antitumor immunity by T-cell adoptive immunotherapy publication-title: Hematol Am Soc Hematol Educ Progr doi: 10.1182/asheducation-2007.1.250 – volume: 77 start-page: 444 year: 2003 ident: 10.1016/j.bbmt.2010.03.014_bib4 article-title: Immunotherapy for lymphomas publication-title: Int J Hematol doi: 10.1007/BF02986612 – volume: 68 start-page: 2961 year: 2008 ident: 10.1016/j.bbmt.2010.03.014_bib29 article-title: Redirecting specificity of T-cell populations for CD19 using the Sleeping Beauty system publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-07-5600 – volume: 114 start-page: 255 year: 2005 ident: 10.1016/j.bbmt.2010.03.014_bib21 article-title: Autologous hematopoietic stem cell transplantation in non-Hodgkin's lymphomas publication-title: Acta Haematol doi: 10.1159/000088416 – volume: 14 start-page: 1264 year: 2008 ident: 10.1016/j.bbmt.2010.03.014_bib33 article-title: Virus-specific T cells engineered to coexpress tumor-specific receptors: persistence and antitumor activity in individuals with neuroblastoma publication-title: Nat Med doi: 10.1038/nm.1882 – volume: 118 start-page: 294 year: 2008 ident: 10.1016/j.bbmt.2010.03.014_bib34 article-title: Adoptive transfer of effector CD8 T cells derived from central memory cells establishes persistent T cell memory in primates publication-title: J Clin Invest doi: 10.1172/JCI32103 – volume: 75 start-page: 799 year: 2001 ident: 10.1016/j.bbmt.2010.03.014_bib28 article-title: Nonmyeloablative immunosuppressive regimen prolongs in vivo persistence of gene-modified autologous T cells in a nonhuman primate model publication-title: J Virol doi: 10.1128/JVI.75.2.799-808.2001 – volume: 6 start-page: 704 year: 2004 ident: 10.1016/j.bbmt.2010.03.014_bib10 article-title: Genetic engineering of cytolytic T lymphocytes for adoptive T-cell therapy of neuroblastoma publication-title: J Gene Med doi: 10.1002/jgm.489 – volume: 6 start-page: 383 year: 2006 ident: 10.1016/j.bbmt.2010.03.014_bib31 article-title: Adoptive immunotherapy for cancer: building on success publication-title: Nat Rev Immunol doi: 10.1038/nri1842 – volume: 4 start-page: 75 year: 1998 ident: 10.1016/j.bbmt.2010.03.014_bib7 article-title: CD20 is a molecular target for scFvFc:zeta receptor redirected T cells: implications for cellular immunotherapy of CD20+ malignancy publication-title: Biol Blood Marrow Transplant doi: 10.1053/bbmt.1998.v4.pm9763110 – volume: 59 start-page: 237 year: 2008 ident: 10.1016/j.bbmt.2010.03.014_bib2 article-title: A decade of rituximab: improving survival outcomes in non-Hodgkin's lymphoma publication-title: Annu Rev Med doi: 10.1146/annurev.med.59.060906.220345 – volume: 58 start-page: 257 year: 2006 ident: 10.1016/j.bbmt.2010.03.014_bib23 article-title: Treatment of mantle cell lymphoma: current approach and future directions publication-title: Crit Rev Oncol Hematol doi: 10.1016/j.critrevonc.2005.10.001 – volume: 1 start-page: 49 year: 2007 ident: 10.1016/j.bbmt.2010.03.014_bib17 article-title: Population-based survivorship research using cancer registries: a study of non-Hodgkin's lymphoma survivors publication-title: J Cancer Surviv doi: 10.1007/s11764-007-0004-3 – volume: 8 start-page: 105 year: 2006 ident: 10.1016/j.bbmt.2010.03.014_bib11 article-title: Manufacturing of gene-modified cytotoxic T lymphocytes for autologous cellular therapy for lymphoma publication-title: Cytotherapy doi: 10.1080/14653240600620176 – volume: 281 start-page: 65 year: 2003 ident: 10.1016/j.bbmt.2010.03.014_bib14 article-title: Sensitive and viable identification of antigen-specific CD8+ T cells by a flow cytometric assay for degranulation publication-title: J Immunol Methods doi: 10.1016/S0022-1759(03)00265-5 – volume: 47 year: 2006 ident: 10.1016/j.bbmt.2010.03.014_bib20 article-title: Current results and future applications of radioimmunotherapy management of non-Hodgkin's lymphoma publication-title: Leuk Lymphoma doi: 10.1080/10428190600923140 – volume: 293 start-page: 248 year: 2001 ident: 10.1016/j.bbmt.2010.03.014_bib32 article-title: Arrested differentiation, the self-renewing memory lymphocyte, and vaccination publication-title: Science doi: 10.1126/science.1062589 – volume: 21 start-page: 215 year: 2009 ident: 10.1016/j.bbmt.2010.03.014_bib5 article-title: The promise and potential pitfalls of chimeric antigen receptors publication-title: Curr Opin Immunol doi: 10.1016/j.coi.2009.02.009 – volume: 107 start-page: 2294 year: 2006 ident: 10.1016/j.bbmt.2010.03.014_bib27 article-title: Analysis of transgene-specific immune responses that limit the in vivo persistence of adoptively transferred HSV-TK–modified donor T cells after allogeneic hematopoietic cell transplantation publication-title: Blood doi: 10.1182/blood-2005-08-3503 – volume: 22 start-page: 67 year: 2006 ident: 10.1016/j.bbmt.2010.03.014_bib16 article-title: Overview of non-Hodgkin's lymphoma publication-title: Semin Oncol Nurs doi: 10.1016/j.soncn.2006.01.002 – volume: 40 start-page: 1007 year: 2007 ident: 10.1016/j.bbmt.2010.03.014_bib18 article-title: Current status and future perspectives for yttrium-90 ((90)Y)-ibritumomab tiuxetan in stem cell transplantation for non-Hodgkin's lymphoma publication-title: Bone Marrow Transplant doi: 10.1038/sj.bmt.1705868 – volume: 17 start-page: S157 year: 2009 ident: 10.1016/j.bbmt.2010.03.014_bib26 article-title: Unexpected toxicity of cyclophosphamide followed by adoptively transferred CD19-targeted T cells in a patient with bulky CLL publication-title: Mol Ther doi: 10.1016/S1525-0016(16)38759-7 – volume: 4 start-page: 225 year: 2003 ident: 10.1016/j.bbmt.2010.03.014_bib30 article-title: Lineage relationship and protective immunity of memory CD8 T cell subsets publication-title: Nat Immunol doi: 10.1038/ni889 – volume: 15 start-page: 825 year: 2007 ident: 10.1016/j.bbmt.2010.03.014_bib12 article-title: Adoptive transfer of chimeric antigen receptor re-directed cytolytic T lymphocyte clones in patients with neuroblastoma publication-title: Mol Ther doi: 10.1038/sj.mt.6300104 – volume: 53 start-page: 122 year: 1999 ident: 10.1016/j.bbmt.2010.03.014_bib13 article-title: Rapid screening of T-cell receptor (TCR) variable gene usage by multiplex PCR: application for assessment of clonal composition publication-title: Tissue Antigens doi: 10.1034/j.1399-0039.1999.530202.x – volume: 11 start-page: 411 year: 2004 ident: 10.1016/j.bbmt.2010.03.014_bib22 article-title: Mantle cell lymphoma publication-title: Curr Opin Hematol doi: 10.1097/01.moh.0000138682.13354.da – volume: 120 start-page: 1 issue: Suppl 12 year: 2007 ident: 10.1016/j.bbmt.2010.03.014_bib15 article-title: The non-Hodgkin lymphomas: a review of the epidemiologic literature publication-title: Int J Cancer doi: 10.1002/ijc.22719 – volume: 1 start-page: 49 year: 2000 ident: 10.1016/j.bbmt.2010.03.014_bib9 article-title: Human T lymphocyte genetic modification with naked DNA publication-title: J Mol Ther doi: 10.1006/mthe.1999.0012 |
SSID | ssj0007489 |
Score | 2.1678183 |
Snippet | Immunotherapeutic ablation of lymphoma is a conceptually attractive treatment strategy that is the subject of intense translational research. Cytotoxic T... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1245 |
SubjectTerms | Adoptive therapy Adoptive Transfer - methods Antigens, CD19 - biosynthesis Antigens, CD19 - genetics Antigens, CD19 - immunology Antigens, CD20 - biosynthesis Antigens, CD20 - genetics Antigens, CD20 - immunology Cellular immunotherapy Clinical trial Hematology, Oncology and Palliative Medicine Humans Immune Tolerance Lymphoma, B-Cell - immunology Lymphoma, B-Cell - therapy Lymphoma, Follicular - immunology Lymphoma, Follicular - therapy Lymphoma, Large B-Cell, Diffuse - immunology Lymphoma, Large B-Cell, Diffuse - therapy Receptors, Antigen, T-Cell - biosynthesis Receptors, Antigen, T-Cell - genetics Receptors, Antigen, T-Cell - immunology T lymphocyte T-Lymphocytes, Cytotoxic - immunology T-Lymphocytes, Cytotoxic - physiology T-Lymphocytes, Cytotoxic - transplantation Transfection Transgenes - immunology |
Title | Antitransgene Rejection Responses Contribute to Attenuated Persistence of Adoptively Transferred CD20/CD19-Specific Chimeric Antigen Receptor Redirected T Cells in Humans |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1083879110001199 https://www.clinicalkey.es/playcontent/1-s2.0-S1083879110001199 https://dx.doi.org/10.1016/j.bbmt.2010.03.014 https://www.ncbi.nlm.nih.gov/pubmed/20304086 https://www.proquest.com/docview/748962773 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9xADB7ygNJL6bvbxzKH3oqznhk_j8Zp2D4SSppAboPH1hCHrb2svYde-oP6KyvZ44XSJoXeBmMhW9JIGvSNxNhbo0QkyzL0CiXAC2wReQUGOo_aQZVVWEk7tGs6PYuWl8HHq_Bqj-XTXRiCVTrfP_r0wVu7JwsnzcW6rhdfBWYPSZxSzzNqXJbus0Op0ghN-zD78Gl5tnPI1GBlxNkrjwjc3ZkR5mXMt94hvNSRL4Lb4tNt-ecQh04esgcugeTZ-I2P2B40j9m9U1cif8J-ZnTxliIQmgbwc7gZwFYNrgY0LHScOlINc66A9y3Pekybt5hyVpzg8KR2FAJvLc-qdk3ecPWdDyHNwmaDb-XH0l_kxyL1huH1ti55fl0PlR9OzJEvMiO4TLvBxShgpLvgOaxWHa8bPpQOuqfs8uT9Rb703EAGrwykH3hxUpVWJAZAxSawKEBlgSZ3KKsCH_AoBaEo_ASMhdikEiTaQSiTpLKxrVKhnrGDpm3gBSGqTBCpkgZ9hEGEEVNGZVoUFVgT-jZKZkxMatCl61ZOQzNWeoKl3WhSnSbVaV9pVN2MvdvRrMdeHXe-rSbt6ukWKvpNjaHkTqr4b1TQua3faaE7qX39h3nOWLij_M3C_8mRT6ancetTPadooN12muw6knGsZuz5aJK735ZU8cbT6sv_ZPqK3R9hEgSme80O-s0W3mD21Zs52z_6Iea4x_Lzz1_mbq_9AnmqL9A |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6VIgEXxJvw3AM35Mb78OsYuVQBmh4glXpbee1Z4SrYUZwcuPCD-JXMrO0gBC0St5W1o7F3ntZ8O8PYG6tELMsyCgolINCuiIMCA11A7aDKKqqk8-2aFmfx_Fx_uIguDlg-3oUhWOXg-3uf7r318GQ6nOZ0XdfTzwKzhzTJqOcZNS7LbrCbGs2XrPPo-y-cB7VX6VH2KqDtw82ZHuRl7dftgO9SR6HQV0Wnq7JPH4VO7rG7Q_rIZ_0b3mcH0DxgtxZDgfwh-zGja7cUf1AxgH-CSw-1anDlsbDQcepH5adcAd-2fLbFpHmHCWfFCQxPQscj4K3js6pdky9cfeM-oDnYbHBXfizDaX4sssCPrnd1yfMvta_7cGKOfJEZgWXaDS7640W6Jc9htep43XBfOOgesfOTd8t8HgzjGIJSy1AHSVqVTqQWQCVWOzxA5YDmdiindAj4IwWRKMIUrIPEZhIkakEk07RyiasyoR6zw6Zt4CnhqayOVUljPiIdY7yUcZkVRQXORqGL0wkToxhMOfQqp5EZKzOC0i4Nic6Q6EyoDIpuwt7uadZ9p45rd6tRuma8g4pe02AguZYq-RsVdIPhd0aYTprQ_KGcExbtKX_T739y5KPqGTR8quYUDbS7zpBexzJJ1IQ96VVy_9mS6t34r_rsP5m-Zrfny8WpOX1_9vE5u9MDJghW94Idbjc7eIl52Na-8nb2E3_JLv8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Antitransgene+rejection+responses+contribute+to+attenuated+persistence+of+adoptively+transferred+CD20%2FCD19-specific+chimeric+antigen+receptor+redirected+T+cells+in+humans&rft.jtitle=Biology+of+blood+and+marrow+transplantation&rft.au=Jensen%2C+Michael+C&rft.au=Popplewell%2C+Leslie&rft.au=Cooper%2C+Laurence+J&rft.au=DiGiusto%2C+David&rft.date=2010-09-01&rft.eissn=1523-6536&rft.volume=16&rft.issue=9&rft.spage=1245&rft_id=info:doi/10.1016%2Fj.bbmt.2010.03.014&rft_id=info%3Apmid%2F20304086&rft.externalDocID=20304086 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F10838791%2FS1083879110X00088%2Fcov150h.gif |