Electronic Structure Regulation of Layered Vanadium Oxide via Interlayer Doping Strategy toward Superior High‐Rate and Low‐Temperature Zinc‐Ion Batteries
Currently, development of suitable cathode materials for zinc‐ion batteries (ZIBs) is plagued by the sluggish kinetics of Zn2+ with multivalent charge in the host structure. Herein, it is demonstrated that interlayer Mn2+‐doped layered vanadium oxide (Mn0.15V2O5·nH2O) composites with narrowed direct...
Saved in:
Published in | Advanced functional materials Vol. 30; no. 6 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.02.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Currently, development of suitable cathode materials for zinc‐ion batteries (ZIBs) is plagued by the sluggish kinetics of Zn2+ with multivalent charge in the host structure. Herein, it is demonstrated that interlayer Mn2+‐doped layered vanadium oxide (Mn0.15V2O5·nH2O) composites with narrowed direct bandgap manifest greatly boosted electrochemical performance as zinc‐ion battery cathodes. Specifically, the Mn0.15V2O5·nH2O electrode shows a high specific capacity of 367 mAh g−1 at a current density of 0.1 A g−1 as well as excellent retentive capacities of 153 and 122 mAh g−1 after 8000 cycles at high current densities up to 10 and 20 A g−1, respectively. Even at a low temperature of −20 °C, a reversible specific capacity of 100 mAh g−1 can be achieved at a current density of 2.0 A g−1 after 3000 cycles. The superior electrochemical performance originates from the synergistic effects between the layered nanostructures and interlayer doping of Mn2+ ions and water molecules, which can enhance the electrons/ions transport kinetics and structural stability during cycling. With the aid of various ex situ characterization technologies and density functional theory calculations, the zinc‐ion storage mechanism can be revealed, which provides fundamental guidelines for developing high‐performance cathodes for ZIBs.
Vanadium oxide pillared by interlayer doping of Mn2+ ions and water is synthesized through a facile microwave‐assisted strategy. When evaluated as a cathode for zinc‐ion batteries, the as‐prepared electrode delivers superior zinc‐ion storage properties in terms of high specific capacity, stable cycling capability, excellent rate, and low‐temperature performance. |
---|---|
AbstractList | Currently, development of suitable cathode materials for zinc‐ion batteries (ZIBs) is plagued by the sluggish kinetics of Zn2+ with multivalent charge in the host structure. Herein, it is demonstrated that interlayer Mn2+‐doped layered vanadium oxide (Mn0.15V2O5·nH2O) composites with narrowed direct bandgap manifest greatly boosted electrochemical performance as zinc‐ion battery cathodes. Specifically, the Mn0.15V2O5·nH2O electrode shows a high specific capacity of 367 mAh g−1 at a current density of 0.1 A g−1 as well as excellent retentive capacities of 153 and 122 mAh g−1 after 8000 cycles at high current densities up to 10 and 20 A g−1, respectively. Even at a low temperature of −20 °C, a reversible specific capacity of 100 mAh g−1 can be achieved at a current density of 2.0 A g−1 after 3000 cycles. The superior electrochemical performance originates from the synergistic effects between the layered nanostructures and interlayer doping of Mn2+ ions and water molecules, which can enhance the electrons/ions transport kinetics and structural stability during cycling. With the aid of various ex situ characterization technologies and density functional theory calculations, the zinc‐ion storage mechanism can be revealed, which provides fundamental guidelines for developing high‐performance cathodes for ZIBs. Currently, development of suitable cathode materials for zinc‐ion batteries (ZIBs) is plagued by the sluggish kinetics of Zn2+ with multivalent charge in the host structure. Herein, it is demonstrated that interlayer Mn2+‐doped layered vanadium oxide (Mn0.15V2O5·nH2O) composites with narrowed direct bandgap manifest greatly boosted electrochemical performance as zinc‐ion battery cathodes. Specifically, the Mn0.15V2O5·nH2O electrode shows a high specific capacity of 367 mAh g−1 at a current density of 0.1 A g−1 as well as excellent retentive capacities of 153 and 122 mAh g−1 after 8000 cycles at high current densities up to 10 and 20 A g−1, respectively. Even at a low temperature of −20 °C, a reversible specific capacity of 100 mAh g−1 can be achieved at a current density of 2.0 A g−1 after 3000 cycles. The superior electrochemical performance originates from the synergistic effects between the layered nanostructures and interlayer doping of Mn2+ ions and water molecules, which can enhance the electrons/ions transport kinetics and structural stability during cycling. With the aid of various ex situ characterization technologies and density functional theory calculations, the zinc‐ion storage mechanism can be revealed, which provides fundamental guidelines for developing high‐performance cathodes for ZIBs. Vanadium oxide pillared by interlayer doping of Mn2+ ions and water is synthesized through a facile microwave‐assisted strategy. When evaluated as a cathode for zinc‐ion batteries, the as‐prepared electrode delivers superior zinc‐ion storage properties in terms of high specific capacity, stable cycling capability, excellent rate, and low‐temperature performance. Currently, development of suitable cathode materials for zinc‐ion batteries (ZIBs) is plagued by the sluggish kinetics of Zn 2+ with multivalent charge in the host structure. Herein, it is demonstrated that interlayer Mn 2+ ‐doped layered vanadium oxide (Mn 0.15 V 2 O 5 · n H 2 O) composites with narrowed direct bandgap manifest greatly boosted electrochemical performance as zinc‐ion battery cathodes. Specifically, the Mn 0.15 V 2 O 5 · n H 2 O electrode shows a high specific capacity of 367 mAh g −1 at a current density of 0.1 A g −1 as well as excellent retentive capacities of 153 and 122 mAh g −1 after 8000 cycles at high current densities up to 10 and 20 A g −1 , respectively. Even at a low temperature of −20 °C, a reversible specific capacity of 100 mAh g −1 can be achieved at a current density of 2.0 A g −1 after 3000 cycles. The superior electrochemical performance originates from the synergistic effects between the layered nanostructures and interlayer doping of Mn 2+ ions and water molecules, which can enhance the electrons/ions transport kinetics and structural stability during cycling. With the aid of various ex situ characterization technologies and density functional theory calculations, the zinc‐ion storage mechanism can be revealed, which provides fundamental guidelines for developing high‐performance cathodes for ZIBs. |
Author | Wang, Bo Zhang, Yufei Cheng, Min Yang, Yang Geng, Hongbo Li, Cheng Chao |
Author_xml | – sequence: 1 givenname: Hongbo surname: Geng fullname: Geng, Hongbo organization: Changshu Institute of Technology – sequence: 2 givenname: Min surname: Cheng fullname: Cheng, Min organization: Guangdong University of Technology – sequence: 3 givenname: Bo surname: Wang fullname: Wang, Bo organization: Guangdong University of Technology – sequence: 4 givenname: Yang surname: Yang fullname: Yang, Yang organization: Guangdong University of Technology – sequence: 5 givenname: Yufei surname: Zhang fullname: Zhang, Yufei organization: Guangdong University of Technology – sequence: 6 givenname: Cheng Chao orcidid: 0000-0003-2434-760X surname: Li fullname: Li, Cheng Chao email: licc@gdut.edu.cn organization: Guangdong University of Technology |
BookMark | eNqFkctKAzEYhYMoeN26DrhuTTJJOrP0bqEieEPcDJnkb41Mk5rJWLvzEXwD380nMbWiIIirXM7_nQP_WUfLzjtAaJuSLiWE7SozHHcZoQXpyZwvoTUqqexkhOXL33d6u4rWm-aBENrrZXwNvR3VoGPwzmp8GUOrYxsAX8CorVW03mE_xAM1gwAG3yinjG3H-PzZGsBPVuG-ixDquY4P_cS60dxERRjNcPRTFQy-bCcQrA_41I7u319eL5KKlTN44KfpeQXjpKvP1DvrdPrqp9R9FZOxhWYTrQxV3cDW17mBro-Prg5OO4Pzk_7B3qCjOSO8IysDtMqolloLrjkvgOdFxiQRmQFGBBWCmCrPBYi8kmAkFRWhrKdYDsBktoF2Fr6T4B9baGL54NvgUmTJMkEKKgvK01R3MaWDb5oAw3IS7FiFWUlJOS-hnJdQfpeQAP4L0DZ-LjatydZ_Y8UCm9oaZv-ElHuHx2c_7Ac02qPX |
CitedBy_id | crossref_primary_10_1021_acsaem_4c02016 crossref_primary_10_1021_acs_nanolett_4c00693 crossref_primary_10_1002_cssc_202001261 crossref_primary_10_1002_batt_202100364 crossref_primary_10_1002_adma_202203744 crossref_primary_10_1016_j_jechem_2020_06_013 crossref_primary_10_1002_aenm_202404732 crossref_primary_10_1039_C9EE03545A crossref_primary_10_1002_smll_202400221 crossref_primary_10_1002_batt_202400419 crossref_primary_10_1021_acssuschemeng_3c07655 crossref_primary_10_1016_j_cej_2022_136714 crossref_primary_10_1002_aenm_202003065 crossref_primary_10_1016_j_jpowsour_2021_230699 crossref_primary_10_1021_acsnano_2c02330 crossref_primary_10_1002_ange_202213368 crossref_primary_10_1002_smm2_1231 crossref_primary_10_1016_j_mtener_2020_100578 crossref_primary_10_1016_j_jpowsour_2022_231817 crossref_primary_10_1016_j_jpowsour_2020_228769 crossref_primary_10_1016_j_jelechem_2024_118509 crossref_primary_10_1002_smll_202207754 crossref_primary_10_1039_D4QI00218K crossref_primary_10_1039_D0TA10336E crossref_primary_10_1016_j_cej_2023_142425 crossref_primary_10_1021_acsami_1c23806 crossref_primary_10_1021_acsami_4c16336 crossref_primary_10_1002_slct_202401229 crossref_primary_10_1016_j_apsusc_2020_148882 crossref_primary_10_1021_acsenergylett_1c00625 crossref_primary_10_1002_ange_202414119 crossref_primary_10_1021_acsami_2c03170 crossref_primary_10_1002_smll_202201094 crossref_primary_10_1002_advs_202002173 crossref_primary_10_1016_j_mtener_2021_100842 crossref_primary_10_1039_D1CC00360G crossref_primary_10_1007_s40843_021_1904_x crossref_primary_10_1002_adfm_202421240 crossref_primary_10_1002_slct_202303449 crossref_primary_10_1039_D4CS00929K crossref_primary_10_1002_tcr_202200309 crossref_primary_10_1002_aenm_202202515 crossref_primary_10_1021_acsaem_1c00573 crossref_primary_10_1002_adfm_202305700 crossref_primary_10_1016_j_nanoen_2023_108858 crossref_primary_10_1063_5_0184529 crossref_primary_10_1039_D1DT03193G crossref_primary_10_1016_j_jcis_2024_03_096 crossref_primary_10_1002_eem2_12632 crossref_primary_10_1021_acs_nanolett_4c03191 crossref_primary_10_1002_adfm_202006855 crossref_primary_10_1016_j_pmatsci_2021_100911 crossref_primary_10_1016_j_cej_2021_132538 crossref_primary_10_1007_s12274_022_4834_0 crossref_primary_10_1002_cssc_202400526 crossref_primary_10_1007_s12274_023_5676_0 crossref_primary_10_1021_acs_nanolett_0c00732 crossref_primary_10_1021_acssuschemeng_1c03101 crossref_primary_10_1039_D4CC03201B crossref_primary_10_3390_inorganics11030118 crossref_primary_10_1002_aenm_202201434 crossref_primary_10_1021_acsaem_1c03066 crossref_primary_10_1002_ange_202216290 crossref_primary_10_1002_smtd_202100578 crossref_primary_10_1016_j_jcis_2023_06_152 crossref_primary_10_1039_D4QI00814F crossref_primary_10_1021_acsami_1c18256 crossref_primary_10_1039_D2TA04747K crossref_primary_10_1039_D2TA03145K crossref_primary_10_1016_j_cej_2022_136861 crossref_primary_10_1039_D2CC06777C crossref_primary_10_1016_j_jechem_2020_06_016 crossref_primary_10_1021_acs_langmuir_3c00596 crossref_primary_10_1007_s10971_023_06201_y crossref_primary_10_1007_s12598_023_02303_2 crossref_primary_10_1016_j_cej_2022_136502 crossref_primary_10_1002_smll_202306258 crossref_primary_10_1002_cey2_88 crossref_primary_10_1016_j_apsusc_2021_149495 crossref_primary_10_1021_acsami_3c16321 crossref_primary_10_1002_eem2_12265 crossref_primary_10_1016_j_jechem_2020_05_005 crossref_primary_10_1021_acssuschemeng_4c00636 crossref_primary_10_1016_j_est_2023_110057 crossref_primary_10_1039_D2CC06344A crossref_primary_10_1002_anie_202207779 crossref_primary_10_1002_smll_202304901 crossref_primary_10_1093_nsr_nwab177 crossref_primary_10_1039_D0QM01105C crossref_primary_10_1016_j_colsurfa_2024_133695 crossref_primary_10_1002_aenm_202304010 crossref_primary_10_1021_acsaem_3c00457 crossref_primary_10_1002_adfm_202302659 crossref_primary_10_1021_acs_energyfuels_4c06075 crossref_primary_10_1002_ece2_69 crossref_primary_10_1016_j_jpowsour_2020_228209 crossref_primary_10_1021_acsami_1c09722 crossref_primary_10_1039_D1EE00030F crossref_primary_10_1007_s10008_024_06154_4 crossref_primary_10_1002_adfm_202309048 crossref_primary_10_1002_cnl2_41 crossref_primary_10_1002_elt2_5 crossref_primary_10_1016_j_jcis_2022_08_064 crossref_primary_10_1039_D2TA02734H crossref_primary_10_1002_cey2_681 crossref_primary_10_1002_smll_202105796 crossref_primary_10_1002_adfm_202306205 crossref_primary_10_1039_D4SC00292J crossref_primary_10_1007_s11426_022_1292_0 crossref_primary_10_1021_acsnano_3c05282 crossref_primary_10_1002_anie_202216136 crossref_primary_10_1039_D0TA08311A crossref_primary_10_1002_adfm_202103070 crossref_primary_10_1016_j_carbon_2021_12_024 crossref_primary_10_3390_ma17194703 crossref_primary_10_1039_D4TA00920G crossref_primary_10_1021_acsaem_2c03621 crossref_primary_10_1007_s12274_023_6401_8 crossref_primary_10_1021_acssuschemeng_2c07629 crossref_primary_10_3390_nano12091438 crossref_primary_10_1016_j_jallcom_2022_168669 crossref_primary_10_1021_acsami_0c13221 crossref_primary_10_1002_advs_202305749 crossref_primary_10_1021_acsanm_4c06198 crossref_primary_10_1002_batt_202400046 crossref_primary_10_1021_acsnano_0c04669 crossref_primary_10_1016_j_jallcom_2022_165151 crossref_primary_10_1016_j_jechem_2020_06_075 crossref_primary_10_1039_D1EE00271F crossref_primary_10_1002_adfm_202304255 crossref_primary_10_1002_adfm_202411430 crossref_primary_10_1002_ange_202216136 crossref_primary_10_1002_adfm_202006495 crossref_primary_10_1039_D1QM00703C crossref_primary_10_3390_cryst12111617 crossref_primary_10_1016_j_cej_2024_153239 crossref_primary_10_1021_acsami_0c04199 crossref_primary_10_1039_D0EE02079F crossref_primary_10_1016_j_jcis_2023_11_020 crossref_primary_10_1021_acsnano_0c06834 crossref_primary_10_1021_acsami_0c10183 crossref_primary_10_1039_D3RE00184A crossref_primary_10_1002_anie_202414119 crossref_primary_10_1039_D1TA03620C crossref_primary_10_1002_smtd_202300324 crossref_primary_10_1002_eom2_12326 crossref_primary_10_1093_ooenergy_oiab003 crossref_primary_10_1002_advs_202002866 crossref_primary_10_1002_advs_202004924 crossref_primary_10_1016_j_ensm_2022_09_017 crossref_primary_10_1016_j_gee_2021_04_011 crossref_primary_10_1016_j_cej_2023_143816 crossref_primary_10_1002_ange_202207779 crossref_primary_10_1002_smll_202105572 crossref_primary_10_1016_j_jelechem_2024_118178 crossref_primary_10_1002_adfm_202007358 crossref_primary_10_1002_adma_202206239 crossref_primary_10_1007_s40820_020_0401_y crossref_primary_10_1021_acsnano_1c11169 crossref_primary_10_1002_aenm_202304285 crossref_primary_10_1002_smtd_202301774 crossref_primary_10_1002_cssc_202100299 crossref_primary_10_1016_j_apmate_2021_10_002 crossref_primary_10_1039_D2TA05803K crossref_primary_10_1002_cey2_469 crossref_primary_10_1039_D3TA07589C crossref_primary_10_1002_admi_202200641 crossref_primary_10_1016_j_jelechem_2024_118614 crossref_primary_10_1021_acsaem_0c00309 crossref_primary_10_1021_acsaem_3c02561 crossref_primary_10_1039_D2TA01014C crossref_primary_10_1039_D1TA10545K crossref_primary_10_1002_adma_202414019 crossref_primary_10_1002_smll_202306561 crossref_primary_10_1007_s12613_021_2312_4 crossref_primary_10_1021_acssuschemeng_3c06291 crossref_primary_10_1021_acssuschemeng_9b06798 crossref_primary_10_1039_D4DT01415D crossref_primary_10_1002_anie_202216290 crossref_primary_10_1002_adma_202311141 crossref_primary_10_1016_j_est_2024_111985 crossref_primary_10_1021_acsaem_2c01931 crossref_primary_10_1002_cjoc_202100791 crossref_primary_10_1002_ange_202407659 crossref_primary_10_1002_cey2_512 crossref_primary_10_1016_j_est_2023_108850 crossref_primary_10_1016_j_cej_2024_149501 crossref_primary_10_1039_D2NH00349J crossref_primary_10_1016_j_jcis_2021_05_163 crossref_primary_10_1021_acs_chemrev_1c00636 crossref_primary_10_1016_j_cej_2023_144571 crossref_primary_10_1016_j_cej_2022_137090 crossref_primary_10_1002_batt_202000243 crossref_primary_10_1002_smll_202100558 crossref_primary_10_1021_acs_chemmater_3c00563 crossref_primary_10_1007_s40820_024_01445_x crossref_primary_10_1002_eem2_12575 crossref_primary_10_1002_smll_202200049 crossref_primary_10_1039_D4CP03410D crossref_primary_10_1016_j_cej_2020_127704 crossref_primary_10_1021_acsaem_2c00832 crossref_primary_10_1002_cssc_202000699 crossref_primary_10_1016_j_cej_2021_133795 crossref_primary_10_1021_acsami_4c01360 crossref_primary_10_1002_anie_202402206 crossref_primary_10_1016_j_cej_2022_140260 crossref_primary_10_1016_j_est_2023_109814 crossref_primary_10_1002_adma_202007480 crossref_primary_10_3390_en17225768 crossref_primary_10_1016_j_energy_2020_119513 crossref_primary_10_1016_j_cej_2021_130068 crossref_primary_10_1002_pssa_202100789 crossref_primary_10_1002_aenm_202404597 crossref_primary_10_1021_acsami_3c03530 crossref_primary_10_1002_admt_202100505 crossref_primary_10_1039_D3CE01271A crossref_primary_10_1016_j_jechem_2022_08_038 crossref_primary_10_1016_j_est_2023_109045 crossref_primary_10_1039_D1CE01368H crossref_primary_10_1002_aenm_202301480 crossref_primary_10_1021_acsanm_4c01933 crossref_primary_10_1039_D0QM00656D crossref_primary_10_1039_D3NR01178J crossref_primary_10_1016_j_cej_2021_133108 crossref_primary_10_1002_aenm_202002354 crossref_primary_10_1021_acsaem_1c00979 crossref_primary_10_1126_sciadv_abn5097 crossref_primary_10_1016_j_nanoen_2024_109691 crossref_primary_10_1038_s41467_023_36198_5 crossref_primary_10_1039_D3TA04030E crossref_primary_10_1002_adfm_202420686 crossref_primary_10_1039_D0EE01531H crossref_primary_10_1039_D0TA01033B crossref_primary_10_1021_acsnano_4c09899 crossref_primary_10_1021_acsami_3c06490 crossref_primary_10_1039_D3TA05251F crossref_primary_10_1039_D3DT02152A crossref_primary_10_1039_D4EE00535J crossref_primary_10_1016_j_jcis_2021_04_114 crossref_primary_10_1002_smll_202206287 crossref_primary_10_1002_smll_202307627 crossref_primary_10_1039_D1TA02209A crossref_primary_10_1002_tcr_202200132 crossref_primary_10_1016_j_jcis_2023_09_052 crossref_primary_10_1016_j_cej_2021_130528 crossref_primary_10_1002_adfm_202104543 crossref_primary_10_1016_j_cej_2023_144655 crossref_primary_10_1002_ange_202402206 crossref_primary_10_1021_acsenergylett_0c00740 crossref_primary_10_1016_j_ccr_2023_215461 crossref_primary_10_1039_D0TA05941B crossref_primary_10_1016_j_cej_2022_137688 crossref_primary_10_1021_acsami_2c19457 crossref_primary_10_1063_5_0086130 crossref_primary_10_1002_adfm_202304798 crossref_primary_10_1021_acsaem_2c03916 crossref_primary_10_1016_j_cej_2021_132710 crossref_primary_10_1016_j_jpowsour_2022_231226 crossref_primary_10_1039_D0TA03463K crossref_primary_10_1016_j_cej_2021_129890 crossref_primary_10_1021_acs_nanolett_1c03409 crossref_primary_10_1016_j_cej_2023_142221 crossref_primary_10_1039_D4TA01136H crossref_primary_10_1039_D1TA04420F crossref_primary_10_1039_D4TC02864C crossref_primary_10_1002_adfm_202102011 crossref_primary_10_1002_smll_202305386 crossref_primary_10_1002_smll_202310293 crossref_primary_10_1007_s11706_021_0551_y crossref_primary_10_1002_anie_202407659 crossref_primary_10_1021_acssuschemeng_4c04701 crossref_primary_10_1002_chem_202404600 crossref_primary_10_1016_j_jechem_2020_07_035 crossref_primary_10_1002_smll_202100746 crossref_primary_10_1016_j_elecom_2023_107650 crossref_primary_10_1002_adfm_202213127 crossref_primary_10_1016_j_jcis_2024_05_065 crossref_primary_10_1016_j_jpowsour_2021_229528 crossref_primary_10_1021_acsami_1c11531 crossref_primary_10_1039_D0TA01553A crossref_primary_10_1021_acs_energyfuels_2c01251 crossref_primary_10_1002_aenm_202406171 crossref_primary_10_1002_adfm_202408546 crossref_primary_10_1002_adma_202203920 crossref_primary_10_1002_aenm_202202039 crossref_primary_10_1016_j_nanoen_2024_110373 crossref_primary_10_1002_inf2_12558 crossref_primary_10_1002_smll_202107102 crossref_primary_10_1088_2631_7990_abba12 crossref_primary_10_1016_j_jechem_2020_08_038 crossref_primary_10_1016_j_jpowsour_2022_231489 crossref_primary_10_1016_j_jpowsour_2021_230872 crossref_primary_10_1021_acsami_3c15209 crossref_primary_10_1016_j_apsusc_2022_155876 crossref_primary_10_1021_acsami_5c00853 crossref_primary_10_1002_anie_202304400 crossref_primary_10_1039_D0QM00577K crossref_primary_10_1039_D2QI02080G crossref_primary_10_1002_cey2_39 crossref_primary_10_1002_adma_202105452 crossref_primary_10_1002_anie_202216089 crossref_primary_10_1016_j_scib_2022_09_021 crossref_primary_10_1038_s41467_021_27203_w crossref_primary_10_1002_adfm_202421857 crossref_primary_10_1002_aenm_202401704 crossref_primary_10_1002_anie_202213368 crossref_primary_10_1021_acsami_1c23995 crossref_primary_10_1002_ange_202216089 crossref_primary_10_1039_D1TA05982C crossref_primary_10_1016_j_jelechem_2024_118571 crossref_primary_10_1007_s12274_022_4266_x crossref_primary_10_1039_D0QM00990C crossref_primary_10_1002_ange_202304400 crossref_primary_10_1021_acs_energyfuels_2c00941 |
Cites_doi | 10.1002/adma.201801984 10.1016/j.nanoen.2018.07.014 10.1007/s40820-019-0256-2 10.1002/smll.201703850 10.1039/C8TA02018C 10.1016/j.elecom.2015.08.019 10.1039/C9CC00897G 10.1039/C8CC00987B 10.1002/aenm.201601920 10.1021/acsenergylett.8b01426 10.1039/C6TA08736A 10.1002/adfm.201807331 10.1039/C8EE01651H 10.1002/adma.201705580 10.1021/acs.chemrev.6b00614 10.1002/advs.201700322 10.1038/nenergy.2016.119 10.1002/adma.201703725 10.1021/acsami.6b01592 10.1016/j.electacta.2016.10.155 10.1021/acsenergylett.8b01423 10.1039/C5EE00036J 10.1002/aenm.201801819 10.1149/2.0141508jes 10.1021/acsami.8b10849 10.1021/acsenergylett.8b00565 10.1039/C8EE01883A 10.1002/aenm.201400930 10.1002/aenm.201702463 10.1039/C5CC02585K 10.1021/acs.nanolett.7b05403 10.1038/s41467-018-04060-8 10.1002/adma.201803181 10.1021/cm504717p 10.1002/smll.201702551 10.1002/adma.201802396 10.1002/anie.201106307 10.1002/aenm.201800612 10.1002/adfm.201800670 10.1016/j.nanoen.2019.03.034 10.1002/anie.201713291 |
ContentType | Journal Article |
Copyright | 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.201907684 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adfm_201907684 ADFM201907684 |
Genre | article |
GrantInformation_xml | – fundername: Pearl River Talent Program of Guangdong Province funderid: 2017GC010030 – fundername: Natural Science Foundation of Guangdong Providence funderid: 2018A030310571 – fundername: Guangdong Province Universities and Colleges Pearl River Scholar – fundername: National Natural Science Foundation of China funderid: 51771058; 51801030 – fundername: One‐hundred Young Talents of Guangdong University of Technology funderid: 220413198 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ AANHP AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE HF~ HVGLF LW6 7SP 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M |
ID | FETCH-LOGICAL-c4204-6bde1b31c6cc54c449e489326053de2051550db885e58b6ed615b0127a28ee263 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Fri Jul 25 03:13:13 EDT 2025 Thu Apr 24 23:10:32 EDT 2025 Tue Jul 01 04:12:07 EDT 2025 Wed Jan 22 16:34:42 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4204-6bde1b31c6cc54c449e489326053de2051550db885e58b6ed615b0127a28ee263 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-2434-760X |
PQID | 2350916914 |
PQPubID | 2045204 |
PageCount | 9 |
ParticipantIDs | proquest_journals_2350916914 crossref_primary_10_1002_adfm_201907684 crossref_citationtrail_10_1002_adfm_201907684 wiley_primary_10_1002_adfm_201907684_ADFM201907684 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-02-01 |
PublicationDateYYYYMMDD | 2020-02-01 |
PublicationDate_xml | – month: 02 year: 2020 text: 2020-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2020 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 5 2015; 162 2017; 7 2018; 28 2015; 5 2019; 11 2015; 51 2019; 55 2016; 222 2015; 8 2017; 117 2012; 51 2018; 6 2018; 18 2018; 9 2018; 8 2019; 60 2018; 3 2015; 27 2016; 1 2018; 5 2015; 60 2017; 13 2019; 29 2018; 30 2018; 51 2018; 11 2018; 54 2018; 10 2016; 8 2018; 14 2018; 57 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_1_1 e_1_2_7_14_1 e_1_2_7_13_1 e_1_2_7_12_1 e_1_2_7_11_1 e_1_2_7_10_1 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_37_1 e_1_2_7_38_1 e_1_2_7_39_1 |
References_xml | – volume: 60 start-page: 171 year: 2019 publication-title: Nano Energy – volume: 5 start-page: 730 year: 2017 publication-title: J. Mater. Chem. A – volume: 6 year: 2018 publication-title: J. Mater. Chem. A – volume: 27 start-page: 3609 year: 2015 publication-title: Chem. Mater. – volume: 9 start-page: 1656 year: 2018 publication-title: Nat. Commun. – volume: 14 year: 2018 publication-title: Small – volume: 60 start-page: 121 year: 2015 publication-title: Electrochem. Commun. – volume: 55 start-page: 3793 year: 2019 publication-title: Chem. Commun. – volume: 5 year: 2018 publication-title: Adv. Sci. – volume: 8 start-page: 1267 year: 2015 publication-title: Energy Environ. Sci. – volume: 11 start-page: 3168 year: 2018 publication-title: Energy Environ. Sci. – volume: 51 start-page: 579 year: 2018 publication-title: Nano Energy – volume: 51 start-page: 9265 year: 2015 publication-title: Chem. Commun. – volume: 3 start-page: 1366 year: 2018 publication-title: ACS Energy Lett. – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 1 year: 2016 publication-title: Nat. Energy – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 11 start-page: 3157 year: 2018 publication-title: Energy Environ. Sci. – volume: 7 year: 2017 publication-title: Adv. Energy Mater. – volume: 222 start-page: 74 year: 2016 publication-title: Electrochim. Acta – volume: 8 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 5 year: 2015 publication-title: Adv. Energy Mater. – volume: 3 start-page: 2602 year: 2018 publication-title: ACS Energy Lett. – volume: 117 start-page: 4287 year: 2017 publication-title: Chem. Rev. – volume: 57 start-page: 3943 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. – volume: 51 start-page: 933 year: 2012 publication-title: Angew. Chem., Int. Ed. – volume: 162 year: 2015 publication-title: J. Electrochem. Soc. – volume: 54 start-page: 4041 year: 2018 publication-title: Chem. Commun. – volume: 3 start-page: 2480 year: 2018 publication-title: ACS Energy Lett. – volume: 18 start-page: 2402 year: 2018 publication-title: Nano Lett. – volume: 10 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 13 year: 2017 publication-title: Small – volume: 11 start-page: 25 year: 2019 publication-title: Nano‐Micro Lett. – ident: e_1_2_7_5_1 doi: 10.1002/adma.201801984 – ident: e_1_2_7_8_1 doi: 10.1016/j.nanoen.2018.07.014 – ident: e_1_2_7_10_1 doi: 10.1007/s40820-019-0256-2 – ident: e_1_2_7_19_1 doi: 10.1002/smll.201703850 – ident: e_1_2_7_25_1 doi: 10.1039/C8TA02018C – ident: e_1_2_7_21_1 doi: 10.1016/j.elecom.2015.08.019 – ident: e_1_2_7_39_1 doi: 10.1039/C9CC00897G – ident: e_1_2_7_35_1 doi: 10.1039/C8CC00987B – ident: e_1_2_7_6_1 doi: 10.1002/aenm.201601920 – ident: e_1_2_7_7_1 doi: 10.1021/acsenergylett.8b01426 – ident: e_1_2_7_11_1 doi: 10.1039/C6TA08736A – ident: e_1_2_7_40_1 doi: 10.1002/adfm.201807331 – ident: e_1_2_7_26_1 doi: 10.1039/C8EE01651H – ident: e_1_2_7_9_1 doi: 10.1002/adma.201705580 – ident: e_1_2_7_17_1 doi: 10.1021/acs.chemrev.6b00614 – ident: e_1_2_7_36_1 doi: 10.1002/advs.201700322 – ident: e_1_2_7_31_1 doi: 10.1038/nenergy.2016.119 – ident: e_1_2_7_30_1 doi: 10.1002/adma.201703725 – ident: e_1_2_7_23_1 doi: 10.1021/acsami.6b01592 – ident: e_1_2_7_12_1 doi: 10.1016/j.electacta.2016.10.155 – ident: e_1_2_7_33_1 doi: 10.1021/acsenergylett.8b01423 – ident: e_1_2_7_2_1 doi: 10.1039/C5EE00036J – ident: e_1_2_7_4_1 doi: 10.1002/aenm.201801819 – ident: e_1_2_7_14_1 doi: 10.1149/2.0141508jes – ident: e_1_2_7_37_1 doi: 10.1021/acsami.8b10849 – ident: e_1_2_7_28_1 doi: 10.1021/acsenergylett.8b00565 – ident: e_1_2_7_16_1 doi: 10.1039/C8EE01883A – ident: e_1_2_7_29_1 doi: 10.1002/aenm.201400930 – ident: e_1_2_7_18_1 doi: 10.1002/aenm.201702463 – ident: e_1_2_7_15_1 doi: 10.1039/C5CC02585K – ident: e_1_2_7_22_1 doi: 10.1021/acs.nanolett.7b05403 – ident: e_1_2_7_24_1 doi: 10.1038/s41467-018-04060-8 – ident: e_1_2_7_38_1 doi: 10.1002/adma.201803181 – ident: e_1_2_7_20_1 doi: 10.1021/cm504717p – ident: e_1_2_7_27_1 doi: 10.1002/smll.201702551 – ident: e_1_2_7_1_1 doi: 10.1002/adma.201802396 – ident: e_1_2_7_13_1 doi: 10.1002/anie.201106307 – ident: e_1_2_7_41_1 doi: 10.1002/aenm.201800612 – ident: e_1_2_7_34_1 doi: 10.1002/adfm.201800670 – ident: e_1_2_7_3_1 doi: 10.1016/j.nanoen.2019.03.034 – ident: e_1_2_7_32_1 doi: 10.1002/anie.201713291 |
SSID | ssj0017734 |
Score | 2.6937528 |
Snippet | Currently, development of suitable cathode materials for zinc‐ion batteries (ZIBs) is plagued by the sluggish kinetics of Zn2+ with multivalent charge in the... Currently, development of suitable cathode materials for zinc‐ion batteries (ZIBs) is plagued by the sluggish kinetics of Zn 2+ with multivalent charge in the... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Batteries Cathodes Current density Density functional theory Doping Electrochemical analysis Electrode materials Electronic structure electronic structure regulation high‐rate Interlayers Ion storage Kinetics layered vanadium oxide Low temperature low‐temperature performance Manganese ions Materials science Structural stability Vanadium oxides Water chemistry Zinc zinc‐ion battery |
Title | Electronic Structure Regulation of Layered Vanadium Oxide via Interlayer Doping Strategy toward Superior High‐Rate and Low‐Temperature Zinc‐Ion Batteries |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201907684 https://www.proquest.com/docview/2350916914 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbhMxFLVQ2cCC8hSFUt0FEqtpMx6Px7OMSKOCEpCSFkVsRn7ckSLKBLVJoaz4BP6Af-NL8LUn0xQJIcHSY3sefoyP7z0-l7HnWKuixDxLXKmyRHiAn6iMKFZSKDKcGRUc7eM38uhEvJ7ls41T_FEfojO40cwI_2ua4NqcH1yJhmpX00lyv6CRL8n_hImwRaho0ulHpUUR3coyJYJXOlurNvb4wfXq11elK6i5CVjDijPcZnr9rpFo8mF_tTT79utvMo7_8zF32Z0WjkI_jp977AY299ntDZHCB-zHYRcpB6ZBbXZ1hjCJMex9r8KihpG-pJif8C5QyFYf4e2XuUO4mGsIJsdTyodBOJwFrSDuJSwDZRemK1JbXpwBcU5-fvs-8bmgGwejxWefPEaP7KPyM7yfN9ZfeuWfGoVB_T7_ITsZHh6_PErasA6JFbwnEmkcpiZLrbQ2F1aIEkkBhzZWmUMegs70nFEqx1wZic6DLkMecs0VIpfZI7bVLBp8zECjsGh1mSqTicIoUxRO1DJ1WQ-x5uUOS9bdWtlW85xCb5xWUa2ZV9TwVdfwO-xFV_5TVPv4Y8nd9Sip2ll_XvGM4JcsU5_NQ3f_5S5VfzAcd6kn_1LpKbvFyQQQiOS7bMuPA3zmcdLS7LGb_cF4NN0Lc-IX2CEP-g |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFLWgLIAFb0ShwF0gsUo7sR3HWVa0oynMFGk6RRWbKLZvpBElg8oMUFZ8An_Av_El-NpJ2iIhJFg6tvPwIz6-9_hcxp5hrfMCM5G4QotEeoCfaEEUKyU1Gc6MDo72yb4aHcqXR1nHJqSzMFEfoje40cwI_2ua4GSQ3jpTDa1cTUfJ_YpGzqTL7AqF9Q67qmmvIJXmeXQsq5QoXulRp9s44FsX619cl87A5nnIGtac4U1mureNVJN3m6ul2bRffxNy_K_PucVutIgUtuMQus0uYXOHXT-nU3iX_djtg-XAQRCcXZ0gTGMYe9-xsKhhXJ1S2E94E1hkq_fw-svcIXyaVxCsjseUDzvhfBa0mrinsAysXThYkeDy4gSIdvLz2_epz4WqcTBefPbJGXpwH8Wf4e28sf7Snn9q1Ab1W_177HC4O3sxStrIDomVfCATZRymRqRWWZtJK2WBJIJDeyvhkIe4MwNntM4w00ah87jLkJO84hqRK3GfrTWLBh8wqFBatFWRaiNkbrTJcydrlToxQKx5sc6Srl9L28qeU_SN4zIKNvOSGr7sG36dPe_Lf4iCH38sudENk7Kd-B9LLgiBqSL12Tz091_uUm7vDCd96uG_VHrKro5mk3E53tt_9Yhd42QRCLzyDbbmxwQ-9rBpaZ6EifELLiISgQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELZKkRA98I9aKDAHJE5pE8dxnGPFdtWWbUHbFq24RLE9kVa02ardBcqJR-ANeDeeBI-dTbdICAmOju382DPx55nxN4y9xFrlBWZpZAuVRsIB_EilFGIlhSLDmVbe0b5_IHeOxd4oGy2c4g_8EJ3BjTTD_69Jwc9svXlFGlrZmk6SuwWNfEk32E0hY0Vy3Rt2BFJJnge_skwowisZzWkbY755vf_1ZekKay4iVr_k9O-yav6yIdLk48ZsqjfM1994HP_na-6xOy0eha0gQPfZEjYP2MoCS-FD9mO7S5UDh55udnaOMAxJ7N20wqSGQXVJST_hvY8hm53C2y9ji_BpXIG3OZ5QPfT86SxoGXEvYepjduFwRnTLk3OgoJOf374PXS1UjYXB5LMrHqGD9oH6GT6MG-Mu7bqnBmZQt9F_xI7720evd6I2r0NkBI9FJLXFRKeJkcZkwghRIFHg0M4qtch91pnYaqUyzJSWaB3q0uQir7hC5DJ9zJabSYOrDCoUBk1VJEqnItdK57kVtUxsGiPWvFhj0XxaS9OSnlPujZMy0DXzkga-7AZ-jb3q2p8Fuo8_tlyfS0nZqv1FyVPCX7JIXDX30_2Xu5Rbvf5-V3ryL51esFvvev1ysHvw5im7zckc4IPK19myEwl85jDTVD_3avELC-MROQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electronic+Structure+Regulation+of+Layered+Vanadium+Oxide+via+Interlayer+Doping+Strategy+toward+Superior+High%E2%80%90Rate+and+Low%E2%80%90Temperature+Zinc%E2%80%90Ion+Batteries&rft.jtitle=Advanced+functional+materials&rft.au=Geng%2C+Hongbo&rft.au=Cheng%2C+Min&rft.au=Wang%2C+Bo&rft.au=Yang%2C+Yang&rft.date=2020-02-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=30&rft.issue=6&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadfm.201907684&rft.externalDBID=10.1002%252Fadfm.201907684&rft.externalDocID=ADFM201907684 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |