Electronic Structure Regulation of Layered Vanadium Oxide via Interlayer Doping Strategy toward Superior High‐Rate and Low‐Temperature Zinc‐Ion Batteries

Currently, development of suitable cathode materials for zinc‐ion batteries (ZIBs) is plagued by the sluggish kinetics of Zn2+ with multivalent charge in the host structure. Herein, it is demonstrated that interlayer Mn2+‐doped layered vanadium oxide (Mn0.15V2O5·nH2O) composites with narrowed direct...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 30; no. 6
Main Authors Geng, Hongbo, Cheng, Min, Wang, Bo, Yang, Yang, Zhang, Yufei, Li, Cheng Chao
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.02.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Currently, development of suitable cathode materials for zinc‐ion batteries (ZIBs) is plagued by the sluggish kinetics of Zn2+ with multivalent charge in the host structure. Herein, it is demonstrated that interlayer Mn2+‐doped layered vanadium oxide (Mn0.15V2O5·nH2O) composites with narrowed direct bandgap manifest greatly boosted electrochemical performance as zinc‐ion battery cathodes. Specifically, the Mn0.15V2O5·nH2O electrode shows a high specific capacity of 367 mAh g−1 at a current density of 0.1 A g−1 as well as excellent retentive capacities of 153 and 122 mAh g−1 after 8000 cycles at high current densities up to 10 and 20 A g−1, respectively. Even at a low temperature of −20 °C, a reversible specific capacity of 100 mAh g−1 can be achieved at a current density of 2.0 A g−1 after 3000 cycles. The superior electrochemical performance originates from the synergistic effects between the layered nanostructures and interlayer doping of Mn2+ ions and water molecules, which can enhance the electrons/ions transport kinetics and structural stability during cycling. With the aid of various ex situ characterization technologies and density functional theory calculations, the zinc‐ion storage mechanism can be revealed, which provides fundamental guidelines for developing high‐performance cathodes for ZIBs. Vanadium oxide pillared by interlayer doping of Mn2+ ions and water is synthesized through a facile microwave‐assisted strategy. When evaluated as a cathode for zinc‐ion batteries, the as‐prepared electrode delivers superior zinc‐ion storage properties in terms of high specific capacity, stable cycling capability, excellent rate, and low‐temperature performance.
AbstractList Currently, development of suitable cathode materials for zinc‐ion batteries (ZIBs) is plagued by the sluggish kinetics of Zn2+ with multivalent charge in the host structure. Herein, it is demonstrated that interlayer Mn2+‐doped layered vanadium oxide (Mn0.15V2O5·nH2O) composites with narrowed direct bandgap manifest greatly boosted electrochemical performance as zinc‐ion battery cathodes. Specifically, the Mn0.15V2O5·nH2O electrode shows a high specific capacity of 367 mAh g−1 at a current density of 0.1 A g−1 as well as excellent retentive capacities of 153 and 122 mAh g−1 after 8000 cycles at high current densities up to 10 and 20 A g−1, respectively. Even at a low temperature of −20 °C, a reversible specific capacity of 100 mAh g−1 can be achieved at a current density of 2.0 A g−1 after 3000 cycles. The superior electrochemical performance originates from the synergistic effects between the layered nanostructures and interlayer doping of Mn2+ ions and water molecules, which can enhance the electrons/ions transport kinetics and structural stability during cycling. With the aid of various ex situ characterization technologies and density functional theory calculations, the zinc‐ion storage mechanism can be revealed, which provides fundamental guidelines for developing high‐performance cathodes for ZIBs.
Currently, development of suitable cathode materials for zinc‐ion batteries (ZIBs) is plagued by the sluggish kinetics of Zn2+ with multivalent charge in the host structure. Herein, it is demonstrated that interlayer Mn2+‐doped layered vanadium oxide (Mn0.15V2O5·nH2O) composites with narrowed direct bandgap manifest greatly boosted electrochemical performance as zinc‐ion battery cathodes. Specifically, the Mn0.15V2O5·nH2O electrode shows a high specific capacity of 367 mAh g−1 at a current density of 0.1 A g−1 as well as excellent retentive capacities of 153 and 122 mAh g−1 after 8000 cycles at high current densities up to 10 and 20 A g−1, respectively. Even at a low temperature of −20 °C, a reversible specific capacity of 100 mAh g−1 can be achieved at a current density of 2.0 A g−1 after 3000 cycles. The superior electrochemical performance originates from the synergistic effects between the layered nanostructures and interlayer doping of Mn2+ ions and water molecules, which can enhance the electrons/ions transport kinetics and structural stability during cycling. With the aid of various ex situ characterization technologies and density functional theory calculations, the zinc‐ion storage mechanism can be revealed, which provides fundamental guidelines for developing high‐performance cathodes for ZIBs. Vanadium oxide pillared by interlayer doping of Mn2+ ions and water is synthesized through a facile microwave‐assisted strategy. When evaluated as a cathode for zinc‐ion batteries, the as‐prepared electrode delivers superior zinc‐ion storage properties in terms of high specific capacity, stable cycling capability, excellent rate, and low‐temperature performance.
Currently, development of suitable cathode materials for zinc‐ion batteries (ZIBs) is plagued by the sluggish kinetics of Zn 2+ with multivalent charge in the host structure. Herein, it is demonstrated that interlayer Mn 2+ ‐doped layered vanadium oxide (Mn 0.15 V 2 O 5 · n H 2 O) composites with narrowed direct bandgap manifest greatly boosted electrochemical performance as zinc‐ion battery cathodes. Specifically, the Mn 0.15 V 2 O 5 · n H 2 O electrode shows a high specific capacity of 367 mAh g −1 at a current density of 0.1 A g −1 as well as excellent retentive capacities of 153 and 122 mAh g −1 after 8000 cycles at high current densities up to 10 and 20 A g −1 , respectively. Even at a low temperature of −20 °C, a reversible specific capacity of 100 mAh g −1 can be achieved at a current density of 2.0 A g −1 after 3000 cycles. The superior electrochemical performance originates from the synergistic effects between the layered nanostructures and interlayer doping of Mn 2+ ions and water molecules, which can enhance the electrons/ions transport kinetics and structural stability during cycling. With the aid of various ex situ characterization technologies and density functional theory calculations, the zinc‐ion storage mechanism can be revealed, which provides fundamental guidelines for developing high‐performance cathodes for ZIBs.
Author Wang, Bo
Zhang, Yufei
Cheng, Min
Yang, Yang
Geng, Hongbo
Li, Cheng Chao
Author_xml – sequence: 1
  givenname: Hongbo
  surname: Geng
  fullname: Geng, Hongbo
  organization: Changshu Institute of Technology
– sequence: 2
  givenname: Min
  surname: Cheng
  fullname: Cheng, Min
  organization: Guangdong University of Technology
– sequence: 3
  givenname: Bo
  surname: Wang
  fullname: Wang, Bo
  organization: Guangdong University of Technology
– sequence: 4
  givenname: Yang
  surname: Yang
  fullname: Yang, Yang
  organization: Guangdong University of Technology
– sequence: 5
  givenname: Yufei
  surname: Zhang
  fullname: Zhang, Yufei
  organization: Guangdong University of Technology
– sequence: 6
  givenname: Cheng Chao
  orcidid: 0000-0003-2434-760X
  surname: Li
  fullname: Li, Cheng Chao
  email: licc@gdut.edu.cn
  organization: Guangdong University of Technology
BookMark eNqFkctKAzEYhYMoeN26DrhuTTJJOrP0bqEieEPcDJnkb41Mk5rJWLvzEXwD380nMbWiIIirXM7_nQP_WUfLzjtAaJuSLiWE7SozHHcZoQXpyZwvoTUqqexkhOXL33d6u4rWm-aBENrrZXwNvR3VoGPwzmp8GUOrYxsAX8CorVW03mE_xAM1gwAG3yinjG3H-PzZGsBPVuG-ixDquY4P_cS60dxERRjNcPRTFQy-bCcQrA_41I7u319eL5KKlTN44KfpeQXjpKvP1DvrdPrqp9R9FZOxhWYTrQxV3cDW17mBro-Prg5OO4Pzk_7B3qCjOSO8IysDtMqolloLrjkvgOdFxiQRmQFGBBWCmCrPBYi8kmAkFRWhrKdYDsBktoF2Fr6T4B9baGL54NvgUmTJMkEKKgvK01R3MaWDb5oAw3IS7FiFWUlJOS-hnJdQfpeQAP4L0DZ-LjatydZ_Y8UCm9oaZv-ElHuHx2c_7Ac02qPX
CitedBy_id crossref_primary_10_1021_acsaem_4c02016
crossref_primary_10_1021_acs_nanolett_4c00693
crossref_primary_10_1002_cssc_202001261
crossref_primary_10_1002_batt_202100364
crossref_primary_10_1002_adma_202203744
crossref_primary_10_1016_j_jechem_2020_06_013
crossref_primary_10_1002_aenm_202404732
crossref_primary_10_1039_C9EE03545A
crossref_primary_10_1002_smll_202400221
crossref_primary_10_1002_batt_202400419
crossref_primary_10_1021_acssuschemeng_3c07655
crossref_primary_10_1016_j_cej_2022_136714
crossref_primary_10_1002_aenm_202003065
crossref_primary_10_1016_j_jpowsour_2021_230699
crossref_primary_10_1021_acsnano_2c02330
crossref_primary_10_1002_ange_202213368
crossref_primary_10_1002_smm2_1231
crossref_primary_10_1016_j_mtener_2020_100578
crossref_primary_10_1016_j_jpowsour_2022_231817
crossref_primary_10_1016_j_jpowsour_2020_228769
crossref_primary_10_1016_j_jelechem_2024_118509
crossref_primary_10_1002_smll_202207754
crossref_primary_10_1039_D4QI00218K
crossref_primary_10_1039_D0TA10336E
crossref_primary_10_1016_j_cej_2023_142425
crossref_primary_10_1021_acsami_1c23806
crossref_primary_10_1021_acsami_4c16336
crossref_primary_10_1002_slct_202401229
crossref_primary_10_1016_j_apsusc_2020_148882
crossref_primary_10_1021_acsenergylett_1c00625
crossref_primary_10_1002_ange_202414119
crossref_primary_10_1021_acsami_2c03170
crossref_primary_10_1002_smll_202201094
crossref_primary_10_1002_advs_202002173
crossref_primary_10_1016_j_mtener_2021_100842
crossref_primary_10_1039_D1CC00360G
crossref_primary_10_1007_s40843_021_1904_x
crossref_primary_10_1002_adfm_202421240
crossref_primary_10_1002_slct_202303449
crossref_primary_10_1039_D4CS00929K
crossref_primary_10_1002_tcr_202200309
crossref_primary_10_1002_aenm_202202515
crossref_primary_10_1021_acsaem_1c00573
crossref_primary_10_1002_adfm_202305700
crossref_primary_10_1016_j_nanoen_2023_108858
crossref_primary_10_1063_5_0184529
crossref_primary_10_1039_D1DT03193G
crossref_primary_10_1016_j_jcis_2024_03_096
crossref_primary_10_1002_eem2_12632
crossref_primary_10_1021_acs_nanolett_4c03191
crossref_primary_10_1002_adfm_202006855
crossref_primary_10_1016_j_pmatsci_2021_100911
crossref_primary_10_1016_j_cej_2021_132538
crossref_primary_10_1007_s12274_022_4834_0
crossref_primary_10_1002_cssc_202400526
crossref_primary_10_1007_s12274_023_5676_0
crossref_primary_10_1021_acs_nanolett_0c00732
crossref_primary_10_1021_acssuschemeng_1c03101
crossref_primary_10_1039_D4CC03201B
crossref_primary_10_3390_inorganics11030118
crossref_primary_10_1002_aenm_202201434
crossref_primary_10_1021_acsaem_1c03066
crossref_primary_10_1002_ange_202216290
crossref_primary_10_1002_smtd_202100578
crossref_primary_10_1016_j_jcis_2023_06_152
crossref_primary_10_1039_D4QI00814F
crossref_primary_10_1021_acsami_1c18256
crossref_primary_10_1039_D2TA04747K
crossref_primary_10_1039_D2TA03145K
crossref_primary_10_1016_j_cej_2022_136861
crossref_primary_10_1039_D2CC06777C
crossref_primary_10_1016_j_jechem_2020_06_016
crossref_primary_10_1021_acs_langmuir_3c00596
crossref_primary_10_1007_s10971_023_06201_y
crossref_primary_10_1007_s12598_023_02303_2
crossref_primary_10_1016_j_cej_2022_136502
crossref_primary_10_1002_smll_202306258
crossref_primary_10_1002_cey2_88
crossref_primary_10_1016_j_apsusc_2021_149495
crossref_primary_10_1021_acsami_3c16321
crossref_primary_10_1002_eem2_12265
crossref_primary_10_1016_j_jechem_2020_05_005
crossref_primary_10_1021_acssuschemeng_4c00636
crossref_primary_10_1016_j_est_2023_110057
crossref_primary_10_1039_D2CC06344A
crossref_primary_10_1002_anie_202207779
crossref_primary_10_1002_smll_202304901
crossref_primary_10_1093_nsr_nwab177
crossref_primary_10_1039_D0QM01105C
crossref_primary_10_1016_j_colsurfa_2024_133695
crossref_primary_10_1002_aenm_202304010
crossref_primary_10_1021_acsaem_3c00457
crossref_primary_10_1002_adfm_202302659
crossref_primary_10_1021_acs_energyfuels_4c06075
crossref_primary_10_1002_ece2_69
crossref_primary_10_1016_j_jpowsour_2020_228209
crossref_primary_10_1021_acsami_1c09722
crossref_primary_10_1039_D1EE00030F
crossref_primary_10_1007_s10008_024_06154_4
crossref_primary_10_1002_adfm_202309048
crossref_primary_10_1002_cnl2_41
crossref_primary_10_1002_elt2_5
crossref_primary_10_1016_j_jcis_2022_08_064
crossref_primary_10_1039_D2TA02734H
crossref_primary_10_1002_cey2_681
crossref_primary_10_1002_smll_202105796
crossref_primary_10_1002_adfm_202306205
crossref_primary_10_1039_D4SC00292J
crossref_primary_10_1007_s11426_022_1292_0
crossref_primary_10_1021_acsnano_3c05282
crossref_primary_10_1002_anie_202216136
crossref_primary_10_1039_D0TA08311A
crossref_primary_10_1002_adfm_202103070
crossref_primary_10_1016_j_carbon_2021_12_024
crossref_primary_10_3390_ma17194703
crossref_primary_10_1039_D4TA00920G
crossref_primary_10_1021_acsaem_2c03621
crossref_primary_10_1007_s12274_023_6401_8
crossref_primary_10_1021_acssuschemeng_2c07629
crossref_primary_10_3390_nano12091438
crossref_primary_10_1016_j_jallcom_2022_168669
crossref_primary_10_1021_acsami_0c13221
crossref_primary_10_1002_advs_202305749
crossref_primary_10_1021_acsanm_4c06198
crossref_primary_10_1002_batt_202400046
crossref_primary_10_1021_acsnano_0c04669
crossref_primary_10_1016_j_jallcom_2022_165151
crossref_primary_10_1016_j_jechem_2020_06_075
crossref_primary_10_1039_D1EE00271F
crossref_primary_10_1002_adfm_202304255
crossref_primary_10_1002_adfm_202411430
crossref_primary_10_1002_ange_202216136
crossref_primary_10_1002_adfm_202006495
crossref_primary_10_1039_D1QM00703C
crossref_primary_10_3390_cryst12111617
crossref_primary_10_1016_j_cej_2024_153239
crossref_primary_10_1021_acsami_0c04199
crossref_primary_10_1039_D0EE02079F
crossref_primary_10_1016_j_jcis_2023_11_020
crossref_primary_10_1021_acsnano_0c06834
crossref_primary_10_1021_acsami_0c10183
crossref_primary_10_1039_D3RE00184A
crossref_primary_10_1002_anie_202414119
crossref_primary_10_1039_D1TA03620C
crossref_primary_10_1002_smtd_202300324
crossref_primary_10_1002_eom2_12326
crossref_primary_10_1093_ooenergy_oiab003
crossref_primary_10_1002_advs_202002866
crossref_primary_10_1002_advs_202004924
crossref_primary_10_1016_j_ensm_2022_09_017
crossref_primary_10_1016_j_gee_2021_04_011
crossref_primary_10_1016_j_cej_2023_143816
crossref_primary_10_1002_ange_202207779
crossref_primary_10_1002_smll_202105572
crossref_primary_10_1016_j_jelechem_2024_118178
crossref_primary_10_1002_adfm_202007358
crossref_primary_10_1002_adma_202206239
crossref_primary_10_1007_s40820_020_0401_y
crossref_primary_10_1021_acsnano_1c11169
crossref_primary_10_1002_aenm_202304285
crossref_primary_10_1002_smtd_202301774
crossref_primary_10_1002_cssc_202100299
crossref_primary_10_1016_j_apmate_2021_10_002
crossref_primary_10_1039_D2TA05803K
crossref_primary_10_1002_cey2_469
crossref_primary_10_1039_D3TA07589C
crossref_primary_10_1002_admi_202200641
crossref_primary_10_1016_j_jelechem_2024_118614
crossref_primary_10_1021_acsaem_0c00309
crossref_primary_10_1021_acsaem_3c02561
crossref_primary_10_1039_D2TA01014C
crossref_primary_10_1039_D1TA10545K
crossref_primary_10_1002_adma_202414019
crossref_primary_10_1002_smll_202306561
crossref_primary_10_1007_s12613_021_2312_4
crossref_primary_10_1021_acssuschemeng_3c06291
crossref_primary_10_1021_acssuschemeng_9b06798
crossref_primary_10_1039_D4DT01415D
crossref_primary_10_1002_anie_202216290
crossref_primary_10_1002_adma_202311141
crossref_primary_10_1016_j_est_2024_111985
crossref_primary_10_1021_acsaem_2c01931
crossref_primary_10_1002_cjoc_202100791
crossref_primary_10_1002_ange_202407659
crossref_primary_10_1002_cey2_512
crossref_primary_10_1016_j_est_2023_108850
crossref_primary_10_1016_j_cej_2024_149501
crossref_primary_10_1039_D2NH00349J
crossref_primary_10_1016_j_jcis_2021_05_163
crossref_primary_10_1021_acs_chemrev_1c00636
crossref_primary_10_1016_j_cej_2023_144571
crossref_primary_10_1016_j_cej_2022_137090
crossref_primary_10_1002_batt_202000243
crossref_primary_10_1002_smll_202100558
crossref_primary_10_1021_acs_chemmater_3c00563
crossref_primary_10_1007_s40820_024_01445_x
crossref_primary_10_1002_eem2_12575
crossref_primary_10_1002_smll_202200049
crossref_primary_10_1039_D4CP03410D
crossref_primary_10_1016_j_cej_2020_127704
crossref_primary_10_1021_acsaem_2c00832
crossref_primary_10_1002_cssc_202000699
crossref_primary_10_1016_j_cej_2021_133795
crossref_primary_10_1021_acsami_4c01360
crossref_primary_10_1002_anie_202402206
crossref_primary_10_1016_j_cej_2022_140260
crossref_primary_10_1016_j_est_2023_109814
crossref_primary_10_1002_adma_202007480
crossref_primary_10_3390_en17225768
crossref_primary_10_1016_j_energy_2020_119513
crossref_primary_10_1016_j_cej_2021_130068
crossref_primary_10_1002_pssa_202100789
crossref_primary_10_1002_aenm_202404597
crossref_primary_10_1021_acsami_3c03530
crossref_primary_10_1002_admt_202100505
crossref_primary_10_1039_D3CE01271A
crossref_primary_10_1016_j_jechem_2022_08_038
crossref_primary_10_1016_j_est_2023_109045
crossref_primary_10_1039_D1CE01368H
crossref_primary_10_1002_aenm_202301480
crossref_primary_10_1021_acsanm_4c01933
crossref_primary_10_1039_D0QM00656D
crossref_primary_10_1039_D3NR01178J
crossref_primary_10_1016_j_cej_2021_133108
crossref_primary_10_1002_aenm_202002354
crossref_primary_10_1021_acsaem_1c00979
crossref_primary_10_1126_sciadv_abn5097
crossref_primary_10_1016_j_nanoen_2024_109691
crossref_primary_10_1038_s41467_023_36198_5
crossref_primary_10_1039_D3TA04030E
crossref_primary_10_1002_adfm_202420686
crossref_primary_10_1039_D0EE01531H
crossref_primary_10_1039_D0TA01033B
crossref_primary_10_1021_acsnano_4c09899
crossref_primary_10_1021_acsami_3c06490
crossref_primary_10_1039_D3TA05251F
crossref_primary_10_1039_D3DT02152A
crossref_primary_10_1039_D4EE00535J
crossref_primary_10_1016_j_jcis_2021_04_114
crossref_primary_10_1002_smll_202206287
crossref_primary_10_1002_smll_202307627
crossref_primary_10_1039_D1TA02209A
crossref_primary_10_1002_tcr_202200132
crossref_primary_10_1016_j_jcis_2023_09_052
crossref_primary_10_1016_j_cej_2021_130528
crossref_primary_10_1002_adfm_202104543
crossref_primary_10_1016_j_cej_2023_144655
crossref_primary_10_1002_ange_202402206
crossref_primary_10_1021_acsenergylett_0c00740
crossref_primary_10_1016_j_ccr_2023_215461
crossref_primary_10_1039_D0TA05941B
crossref_primary_10_1016_j_cej_2022_137688
crossref_primary_10_1021_acsami_2c19457
crossref_primary_10_1063_5_0086130
crossref_primary_10_1002_adfm_202304798
crossref_primary_10_1021_acsaem_2c03916
crossref_primary_10_1016_j_cej_2021_132710
crossref_primary_10_1016_j_jpowsour_2022_231226
crossref_primary_10_1039_D0TA03463K
crossref_primary_10_1016_j_cej_2021_129890
crossref_primary_10_1021_acs_nanolett_1c03409
crossref_primary_10_1016_j_cej_2023_142221
crossref_primary_10_1039_D4TA01136H
crossref_primary_10_1039_D1TA04420F
crossref_primary_10_1039_D4TC02864C
crossref_primary_10_1002_adfm_202102011
crossref_primary_10_1002_smll_202305386
crossref_primary_10_1002_smll_202310293
crossref_primary_10_1007_s11706_021_0551_y
crossref_primary_10_1002_anie_202407659
crossref_primary_10_1021_acssuschemeng_4c04701
crossref_primary_10_1002_chem_202404600
crossref_primary_10_1016_j_jechem_2020_07_035
crossref_primary_10_1002_smll_202100746
crossref_primary_10_1016_j_elecom_2023_107650
crossref_primary_10_1002_adfm_202213127
crossref_primary_10_1016_j_jcis_2024_05_065
crossref_primary_10_1016_j_jpowsour_2021_229528
crossref_primary_10_1021_acsami_1c11531
crossref_primary_10_1039_D0TA01553A
crossref_primary_10_1021_acs_energyfuels_2c01251
crossref_primary_10_1002_aenm_202406171
crossref_primary_10_1002_adfm_202408546
crossref_primary_10_1002_adma_202203920
crossref_primary_10_1002_aenm_202202039
crossref_primary_10_1016_j_nanoen_2024_110373
crossref_primary_10_1002_inf2_12558
crossref_primary_10_1002_smll_202107102
crossref_primary_10_1088_2631_7990_abba12
crossref_primary_10_1016_j_jechem_2020_08_038
crossref_primary_10_1016_j_jpowsour_2022_231489
crossref_primary_10_1016_j_jpowsour_2021_230872
crossref_primary_10_1021_acsami_3c15209
crossref_primary_10_1016_j_apsusc_2022_155876
crossref_primary_10_1021_acsami_5c00853
crossref_primary_10_1002_anie_202304400
crossref_primary_10_1039_D0QM00577K
crossref_primary_10_1039_D2QI02080G
crossref_primary_10_1002_cey2_39
crossref_primary_10_1002_adma_202105452
crossref_primary_10_1002_anie_202216089
crossref_primary_10_1016_j_scib_2022_09_021
crossref_primary_10_1038_s41467_021_27203_w
crossref_primary_10_1002_adfm_202421857
crossref_primary_10_1002_aenm_202401704
crossref_primary_10_1002_anie_202213368
crossref_primary_10_1021_acsami_1c23995
crossref_primary_10_1002_ange_202216089
crossref_primary_10_1039_D1TA05982C
crossref_primary_10_1016_j_jelechem_2024_118571
crossref_primary_10_1007_s12274_022_4266_x
crossref_primary_10_1039_D0QM00990C
crossref_primary_10_1002_ange_202304400
crossref_primary_10_1021_acs_energyfuels_2c00941
Cites_doi 10.1002/adma.201801984
10.1016/j.nanoen.2018.07.014
10.1007/s40820-019-0256-2
10.1002/smll.201703850
10.1039/C8TA02018C
10.1016/j.elecom.2015.08.019
10.1039/C9CC00897G
10.1039/C8CC00987B
10.1002/aenm.201601920
10.1021/acsenergylett.8b01426
10.1039/C6TA08736A
10.1002/adfm.201807331
10.1039/C8EE01651H
10.1002/adma.201705580
10.1021/acs.chemrev.6b00614
10.1002/advs.201700322
10.1038/nenergy.2016.119
10.1002/adma.201703725
10.1021/acsami.6b01592
10.1016/j.electacta.2016.10.155
10.1021/acsenergylett.8b01423
10.1039/C5EE00036J
10.1002/aenm.201801819
10.1149/2.0141508jes
10.1021/acsami.8b10849
10.1021/acsenergylett.8b00565
10.1039/C8EE01883A
10.1002/aenm.201400930
10.1002/aenm.201702463
10.1039/C5CC02585K
10.1021/acs.nanolett.7b05403
10.1038/s41467-018-04060-8
10.1002/adma.201803181
10.1021/cm504717p
10.1002/smll.201702551
10.1002/adma.201802396
10.1002/anie.201106307
10.1002/aenm.201800612
10.1002/adfm.201800670
10.1016/j.nanoen.2019.03.034
10.1002/anie.201713291
ContentType Journal Article
Copyright 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.201907684
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 10_1002_adfm_201907684
ADFM201907684
Genre article
GrantInformation_xml – fundername: Pearl River Talent Program of Guangdong Province
  funderid: 2017GC010030
– fundername: Natural Science Foundation of Guangdong Providence
  funderid: 2018A030310571
– fundername: Guangdong Province Universities and Colleges Pearl River Scholar
– fundername: National Natural Science Foundation of China
  funderid: 51771058; 51801030
– fundername: One‐hundred Young Talents of Guangdong University of Technology
  funderid: 220413198
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
AANHP
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
HF~
HVGLF
LW6
7SP
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
ID FETCH-LOGICAL-c4204-6bde1b31c6cc54c449e489326053de2051550db885e58b6ed615b0127a28ee263
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Fri Jul 25 03:13:13 EDT 2025
Thu Apr 24 23:10:32 EDT 2025
Tue Jul 01 04:12:07 EDT 2025
Wed Jan 22 16:34:42 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4204-6bde1b31c6cc54c449e489326053de2051550db885e58b6ed615b0127a28ee263
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2434-760X
PQID 2350916914
PQPubID 2045204
PageCount 9
ParticipantIDs proquest_journals_2350916914
crossref_primary_10_1002_adfm_201907684
crossref_citationtrail_10_1002_adfm_201907684
wiley_primary_10_1002_adfm_201907684_ADFM201907684
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-02-01
PublicationDateYYYYMMDD 2020-02-01
PublicationDate_xml – month: 02
  year: 2020
  text: 2020-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 5
2015; 162
2017; 7
2018; 28
2015; 5
2019; 11
2015; 51
2019; 55
2016; 222
2015; 8
2017; 117
2012; 51
2018; 6
2018; 18
2018; 9
2018; 8
2019; 60
2018; 3
2015; 27
2016; 1
2018; 5
2015; 60
2017; 13
2019; 29
2018; 30
2018; 51
2018; 11
2018; 54
2018; 10
2016; 8
2018; 14
2018; 57
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_1_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_37_1
e_1_2_7_38_1
e_1_2_7_39_1
References_xml – volume: 60
  start-page: 171
  year: 2019
  publication-title: Nano Energy
– volume: 5
  start-page: 730
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 6
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 27
  start-page: 3609
  year: 2015
  publication-title: Chem. Mater.
– volume: 9
  start-page: 1656
  year: 2018
  publication-title: Nat. Commun.
– volume: 14
  year: 2018
  publication-title: Small
– volume: 60
  start-page: 121
  year: 2015
  publication-title: Electrochem. Commun.
– volume: 55
  start-page: 3793
  year: 2019
  publication-title: Chem. Commun.
– volume: 5
  year: 2018
  publication-title: Adv. Sci.
– volume: 8
  start-page: 1267
  year: 2015
  publication-title: Energy Environ. Sci.
– volume: 11
  start-page: 3168
  year: 2018
  publication-title: Energy Environ. Sci.
– volume: 51
  start-page: 579
  year: 2018
  publication-title: Nano Energy
– volume: 51
  start-page: 9265
  year: 2015
  publication-title: Chem. Commun.
– volume: 3
  start-page: 1366
  year: 2018
  publication-title: ACS Energy Lett.
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 1
  year: 2016
  publication-title: Nat. Energy
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 11
  start-page: 3157
  year: 2018
  publication-title: Energy Environ. Sci.
– volume: 7
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 222
  start-page: 74
  year: 2016
  publication-title: Electrochim. Acta
– volume: 8
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 5
  year: 2015
  publication-title: Adv. Energy Mater.
– volume: 3
  start-page: 2602
  year: 2018
  publication-title: ACS Energy Lett.
– volume: 117
  start-page: 4287
  year: 2017
  publication-title: Chem. Rev.
– volume: 57
  start-page: 3943
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 51
  start-page: 933
  year: 2012
  publication-title: Angew. Chem., Int. Ed.
– volume: 162
  year: 2015
  publication-title: J. Electrochem. Soc.
– volume: 54
  start-page: 4041
  year: 2018
  publication-title: Chem. Commun.
– volume: 3
  start-page: 2480
  year: 2018
  publication-title: ACS Energy Lett.
– volume: 18
  start-page: 2402
  year: 2018
  publication-title: Nano Lett.
– volume: 10
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 13
  year: 2017
  publication-title: Small
– volume: 11
  start-page: 25
  year: 2019
  publication-title: Nano‐Micro Lett.
– ident: e_1_2_7_5_1
  doi: 10.1002/adma.201801984
– ident: e_1_2_7_8_1
  doi: 10.1016/j.nanoen.2018.07.014
– ident: e_1_2_7_10_1
  doi: 10.1007/s40820-019-0256-2
– ident: e_1_2_7_19_1
  doi: 10.1002/smll.201703850
– ident: e_1_2_7_25_1
  doi: 10.1039/C8TA02018C
– ident: e_1_2_7_21_1
  doi: 10.1016/j.elecom.2015.08.019
– ident: e_1_2_7_39_1
  doi: 10.1039/C9CC00897G
– ident: e_1_2_7_35_1
  doi: 10.1039/C8CC00987B
– ident: e_1_2_7_6_1
  doi: 10.1002/aenm.201601920
– ident: e_1_2_7_7_1
  doi: 10.1021/acsenergylett.8b01426
– ident: e_1_2_7_11_1
  doi: 10.1039/C6TA08736A
– ident: e_1_2_7_40_1
  doi: 10.1002/adfm.201807331
– ident: e_1_2_7_26_1
  doi: 10.1039/C8EE01651H
– ident: e_1_2_7_9_1
  doi: 10.1002/adma.201705580
– ident: e_1_2_7_17_1
  doi: 10.1021/acs.chemrev.6b00614
– ident: e_1_2_7_36_1
  doi: 10.1002/advs.201700322
– ident: e_1_2_7_31_1
  doi: 10.1038/nenergy.2016.119
– ident: e_1_2_7_30_1
  doi: 10.1002/adma.201703725
– ident: e_1_2_7_23_1
  doi: 10.1021/acsami.6b01592
– ident: e_1_2_7_12_1
  doi: 10.1016/j.electacta.2016.10.155
– ident: e_1_2_7_33_1
  doi: 10.1021/acsenergylett.8b01423
– ident: e_1_2_7_2_1
  doi: 10.1039/C5EE00036J
– ident: e_1_2_7_4_1
  doi: 10.1002/aenm.201801819
– ident: e_1_2_7_14_1
  doi: 10.1149/2.0141508jes
– ident: e_1_2_7_37_1
  doi: 10.1021/acsami.8b10849
– ident: e_1_2_7_28_1
  doi: 10.1021/acsenergylett.8b00565
– ident: e_1_2_7_16_1
  doi: 10.1039/C8EE01883A
– ident: e_1_2_7_29_1
  doi: 10.1002/aenm.201400930
– ident: e_1_2_7_18_1
  doi: 10.1002/aenm.201702463
– ident: e_1_2_7_15_1
  doi: 10.1039/C5CC02585K
– ident: e_1_2_7_22_1
  doi: 10.1021/acs.nanolett.7b05403
– ident: e_1_2_7_24_1
  doi: 10.1038/s41467-018-04060-8
– ident: e_1_2_7_38_1
  doi: 10.1002/adma.201803181
– ident: e_1_2_7_20_1
  doi: 10.1021/cm504717p
– ident: e_1_2_7_27_1
  doi: 10.1002/smll.201702551
– ident: e_1_2_7_1_1
  doi: 10.1002/adma.201802396
– ident: e_1_2_7_13_1
  doi: 10.1002/anie.201106307
– ident: e_1_2_7_41_1
  doi: 10.1002/aenm.201800612
– ident: e_1_2_7_34_1
  doi: 10.1002/adfm.201800670
– ident: e_1_2_7_3_1
  doi: 10.1016/j.nanoen.2019.03.034
– ident: e_1_2_7_32_1
  doi: 10.1002/anie.201713291
SSID ssj0017734
Score 2.6937528
Snippet Currently, development of suitable cathode materials for zinc‐ion batteries (ZIBs) is plagued by the sluggish kinetics of Zn2+ with multivalent charge in the...
Currently, development of suitable cathode materials for zinc‐ion batteries (ZIBs) is plagued by the sluggish kinetics of Zn 2+ with multivalent charge in the...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Batteries
Cathodes
Current density
Density functional theory
Doping
Electrochemical analysis
Electrode materials
Electronic structure
electronic structure regulation
high‐rate
Interlayers
Ion storage
Kinetics
layered vanadium oxide
Low temperature
low‐temperature performance
Manganese ions
Materials science
Structural stability
Vanadium oxides
Water chemistry
Zinc
zinc‐ion battery
Title Electronic Structure Regulation of Layered Vanadium Oxide via Interlayer Doping Strategy toward Superior High‐Rate and Low‐Temperature Zinc‐Ion Batteries
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201907684
https://www.proquest.com/docview/2350916914
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbhMxFLVQ2cCC8hSFUt0FEqtpMx6Px7OMSKOCEpCSFkVsRn7ckSLKBLVJoaz4BP6Af-NL8LUn0xQJIcHSY3sefoyP7z0-l7HnWKuixDxLXKmyRHiAn6iMKFZSKDKcGRUc7eM38uhEvJ7ls41T_FEfojO40cwI_2ua4NqcH1yJhmpX00lyv6CRL8n_hImwRaho0ulHpUUR3coyJYJXOlurNvb4wfXq11elK6i5CVjDijPcZnr9rpFo8mF_tTT79utvMo7_8zF32Z0WjkI_jp977AY299ntDZHCB-zHYRcpB6ZBbXZ1hjCJMex9r8KihpG-pJif8C5QyFYf4e2XuUO4mGsIJsdTyodBOJwFrSDuJSwDZRemK1JbXpwBcU5-fvs-8bmgGwejxWefPEaP7KPyM7yfN9ZfeuWfGoVB_T7_ITsZHh6_PErasA6JFbwnEmkcpiZLrbQ2F1aIEkkBhzZWmUMegs70nFEqx1wZic6DLkMecs0VIpfZI7bVLBp8zECjsGh1mSqTicIoUxRO1DJ1WQ-x5uUOS9bdWtlW85xCb5xWUa2ZV9TwVdfwO-xFV_5TVPv4Y8nd9Sip2ll_XvGM4JcsU5_NQ3f_5S5VfzAcd6kn_1LpKbvFyQQQiOS7bMuPA3zmcdLS7LGb_cF4NN0Lc-IX2CEP-g
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFLWgLIAFb0ShwF0gsUo7sR3HWVa0oynMFGk6RRWbKLZvpBElg8oMUFZ8An_Av_El-NpJ2iIhJFg6tvPwIz6-9_hcxp5hrfMCM5G4QotEeoCfaEEUKyU1Gc6MDo72yb4aHcqXR1nHJqSzMFEfoje40cwI_2ua4GSQ3jpTDa1cTUfJ_YpGzqTL7AqF9Q67qmmvIJXmeXQsq5QoXulRp9s44FsX619cl87A5nnIGtac4U1mureNVJN3m6ul2bRffxNy_K_PucVutIgUtuMQus0uYXOHXT-nU3iX_djtg-XAQRCcXZ0gTGMYe9-xsKhhXJ1S2E94E1hkq_fw-svcIXyaVxCsjseUDzvhfBa0mrinsAysXThYkeDy4gSIdvLz2_epz4WqcTBefPbJGXpwH8Wf4e28sf7Snn9q1Ab1W_177HC4O3sxStrIDomVfCATZRymRqRWWZtJK2WBJIJDeyvhkIe4MwNntM4w00ah87jLkJO84hqRK3GfrTWLBh8wqFBatFWRaiNkbrTJcydrlToxQKx5sc6Srl9L28qeU_SN4zIKNvOSGr7sG36dPe_Lf4iCH38sudENk7Kd-B9LLgiBqSL12Tz091_uUm7vDCd96uG_VHrKro5mk3E53tt_9Yhd42QRCLzyDbbmxwQ-9rBpaZ6EifELLiISgQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELZKkRA98I9aKDAHJE5pE8dxnGPFdtWWbUHbFq24RLE9kVa02ardBcqJR-ANeDeeBI-dTbdICAmOju382DPx55nxN4y9xFrlBWZpZAuVRsIB_EilFGIlhSLDmVbe0b5_IHeOxd4oGy2c4g_8EJ3BjTTD_69Jwc9svXlFGlrZmk6SuwWNfEk32E0hY0Vy3Rt2BFJJnge_skwowisZzWkbY755vf_1ZekKay4iVr_k9O-yav6yIdLk48ZsqjfM1994HP_na-6xOy0eha0gQPfZEjYP2MoCS-FD9mO7S5UDh55udnaOMAxJ7N20wqSGQXVJST_hvY8hm53C2y9ji_BpXIG3OZ5QPfT86SxoGXEvYepjduFwRnTLk3OgoJOf374PXS1UjYXB5LMrHqGD9oH6GT6MG-Mu7bqnBmZQt9F_xI7720evd6I2r0NkBI9FJLXFRKeJkcZkwghRIFHg0M4qtch91pnYaqUyzJSWaB3q0uQir7hC5DJ9zJabSYOrDCoUBk1VJEqnItdK57kVtUxsGiPWvFhj0XxaS9OSnlPujZMy0DXzkga-7AZ-jb3q2p8Fuo8_tlyfS0nZqv1FyVPCX7JIXDX30_2Xu5Rbvf5-V3ryL51esFvvev1ysHvw5im7zckc4IPK19myEwl85jDTVD_3avELC-MROQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electronic+Structure+Regulation+of+Layered+Vanadium+Oxide+via+Interlayer+Doping+Strategy+toward+Superior+High%E2%80%90Rate+and+Low%E2%80%90Temperature+Zinc%E2%80%90Ion+Batteries&rft.jtitle=Advanced+functional+materials&rft.au=Geng%2C+Hongbo&rft.au=Cheng%2C+Min&rft.au=Wang%2C+Bo&rft.au=Yang%2C+Yang&rft.date=2020-02-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=30&rft.issue=6&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadfm.201907684&rft.externalDBID=10.1002%252Fadfm.201907684&rft.externalDocID=ADFM201907684
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon