Nanoporous Surface High‐Entropy Alloys as Highly Efficient Multisite Electrocatalysts for Nonacidic Hydrogen Evolution Reaction

Electrocatalytic hydrogen evolution in alkaline and neutral media offers the possibility of adopting platinum‐free electrocatalysts for large‐scale electrochemical production of pure hydrogen fuel, but most state‐of‐the‐art electrocatalytic materials based on nonprecious transition metals operate at...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 31; no. 10
Main Authors Yao, Rui‐Qi, Zhou, Yi‐Tong, Shi, Hang, Wan, Wu‐Bin, Zhang, Qing‐Hua, Gu, Lin, Zhu, Yong‐Fu, Wen, Zi, Lang, Xing‐You, Jiang, Qing
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.03.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Electrocatalytic hydrogen evolution in alkaline and neutral media offers the possibility of adopting platinum‐free electrocatalysts for large‐scale electrochemical production of pure hydrogen fuel, but most state‐of‐the‐art electrocatalytic materials based on nonprecious transition metals operate at high overpotentials. Here, a monolithic nanoporous multielemental CuAlNiMoFe electrode with electroactive high‐entropy CuNiMoFe surface is reported to hold great promise as cost‐effective electrocatalyst for hydrogen evolution reaction (HER) in alkaline and neutral media. By virtue of a surface high‐entropy alloy composed of dissimilar Cu, Ni, Mo, and Fe metals offering bifunctional electrocatalytic sites with enhanced kinetics for water dissociation and adsorption/desorption of reactive hydrogen intermediates, and hierarchical nanoporous Cu scaffold facilitating electron transfer/mass transport, the nanoporous CuAlNiMoFe electrode exhibits superior nonacidic HER electrocatalysis. It only takes overpotentials as low as ≈240 and ≈183 mV to reach current densities of ≈1840 and ≈100 mA cm−2 in 1 m KOH and pH 7 buffer electrolytes, respectively; ≈46‐ and ≈14‐fold higher than those of ternary CuAlNi electrode with bimetallic Cu–Ni surface alloy. The outstanding electrocatalytic properties make nonprecious multielemental alloys attractive candidates as high‐performance nonacidic HER electrocatalytic electrodes in water electrolysis. Nonprecious nanoporous multielemental alloy electrodes composed of electroactive surface high‐entropy CuNiMoFe alloy hold great promise as cost‐effective electrocatalysts for hydrogen evolution reaction (HER) in nonacidic media. Associated with hierarchical nanoporous architecture to facilitate electron transfer and offer abundant high‐entropy CuNiMoFe active sites, the nanoporous CuAlNiMoFe hybrid electrode exhibits remarkably enhanced HER activity and durability.
AbstractList Electrocatalytic hydrogen evolution in alkaline and neutral media offers the possibility of adopting platinum‐free electrocatalysts for large‐scale electrochemical production of pure hydrogen fuel, but most state‐of‐the‐art electrocatalytic materials based on nonprecious transition metals operate at high overpotentials. Here, a monolithic nanoporous multielemental CuAlNiMoFe electrode with electroactive high‐entropy CuNiMoFe surface is reported to hold great promise as cost‐effective electrocatalyst for hydrogen evolution reaction (HER) in alkaline and neutral media. By virtue of a surface high‐entropy alloy composed of dissimilar Cu, Ni, Mo, and Fe metals offering bifunctional electrocatalytic sites with enhanced kinetics for water dissociation and adsorption/desorption of reactive hydrogen intermediates, and hierarchical nanoporous Cu scaffold facilitating electron transfer/mass transport, the nanoporous CuAlNiMoFe electrode exhibits superior nonacidic HER electrocatalysis. It only takes overpotentials as low as ≈240 and ≈183 mV to reach current densities of ≈1840 and ≈100 mA cm−2 in 1 m KOH and pH 7 buffer electrolytes, respectively; ≈46‐ and ≈14‐fold higher than those of ternary CuAlNi electrode with bimetallic Cu–Ni surface alloy. The outstanding electrocatalytic properties make nonprecious multielemental alloys attractive candidates as high‐performance nonacidic HER electrocatalytic electrodes in water electrolysis.
Electrocatalytic hydrogen evolution in alkaline and neutral media offers the possibility of adopting platinum‐free electrocatalysts for large‐scale electrochemical production of pure hydrogen fuel, but most state‐of‐the‐art electrocatalytic materials based on nonprecious transition metals operate at high overpotentials. Here, a monolithic nanoporous multielemental CuAlNiMoFe electrode with electroactive high‐entropy CuNiMoFe surface is reported to hold great promise as cost‐effective electrocatalyst for hydrogen evolution reaction (HER) in alkaline and neutral media. By virtue of a surface high‐entropy alloy composed of dissimilar Cu, Ni, Mo, and Fe metals offering bifunctional electrocatalytic sites with enhanced kinetics for water dissociation and adsorption/desorption of reactive hydrogen intermediates, and hierarchical nanoporous Cu scaffold facilitating electron transfer/mass transport, the nanoporous CuAlNiMoFe electrode exhibits superior nonacidic HER electrocatalysis. It only takes overpotentials as low as ≈240 and ≈183 mV to reach current densities of ≈1840 and ≈100 mA cm−2 in 1 m KOH and pH 7 buffer electrolytes, respectively; ≈46‐ and ≈14‐fold higher than those of ternary CuAlNi electrode with bimetallic Cu–Ni surface alloy. The outstanding electrocatalytic properties make nonprecious multielemental alloys attractive candidates as high‐performance nonacidic HER electrocatalytic electrodes in water electrolysis. Nonprecious nanoporous multielemental alloy electrodes composed of electroactive surface high‐entropy CuNiMoFe alloy hold great promise as cost‐effective electrocatalysts for hydrogen evolution reaction (HER) in nonacidic media. Associated with hierarchical nanoporous architecture to facilitate electron transfer and offer abundant high‐entropy CuNiMoFe active sites, the nanoporous CuAlNiMoFe hybrid electrode exhibits remarkably enhanced HER activity and durability.
Electrocatalytic hydrogen evolution in alkaline and neutral media offers the possibility of adopting platinum‐free electrocatalysts for large‐scale electrochemical production of pure hydrogen fuel, but most state‐of‐the‐art electrocatalytic materials based on nonprecious transition metals operate at high overpotentials. Here, a monolithic nanoporous multielemental CuAlNiMoFe electrode with electroactive high‐entropy CuNiMoFe surface is reported to hold great promise as cost‐effective electrocatalyst for hydrogen evolution reaction (HER) in alkaline and neutral media. By virtue of a surface high‐entropy alloy composed of dissimilar Cu, Ni, Mo, and Fe metals offering bifunctional electrocatalytic sites with enhanced kinetics for water dissociation and adsorption/desorption of reactive hydrogen intermediates, and hierarchical nanoporous Cu scaffold facilitating electron transfer/mass transport, the nanoporous CuAlNiMoFe electrode exhibits superior nonacidic HER electrocatalysis. It only takes overpotentials as low as ≈240 and ≈183 mV to reach current densities of ≈1840 and ≈100 mA cm −2 in 1  m  KOH and pH 7 buffer electrolytes, respectively; ≈46‐ and ≈14‐fold higher than those of ternary CuAlNi electrode with bimetallic Cu–Ni surface alloy. The outstanding electrocatalytic properties make nonprecious multielemental alloys attractive candidates as high‐performance nonacidic HER electrocatalytic electrodes in water electrolysis.
Author Gu, Lin
Zhou, Yi‐Tong
Wan, Wu‐Bin
Lang, Xing‐You
Shi, Hang
Wen, Zi
Zhu, Yong‐Fu
Jiang, Qing
Yao, Rui‐Qi
Zhang, Qing‐Hua
Author_xml – sequence: 1
  givenname: Rui‐Qi
  surname: Yao
  fullname: Yao, Rui‐Qi
  organization: Jilin University
– sequence: 2
  givenname: Yi‐Tong
  surname: Zhou
  fullname: Zhou, Yi‐Tong
  organization: Jilin University
– sequence: 3
  givenname: Hang
  surname: Shi
  fullname: Shi, Hang
  organization: Jilin University
– sequence: 4
  givenname: Wu‐Bin
  surname: Wan
  fullname: Wan, Wu‐Bin
  organization: Jilin University
– sequence: 5
  givenname: Qing‐Hua
  surname: Zhang
  fullname: Zhang, Qing‐Hua
  organization: Chinese Academy of Sciences
– sequence: 6
  givenname: Lin
  surname: Gu
  fullname: Gu, Lin
  organization: Chinese Academy of Sciences
– sequence: 7
  givenname: Yong‐Fu
  surname: Zhu
  fullname: Zhu, Yong‐Fu
  organization: Jilin University
– sequence: 8
  givenname: Zi
  surname: Wen
  fullname: Wen, Zi
  organization: Jilin University
– sequence: 9
  givenname: Xing‐You
  orcidid: 0000-0002-8227-9695
  surname: Lang
  fullname: Lang, Xing‐You
  email: xylang@jlu.edu.cn
  organization: Jilin University
– sequence: 10
  givenname: Qing
  surname: Jiang
  fullname: Jiang, Qing
  email: jiangq@jlu.edu.cn
  organization: Jilin University
BookMark eNqFkEtrWzEQhUVxoU6abdaCru3ocX0fS-PcxIUkhTygu8tEGjkKiuRIugl31_6D_sb-ktp1SSBQspoDc745zNkjIx88EnLI2ZQzJo5Am4epYIKxpuTyAxnzkpcTyUQ9etH8-yeyl9I9Y7yqZDEmPy_Ah3WIoU_0qo8GFNKlXd39_vGr9TmG9UDnzoUhUUh_F26grTFWWfSZnvcu22Qz0tah2tgVZHBDyomaEOlF8KCstoouBx3DCj1tn4Lrsw2eXiKorfhMPhpwCQ_-zX1yc9JeL5aTs2-nXxfzs4kqBJOTmURRCwkca6PxFpgWigulkSldYl0rbAQoqGRl9G1RNbqoAKUoC24AZkbLffJld3cdw2OPKXf3oY9-E9mJoplJyTmTG9d051IxpBTRdOtoHyAOHWfdtuZuW3P3UvMGKN4AymbYPpYjWPd_rNlhz9bh8E5INz8-OX9l_wD025kU
CitedBy_id crossref_primary_10_1016_j_apsusc_2024_160417
crossref_primary_10_1016_j_ijhydene_2024_11_422
crossref_primary_10_1021_acsnano_4c14294
crossref_primary_10_1016_j_enchem_2022_100083
crossref_primary_10_1039_D4TA04545A
crossref_primary_10_1016_j_pmatsci_2024_101382
crossref_primary_10_1039_D2DT02606F
crossref_primary_10_1039_D3NR06065A
crossref_primary_10_1002_ange_202403697
crossref_primary_10_1016_j_cej_2022_134898
crossref_primary_10_1002_smll_202311509
crossref_primary_10_1007_s40843_023_2582_6
crossref_primary_10_1016_j_jcis_2024_04_009
crossref_primary_10_1002_aenm_202303923
crossref_primary_10_1016_j_mtener_2021_100835
crossref_primary_10_1016_j_scriptamat_2024_116344
crossref_primary_10_1016_j_isci_2023_107775
crossref_primary_10_1002_ange_202218493
crossref_primary_10_1016_j_surfin_2024_103939
crossref_primary_10_1007_s40843_022_2379_8
crossref_primary_10_1063_5_0117046
crossref_primary_10_1002_adfm_202422809
crossref_primary_10_1016_j_jallcom_2024_174649
crossref_primary_10_1002_elsa_202100105
crossref_primary_10_1016_j_jcis_2023_07_048
crossref_primary_10_1007_s12209_025_00426_4
crossref_primary_10_1039_D3TA07131F
crossref_primary_10_1002_anie_202404348
crossref_primary_10_1016_j_ensm_2024_103718
crossref_primary_10_1016_j_mtcomm_2024_109052
crossref_primary_10_1016_j_mser_2024_100813
crossref_primary_10_1002_smll_202310526
crossref_primary_10_1039_D3NR00514C
crossref_primary_10_1002_smll_202310642
crossref_primary_10_1007_s12274_022_5207_4
crossref_primary_10_1016_j_mtnano_2022_100282
crossref_primary_10_1016_j_enchem_2022_100069
crossref_primary_10_1016_j_jallcom_2023_172730
crossref_primary_10_1002_ente_202200573
crossref_primary_10_1002_adfm_202304852
crossref_primary_10_1016_j_colsurfa_2024_133354
crossref_primary_10_1002_smll_202207661
crossref_primary_10_1016_j_jallcom_2024_174790
crossref_primary_10_1002_cssc_202401752
crossref_primary_10_1007_s12598_024_03079_9
crossref_primary_10_1021_acs_nanolett_4c05376
crossref_primary_10_59717_j_xinn_mater_2024_100083
crossref_primary_10_1002_adfm_202106715
crossref_primary_10_1016_j_nanoen_2023_109153
crossref_primary_10_1002_er_7849
crossref_primary_10_1016_j_jmat_2023_06_006
crossref_primary_10_1126_sciadv_abg1600
crossref_primary_10_1007_s10562_024_04657_3
crossref_primary_10_1039_D4CC01502A
crossref_primary_10_1002_smtd_202300482
crossref_primary_10_1021_acsaem_4c01875
crossref_primary_10_1002_smtd_202301691
crossref_primary_10_1016_j_jallcom_2024_175759
crossref_primary_10_1039_D4TA04984E
crossref_primary_10_1002_EXP_20230036
crossref_primary_10_1016_j_nanoen_2021_106402
crossref_primary_10_1002_adfm_202413088
crossref_primary_10_1039_D2NR03984B
crossref_primary_10_1002_anie_202415492
crossref_primary_10_1002_adfm_202423760
crossref_primary_10_1039_D2TA08126A
crossref_primary_10_1002_tcr_202300097
crossref_primary_10_1002_admi_202301020
crossref_primary_10_1002_celc_202400084
crossref_primary_10_1016_j_ijhydene_2024_03_192
crossref_primary_10_1002_ange_202404348
crossref_primary_10_1002_aenm_202300837
crossref_primary_10_1002_adfm_202207536
crossref_primary_10_1002_adma_202305453
crossref_primary_10_1002_smll_202104339
crossref_primary_10_1002_cssc_202401415
crossref_primary_10_1039_D2TA09052J
crossref_primary_10_1016_j_ijhydene_2021_10_147
crossref_primary_10_1039_D4EE05500D
crossref_primary_10_1021_acssuschemeng_3c03931
crossref_primary_10_1002_ange_202307187
crossref_primary_10_1002_ange_202415492
crossref_primary_10_1016_j_cej_2023_144487
crossref_primary_10_1016_j_jcis_2021_08_201
crossref_primary_10_1002_aesr_202100189
crossref_primary_10_1016_j_jallcom_2024_176180
crossref_primary_10_1007_s41403_023_00429_4
crossref_primary_10_1021_acs_accounts_3c00059
crossref_primary_10_1039_D2CP05142G
crossref_primary_10_1016_j_apsusc_2024_160621
crossref_primary_10_1002_anie_202403697
crossref_primary_10_1016_j_ijhydene_2024_09_379
crossref_primary_10_1016_j_ijhydene_2022_01_211
crossref_primary_10_1016_S1003_6326_23_66380_0
crossref_primary_10_1002_adfm_202312322
crossref_primary_10_1016_j_ijhydene_2025_02_361
crossref_primary_10_1002_EXP_20220024
crossref_primary_10_1039_D2EE03185J
crossref_primary_10_1016_j_cej_2023_147862
crossref_primary_10_1002_advs_202406008
crossref_primary_10_1002_chem_202303826
crossref_primary_10_1002_celc_202100044
crossref_primary_10_3866_PKU_WHXB202307057
crossref_primary_10_26599_NR_2025_94907122
crossref_primary_10_1093_nsr_nwac041
crossref_primary_10_1039_D3QI00171G
crossref_primary_10_1002_sstr_202300042
crossref_primary_10_1016_j_jallcom_2023_170479
crossref_primary_10_1002_adfm_202409481
crossref_primary_10_1021_acsaem_2c03655
crossref_primary_10_1002_adfm_202101586
crossref_primary_10_1002_aenm_202303623
crossref_primary_10_1002_anie_202202518
crossref_primary_10_1002_smll_202207852
crossref_primary_10_1021_acssuschemeng_2c06888
crossref_primary_10_1021_acsaem_4c01316
crossref_primary_10_3390_met14030289
crossref_primary_10_1039_D3SC04962K
crossref_primary_10_1002_smll_202105331
crossref_primary_10_1039_D3QM00722G
crossref_primary_10_1016_j_jechem_2024_03_037
crossref_primary_10_1002_adfm_202202892
crossref_primary_10_26599_NRE_2023_9120084
crossref_primary_10_1002_anie_202307187
crossref_primary_10_1007_s42864_021_00084_8
crossref_primary_10_1002_adfm_202102285
crossref_primary_10_1021_acs_energyfuels_2c03011
crossref_primary_10_1002_ange_202202518
crossref_primary_10_1039_D3CP01444D
crossref_primary_10_1021_acsnano_4c03435
crossref_primary_10_1039_D3CS00557G
crossref_primary_10_1002_adfm_202413115
crossref_primary_10_1016_j_apsusc_2022_154808
crossref_primary_10_1016_j_ijhydene_2024_04_196
crossref_primary_10_1021_acsaem_2c02102
crossref_primary_10_1016_j_apmt_2024_102525
crossref_primary_10_1002_smll_202309025
crossref_primary_10_1016_j_jcis_2021_05_170
crossref_primary_10_1007_s12598_024_02882_8
crossref_primary_10_1002_smsc_202200109
crossref_primary_10_1038_s41467_023_39157_2
crossref_primary_10_1021_acsami_3c07000
crossref_primary_10_1002_adma_202205524
crossref_primary_10_1021_acsnano_3c07703
crossref_primary_10_1002_adfm_202414554
crossref_primary_10_1002_cssc_202101841
crossref_primary_10_1126_sciadv_adn2877
crossref_primary_10_1016_j_jallcom_2022_164669
crossref_primary_10_1016_j_jechem_2023_02_011
crossref_primary_10_1002_smll_202310006
crossref_primary_10_1016_j_ijhydene_2023_04_132
crossref_primary_10_1360_TB_2023_0133
crossref_primary_10_1016_j_apcatb_2024_124585
crossref_primary_10_1039_D4TA00690A
crossref_primary_10_1039_D4TA02271H
crossref_primary_10_1002_sus2_47
crossref_primary_10_1007_s12274_023_5558_5
crossref_primary_10_1002_metm_31
crossref_primary_10_1016_j_jechem_2023_02_028
crossref_primary_10_1007_s10934_022_01205_5
crossref_primary_10_1016_j_jallcom_2023_169987
crossref_primary_10_1016_j_jallcom_2023_171924
crossref_primary_10_1002_aenm_202201713
crossref_primary_10_1016_j_jelechem_2025_119083
crossref_primary_10_1016_j_cej_2024_151370
crossref_primary_10_1016_j_ijhydene_2024_09_436
crossref_primary_10_1007_s12274_023_6215_8
crossref_primary_10_1016_j_cej_2025_160016
crossref_primary_10_1016_j_scib_2022_08_022
crossref_primary_10_1016_j_apcatb_2022_122356
crossref_primary_10_1002_smll_202309078
crossref_primary_10_1016_j_nanoen_2023_109161
crossref_primary_10_1007_s40843_022_2128_4
crossref_primary_10_1016_j_jcis_2021_08_174
crossref_primary_10_1002_ange_202310069
crossref_primary_10_1021_acs_chemmater_2c02842
crossref_primary_10_32571_ijct_1199967
crossref_primary_10_1039_D3MA00941F
crossref_primary_10_1002_adfm_202404055
crossref_primary_10_1016_j_apcatb_2021_120600
crossref_primary_10_1039_D2TA01701F
crossref_primary_10_1016_j_electacta_2022_139972
crossref_primary_10_1039_D3CY00742A
crossref_primary_10_3390_e24030329
crossref_primary_10_1002_smll_202406657
crossref_primary_10_1016_j_cej_2024_151233
crossref_primary_10_1016_j_elecom_2022_107207
crossref_primary_10_1016_j_jallcom_2021_160271
crossref_primary_10_1002_adfm_202301153
crossref_primary_10_1016_j_cej_2024_153762
crossref_primary_10_1002_smll_202106127
crossref_primary_10_1002_sus2_32
crossref_primary_10_1021_acsnano_2c11528
crossref_primary_10_1002_aenm_202303451
crossref_primary_10_1002_adem_202300550
crossref_primary_10_1016_j_ijhydene_2024_07_229
crossref_primary_10_1002_smll_202301465
crossref_primary_10_1016_j_jmat_2025_101046
crossref_primary_10_1002_anie_202218493
crossref_primary_10_1002_adts_202300327
crossref_primary_10_26599_NRE_2023_9120106
crossref_primary_10_3390_nano14060554
crossref_primary_10_1002_adma_202301836
crossref_primary_10_1002_marc_202100915
crossref_primary_10_1002_adfm_202100883
crossref_primary_10_1002_aenm_202401717
crossref_primary_10_1016_j_apcatb_2022_121472
crossref_primary_10_1039_D2TA07677B
crossref_primary_10_1002_smll_202311929
crossref_primary_10_1021_acsnano_2c01064
crossref_primary_10_1039_D4CC06087C
crossref_primary_10_1021_acscatal_2c03675
crossref_primary_10_1002_adts_202200926
crossref_primary_10_1007_s42864_024_00286_w
crossref_primary_10_3389_fenrg_2023_1149446
crossref_primary_10_1088_2752_5724_accbd8
crossref_primary_10_1039_D3TA06817J
crossref_primary_10_1002_anie_202310069
crossref_primary_10_1016_j_cej_2021_133251
crossref_primary_10_1002_smll_202403162
crossref_primary_10_1021_acsmaterialslett_4c00248
Cites_doi 10.1002/anie.201710556
10.1021/jacs.9b04492
10.1038/s41467-018-07486-2
10.1016/j.actamat.2014.12.050
10.1126/sciadv.aav6009
10.1149/1.1784820
10.1021/acsenergylett.9b00091
10.1146/annurev-matsci-070115-031739
10.1038/s41560-018-0296-8
10.1021/cs300691m
10.1002/adma.202000385
10.1039/C4EE01760A
10.1002/adma.201900699
10.1038/s41467-019-10303-z
10.1002/adma.201904989
10.1016/j.cattod.2015.08.016
10.1021/acs.accounts.7b00616
10.1038/ncomms15437
10.1021/acs.chemrev.5b00255
10.1002/advs.201700464
10.1021/acsenergylett.9b02374
10.1002/aenm.201701759
10.1039/c3ee00045a
10.1126/science.aad4998
10.1126/science.1211934
10.1002/adfm.201901790
10.1126/sciadv.aaz0510
10.1038/s41929-019-0364-x
10.1038/ncomms7567
10.1126/science.1103197
10.1080/21663831.2014.912690
10.1021/acs.chemrev.9b00248
10.1039/C4EE00440J
10.1038/nchem.1574
10.1002/adfm.201804600
10.1002/adma.201605502
10.1002/aenm.201901454
10.1126/science.aan5412
10.1126/science.1179773
10.1038/s41563-019-0463-8
10.1039/C9TA10726F
10.1002/adma.201806326
10.1038/s41467-019-13117-1
10.1038/nmat3313
10.1002/smll.201704137
10.1021/acscatal.8b04566
10.1002/aenm.201901333
10.1149/1.2733987
10.1002/adma.201803503
10.1002/adma.201901349
10.1021/acs.jpclett.6b00382
10.1002/adma.201602441
10.1039/C4CS00470A
10.1002/adfm.201803278
10.1038/ncomms14580
10.1038/nmat4738
10.1038/35068529
10.1038/s41560-019-0407-1
ContentType Journal Article
Copyright 2020 Wiley‐VCH GmbH
2021 Wiley‐VCH GmbH
Copyright_xml – notice: 2020 Wiley‐VCH GmbH
– notice: 2021 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.202009613
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 10_1002_adfm_202009613
ADFM202009613
Genre article
GrantInformation_xml – fundername: Program for JLU Science and Technology Innovative Research Team
  funderid: 2017TD‐09
– fundername: National Natural Science Foundation of China
  funderid: 51871107; 51631004
– fundername: Key Scientific and Technological Research and Development Project of Jilin Province
  funderid: 20180201080GX
– fundername: Program for Innovative Research Team (in Science and Technology) in University of Jilin Province
– fundername: Chang Jiang Scholar Program of China
  funderid: Q2016064
– fundername: Project of Natural Science Foundation of Jilin Province
  funderid: 20200201019JC
– fundername: Fundamental Research Funds for the Central Universities
– fundername: Top‐notch Young Talent Program of China
  funderid: W02070051
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
HF~
HVGLF
LW6
7SP
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
ID FETCH-LOGICAL-c4203-53e2823a1e8fdeba0d2c12cde0cd6e88ce92aca737fdb479d47ae32641faa5fd3
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Fri Jul 25 03:58:53 EDT 2025
Tue Jul 01 04:12:23 EDT 2025
Thu Apr 24 23:09:23 EDT 2025
Wed Jan 22 16:31:46 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4203-53e2823a1e8fdeba0d2c12cde0cd6e88ce92aca737fdb479d47ae32641faa5fd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8227-9695
PQID 2495331103
PQPubID 2045204
PageCount 9
ParticipantIDs proquest_journals_2495331103
crossref_primary_10_1002_adfm_202009613
crossref_citationtrail_10_1002_adfm_202009613
wiley_primary_10_1002_adfm_202009613_ADFM202009613
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-03-01
PublicationDateYYYYMMDD 2021-03-01
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2019; 7
2011; 334
2017; 8
2018; 28
2019; 9
2017; 1
2019; 4
2013; 3
2015; 6
2019; 5
2019; 31
2020; 120
2019; 2
2019; 10
2019; 18
2017; 29
2020; 32
2019; 141
2004; 305
2017; 355
2013; 5
2013; 6
2012; 11
2016; 262
2018; 9
2020; 6
2001; 410
2018; 8
2020; 5
2016; 7
2018; 5
2014; 2
2015; 115
2020; 31
2018; 359
2017; 16
2007; 154
2004; 151
2015; 44
2015; 87
2019; 29
2018; 51
2014; 7
2016; 46
2018; 14
2009; 326
2018; 57
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_17_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
Roger I. (e_1_2_7_2_1) 2017; 1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_38_1
References_xml – volume: 51
  start-page: 881
  year: 2018
  publication-title: Acc. Chem. Res.
– volume: 115
  start-page: 8896
  year: 2015
  publication-title: Chem. Rev.
– volume: 326
  start-page: 1384
  year: 2009
  publication-title: Science
– volume: 141
  year: 2019
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 192
  year: 2020
  publication-title: ACS Energy Lett.
– volume: 1
  start-page: 0003
  year: 2017
  publication-title: Nat. Rev. Mater.
– volume: 44
  start-page: 2060
  year: 2015
  publication-title: Chem. Soc. Rev.
– volume: 4
  start-page: 430
  year: 2019
  publication-title: Nat. Energy
– volume: 31
  year: 2020
  publication-title: Adv. Mater.
– volume: 14
  year: 2018
  publication-title: Small
– volume: 154
  start-page: B631
  year: 2007
  publication-title: J. Electrochem. Soc.
– volume: 7
  start-page: 1686
  year: 2016
  publication-title: J. Phys. Chem. Lett.
– volume: 305
  start-page: 972
  year: 2004
  publication-title: Science
– volume: 10
  start-page: 5103
  year: 2019
  publication-title: Nat. Commun.
– volume: 4
  start-page: 107
  year: 2019
  publication-title: Nat. Energy
– volume: 18
  start-page: 1309
  year: 2019
  publication-title: Nat. Mater.
– volume: 7
  start-page: 2255
  year: 2014
  publication-title: Energy Environ. Sci.
– volume: 8
  year: 2017
  publication-title: Nat. Commun.
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 7
  start-page: 3519
  year: 2014
  publication-title: Energy Environ. Sci.
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 4
  start-page: 747
  year: 2019
  publication-title: ACS Energy Lett.
– volume: 10
  start-page: 2650
  year: 2019
  publication-title: Nat. Commun.
– volume: 57
  start-page: 7568
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 355
  year: 2017
  publication-title: Science
– volume: 359
  start-page: 1489
  year: 2018
  publication-title: Science
– volume: 16
  start-page: 57
  year: 2017
  publication-title: Nat. Mater.
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 120
  start-page: 851
  year: 2020
  publication-title: Chem. Rev.
– volume: 11
  start-page: 550
  year: 2012
  publication-title: Nat. Mater.
– volume: 3
  start-page: 166
  year: 2013
  publication-title: ACS Catal.
– volume: 7
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 410
  start-page: 450
  year: 2001
  publication-title: Nature
– volume: 262
  start-page: 36
  year: 2016
  publication-title: Catal. Today
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 46
  start-page: 263
  year: 2016
  publication-title: Annu. Rev. Mater. Res.
– volume: 6
  year: 2020
  publication-title: Sci. Adv.
– volume: 2
  start-page: 107
  year: 2014
  publication-title: Mater. Res. Lett.
– volume: 5
  year: 2018
  publication-title: Adv. Sci.
– volume: 334
  start-page: 1256
  year: 2011
  publication-title: Science
– volume: 9
  start-page: 2018
  year: 2019
  publication-title: ACS Catal.
– volume: 6
  start-page: 6567
  year: 2015
  publication-title: Nat. Commun.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 6
  start-page: 1509
  year: 2013
  publication-title: Energy Environ. Sci.
– volume: 9
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 2
  start-page: 955
  year: 2019
  publication-title: Nat. Catal.
– volume: 5
  start-page: 300
  year: 2013
  publication-title: Nat. Chem.
– volume: 151
  start-page: C614
  year: 2004
  publication-title: J. Electrochem. Soc.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 87
  start-page: 216
  year: 2015
  publication-title: Acta Mater.
– volume: 5
  year: 2019
  publication-title: Sci. Adv.
– volume: 9
  start-page: 4959
  year: 2018
  publication-title: Nat. Commun.
– ident: e_1_2_7_6_1
  doi: 10.1002/anie.201710556
– ident: e_1_2_7_19_1
  doi: 10.1021/jacs.9b04492
– ident: e_1_2_7_35_1
  doi: 10.1038/s41467-018-07486-2
– ident: e_1_2_7_54_1
  doi: 10.1016/j.actamat.2014.12.050
– ident: e_1_2_7_43_1
  doi: 10.1126/sciadv.aav6009
– ident: e_1_2_7_53_1
  doi: 10.1149/1.1784820
– ident: e_1_2_7_45_1
  doi: 10.1021/acsenergylett.9b00091
– ident: e_1_2_7_52_1
  doi: 10.1146/annurev-matsci-070115-031739
– ident: e_1_2_7_7_1
  doi: 10.1038/s41560-018-0296-8
– ident: e_1_2_7_29_1
  doi: 10.1021/cs300691m
– ident: e_1_2_7_50_1
  doi: 10.1002/adma.202000385
– ident: e_1_2_7_46_1
  doi: 10.1039/C4EE01760A
– ident: e_1_2_7_39_1
  doi: 10.1002/adma.201900699
– ident: e_1_2_7_48_1
  doi: 10.1038/s41467-019-10303-z
– ident: e_1_2_7_28_1
  doi: 10.1002/adma.201904989
– ident: e_1_2_7_57_1
  doi: 10.1016/j.cattod.2015.08.016
– ident: e_1_2_7_10_1
  doi: 10.1021/acs.accounts.7b00616
– ident: e_1_2_7_36_1
  doi: 10.1038/ncomms15437
– ident: e_1_2_7_12_1
  doi: 10.1021/acs.chemrev.5b00255
– ident: e_1_2_7_5_1
  doi: 10.1002/advs.201700464
– ident: e_1_2_7_34_1
  doi: 10.1021/acsenergylett.9b02374
– ident: e_1_2_7_32_1
  doi: 10.1002/aenm.201701759
– ident: e_1_2_7_20_1
  doi: 10.1039/c3ee00045a
– ident: e_1_2_7_14_1
  doi: 10.1126/science.aad4998
– ident: e_1_2_7_22_1
  doi: 10.1126/science.1211934
– ident: e_1_2_7_58_1
  doi: 10.1002/adfm.201901790
– ident: e_1_2_7_49_1
  doi: 10.1126/sciadv.aaz0510
– ident: e_1_2_7_13_1
  doi: 10.1038/s41929-019-0364-x
– ident: e_1_2_7_30_1
  doi: 10.1038/ncomms7567
– ident: e_1_2_7_1_1
  doi: 10.1126/science.1103197
– ident: e_1_2_7_55_1
  doi: 10.1080/21663831.2014.912690
– ident: e_1_2_7_9_1
  doi: 10.1021/acs.chemrev.9b00248
– ident: e_1_2_7_21_1
  doi: 10.1039/C4EE00440J
– ident: e_1_2_7_18_1
  doi: 10.1038/nchem.1574
– ident: e_1_2_7_59_1
  doi: 10.1002/adfm.201804600
– ident: e_1_2_7_42_1
  doi: 10.1002/adma.201605502
– volume: 1
  start-page: 0003
  year: 2017
  ident: e_1_2_7_2_1
  publication-title: Nat. Rev. Mater.
– ident: e_1_2_7_38_1
  doi: 10.1002/aenm.201901454
– ident: e_1_2_7_47_1
  doi: 10.1126/science.aan5412
– ident: e_1_2_7_3_1
  doi: 10.1126/science.1179773
– ident: e_1_2_7_41_1
  doi: 10.1038/s41563-019-0463-8
– ident: e_1_2_7_25_1
  doi: 10.1039/C9TA10726F
– ident: e_1_2_7_17_1
  doi: 10.1002/adma.201806326
– ident: e_1_2_7_44_1
  doi: 10.1038/s41467-019-13117-1
– ident: e_1_2_7_23_1
  doi: 10.1038/nmat3313
– ident: e_1_2_7_33_1
  doi: 10.1002/smll.201704137
– ident: e_1_2_7_37_1
  doi: 10.1021/acscatal.8b04566
– ident: e_1_2_7_40_1
  doi: 10.1002/aenm.201901333
– ident: e_1_2_7_4_1
  doi: 10.1149/1.2733987
– ident: e_1_2_7_16_1
  doi: 10.1002/adma.201803503
– ident: e_1_2_7_27_1
  doi: 10.1002/adma.201901349
– ident: e_1_2_7_56_1
  doi: 10.1021/acs.jpclett.6b00382
– ident: e_1_2_7_11_1
  doi: 10.1002/adma.201602441
– ident: e_1_2_7_15_1
  doi: 10.1039/C4CS00470A
– ident: e_1_2_7_31_1
  doi: 10.1002/adfm.201803278
– ident: e_1_2_7_24_1
  doi: 10.1038/ncomms14580
– ident: e_1_2_7_8_1
  doi: 10.1038/nmat4738
– ident: e_1_2_7_51_1
  doi: 10.1038/35068529
– ident: e_1_2_7_26_1
  doi: 10.1038/s41560-019-0407-1
SSID ssj0017734
Score 2.6876943
Snippet Electrocatalytic hydrogen evolution in alkaline and neutral media offers the possibility of adopting platinum‐free electrocatalysts for large‐scale...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Alloys
Bimetals
Copper
Dissimilar metals
Electrocatalysts
Electrodes
Electrolysis
Electrolytes
Electron transfer
Entropy
High entropy alloys
Hydrogen
hydrogen evolution reaction
Hydrogen evolution reactions
Hydrogen fuels
Iron
Mass transport
Materials science
Molybdenum
multielemental alloys
nanoporous metals
Nickel
Platinum
Surface alloying
Transition metals
Title Nanoporous Surface High‐Entropy Alloys as Highly Efficient Multisite Electrocatalysts for Nonacidic Hydrogen Evolution Reaction
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202009613
https://www.proquest.com/docview/2495331103
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LSsQwFA2iG134Ft9kIbiqNmmbdJaDdhjEceEDZlfS5AbEYSrTGaGu9A_8Rr_EJO3UURBBlyFNaZN7c0-Sk3MROopaiiiqYw8M_PVCyQJPxIp6FKKQmZICYReKvSvWvQsv-lF_5hZ_pQ_RbLhZz3DztXVwkRWnn6KhQml7k5y6pCVW7tMStiwqum70owjn1bEyI5bgRfpT1Uafnn5t_jUqfULNWcDqIk5nBYnpt1ZEk4eTyTg7kc_fZBz_8zOraLmGo7hd2c8amoPhOlqaESncQK9mAs4NSs8nBb6ZjLSQgC075P3lLbE098cStweDvCywKFzFoMSJE6Yw8Qy7C772hBonVcIdt19UFuMCG7iMr8xCQN6re4m7pRrlxppx8lR7A76G6tbFJrrrJLdnXa9O3ODJkPqBFwVgVnKBIBBrBZnwFZWESgW-VAziWEKLCil4wLXKQt5SIRdgcGRItBCRVsEWmh_mQ9hGmHPQfkgIYyaO-pLFLONZ5msTZAGCWOwgbzpwqaxVzW1yjUFa6THT1HZt2nTtDjpunn-s9Dx-fHJ_agdp7ddFSh0d10AmU03dgP7ylrR93uk1pd2_NNpDi9QSaRzxbR_Nj0cTODBIaJwdooX2ee_y5tBZ_Qd6nQU8
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VcgAO5beiUMAHEKe0sfPj7KGHFZvVlnb3UFppb8Gxx1LFalNtdkHpCd6AV-mr8Ag8Cbbz0xYJISH1wNGyY0X2jOcbe-YbgNdRT1HFdOKhgb9eKOPAE4liHsMojE1LobCO4ngSj07C99NougYXbS5MzQ_RXbhZzXDntVVweyG9e8kaKpS2qeTMVS1p61cfYPXFeG3l3v7AbPEbxobp8buR1xQW8GTI_MCLAjSeRiAoJlphLnzFJGVSoS9VjEkisceEFDzgWuUh76mQCzQ4J6RaiEirwMx7C27bMuKWrn9w1DFWUc7rh-yY2pAyOm15In22e_1_r9vBS3B7FSI7Gze8Dz_a1alDWz7trJb5jjz_jTjyv1q-B7DRIG7Sr1XkIazh_BHcu8LD-Bi-GRtTGEekWJXkw2qhhURiA2B-fv2e2kj-s4r0Z7OiKokoXcesIqnj3jAmm7gcZvsIT9K6ppC7EqvKZUmMR0AmxteRp-pUklGlFoVRWJJ-bhSeHGGdWPIETm5kDTZhfV7M8SkQzlH7IaVxbKCCL-Mkznme-9rgCMQgEVvgtZKSyYa43dYPmWU15TTL7FZm3VZuwdtu_FlNWfLHkdut4GXN0VVmzEUcG1RoupmToL_MkvUHw3HXevYvH72CO6Pj8WF2uD85eA53mY0bcnF-27C-XKzwhQF-y_ylUzUCH29aOH8BGMNlNQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwELZKkRAc-Ee0FPABxClt7Dh29tDDis1qS-kKFSrtLTj2WKpYbVab3aJwgjfoo_RV-go8Cbbz0xYJISH1wNGyY0X2jOcbe-YbhF7FPU00NUkAFv4GTPEokImmAYWYcdvSIJ2jeDDmoyP2bhJP1tBZmwtT80N0F25OM_x57RR8rs3OBWmo1MZlklNftKQtX70P1VfrtJW7ewO7w68pHaaf3o6Cpq5AoBgNoyCOwDoakSSQGA25DDVVhCoNodIckkRBj0olRSSMzpnoaSYkWJjDiJEyNjqy895ANxkPe65YxOCwI6wiQtTv2Jy4iDIyaWkiQ7pz9X-vmsELbHsZIXsTN7yHztvFqSNbvmyvlvm2-vYbb-T_tHr30d0Gb-N-rSAP0BrMHqI7l1gYH6Ef1sIU1g0pViX-uFoYqQC78Jef309TF8c_r3B_Oi2qEsvSd0wrnHrmDWuwsc9gdk_wOK0rCvkLsapcltj6A3hsPR11rI8VHlV6UVh1xelJo-74EOq0ksfo6FrW4AlanxUzeIqwEGBCRgjnFiiEiic8F3keGosiAKJEbqCgFZRMNbTtrnrINKsJp2nmtjLrtnIDvenGz2vCkj-O3GrlLmsOrjKjPt7YYkLbTb0A_WWWrD8YHnStzX_56CW69WEwzN7vjfefodvUBQ35IL8ttL5crOC5RX3L_IVXNIw-X7ds_gJ4H2Pk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nanoporous+Surface+High%E2%80%90Entropy+Alloys+as+Highly+Efficient+Multisite+Electrocatalysts+for+Nonacidic+Hydrogen+Evolution+Reaction&rft.jtitle=Advanced+functional+materials&rft.au=Yao%2C+Rui%E2%80%90Qi&rft.au=Zhou%2C+Yi%E2%80%90Tong&rft.au=Shi%2C+Hang&rft.au=Wan%2C+Wu%E2%80%90Bin&rft.date=2021-03-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=31&rft.issue=10&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadfm.202009613&rft.externalDBID=10.1002%252Fadfm.202009613&rft.externalDocID=ADFM202009613
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon