Nanoporous Surface High‐Entropy Alloys as Highly Efficient Multisite Electrocatalysts for Nonacidic Hydrogen Evolution Reaction
Electrocatalytic hydrogen evolution in alkaline and neutral media offers the possibility of adopting platinum‐free electrocatalysts for large‐scale electrochemical production of pure hydrogen fuel, but most state‐of‐the‐art electrocatalytic materials based on nonprecious transition metals operate at...
Saved in:
Published in | Advanced functional materials Vol. 31; no. 10 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.03.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Electrocatalytic hydrogen evolution in alkaline and neutral media offers the possibility of adopting platinum‐free electrocatalysts for large‐scale electrochemical production of pure hydrogen fuel, but most state‐of‐the‐art electrocatalytic materials based on nonprecious transition metals operate at high overpotentials. Here, a monolithic nanoporous multielemental CuAlNiMoFe electrode with electroactive high‐entropy CuNiMoFe surface is reported to hold great promise as cost‐effective electrocatalyst for hydrogen evolution reaction (HER) in alkaline and neutral media. By virtue of a surface high‐entropy alloy composed of dissimilar Cu, Ni, Mo, and Fe metals offering bifunctional electrocatalytic sites with enhanced kinetics for water dissociation and adsorption/desorption of reactive hydrogen intermediates, and hierarchical nanoporous Cu scaffold facilitating electron transfer/mass transport, the nanoporous CuAlNiMoFe electrode exhibits superior nonacidic HER electrocatalysis. It only takes overpotentials as low as ≈240 and ≈183 mV to reach current densities of ≈1840 and ≈100 mA cm−2 in 1 m KOH and pH 7 buffer electrolytes, respectively; ≈46‐ and ≈14‐fold higher than those of ternary CuAlNi electrode with bimetallic Cu–Ni surface alloy. The outstanding electrocatalytic properties make nonprecious multielemental alloys attractive candidates as high‐performance nonacidic HER electrocatalytic electrodes in water electrolysis.
Nonprecious nanoporous multielemental alloy electrodes composed of electroactive surface high‐entropy CuNiMoFe alloy hold great promise as cost‐effective electrocatalysts for hydrogen evolution reaction (HER) in nonacidic media. Associated with hierarchical nanoporous architecture to facilitate electron transfer and offer abundant high‐entropy CuNiMoFe active sites, the nanoporous CuAlNiMoFe hybrid electrode exhibits remarkably enhanced HER activity and durability. |
---|---|
AbstractList | Electrocatalytic hydrogen evolution in alkaline and neutral media offers the possibility of adopting platinum‐free electrocatalysts for large‐scale electrochemical production of pure hydrogen fuel, but most state‐of‐the‐art electrocatalytic materials based on nonprecious transition metals operate at high overpotentials. Here, a monolithic nanoporous multielemental CuAlNiMoFe electrode with electroactive high‐entropy CuNiMoFe surface is reported to hold great promise as cost‐effective electrocatalyst for hydrogen evolution reaction (HER) in alkaline and neutral media. By virtue of a surface high‐entropy alloy composed of dissimilar Cu, Ni, Mo, and Fe metals offering bifunctional electrocatalytic sites with enhanced kinetics for water dissociation and adsorption/desorption of reactive hydrogen intermediates, and hierarchical nanoporous Cu scaffold facilitating electron transfer/mass transport, the nanoporous CuAlNiMoFe electrode exhibits superior nonacidic HER electrocatalysis. It only takes overpotentials as low as ≈240 and ≈183 mV to reach current densities of ≈1840 and ≈100 mA cm−2 in 1 m KOH and pH 7 buffer electrolytes, respectively; ≈46‐ and ≈14‐fold higher than those of ternary CuAlNi electrode with bimetallic Cu–Ni surface alloy. The outstanding electrocatalytic properties make nonprecious multielemental alloys attractive candidates as high‐performance nonacidic HER electrocatalytic electrodes in water electrolysis. Electrocatalytic hydrogen evolution in alkaline and neutral media offers the possibility of adopting platinum‐free electrocatalysts for large‐scale electrochemical production of pure hydrogen fuel, but most state‐of‐the‐art electrocatalytic materials based on nonprecious transition metals operate at high overpotentials. Here, a monolithic nanoporous multielemental CuAlNiMoFe electrode with electroactive high‐entropy CuNiMoFe surface is reported to hold great promise as cost‐effective electrocatalyst for hydrogen evolution reaction (HER) in alkaline and neutral media. By virtue of a surface high‐entropy alloy composed of dissimilar Cu, Ni, Mo, and Fe metals offering bifunctional electrocatalytic sites with enhanced kinetics for water dissociation and adsorption/desorption of reactive hydrogen intermediates, and hierarchical nanoporous Cu scaffold facilitating electron transfer/mass transport, the nanoporous CuAlNiMoFe electrode exhibits superior nonacidic HER electrocatalysis. It only takes overpotentials as low as ≈240 and ≈183 mV to reach current densities of ≈1840 and ≈100 mA cm−2 in 1 m KOH and pH 7 buffer electrolytes, respectively; ≈46‐ and ≈14‐fold higher than those of ternary CuAlNi electrode with bimetallic Cu–Ni surface alloy. The outstanding electrocatalytic properties make nonprecious multielemental alloys attractive candidates as high‐performance nonacidic HER electrocatalytic electrodes in water electrolysis. Nonprecious nanoporous multielemental alloy electrodes composed of electroactive surface high‐entropy CuNiMoFe alloy hold great promise as cost‐effective electrocatalysts for hydrogen evolution reaction (HER) in nonacidic media. Associated with hierarchical nanoporous architecture to facilitate electron transfer and offer abundant high‐entropy CuNiMoFe active sites, the nanoporous CuAlNiMoFe hybrid electrode exhibits remarkably enhanced HER activity and durability. Electrocatalytic hydrogen evolution in alkaline and neutral media offers the possibility of adopting platinum‐free electrocatalysts for large‐scale electrochemical production of pure hydrogen fuel, but most state‐of‐the‐art electrocatalytic materials based on nonprecious transition metals operate at high overpotentials. Here, a monolithic nanoporous multielemental CuAlNiMoFe electrode with electroactive high‐entropy CuNiMoFe surface is reported to hold great promise as cost‐effective electrocatalyst for hydrogen evolution reaction (HER) in alkaline and neutral media. By virtue of a surface high‐entropy alloy composed of dissimilar Cu, Ni, Mo, and Fe metals offering bifunctional electrocatalytic sites with enhanced kinetics for water dissociation and adsorption/desorption of reactive hydrogen intermediates, and hierarchical nanoporous Cu scaffold facilitating electron transfer/mass transport, the nanoporous CuAlNiMoFe electrode exhibits superior nonacidic HER electrocatalysis. It only takes overpotentials as low as ≈240 and ≈183 mV to reach current densities of ≈1840 and ≈100 mA cm −2 in 1 m KOH and pH 7 buffer electrolytes, respectively; ≈46‐ and ≈14‐fold higher than those of ternary CuAlNi electrode with bimetallic Cu–Ni surface alloy. The outstanding electrocatalytic properties make nonprecious multielemental alloys attractive candidates as high‐performance nonacidic HER electrocatalytic electrodes in water electrolysis. |
Author | Gu, Lin Zhou, Yi‐Tong Wan, Wu‐Bin Lang, Xing‐You Shi, Hang Wen, Zi Zhu, Yong‐Fu Jiang, Qing Yao, Rui‐Qi Zhang, Qing‐Hua |
Author_xml | – sequence: 1 givenname: Rui‐Qi surname: Yao fullname: Yao, Rui‐Qi organization: Jilin University – sequence: 2 givenname: Yi‐Tong surname: Zhou fullname: Zhou, Yi‐Tong organization: Jilin University – sequence: 3 givenname: Hang surname: Shi fullname: Shi, Hang organization: Jilin University – sequence: 4 givenname: Wu‐Bin surname: Wan fullname: Wan, Wu‐Bin organization: Jilin University – sequence: 5 givenname: Qing‐Hua surname: Zhang fullname: Zhang, Qing‐Hua organization: Chinese Academy of Sciences – sequence: 6 givenname: Lin surname: Gu fullname: Gu, Lin organization: Chinese Academy of Sciences – sequence: 7 givenname: Yong‐Fu surname: Zhu fullname: Zhu, Yong‐Fu organization: Jilin University – sequence: 8 givenname: Zi surname: Wen fullname: Wen, Zi organization: Jilin University – sequence: 9 givenname: Xing‐You orcidid: 0000-0002-8227-9695 surname: Lang fullname: Lang, Xing‐You email: xylang@jlu.edu.cn organization: Jilin University – sequence: 10 givenname: Qing surname: Jiang fullname: Jiang, Qing email: jiangq@jlu.edu.cn organization: Jilin University |
BookMark | eNqFkEtrWzEQhUVxoU6abdaCru3ocX0fS-PcxIUkhTygu8tEGjkKiuRIugl31_6D_sb-ktp1SSBQspoDc745zNkjIx88EnLI2ZQzJo5Am4epYIKxpuTyAxnzkpcTyUQ9etH8-yeyl9I9Y7yqZDEmPy_Ah3WIoU_0qo8GFNKlXd39_vGr9TmG9UDnzoUhUUh_F26grTFWWfSZnvcu22Qz0tah2tgVZHBDyomaEOlF8KCstoouBx3DCj1tn4Lrsw2eXiKorfhMPhpwCQ_-zX1yc9JeL5aTs2-nXxfzs4kqBJOTmURRCwkca6PxFpgWigulkSldYl0rbAQoqGRl9G1RNbqoAKUoC24AZkbLffJld3cdw2OPKXf3oY9-E9mJoplJyTmTG9d051IxpBTRdOtoHyAOHWfdtuZuW3P3UvMGKN4AymbYPpYjWPd_rNlhz9bh8E5INz8-OX9l_wD025kU |
CitedBy_id | crossref_primary_10_1016_j_apsusc_2024_160417 crossref_primary_10_1016_j_ijhydene_2024_11_422 crossref_primary_10_1021_acsnano_4c14294 crossref_primary_10_1016_j_enchem_2022_100083 crossref_primary_10_1039_D4TA04545A crossref_primary_10_1016_j_pmatsci_2024_101382 crossref_primary_10_1039_D2DT02606F crossref_primary_10_1039_D3NR06065A crossref_primary_10_1002_ange_202403697 crossref_primary_10_1016_j_cej_2022_134898 crossref_primary_10_1002_smll_202311509 crossref_primary_10_1007_s40843_023_2582_6 crossref_primary_10_1016_j_jcis_2024_04_009 crossref_primary_10_1002_aenm_202303923 crossref_primary_10_1016_j_mtener_2021_100835 crossref_primary_10_1016_j_scriptamat_2024_116344 crossref_primary_10_1016_j_isci_2023_107775 crossref_primary_10_1002_ange_202218493 crossref_primary_10_1016_j_surfin_2024_103939 crossref_primary_10_1007_s40843_022_2379_8 crossref_primary_10_1063_5_0117046 crossref_primary_10_1002_adfm_202422809 crossref_primary_10_1016_j_jallcom_2024_174649 crossref_primary_10_1002_elsa_202100105 crossref_primary_10_1016_j_jcis_2023_07_048 crossref_primary_10_1007_s12209_025_00426_4 crossref_primary_10_1039_D3TA07131F crossref_primary_10_1002_anie_202404348 crossref_primary_10_1016_j_ensm_2024_103718 crossref_primary_10_1016_j_mtcomm_2024_109052 crossref_primary_10_1016_j_mser_2024_100813 crossref_primary_10_1002_smll_202310526 crossref_primary_10_1039_D3NR00514C crossref_primary_10_1002_smll_202310642 crossref_primary_10_1007_s12274_022_5207_4 crossref_primary_10_1016_j_mtnano_2022_100282 crossref_primary_10_1016_j_enchem_2022_100069 crossref_primary_10_1016_j_jallcom_2023_172730 crossref_primary_10_1002_ente_202200573 crossref_primary_10_1002_adfm_202304852 crossref_primary_10_1016_j_colsurfa_2024_133354 crossref_primary_10_1002_smll_202207661 crossref_primary_10_1016_j_jallcom_2024_174790 crossref_primary_10_1002_cssc_202401752 crossref_primary_10_1007_s12598_024_03079_9 crossref_primary_10_1021_acs_nanolett_4c05376 crossref_primary_10_59717_j_xinn_mater_2024_100083 crossref_primary_10_1002_adfm_202106715 crossref_primary_10_1016_j_nanoen_2023_109153 crossref_primary_10_1002_er_7849 crossref_primary_10_1016_j_jmat_2023_06_006 crossref_primary_10_1126_sciadv_abg1600 crossref_primary_10_1007_s10562_024_04657_3 crossref_primary_10_1039_D4CC01502A crossref_primary_10_1002_smtd_202300482 crossref_primary_10_1021_acsaem_4c01875 crossref_primary_10_1002_smtd_202301691 crossref_primary_10_1016_j_jallcom_2024_175759 crossref_primary_10_1039_D4TA04984E crossref_primary_10_1002_EXP_20230036 crossref_primary_10_1016_j_nanoen_2021_106402 crossref_primary_10_1002_adfm_202413088 crossref_primary_10_1039_D2NR03984B crossref_primary_10_1002_anie_202415492 crossref_primary_10_1002_adfm_202423760 crossref_primary_10_1039_D2TA08126A crossref_primary_10_1002_tcr_202300097 crossref_primary_10_1002_admi_202301020 crossref_primary_10_1002_celc_202400084 crossref_primary_10_1016_j_ijhydene_2024_03_192 crossref_primary_10_1002_ange_202404348 crossref_primary_10_1002_aenm_202300837 crossref_primary_10_1002_adfm_202207536 crossref_primary_10_1002_adma_202305453 crossref_primary_10_1002_smll_202104339 crossref_primary_10_1002_cssc_202401415 crossref_primary_10_1039_D2TA09052J crossref_primary_10_1016_j_ijhydene_2021_10_147 crossref_primary_10_1039_D4EE05500D crossref_primary_10_1021_acssuschemeng_3c03931 crossref_primary_10_1002_ange_202307187 crossref_primary_10_1002_ange_202415492 crossref_primary_10_1016_j_cej_2023_144487 crossref_primary_10_1016_j_jcis_2021_08_201 crossref_primary_10_1002_aesr_202100189 crossref_primary_10_1016_j_jallcom_2024_176180 crossref_primary_10_1007_s41403_023_00429_4 crossref_primary_10_1021_acs_accounts_3c00059 crossref_primary_10_1039_D2CP05142G crossref_primary_10_1016_j_apsusc_2024_160621 crossref_primary_10_1002_anie_202403697 crossref_primary_10_1016_j_ijhydene_2024_09_379 crossref_primary_10_1016_j_ijhydene_2022_01_211 crossref_primary_10_1016_S1003_6326_23_66380_0 crossref_primary_10_1002_adfm_202312322 crossref_primary_10_1016_j_ijhydene_2025_02_361 crossref_primary_10_1002_EXP_20220024 crossref_primary_10_1039_D2EE03185J crossref_primary_10_1016_j_cej_2023_147862 crossref_primary_10_1002_advs_202406008 crossref_primary_10_1002_chem_202303826 crossref_primary_10_1002_celc_202100044 crossref_primary_10_3866_PKU_WHXB202307057 crossref_primary_10_26599_NR_2025_94907122 crossref_primary_10_1093_nsr_nwac041 crossref_primary_10_1039_D3QI00171G crossref_primary_10_1002_sstr_202300042 crossref_primary_10_1016_j_jallcom_2023_170479 crossref_primary_10_1002_adfm_202409481 crossref_primary_10_1021_acsaem_2c03655 crossref_primary_10_1002_adfm_202101586 crossref_primary_10_1002_aenm_202303623 crossref_primary_10_1002_anie_202202518 crossref_primary_10_1002_smll_202207852 crossref_primary_10_1021_acssuschemeng_2c06888 crossref_primary_10_1021_acsaem_4c01316 crossref_primary_10_3390_met14030289 crossref_primary_10_1039_D3SC04962K crossref_primary_10_1002_smll_202105331 crossref_primary_10_1039_D3QM00722G crossref_primary_10_1016_j_jechem_2024_03_037 crossref_primary_10_1002_adfm_202202892 crossref_primary_10_26599_NRE_2023_9120084 crossref_primary_10_1002_anie_202307187 crossref_primary_10_1007_s42864_021_00084_8 crossref_primary_10_1002_adfm_202102285 crossref_primary_10_1021_acs_energyfuels_2c03011 crossref_primary_10_1002_ange_202202518 crossref_primary_10_1039_D3CP01444D crossref_primary_10_1021_acsnano_4c03435 crossref_primary_10_1039_D3CS00557G crossref_primary_10_1002_adfm_202413115 crossref_primary_10_1016_j_apsusc_2022_154808 crossref_primary_10_1016_j_ijhydene_2024_04_196 crossref_primary_10_1021_acsaem_2c02102 crossref_primary_10_1016_j_apmt_2024_102525 crossref_primary_10_1002_smll_202309025 crossref_primary_10_1016_j_jcis_2021_05_170 crossref_primary_10_1007_s12598_024_02882_8 crossref_primary_10_1002_smsc_202200109 crossref_primary_10_1038_s41467_023_39157_2 crossref_primary_10_1021_acsami_3c07000 crossref_primary_10_1002_adma_202205524 crossref_primary_10_1021_acsnano_3c07703 crossref_primary_10_1002_adfm_202414554 crossref_primary_10_1002_cssc_202101841 crossref_primary_10_1126_sciadv_adn2877 crossref_primary_10_1016_j_jallcom_2022_164669 crossref_primary_10_1016_j_jechem_2023_02_011 crossref_primary_10_1002_smll_202310006 crossref_primary_10_1016_j_ijhydene_2023_04_132 crossref_primary_10_1360_TB_2023_0133 crossref_primary_10_1016_j_apcatb_2024_124585 crossref_primary_10_1039_D4TA00690A crossref_primary_10_1039_D4TA02271H crossref_primary_10_1002_sus2_47 crossref_primary_10_1007_s12274_023_5558_5 crossref_primary_10_1002_metm_31 crossref_primary_10_1016_j_jechem_2023_02_028 crossref_primary_10_1007_s10934_022_01205_5 crossref_primary_10_1016_j_jallcom_2023_169987 crossref_primary_10_1016_j_jallcom_2023_171924 crossref_primary_10_1002_aenm_202201713 crossref_primary_10_1016_j_jelechem_2025_119083 crossref_primary_10_1016_j_cej_2024_151370 crossref_primary_10_1016_j_ijhydene_2024_09_436 crossref_primary_10_1007_s12274_023_6215_8 crossref_primary_10_1016_j_cej_2025_160016 crossref_primary_10_1016_j_scib_2022_08_022 crossref_primary_10_1016_j_apcatb_2022_122356 crossref_primary_10_1002_smll_202309078 crossref_primary_10_1016_j_nanoen_2023_109161 crossref_primary_10_1007_s40843_022_2128_4 crossref_primary_10_1016_j_jcis_2021_08_174 crossref_primary_10_1002_ange_202310069 crossref_primary_10_1021_acs_chemmater_2c02842 crossref_primary_10_32571_ijct_1199967 crossref_primary_10_1039_D3MA00941F crossref_primary_10_1002_adfm_202404055 crossref_primary_10_1016_j_apcatb_2021_120600 crossref_primary_10_1039_D2TA01701F crossref_primary_10_1016_j_electacta_2022_139972 crossref_primary_10_1039_D3CY00742A crossref_primary_10_3390_e24030329 crossref_primary_10_1002_smll_202406657 crossref_primary_10_1016_j_cej_2024_151233 crossref_primary_10_1016_j_elecom_2022_107207 crossref_primary_10_1016_j_jallcom_2021_160271 crossref_primary_10_1002_adfm_202301153 crossref_primary_10_1016_j_cej_2024_153762 crossref_primary_10_1002_smll_202106127 crossref_primary_10_1002_sus2_32 crossref_primary_10_1021_acsnano_2c11528 crossref_primary_10_1002_aenm_202303451 crossref_primary_10_1002_adem_202300550 crossref_primary_10_1016_j_ijhydene_2024_07_229 crossref_primary_10_1002_smll_202301465 crossref_primary_10_1016_j_jmat_2025_101046 crossref_primary_10_1002_anie_202218493 crossref_primary_10_1002_adts_202300327 crossref_primary_10_26599_NRE_2023_9120106 crossref_primary_10_3390_nano14060554 crossref_primary_10_1002_adma_202301836 crossref_primary_10_1002_marc_202100915 crossref_primary_10_1002_adfm_202100883 crossref_primary_10_1002_aenm_202401717 crossref_primary_10_1016_j_apcatb_2022_121472 crossref_primary_10_1039_D2TA07677B crossref_primary_10_1002_smll_202311929 crossref_primary_10_1021_acsnano_2c01064 crossref_primary_10_1039_D4CC06087C crossref_primary_10_1021_acscatal_2c03675 crossref_primary_10_1002_adts_202200926 crossref_primary_10_1007_s42864_024_00286_w crossref_primary_10_3389_fenrg_2023_1149446 crossref_primary_10_1088_2752_5724_accbd8 crossref_primary_10_1039_D3TA06817J crossref_primary_10_1002_anie_202310069 crossref_primary_10_1016_j_cej_2021_133251 crossref_primary_10_1002_smll_202403162 crossref_primary_10_1021_acsmaterialslett_4c00248 |
Cites_doi | 10.1002/anie.201710556 10.1021/jacs.9b04492 10.1038/s41467-018-07486-2 10.1016/j.actamat.2014.12.050 10.1126/sciadv.aav6009 10.1149/1.1784820 10.1021/acsenergylett.9b00091 10.1146/annurev-matsci-070115-031739 10.1038/s41560-018-0296-8 10.1021/cs300691m 10.1002/adma.202000385 10.1039/C4EE01760A 10.1002/adma.201900699 10.1038/s41467-019-10303-z 10.1002/adma.201904989 10.1016/j.cattod.2015.08.016 10.1021/acs.accounts.7b00616 10.1038/ncomms15437 10.1021/acs.chemrev.5b00255 10.1002/advs.201700464 10.1021/acsenergylett.9b02374 10.1002/aenm.201701759 10.1039/c3ee00045a 10.1126/science.aad4998 10.1126/science.1211934 10.1002/adfm.201901790 10.1126/sciadv.aaz0510 10.1038/s41929-019-0364-x 10.1038/ncomms7567 10.1126/science.1103197 10.1080/21663831.2014.912690 10.1021/acs.chemrev.9b00248 10.1039/C4EE00440J 10.1038/nchem.1574 10.1002/adfm.201804600 10.1002/adma.201605502 10.1002/aenm.201901454 10.1126/science.aan5412 10.1126/science.1179773 10.1038/s41563-019-0463-8 10.1039/C9TA10726F 10.1002/adma.201806326 10.1038/s41467-019-13117-1 10.1038/nmat3313 10.1002/smll.201704137 10.1021/acscatal.8b04566 10.1002/aenm.201901333 10.1149/1.2733987 10.1002/adma.201803503 10.1002/adma.201901349 10.1021/acs.jpclett.6b00382 10.1002/adma.201602441 10.1039/C4CS00470A 10.1002/adfm.201803278 10.1038/ncomms14580 10.1038/nmat4738 10.1038/35068529 10.1038/s41560-019-0407-1 |
ContentType | Journal Article |
Copyright | 2020 Wiley‐VCH GmbH 2021 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2020 Wiley‐VCH GmbH – notice: 2021 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.202009613 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adfm_202009613 ADFM202009613 |
Genre | article |
GrantInformation_xml | – fundername: Program for JLU Science and Technology Innovative Research Team funderid: 2017TD‐09 – fundername: National Natural Science Foundation of China funderid: 51871107; 51631004 – fundername: Key Scientific and Technological Research and Development Project of Jilin Province funderid: 20180201080GX – fundername: Program for Innovative Research Team (in Science and Technology) in University of Jilin Province – fundername: Chang Jiang Scholar Program of China funderid: Q2016064 – fundername: Project of Natural Science Foundation of Jilin Province funderid: 20200201019JC – fundername: Fundamental Research Funds for the Central Universities – fundername: Top‐notch Young Talent Program of China funderid: W02070051 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE HF~ HVGLF LW6 7SP 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M |
ID | FETCH-LOGICAL-c4203-53e2823a1e8fdeba0d2c12cde0cd6e88ce92aca737fdb479d47ae32641faa5fd3 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Fri Jul 25 03:58:53 EDT 2025 Tue Jul 01 04:12:23 EDT 2025 Thu Apr 24 23:09:23 EDT 2025 Wed Jan 22 16:31:46 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4203-53e2823a1e8fdeba0d2c12cde0cd6e88ce92aca737fdb479d47ae32641faa5fd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-8227-9695 |
PQID | 2495331103 |
PQPubID | 2045204 |
PageCount | 9 |
ParticipantIDs | proquest_journals_2495331103 crossref_primary_10_1002_adfm_202009613 crossref_citationtrail_10_1002_adfm_202009613 wiley_primary_10_1002_adfm_202009613_ADFM202009613 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-03-01 |
PublicationDateYYYYMMDD | 2021-03-01 |
PublicationDate_xml | – month: 03 year: 2021 text: 2021-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2019; 7 2011; 334 2017; 8 2018; 28 2019; 9 2017; 1 2019; 4 2013; 3 2015; 6 2019; 5 2019; 31 2020; 120 2019; 2 2019; 10 2019; 18 2017; 29 2020; 32 2019; 141 2004; 305 2017; 355 2013; 5 2013; 6 2012; 11 2016; 262 2018; 9 2020; 6 2001; 410 2018; 8 2020; 5 2016; 7 2018; 5 2014; 2 2015; 115 2020; 31 2018; 359 2017; 16 2007; 154 2004; 151 2015; 44 2015; 87 2019; 29 2018; 51 2014; 7 2016; 46 2018; 14 2009; 326 2018; 57 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_17_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_1 Roger I. (e_1_2_7_2_1) 2017; 1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_38_1 |
References_xml | – volume: 51 start-page: 881 year: 2018 publication-title: Acc. Chem. Res. – volume: 115 start-page: 8896 year: 2015 publication-title: Chem. Rev. – volume: 326 start-page: 1384 year: 2009 publication-title: Science – volume: 141 year: 2019 publication-title: J. Am. Chem. Soc. – volume: 5 start-page: 192 year: 2020 publication-title: ACS Energy Lett. – volume: 1 start-page: 0003 year: 2017 publication-title: Nat. Rev. Mater. – volume: 44 start-page: 2060 year: 2015 publication-title: Chem. Soc. Rev. – volume: 4 start-page: 430 year: 2019 publication-title: Nat. Energy – volume: 31 year: 2020 publication-title: Adv. Mater. – volume: 14 year: 2018 publication-title: Small – volume: 154 start-page: B631 year: 2007 publication-title: J. Electrochem. Soc. – volume: 7 start-page: 1686 year: 2016 publication-title: J. Phys. Chem. Lett. – volume: 305 start-page: 972 year: 2004 publication-title: Science – volume: 10 start-page: 5103 year: 2019 publication-title: Nat. Commun. – volume: 4 start-page: 107 year: 2019 publication-title: Nat. Energy – volume: 18 start-page: 1309 year: 2019 publication-title: Nat. Mater. – volume: 7 start-page: 2255 year: 2014 publication-title: Energy Environ. Sci. – volume: 8 year: 2017 publication-title: Nat. Commun. – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 7 start-page: 3519 year: 2014 publication-title: Energy Environ. Sci. – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 4 start-page: 747 year: 2019 publication-title: ACS Energy Lett. – volume: 10 start-page: 2650 year: 2019 publication-title: Nat. Commun. – volume: 57 start-page: 7568 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 355 year: 2017 publication-title: Science – volume: 359 start-page: 1489 year: 2018 publication-title: Science – volume: 16 start-page: 57 year: 2017 publication-title: Nat. Mater. – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. – volume: 120 start-page: 851 year: 2020 publication-title: Chem. Rev. – volume: 11 start-page: 550 year: 2012 publication-title: Nat. Mater. – volume: 3 start-page: 166 year: 2013 publication-title: ACS Catal. – volume: 7 year: 2019 publication-title: J. Mater. Chem. A – volume: 410 start-page: 450 year: 2001 publication-title: Nature – volume: 262 start-page: 36 year: 2016 publication-title: Catal. Today – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 46 start-page: 263 year: 2016 publication-title: Annu. Rev. Mater. Res. – volume: 6 year: 2020 publication-title: Sci. Adv. – volume: 2 start-page: 107 year: 2014 publication-title: Mater. Res. Lett. – volume: 5 year: 2018 publication-title: Adv. Sci. – volume: 334 start-page: 1256 year: 2011 publication-title: Science – volume: 9 start-page: 2018 year: 2019 publication-title: ACS Catal. – volume: 6 start-page: 6567 year: 2015 publication-title: Nat. Commun. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 6 start-page: 1509 year: 2013 publication-title: Energy Environ. Sci. – volume: 9 year: 2019 publication-title: Adv. Energy Mater. – volume: 2 start-page: 955 year: 2019 publication-title: Nat. Catal. – volume: 5 start-page: 300 year: 2013 publication-title: Nat. Chem. – volume: 151 start-page: C614 year: 2004 publication-title: J. Electrochem. Soc. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 87 start-page: 216 year: 2015 publication-title: Acta Mater. – volume: 5 year: 2019 publication-title: Sci. Adv. – volume: 9 start-page: 4959 year: 2018 publication-title: Nat. Commun. – ident: e_1_2_7_6_1 doi: 10.1002/anie.201710556 – ident: e_1_2_7_19_1 doi: 10.1021/jacs.9b04492 – ident: e_1_2_7_35_1 doi: 10.1038/s41467-018-07486-2 – ident: e_1_2_7_54_1 doi: 10.1016/j.actamat.2014.12.050 – ident: e_1_2_7_43_1 doi: 10.1126/sciadv.aav6009 – ident: e_1_2_7_53_1 doi: 10.1149/1.1784820 – ident: e_1_2_7_45_1 doi: 10.1021/acsenergylett.9b00091 – ident: e_1_2_7_52_1 doi: 10.1146/annurev-matsci-070115-031739 – ident: e_1_2_7_7_1 doi: 10.1038/s41560-018-0296-8 – ident: e_1_2_7_29_1 doi: 10.1021/cs300691m – ident: e_1_2_7_50_1 doi: 10.1002/adma.202000385 – ident: e_1_2_7_46_1 doi: 10.1039/C4EE01760A – ident: e_1_2_7_39_1 doi: 10.1002/adma.201900699 – ident: e_1_2_7_48_1 doi: 10.1038/s41467-019-10303-z – ident: e_1_2_7_28_1 doi: 10.1002/adma.201904989 – ident: e_1_2_7_57_1 doi: 10.1016/j.cattod.2015.08.016 – ident: e_1_2_7_10_1 doi: 10.1021/acs.accounts.7b00616 – ident: e_1_2_7_36_1 doi: 10.1038/ncomms15437 – ident: e_1_2_7_12_1 doi: 10.1021/acs.chemrev.5b00255 – ident: e_1_2_7_5_1 doi: 10.1002/advs.201700464 – ident: e_1_2_7_34_1 doi: 10.1021/acsenergylett.9b02374 – ident: e_1_2_7_32_1 doi: 10.1002/aenm.201701759 – ident: e_1_2_7_20_1 doi: 10.1039/c3ee00045a – ident: e_1_2_7_14_1 doi: 10.1126/science.aad4998 – ident: e_1_2_7_22_1 doi: 10.1126/science.1211934 – ident: e_1_2_7_58_1 doi: 10.1002/adfm.201901790 – ident: e_1_2_7_49_1 doi: 10.1126/sciadv.aaz0510 – ident: e_1_2_7_13_1 doi: 10.1038/s41929-019-0364-x – ident: e_1_2_7_30_1 doi: 10.1038/ncomms7567 – ident: e_1_2_7_1_1 doi: 10.1126/science.1103197 – ident: e_1_2_7_55_1 doi: 10.1080/21663831.2014.912690 – ident: e_1_2_7_9_1 doi: 10.1021/acs.chemrev.9b00248 – ident: e_1_2_7_21_1 doi: 10.1039/C4EE00440J – ident: e_1_2_7_18_1 doi: 10.1038/nchem.1574 – ident: e_1_2_7_59_1 doi: 10.1002/adfm.201804600 – ident: e_1_2_7_42_1 doi: 10.1002/adma.201605502 – volume: 1 start-page: 0003 year: 2017 ident: e_1_2_7_2_1 publication-title: Nat. Rev. Mater. – ident: e_1_2_7_38_1 doi: 10.1002/aenm.201901454 – ident: e_1_2_7_47_1 doi: 10.1126/science.aan5412 – ident: e_1_2_7_3_1 doi: 10.1126/science.1179773 – ident: e_1_2_7_41_1 doi: 10.1038/s41563-019-0463-8 – ident: e_1_2_7_25_1 doi: 10.1039/C9TA10726F – ident: e_1_2_7_17_1 doi: 10.1002/adma.201806326 – ident: e_1_2_7_44_1 doi: 10.1038/s41467-019-13117-1 – ident: e_1_2_7_23_1 doi: 10.1038/nmat3313 – ident: e_1_2_7_33_1 doi: 10.1002/smll.201704137 – ident: e_1_2_7_37_1 doi: 10.1021/acscatal.8b04566 – ident: e_1_2_7_40_1 doi: 10.1002/aenm.201901333 – ident: e_1_2_7_4_1 doi: 10.1149/1.2733987 – ident: e_1_2_7_16_1 doi: 10.1002/adma.201803503 – ident: e_1_2_7_27_1 doi: 10.1002/adma.201901349 – ident: e_1_2_7_56_1 doi: 10.1021/acs.jpclett.6b00382 – ident: e_1_2_7_11_1 doi: 10.1002/adma.201602441 – ident: e_1_2_7_15_1 doi: 10.1039/C4CS00470A – ident: e_1_2_7_31_1 doi: 10.1002/adfm.201803278 – ident: e_1_2_7_24_1 doi: 10.1038/ncomms14580 – ident: e_1_2_7_8_1 doi: 10.1038/nmat4738 – ident: e_1_2_7_51_1 doi: 10.1038/35068529 – ident: e_1_2_7_26_1 doi: 10.1038/s41560-019-0407-1 |
SSID | ssj0017734 |
Score | 2.6876943 |
Snippet | Electrocatalytic hydrogen evolution in alkaline and neutral media offers the possibility of adopting platinum‐free electrocatalysts for large‐scale... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Alloys Bimetals Copper Dissimilar metals Electrocatalysts Electrodes Electrolysis Electrolytes Electron transfer Entropy High entropy alloys Hydrogen hydrogen evolution reaction Hydrogen evolution reactions Hydrogen fuels Iron Mass transport Materials science Molybdenum multielemental alloys nanoporous metals Nickel Platinum Surface alloying Transition metals |
Title | Nanoporous Surface High‐Entropy Alloys as Highly Efficient Multisite Electrocatalysts for Nonacidic Hydrogen Evolution Reaction |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202009613 https://www.proquest.com/docview/2495331103 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LSsQwFA2iG134Ft9kIbiqNmmbdJaDdhjEceEDZlfS5AbEYSrTGaGu9A_8Rr_EJO3UURBBlyFNaZN7c0-Sk3MROopaiiiqYw8M_PVCyQJPxIp6FKKQmZICYReKvSvWvQsv-lF_5hZ_pQ_RbLhZz3DztXVwkRWnn6KhQml7k5y6pCVW7tMStiwqum70owjn1bEyI5bgRfpT1Uafnn5t_jUqfULNWcDqIk5nBYnpt1ZEk4eTyTg7kc_fZBz_8zOraLmGo7hd2c8amoPhOlqaESncQK9mAs4NSs8nBb6ZjLSQgC075P3lLbE098cStweDvCywKFzFoMSJE6Yw8Qy7C772hBonVcIdt19UFuMCG7iMr8xCQN6re4m7pRrlxppx8lR7A76G6tbFJrrrJLdnXa9O3ODJkPqBFwVgVnKBIBBrBZnwFZWESgW-VAziWEKLCil4wLXKQt5SIRdgcGRItBCRVsEWmh_mQ9hGmHPQfkgIYyaO-pLFLONZ5msTZAGCWOwgbzpwqaxVzW1yjUFa6THT1HZt2nTtDjpunn-s9Dx-fHJ_agdp7ddFSh0d10AmU03dgP7ylrR93uk1pd2_NNpDi9QSaRzxbR_Nj0cTODBIaJwdooX2ee_y5tBZ_Qd6nQU8 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VcgAO5beiUMAHEKe0sfPj7KGHFZvVlnb3UFppb8Gxx1LFalNtdkHpCd6AV-mr8Ag8Cbbz0xYJISH1wNGyY0X2jOcbe-YbgNdRT1HFdOKhgb9eKOPAE4liHsMojE1LobCO4ngSj07C99NougYXbS5MzQ_RXbhZzXDntVVweyG9e8kaKpS2qeTMVS1p61cfYPXFeG3l3v7AbPEbxobp8buR1xQW8GTI_MCLAjSeRiAoJlphLnzFJGVSoS9VjEkisceEFDzgWuUh76mQCzQ4J6RaiEirwMx7C27bMuKWrn9w1DFWUc7rh-yY2pAyOm15In22e_1_r9vBS3B7FSI7Gze8Dz_a1alDWz7trJb5jjz_jTjyv1q-B7DRIG7Sr1XkIazh_BHcu8LD-Bi-GRtTGEekWJXkw2qhhURiA2B-fv2e2kj-s4r0Z7OiKokoXcesIqnj3jAmm7gcZvsIT9K6ppC7EqvKZUmMR0AmxteRp-pUklGlFoVRWJJ-bhSeHGGdWPIETm5kDTZhfV7M8SkQzlH7IaVxbKCCL-Mkznme-9rgCMQgEVvgtZKSyYa43dYPmWU15TTL7FZm3VZuwdtu_FlNWfLHkdut4GXN0VVmzEUcG1RoupmToL_MkvUHw3HXevYvH72CO6Pj8WF2uD85eA53mY0bcnF-27C-XKzwhQF-y_ylUzUCH29aOH8BGMNlNQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwELZKkRAc-Ee0FPABxClt7Dh29tDDis1qS-kKFSrtLTj2WKpYbVab3aJwgjfoo_RV-go8Cbbz0xYJISH1wNGyY0X2jOcbe-YbhF7FPU00NUkAFv4GTPEokImmAYWYcdvSIJ2jeDDmoyP2bhJP1tBZmwtT80N0F25OM_x57RR8rs3OBWmo1MZlklNftKQtX70P1VfrtJW7ewO7w68pHaaf3o6Cpq5AoBgNoyCOwDoakSSQGA25DDVVhCoNodIckkRBj0olRSSMzpnoaSYkWJjDiJEyNjqy895ANxkPe65YxOCwI6wiQtTv2Jy4iDIyaWkiQ7pz9X-vmsELbHsZIXsTN7yHztvFqSNbvmyvlvm2-vYbb-T_tHr30d0Gb-N-rSAP0BrMHqI7l1gYH6Ef1sIU1g0pViX-uFoYqQC78Jef309TF8c_r3B_Oi2qEsvSd0wrnHrmDWuwsc9gdk_wOK0rCvkLsapcltj6A3hsPR11rI8VHlV6UVh1xelJo-74EOq0ksfo6FrW4AlanxUzeIqwEGBCRgjnFiiEiic8F3keGosiAKJEbqCgFZRMNbTtrnrINKsJp2nmtjLrtnIDvenGz2vCkj-O3GrlLmsOrjKjPt7YYkLbTb0A_WWWrD8YHnStzX_56CW69WEwzN7vjfefodvUBQ35IL8ttL5crOC5RX3L_IVXNIw-X7ds_gJ4H2Pk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nanoporous+Surface+High%E2%80%90Entropy+Alloys+as+Highly+Efficient+Multisite+Electrocatalysts+for+Nonacidic+Hydrogen+Evolution+Reaction&rft.jtitle=Advanced+functional+materials&rft.au=Yao%2C+Rui%E2%80%90Qi&rft.au=Zhou%2C+Yi%E2%80%90Tong&rft.au=Shi%2C+Hang&rft.au=Wan%2C+Wu%E2%80%90Bin&rft.date=2021-03-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=31&rft.issue=10&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadfm.202009613&rft.externalDBID=10.1002%252Fadfm.202009613&rft.externalDocID=ADFM202009613 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |