Covalent Organic Frameworks as Negative Electrodes for High‐Performance Asymmetric Supercapacitors

New covalent organic frameworks (COFs), encompassing redox‐functionalized moieties and an aza‐fused π‐conjugated system, are designed, synthesized, and deployed as negative electrodes in asymmetric supercapacitors (ASC), for the first time. The Hex‐Aza‐COFs are synthesized based on the solvothermal...

Full description

Saved in:
Bibliographic Details
Published inAdvanced energy materials Vol. 10; no. 38
Main Authors Kandambeth, Sharath, Jia, Jiangtao, Wu, Hao, Kale, Vinayak S., Parvatkar, Prakash T., Czaban‐Jóźwiak, Justyna, Zhou, Sheng, Xu, Xiangming, Ameur, Zied Ouled, Abou‐Hamad, Edy, Emwas, Abdul‐Hamid, Shekhah, Osama, Alshareef, Husam N., Eddaoudi, Mohamed
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.10.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract New covalent organic frameworks (COFs), encompassing redox‐functionalized moieties and an aza‐fused π‐conjugated system, are designed, synthesized, and deployed as negative electrodes in asymmetric supercapacitors (ASC), for the first time. The Hex‐Aza‐COFs are synthesized based on the solvothermal condensation reaction of cyclohexanehexone and redox‐functionalized aromatic tetramines with benzoquinone (Hex‐Aza‐COF‐2) or phenazine (Hex‐Aza‐COF‐3). The redox‐functionalized Hex‐Aza‐COFs show a specific capacitance of 585 F g−1 for Hex‐Aza‐COF‐2 and 663 F g−1 for Hex‐Aza‐COF‐3 in a three‐electrode configuration. These values are the highest among reported COF materials and are comparable with state‐of‐the‐art pseudocapacitive electrodes. The Hex‐Aza‐COFs exhibit a wide voltage window (0 to −1.0 V), which allow the construction of a two‐electrode ASC device by combining them with RuO2. The complementary potential windows of Hex‐Aza‐COF‐3 and RuO2 enable an asymmetric device with a high voltage window of 1.7 V. The RuO2//Hex‐Aza‐COF‐3 ASC device achieves an energy density value of 23.3 W h kg−1 at a power density of 661.2 W kg−1. The newly developed negative COF materials open new prospects for the development of high‐performance ASCs. New redox‐functionalized Hex‐Aza covalent organic frameworks (Hex‐Aza‐COFs) are synthesized and applied as negative electrodes in asymmetric supercapacitors. These Hex‐Aza‐COFs show a specific capacitance of 585 F g−1 for Hex‐Aza‐COF‐2 and 663 F g−1 for Hex‐Aza‐COF‐3 in a three‐electrode configuration at 1 A g−1. The asymmetric device composed of Hex‐Aza‐COF and ruthenium oxide, displays a broad voltage window of 1.7 V.
AbstractList New covalent organic frameworks (COFs), encompassing redox‐functionalized moieties and an aza‐fused π‐conjugated system, are designed, synthesized, and deployed as negative electrodes in asymmetric supercapacitors (ASC), for the first time. The Hex‐Aza‐COFs are synthesized based on the solvothermal condensation reaction of cyclohexanehexone and redox‐functionalized aromatic tetramines with benzoquinone (Hex‐Aza‐COF‐2) or phenazine (Hex‐Aza‐COF‐3). The redox‐functionalized Hex‐Aza‐COFs show a specific capacitance of 585 F g−1 for Hex‐Aza‐COF‐2 and 663 F g−1 for Hex‐Aza‐COF‐3 in a three‐electrode configuration. These values are the highest among reported COF materials and are comparable with state‐of‐the‐art pseudocapacitive electrodes. The Hex‐Aza‐COFs exhibit a wide voltage window (0 to −1.0 V), which allow the construction of a two‐electrode ASC device by combining them with RuO2. The complementary potential windows of Hex‐Aza‐COF‐3 and RuO2 enable an asymmetric device with a high voltage window of 1.7 V. The RuO2//Hex‐Aza‐COF‐3 ASC device achieves an energy density value of 23.3 W h kg−1 at a power density of 661.2 W kg−1. The newly developed negative COF materials open new prospects for the development of high‐performance ASCs. New redox‐functionalized Hex‐Aza covalent organic frameworks (Hex‐Aza‐COFs) are synthesized and applied as negative electrodes in asymmetric supercapacitors. These Hex‐Aza‐COFs show a specific capacitance of 585 F g−1 for Hex‐Aza‐COF‐2 and 663 F g−1 for Hex‐Aza‐COF‐3 in a three‐electrode configuration at 1 A g−1. The asymmetric device composed of Hex‐Aza‐COF and ruthenium oxide, displays a broad voltage window of 1.7 V.
New covalent organic frameworks (COFs), encompassing redox‐functionalized moieties and an aza‐fused π‐conjugated system, are designed, synthesized, and deployed as negative electrodes in asymmetric supercapacitors (ASC), for the first time. The Hex‐Aza‐COFs are synthesized based on the solvothermal condensation reaction of cyclohexanehexone and redox‐functionalized aromatic tetramines with benzoquinone (Hex‐Aza‐COF‐2) or phenazine (Hex‐Aza‐COF‐3). The redox‐functionalized Hex‐Aza‐COFs show a specific capacitance of 585 F g −1 for Hex‐Aza‐COF‐2 and 663 F g −1 for Hex‐Aza‐COF‐3 in a three‐electrode configuration. These values are the highest among reported COF materials and are comparable with state‐of‐the‐art pseudocapacitive electrodes. The Hex‐Aza‐COFs exhibit a wide voltage window (0 to −1.0 V), which allow the construction of a two‐electrode ASC device by combining them with RuO 2 . The complementary potential windows of Hex‐Aza‐COF‐3 and RuO 2 enable an asymmetric device with a high voltage window of 1.7 V. The RuO 2 //Hex‐Aza‐COF‐3 ASC device achieves an energy density value of 23.3 W h kg −1 at a power density of 661.2 W kg −1 . The newly developed negative COF materials open new prospects for the development of high‐performance ASCs.
New covalent organic frameworks (COFs), encompassing redox‐functionalized moieties and an aza‐fused π‐conjugated system, are designed, synthesized, and deployed as negative electrodes in asymmetric supercapacitors (ASC), for the first time. The Hex‐Aza‐COFs are synthesized based on the solvothermal condensation reaction of cyclohexanehexone and redox‐functionalized aromatic tetramines with benzoquinone (Hex‐Aza‐COF‐2) or phenazine (Hex‐Aza‐COF‐3). The redox‐functionalized Hex‐Aza‐COFs show a specific capacitance of 585 F g−1 for Hex‐Aza‐COF‐2 and 663 F g−1 for Hex‐Aza‐COF‐3 in a three‐electrode configuration. These values are the highest among reported COF materials and are comparable with state‐of‐the‐art pseudocapacitive electrodes. The Hex‐Aza‐COFs exhibit a wide voltage window (0 to −1.0 V), which allow the construction of a two‐electrode ASC device by combining them with RuO2. The complementary potential windows of Hex‐Aza‐COF‐3 and RuO2 enable an asymmetric device with a high voltage window of 1.7 V. The RuO2//Hex‐Aza‐COF‐3 ASC device achieves an energy density value of 23.3 W h kg−1 at a power density of 661.2 W kg−1. The newly developed negative COF materials open new prospects for the development of high‐performance ASCs.
Author Zhou, Sheng
Shekhah, Osama
Wu, Hao
Xu, Xiangming
Jia, Jiangtao
Czaban‐Jóźwiak, Justyna
Eddaoudi, Mohamed
Emwas, Abdul‐Hamid
Ameur, Zied Ouled
Abou‐Hamad, Edy
Kandambeth, Sharath
Parvatkar, Prakash T.
Alshareef, Husam N.
Kale, Vinayak S.
Author_xml – sequence: 1
  givenname: Sharath
  surname: Kandambeth
  fullname: Kandambeth, Sharath
  organization: King Abdullah University of Science and Technology (KAUST)
– sequence: 2
  givenname: Jiangtao
  surname: Jia
  fullname: Jia, Jiangtao
  organization: King Abdullah University of Science and Technology (KAUST)
– sequence: 3
  givenname: Hao
  surname: Wu
  fullname: Wu, Hao
  organization: King Abdullah University of Science and Technology (KAUST)
– sequence: 4
  givenname: Vinayak S.
  surname: Kale
  fullname: Kale, Vinayak S.
  organization: King Abdullah University of Science and Technology (KAUST)
– sequence: 5
  givenname: Prakash T.
  surname: Parvatkar
  fullname: Parvatkar, Prakash T.
  organization: King Abdullah University of Science and Technology (KAUST)
– sequence: 6
  givenname: Justyna
  surname: Czaban‐Jóźwiak
  fullname: Czaban‐Jóźwiak, Justyna
  organization: King Abdullah University of Science and Technology (KAUST)
– sequence: 7
  givenname: Sheng
  surname: Zhou
  fullname: Zhou, Sheng
  organization: King Abdullah University of Science and Technology (KAUST)
– sequence: 8
  givenname: Xiangming
  surname: Xu
  fullname: Xu, Xiangming
  organization: King Abdullah University of Science and Technology (KAUST)
– sequence: 9
  givenname: Zied Ouled
  surname: Ameur
  fullname: Ameur, Zied Ouled
  organization: King Abdullah University of Science and Technology (KAUST)
– sequence: 10
  givenname: Edy
  surname: Abou‐Hamad
  fullname: Abou‐Hamad, Edy
  organization: King Abdullah University of Science and Technology (KAUST)
– sequence: 11
  givenname: Abdul‐Hamid
  surname: Emwas
  fullname: Emwas, Abdul‐Hamid
  organization: King Abdullah University of Science and Technology (KAUST)
– sequence: 12
  givenname: Osama
  surname: Shekhah
  fullname: Shekhah, Osama
  organization: King Abdullah University of Science and Technology (KAUST)
– sequence: 13
  givenname: Husam N.
  surname: Alshareef
  fullname: Alshareef, Husam N.
  email: husam.alshareef@kaust.edu.sa
  organization: King Abdullah University of Science and Technology (KAUST)
– sequence: 14
  givenname: Mohamed
  orcidid: 0000-0003-1916-9837
  surname: Eddaoudi
  fullname: Eddaoudi, Mohamed
  email: mohamed.eddaoudi@kaust.edu.sa
  organization: King Abdullah University of Science and Technology (KAUST)
BookMark eNqFkM9Kw0AQxhdRsNZePQc8p-5uNn_2WEprhdoK6jlMdyc1NcnG3bSlNx_BZ_RJTKlUEMS5zAx8v_mY74KcVqZCQq4Y7TNK-Q1gVfY55ZSyKA5OSIdFTPhRIujpcQ74Oek5t6JtCcloEHSIHpoNFFg13twuocqVN7ZQ4tbYV-eB82a4hCbfoDcqUDXWaHReZqw3yZcvn-8fD2jbrYRKoTdwu7LExrY3Htc1WgU1qLwx1l2SswwKh73v3iXP49HTcOJP57d3w8HUV4LTwOewYKB4orOQJSxKpM4yJZhAnUCkIUwEcg1SSo4oY7EIY6pipnQmI1wkUgRdcn24W1vztkbXpCuztlVrmXIRUsbDQNJW1T-olDXOWczS2uYl2F3KaLoPM92HmR7DbAHxC2jfalMxVWMhL_7G5AHb5gXu_jFJB6PZ_Q_7BVsBjfY
CitedBy_id crossref_primary_10_1016_j_gee_2023_12_006
crossref_primary_10_1016_j_molstruc_2023_135647
crossref_primary_10_1016_j_chphma_2024_08_002
crossref_primary_10_1016_j_inoche_2025_114196
crossref_primary_10_1016_j_jallcom_2022_166864
crossref_primary_10_1016_j_nanoso_2024_101279
crossref_primary_10_1016_j_rser_2022_113111
crossref_primary_10_1088_2515_7647_ad5777
crossref_primary_10_1039_D2CS00065B
crossref_primary_10_1002_aenm_202200754
crossref_primary_10_1002_adfm_202212891
crossref_primary_10_1002_aenm_202200113
crossref_primary_10_1002_smsc_202400585
crossref_primary_10_1002_sus2_180
crossref_primary_10_1016_j_nanoen_2024_110073
crossref_primary_10_1002_smtd_202400149
crossref_primary_10_1016_j_pnsc_2023_12_013
crossref_primary_10_1039_D4YA00082J
crossref_primary_10_1002_anie_202207221
crossref_primary_10_1002_anie_202307195
crossref_primary_10_1002_aenm_202203193
crossref_primary_10_1038_s41560_022_01188_2
crossref_primary_10_1002_ange_202410300
crossref_primary_10_1002_smll_202207876
crossref_primary_10_1021_acsaem_4c00762
crossref_primary_10_1002_adma_202409354
crossref_primary_10_3390_batteries10050168
crossref_primary_10_1002_admt_202201828
crossref_primary_10_1021_acsaem_4c00086
crossref_primary_10_1002_admi_202400928
crossref_primary_10_1007_s12274_024_6531_7
crossref_primary_10_1002_tcr_202300161
crossref_primary_10_1016_j_solmat_2022_111969
crossref_primary_10_1002_adma_202103617
crossref_primary_10_1021_acsaem_1c01970
crossref_primary_10_1016_j_cej_2021_131895
crossref_primary_10_1016_j_mtchem_2021_100573
crossref_primary_10_1016_j_ijhydene_2021_08_081
crossref_primary_10_1039_D2QI01992B
crossref_primary_10_1021_acsami_3c17710
crossref_primary_10_1016_j_cej_2023_148486
crossref_primary_10_1002_adma_202406178
crossref_primary_10_1007_s40820_022_00864_y
crossref_primary_10_1039_D1MA00158B
crossref_primary_10_1002_smll_202409580
crossref_primary_10_1021_jacs_3c06723
crossref_primary_10_1039_D3QM00782K
crossref_primary_10_1021_jacs_1c09290
crossref_primary_10_1016_j_est_2025_116269
crossref_primary_10_3389_fchem_2025_1550285
crossref_primary_10_1039_D2TA02630A
crossref_primary_10_1016_j_flatc_2025_100835
crossref_primary_10_1002_ange_202113657
crossref_primary_10_1021_acsaem_2c00627
crossref_primary_10_1021_acssensors_2c02014
crossref_primary_10_1016_j_est_2021_103304
crossref_primary_10_1063_5_0073426
crossref_primary_10_1039_D4TA08466G
crossref_primary_10_1016_j_carbon_2022_01_026
crossref_primary_10_1016_j_mtener_2024_101607
crossref_primary_10_1021_jacs_3c04657
crossref_primary_10_1002_batt_202300023
crossref_primary_10_1016_j_jcis_2024_08_043
crossref_primary_10_1002_smll_202405701
crossref_primary_10_1016_j_apsusc_2021_151051
crossref_primary_10_1021_jacs_2c12684
crossref_primary_10_1016_j_carbon_2021_05_061
crossref_primary_10_1016_j_electacta_2021_139301
crossref_primary_10_3390_cryst12101350
crossref_primary_10_1039_D2TA00102K
crossref_primary_10_1002_ange_202207221
crossref_primary_10_1002_anie_202215584
crossref_primary_10_1002_marc_202200782
crossref_primary_10_1016_j_flatc_2024_100645
crossref_primary_10_1016_j_jcis_2023_03_081
crossref_primary_10_3390_polym15010139
crossref_primary_10_1016_j_colsurfa_2022_130102
crossref_primary_10_1002_anie_202113657
crossref_primary_10_1021_jacs_2c10471
crossref_primary_10_1016_S1872_5805_22_60586_9
crossref_primary_10_1002_aesr_202000052
crossref_primary_10_1016_j_mser_2022_100713
crossref_primary_10_1002_ange_202313970
crossref_primary_10_1007_s10008_022_05196_w
crossref_primary_10_1021_acsapm_4c02203
crossref_primary_10_1007_s41918_024_00234_9
crossref_primary_10_1002_ange_202215584
crossref_primary_10_1007_s42114_022_00432_3
crossref_primary_10_1080_08927022_2023_2189980
crossref_primary_10_1002_app_54538
crossref_primary_10_1016_j_electacta_2023_143693
crossref_primary_10_1016_j_ensm_2024_103522
crossref_primary_10_1039_D1TC05998J
crossref_primary_10_1039_D4MH00161C
crossref_primary_10_1007_s11664_023_10532_5
crossref_primary_10_1002_ange_202314411
crossref_primary_10_1039_D1MA00771H
crossref_primary_10_1021_acsami_3c04454
crossref_primary_10_1016_j_jechem_2022_10_049
crossref_primary_10_20517_energymater_2024_127
crossref_primary_10_1021_acs_energyfuels_4c00778
crossref_primary_10_1021_acs_chemmater_1c02973
crossref_primary_10_1039_D3CC00481C
crossref_primary_10_1080_10408436_2023_2202225
crossref_primary_10_1002_smll_202307843
crossref_primary_10_1016_j_mtener_2024_101636
crossref_primary_10_1002_adma_202309302
crossref_primary_10_1016_j_est_2023_108006
crossref_primary_10_1021_acs_jpclett_3c02069
crossref_primary_10_1016_j_electacta_2022_140470
crossref_primary_10_1002_anie_202410300
crossref_primary_10_1002_ange_202307195
crossref_primary_10_1016_j_est_2022_106175
crossref_primary_10_1002_asia_202401149
crossref_primary_10_1002_aenm_202100177
crossref_primary_10_1039_D0TA11266F
crossref_primary_10_1002_anie_202314411
crossref_primary_10_1021_acsami_1c10043
crossref_primary_10_1007_s10854_020_05111_x
crossref_primary_10_1039_D3RA07655E
crossref_primary_10_1016_j_jpowsour_2023_232698
crossref_primary_10_1021_acs_analchem_3c05887
crossref_primary_10_1039_D3SC04571D
crossref_primary_10_1039_D4NR04570J
crossref_primary_10_1039_D4TC00802B
crossref_primary_10_1016_j_electacta_2024_144917
crossref_primary_10_1002_chem_202101587
crossref_primary_10_1039_D3NR05196J
crossref_primary_10_1016_j_xcrp_2023_101290
crossref_primary_10_1021_acsami_4c17272
crossref_primary_10_1016_j_ccr_2023_215577
crossref_primary_10_1021_acsnano_3c03918
crossref_primary_10_1002_aenm_202003626
crossref_primary_10_1002_ange_202502088
crossref_primary_10_1039_D1TA04313G
crossref_primary_10_1002_admi_202200919
crossref_primary_10_1016_j_jcis_2024_08_123
crossref_primary_10_1002_anie_202313970
crossref_primary_10_1039_D3QM00151B
crossref_primary_10_1002_anie_202502088
crossref_primary_10_1002_adfm_202113209
Cites_doi 10.1039/C9RA01357A
10.1021/acsami.8b10486
10.1016/j.cej.2020.124071
10.1002/aenm.201601372
10.1126/science.1241488
10.1039/C9CC08860A
10.1021/acs.accounts.6b00341
10.1002/celc.201900668
10.1021/jacs.9b03441
10.1038/nchem.2352
10.1016/j.apenergy.2019.114119
10.1126/science.1158736
10.1021/jacs.9b02800
10.1126/science.1120411
10.1002/9781118991978.hces112
10.1149/2.023204esl
10.1021/jacs.9b08147
10.1039/C8NJ01942H
10.1016/j.joule.2017.08.018
10.1021/ja8057309
10.1038/ncomms12647
10.1038/natrevmats.2016.98
10.1038/nmat2297
10.1016/S0378-7753(00)00485-7
10.1002/aenm.201703043
10.1038/ncomms7486
10.1038/nmat4766
10.1038/nature13970
10.1016/j.jpowsour.2008.11.012
10.1021/acsami.9b06867
10.1149/1.2085829
10.1038/s41560-018-0169-1
10.1021/acscentsci.6b00220
10.1021/acs.chemmater.6b04178
10.1021/acs.chemrev.8b00252
10.1039/c1ee01354h
10.1016/j.chempr.2020.01.011
10.1021/jacs.8b06460
10.1021/ja308278w
10.1039/b813846j
10.1021/acsnano.5b00184
10.1126/science.1249625
10.1002/anie.201005919
10.1021/jacs.8b11482
10.1149/2.0741910jes
10.1007/s41918-019-00055-1
10.1002/adma.201605336
10.1021/cr020730k
10.1002/9783527646661.ch6
10.1039/C6EE01717G
10.1038/509568a
10.1016/j.micromeso.2019.05.054
10.1021/jp074464w
10.1002/adma.201102306
10.1039/c3ee44164d
10.1007/s11431-015-5931-z
10.1002/adfm.201803786
10.1002/aenm.201900482
10.1038/nmat1368
10.1021/acs.chemmater.8b03897
10.1038/ncomms3736
ContentType Journal Article
Copyright 2020 Wiley‐VCH GmbH
Copyright_xml – notice: 2020 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7TB
8FD
F28
FR3
H8D
L7M
DOI 10.1002/aenm.202001673
DatabaseName CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList
CrossRef
Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1614-6840
EndPage n/a
ExternalDocumentID 10_1002_aenm_202001673
AENM202001673
Genre article
GrantInformation_xml – fundername: King Abdullah University of Science and Technology
  funderid: OSR‐CRG2017‐3379
GroupedDBID 05W
0R~
1OC
33P
4.4
50Y
5VS
8-0
8-1
A00
AAESR
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABJNI
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFWVQ
AFZJQ
AHBTC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
AZVAB
BDRZF
BFHJK
BMXJE
BRXPI
D-A
DCZOG
EBS
G-S
HGLYW
HZ~
KBYEO
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY.
MY~
O9-
P2W
P4E
RNS
ROL
RX1
SUPJJ
WBKPD
WOHZO
WXSBR
WYJ
ZZTAW
~S-
31~
AANHP
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
GODZA
HVGLF
7SP
7TB
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
F28
FR3
H8D
L7M
ID FETCH-LOGICAL-c4203-2ab1ac28df5181689dffc414ed8a6da584e2da9992ee974b570c71cdf96eb8943
ISSN 1614-6832
IngestDate Fri Jul 25 12:18:10 EDT 2025
Tue Jul 01 01:43:36 EDT 2025
Thu Apr 24 22:57:23 EDT 2025
Wed Jan 22 16:33:31 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 38
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c4203-2ab1ac28df5181689dffc414ed8a6da584e2da9992ee974b570c71cdf96eb8943
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1916-9837
PQID 2450125390
PQPubID 886389
PageCount 9
ParticipantIDs proquest_journals_2450125390
crossref_primary_10_1002_aenm_202001673
crossref_citationtrail_10_1002_aenm_202001673
wiley_primary_10_1002_aenm_202001673_AENM202001673
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-10-01
PublicationDateYYYYMMDD 2020-10-01
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced energy materials
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2019 2012 2019 2011 2009; 6 15 166 4 187
2015; 58
2009 2007; 131 111
2004; 104
2018 2020 2020 2016; 3 259 142 7
2014; 509
2018; 118
2005 2012 2016 2015 2017 2018 2018 2017 2016 2019 2020 2019 2019 2018; 310 134 2 9 29 10 140 1 49 11 387 287 9 42
2008; 7
2015 2005; 1 4
2011 2013 2014 2017 2018 2016 2016; 23 341 516 2 8 9 6
2017 2020 2019 2019; 16 56 3 9
2000; 91
2017; 29
2011 2013 2015 2018 2019 2019 2015 2020 2019; 50 4 6 140 141 31 7 6 141
2008; 321
2014; 7
1991; 138
2009; 38
2014; 343
2013 2018; 28
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_15_9
e_1_2_7_17_7
e_1_2_7_9_1
e_1_2_7_15_8
e_1_2_7_17_6
e_1_2_7_19_4
e_1_2_7_15_7
e_1_2_7_17_5
e_1_2_7_19_3
e_1_2_7_7_1
e_1_2_7_15_6
e_1_2_7_17_4
e_1_2_7_19_2
e_1_2_7_15_5
e_1_2_7_17_3
e_1_2_7_19_1
e_1_2_7_15_4
e_1_2_7_17_2
e_1_2_7_15_3
e_1_2_7_17_1
e_1_2_7_15_2
e_1_2_7_15_1
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_11_1
e_1_2_7_21_5
e_1_2_7_21_4
e_1_2_7_21_3
e_1_2_7_21_2
e_1_2_7_21_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_16_9
e_1_2_7_16_8
e_1_2_7_8_2
e_1_2_7_16_7
e_1_2_7_8_1
e_1_2_7_16_6
e_1_2_7_16_5
e_1_2_7_16_4
e_1_2_7_18_2
e_1_2_7_16_3
e_1_2_7_18_1
e_1_2_7_16_2
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_12_1
e_1_2_7_10_2
e_1_2_7_15_14
e_1_2_7_10_1
e_1_2_7_15_13
e_1_2_7_15_10
e_1_2_7_15_12
e_1_2_7_15_11
e_1_2_7_20_4
e_1_2_7_20_3
e_1_2_7_20_2
e_1_2_7_20_1
References_xml – volume: 321
  start-page: 651
  year: 2008
  publication-title: Science
– volume: 509
  start-page: 568
  year: 2014
  publication-title: Nature
– volume: 50 4 6 140 141 31 7 6 141
  start-page: 1289 2736 6486 819 905 933
  year: 2011 2013 2015 2018 2019 2019 2015 2020 2019
  publication-title: Angew. Chem., Int. Ed. Nat. Commun. Nat. Commun. J. Am. Chem. Soc. J. Am. Chem. Soc. Chem. Mater. Nat. Chem. Chem J. Am. Chem. Soc.
– volume: 58
  start-page: 1799
  year: 2015
  publication-title: Sci. China, Ser. E: Technol. Sci.
– volume: 16 56 3 9
  start-page: 220 1883 81
  year: 2017 2020 2019 2019
  publication-title: Nat. Mater. Chem. Commun. Electrochem. Energy Rev. Adv. Energy Mater.
– volume: 343
  start-page: 1210
  year: 2014
  publication-title: Science
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 310 134 2 9 29 10 140 1 49 11 387 287 9 42
  start-page: 1166 667 3178 2074 739 2649 65
  year: 2005 2012 2016 2015 2017 2018 2018 2017 2016 2019 2020 2019 2019 2018
  publication-title: Science J. Am. Chem. Soc. ACS Cent. Sci. ACS Nano Chem. Mater. ACS Appl. Mater. Interfaces J. Am. Chem. Soc. Joule Acc. Chem. Res. ACS Appl. Mater. Interfaces Chem. Eng. J. Microporous Mesoporous Mater. RSC Adv. New J. Chem.
– volume: 6 15 166 4 187
  start-page: 4343 A60 4009 640
  year: 2019 2012 2019 2011 2009
  publication-title: ChemElectroChem Electrochem. Solid‐State Lett. J. Electrochem. Soc. Energy Environ. Sci. J. Power Sources
– volume: 138
  start-page: 1539
  year: 1991
  publication-title: J. Electrochem. Soc.
– volume: 91
  start-page: 37
  year: 2000
  publication-title: J. Power Sources
– volume: 131 111
  start-page: 1802
  year: 2009 2007
  publication-title: J. Am. Chem. Soc. J. Phys. Chem. C
– volume: 118
  start-page: 9233
  year: 2018
  publication-title: Chem. Rev.
– volume: 3 259 142 7
  start-page: 455 16
  year: 2018 2020 2020 2016
  publication-title: Nat. Energy Appl. Energy J. Am. Chem. Soc. Nat. Commun.
– volume: 7
  start-page: 845
  year: 2008
  publication-title: Nat. Mater.
– volume: 1 4
  start-page: 366
  year: 2015 2005
  publication-title: Nat. Mater.
– volume: 38
  start-page: 2520
  year: 2009
  publication-title: Chem. Soc. Rev.
– volume: 23 341 516 2 8 9 6
  start-page: 4248 1502 78 2847
  year: 2011 2013 2014 2017 2018 2016 2016
  publication-title: Adv. Mater. Science Nature Nat. Rev. Mater. Adv. Energy Mater. Energy Environ. Sci. Adv. Energy Mater.
– volume: 104
  start-page: 4245
  year: 2004
  publication-title: Chem. Rev.
– volume: 7
  start-page: 1597
  year: 2014
  publication-title: Energy Environ. Sci.
– volume: 28
  start-page: 207
  year: 2013 2018
  publication-title: Adv. Funct. Mater.
– ident: e_1_2_7_15_13
  doi: 10.1039/C9RA01357A
– ident: e_1_2_7_15_6
  doi: 10.1021/acsami.8b10486
– ident: e_1_2_7_15_11
  doi: 10.1016/j.cej.2020.124071
– ident: e_1_2_7_17_7
  doi: 10.1002/aenm.201601372
– ident: e_1_2_7_17_2
  doi: 10.1126/science.1241488
– ident: e_1_2_7_20_2
  doi: 10.1039/C9CC08860A
– ident: e_1_2_7_15_9
  doi: 10.1021/acs.accounts.6b00341
– ident: e_1_2_7_21_1
  doi: 10.1002/celc.201900668
– ident: e_1_2_7_16_5
  doi: 10.1021/jacs.9b03441
– ident: e_1_2_7_16_7
  doi: 10.1038/nchem.2352
– ident: e_1_2_7_19_2
  doi: 10.1016/j.apenergy.2019.114119
– ident: e_1_2_7_1_1
  doi: 10.1126/science.1158736
– ident: e_1_2_7_16_9
  doi: 10.1021/jacs.9b02800
– ident: e_1_2_7_15_1
  doi: 10.1126/science.1120411
– ident: e_1_2_7_8_1
  doi: 10.1002/9781118991978.hces112
– ident: e_1_2_7_21_2
  doi: 10.1149/2.023204esl
– ident: e_1_2_7_19_3
  doi: 10.1021/jacs.9b08147
– ident: e_1_2_7_15_14
  doi: 10.1039/C8NJ01942H
– ident: e_1_2_7_15_8
  doi: 10.1016/j.joule.2017.08.018
– ident: e_1_2_7_18_1
  doi: 10.1021/ja8057309
– ident: e_1_2_7_19_4
  doi: 10.1038/ncomms12647
– ident: e_1_2_7_17_4
  doi: 10.1038/natrevmats.2016.98
– ident: e_1_2_7_2_1
  doi: 10.1038/nmat2297
– ident: e_1_2_7_7_1
  doi: 10.1016/S0378-7753(00)00485-7
– ident: e_1_2_7_17_5
  doi: 10.1002/aenm.201703043
– ident: e_1_2_7_16_3
  doi: 10.1038/ncomms7486
– ident: e_1_2_7_20_1
  doi: 10.1038/nmat4766
– ident: e_1_2_7_17_3
  doi: 10.1038/nature13970
– ident: e_1_2_7_21_5
  doi: 10.1016/j.jpowsour.2008.11.012
– ident: e_1_2_7_15_10
  doi: 10.1021/acsami.9b06867
– ident: e_1_2_7_9_1
  doi: 10.1149/1.2085829
– ident: e_1_2_7_19_1
  doi: 10.1038/s41560-018-0169-1
– ident: e_1_2_7_15_3
  doi: 10.1021/acscentsci.6b00220
– ident: e_1_2_7_15_5
  doi: 10.1021/acs.chemmater.6b04178
– ident: e_1_2_7_13_1
  doi: 10.1021/acs.chemrev.8b00252
– ident: e_1_2_7_21_4
  doi: 10.1039/c1ee01354h
– ident: e_1_2_7_16_8
  doi: 10.1016/j.chempr.2020.01.011
– ident: e_1_2_7_15_7
  doi: 10.1021/jacs.8b06460
– ident: e_1_2_7_15_2
  doi: 10.1021/ja308278w
– ident: e_1_2_7_11_1
  doi: 10.1039/b813846j
– ident: e_1_2_7_15_4
  doi: 10.1021/acsnano.5b00184
– ident: e_1_2_7_4_1
  doi: 10.1126/science.1249625
– ident: e_1_2_7_16_1
  doi: 10.1002/anie.201005919
– ident: e_1_2_7_16_4
  doi: 10.1021/jacs.8b11482
– ident: e_1_2_7_21_3
  doi: 10.1149/2.0741910jes
– ident: e_1_2_7_20_3
  doi: 10.1007/s41918-019-00055-1
– ident: e_1_2_7_12_1
  doi: 10.1002/adma.201605336
– ident: e_1_2_7_3_1
  doi: 10.1021/cr020730k
– ident: e_1_2_7_10_1
  doi: 10.1002/9783527646661.ch6
– ident: e_1_2_7_17_6
  doi: 10.1039/C6EE01717G
– ident: e_1_2_7_5_1
  doi: 10.1038/509568a
– ident: e_1_2_7_15_12
  doi: 10.1016/j.micromeso.2019.05.054
– ident: e_1_2_7_18_2
  doi: 10.1021/jp074464w
– ident: e_1_2_7_17_1
  doi: 10.1002/adma.201102306
– ident: e_1_2_7_6_1
  doi: 10.1039/c3ee44164d
– ident: e_1_2_7_14_1
  doi: 10.1007/s11431-015-5931-z
– ident: e_1_2_7_10_2
  doi: 10.1002/adfm.201803786
– ident: e_1_2_7_20_4
  doi: 10.1002/aenm.201900482
– ident: e_1_2_7_8_2
  doi: 10.1038/nmat1368
– ident: e_1_2_7_16_6
  doi: 10.1021/acs.chemmater.8b03897
– ident: e_1_2_7_16_2
  doi: 10.1038/ncomms3736
SSID ssj0000491033
Score 2.617726
Snippet New covalent organic frameworks (COFs), encompassing redox‐functionalized moieties and an aza‐fused π‐conjugated system, are designed, synthesized, and...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms asymmetric supercapacitors
Asymmetry
Benzoquinone
covalent organic frameworks
Electrodes
Flux density
negative electrodes
redox chemistry
Ruthenium oxide
Supercapacitors
Title Covalent Organic Frameworks as Negative Electrodes for High‐Performance Asymmetric Supercapacitors
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.202001673
https://www.proquest.com/docview/2450125390
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9NAFB6F9gIHxCoCBc0BiQNyscczXo5RCaoKiZDaot6s2VxVJU7VOIdy4idw5PfxS3jjWeyw04sVTSYTed7nt4zf-x5Cz0shQfGTPAJbXkeUKhKVPONRkeo8FzFTmpkC59k82z-mByfsZDT6OshaWrdiV376ZV3JdaQKYyBXUyX7H5INi8IAfAb5whUkDNd_kvHeElYzL_NtRaU0bqhNtVqZ_jFzfWppvae2143SHflCl9sRkhzeDyoHJqurxcK02JKgUC70pQRLKs9MP56hDzvxaQPa1g2Cz2tvNihvczqxMLli3dmqoYRuw6nzgcvOBVietnwZjMK6M4L9wFuX6PzhrOFX_Pzl4e7wgAKiUZ_q5nUqeABRVrhjTD0cs0xNQRHHA8BZzhdnk4PF-knhWwJZrhvDKkC6ooq0N23-dX6Yyf481xIBT-ez8P0NtE0gAAENuj15PXt3GM7vILJK4rSr3_D35zlBY_Jq8082fZ4-kBmGQ50_c3QH3XaBCJ5YVN1FI93cQ7cG9JT3kfL4wg5fuMcX5ivs8YV7fGHAEjb4-vb5ywBZuEcW_gFZD9Dxm-nR3n7kunJEkpI4jQgXCZekUDVLTNOWUtW1pAnVquCZ4uDQaqI4xB1EawhWBctjmSdS1WWmhWH7f4i2mmWjHyEsa9OIs9Bc6IxqiNUFZTSVuSEQYqSWYxT5fauko6w3nVM-VpZsm1Rmn6uwz2P0Isy_sGQtv52548VQuQd6VRHKwF1jaRmPEelE85dVqg2oPL7Oj56gm_0zs4O22su1fgpubiueOcR9B5qxovc
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Covalent+Organic+Frameworks+as+Negative+Electrodes+for+High%E2%80%90Performance+Asymmetric+Supercapacitors&rft.jtitle=Advanced+energy+materials&rft.au=Kandambeth%2C+Sharath&rft.au=Jia%2C+Jiangtao&rft.au=Wu%2C+Hao&rft.au=Kale%2C+Vinayak+S.&rft.date=2020-10-01&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=10&rft.issue=38&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Faenm.202001673&rft.externalDBID=10.1002%252Faenm.202001673&rft.externalDocID=AENM202001673
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon