Covalent Organic Frameworks as Negative Electrodes for High‐Performance Asymmetric Supercapacitors
New covalent organic frameworks (COFs), encompassing redox‐functionalized moieties and an aza‐fused π‐conjugated system, are designed, synthesized, and deployed as negative electrodes in asymmetric supercapacitors (ASC), for the first time. The Hex‐Aza‐COFs are synthesized based on the solvothermal...
Saved in:
Published in | Advanced energy materials Vol. 10; no. 38 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.10.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | New covalent organic frameworks (COFs), encompassing redox‐functionalized moieties and an aza‐fused π‐conjugated system, are designed, synthesized, and deployed as negative electrodes in asymmetric supercapacitors (ASC), for the first time. The Hex‐Aza‐COFs are synthesized based on the solvothermal condensation reaction of cyclohexanehexone and redox‐functionalized aromatic tetramines with benzoquinone (Hex‐Aza‐COF‐2) or phenazine (Hex‐Aza‐COF‐3). The redox‐functionalized Hex‐Aza‐COFs show a specific capacitance of 585 F g−1 for Hex‐Aza‐COF‐2 and 663 F g−1 for Hex‐Aza‐COF‐3 in a three‐electrode configuration. These values are the highest among reported COF materials and are comparable with state‐of‐the‐art pseudocapacitive electrodes. The Hex‐Aza‐COFs exhibit a wide voltage window (0 to −1.0 V), which allow the construction of a two‐electrode ASC device by combining them with RuO2. The complementary potential windows of Hex‐Aza‐COF‐3 and RuO2 enable an asymmetric device with a high voltage window of 1.7 V. The RuO2//Hex‐Aza‐COF‐3 ASC device achieves an energy density value of 23.3 W h kg−1 at a power density of 661.2 W kg−1. The newly developed negative COF materials open new prospects for the development of high‐performance ASCs.
New redox‐functionalized Hex‐Aza covalent organic frameworks (Hex‐Aza‐COFs) are synthesized and applied as negative electrodes in asymmetric supercapacitors. These Hex‐Aza‐COFs show a specific capacitance of 585 F g−1 for Hex‐Aza‐COF‐2 and 663 F g−1 for Hex‐Aza‐COF‐3 in a three‐electrode configuration at 1 A g−1. The asymmetric device composed of Hex‐Aza‐COF and ruthenium oxide, displays a broad voltage window of 1.7 V. |
---|---|
AbstractList | New covalent organic frameworks (COFs), encompassing redox‐functionalized moieties and an aza‐fused π‐conjugated system, are designed, synthesized, and deployed as negative electrodes in asymmetric supercapacitors (ASC), for the first time. The Hex‐Aza‐COFs are synthesized based on the solvothermal condensation reaction of cyclohexanehexone and redox‐functionalized aromatic tetramines with benzoquinone (Hex‐Aza‐COF‐2) or phenazine (Hex‐Aza‐COF‐3). The redox‐functionalized Hex‐Aza‐COFs show a specific capacitance of 585 F g−1 for Hex‐Aza‐COF‐2 and 663 F g−1 for Hex‐Aza‐COF‐3 in a three‐electrode configuration. These values are the highest among reported COF materials and are comparable with state‐of‐the‐art pseudocapacitive electrodes. The Hex‐Aza‐COFs exhibit a wide voltage window (0 to −1.0 V), which allow the construction of a two‐electrode ASC device by combining them with RuO2. The complementary potential windows of Hex‐Aza‐COF‐3 and RuO2 enable an asymmetric device with a high voltage window of 1.7 V. The RuO2//Hex‐Aza‐COF‐3 ASC device achieves an energy density value of 23.3 W h kg−1 at a power density of 661.2 W kg−1. The newly developed negative COF materials open new prospects for the development of high‐performance ASCs.
New redox‐functionalized Hex‐Aza covalent organic frameworks (Hex‐Aza‐COFs) are synthesized and applied as negative electrodes in asymmetric supercapacitors. These Hex‐Aza‐COFs show a specific capacitance of 585 F g−1 for Hex‐Aza‐COF‐2 and 663 F g−1 for Hex‐Aza‐COF‐3 in a three‐electrode configuration at 1 A g−1. The asymmetric device composed of Hex‐Aza‐COF and ruthenium oxide, displays a broad voltage window of 1.7 V. New covalent organic frameworks (COFs), encompassing redox‐functionalized moieties and an aza‐fused π‐conjugated system, are designed, synthesized, and deployed as negative electrodes in asymmetric supercapacitors (ASC), for the first time. The Hex‐Aza‐COFs are synthesized based on the solvothermal condensation reaction of cyclohexanehexone and redox‐functionalized aromatic tetramines with benzoquinone (Hex‐Aza‐COF‐2) or phenazine (Hex‐Aza‐COF‐3). The redox‐functionalized Hex‐Aza‐COFs show a specific capacitance of 585 F g −1 for Hex‐Aza‐COF‐2 and 663 F g −1 for Hex‐Aza‐COF‐3 in a three‐electrode configuration. These values are the highest among reported COF materials and are comparable with state‐of‐the‐art pseudocapacitive electrodes. The Hex‐Aza‐COFs exhibit a wide voltage window (0 to −1.0 V), which allow the construction of a two‐electrode ASC device by combining them with RuO 2 . The complementary potential windows of Hex‐Aza‐COF‐3 and RuO 2 enable an asymmetric device with a high voltage window of 1.7 V. The RuO 2 //Hex‐Aza‐COF‐3 ASC device achieves an energy density value of 23.3 W h kg −1 at a power density of 661.2 W kg −1 . The newly developed negative COF materials open new prospects for the development of high‐performance ASCs. New covalent organic frameworks (COFs), encompassing redox‐functionalized moieties and an aza‐fused π‐conjugated system, are designed, synthesized, and deployed as negative electrodes in asymmetric supercapacitors (ASC), for the first time. The Hex‐Aza‐COFs are synthesized based on the solvothermal condensation reaction of cyclohexanehexone and redox‐functionalized aromatic tetramines with benzoquinone (Hex‐Aza‐COF‐2) or phenazine (Hex‐Aza‐COF‐3). The redox‐functionalized Hex‐Aza‐COFs show a specific capacitance of 585 F g−1 for Hex‐Aza‐COF‐2 and 663 F g−1 for Hex‐Aza‐COF‐3 in a three‐electrode configuration. These values are the highest among reported COF materials and are comparable with state‐of‐the‐art pseudocapacitive electrodes. The Hex‐Aza‐COFs exhibit a wide voltage window (0 to −1.0 V), which allow the construction of a two‐electrode ASC device by combining them with RuO2. The complementary potential windows of Hex‐Aza‐COF‐3 and RuO2 enable an asymmetric device with a high voltage window of 1.7 V. The RuO2//Hex‐Aza‐COF‐3 ASC device achieves an energy density value of 23.3 W h kg−1 at a power density of 661.2 W kg−1. The newly developed negative COF materials open new prospects for the development of high‐performance ASCs. |
Author | Zhou, Sheng Shekhah, Osama Wu, Hao Xu, Xiangming Jia, Jiangtao Czaban‐Jóźwiak, Justyna Eddaoudi, Mohamed Emwas, Abdul‐Hamid Ameur, Zied Ouled Abou‐Hamad, Edy Kandambeth, Sharath Parvatkar, Prakash T. Alshareef, Husam N. Kale, Vinayak S. |
Author_xml | – sequence: 1 givenname: Sharath surname: Kandambeth fullname: Kandambeth, Sharath organization: King Abdullah University of Science and Technology (KAUST) – sequence: 2 givenname: Jiangtao surname: Jia fullname: Jia, Jiangtao organization: King Abdullah University of Science and Technology (KAUST) – sequence: 3 givenname: Hao surname: Wu fullname: Wu, Hao organization: King Abdullah University of Science and Technology (KAUST) – sequence: 4 givenname: Vinayak S. surname: Kale fullname: Kale, Vinayak S. organization: King Abdullah University of Science and Technology (KAUST) – sequence: 5 givenname: Prakash T. surname: Parvatkar fullname: Parvatkar, Prakash T. organization: King Abdullah University of Science and Technology (KAUST) – sequence: 6 givenname: Justyna surname: Czaban‐Jóźwiak fullname: Czaban‐Jóźwiak, Justyna organization: King Abdullah University of Science and Technology (KAUST) – sequence: 7 givenname: Sheng surname: Zhou fullname: Zhou, Sheng organization: King Abdullah University of Science and Technology (KAUST) – sequence: 8 givenname: Xiangming surname: Xu fullname: Xu, Xiangming organization: King Abdullah University of Science and Technology (KAUST) – sequence: 9 givenname: Zied Ouled surname: Ameur fullname: Ameur, Zied Ouled organization: King Abdullah University of Science and Technology (KAUST) – sequence: 10 givenname: Edy surname: Abou‐Hamad fullname: Abou‐Hamad, Edy organization: King Abdullah University of Science and Technology (KAUST) – sequence: 11 givenname: Abdul‐Hamid surname: Emwas fullname: Emwas, Abdul‐Hamid organization: King Abdullah University of Science and Technology (KAUST) – sequence: 12 givenname: Osama surname: Shekhah fullname: Shekhah, Osama organization: King Abdullah University of Science and Technology (KAUST) – sequence: 13 givenname: Husam N. surname: Alshareef fullname: Alshareef, Husam N. email: husam.alshareef@kaust.edu.sa organization: King Abdullah University of Science and Technology (KAUST) – sequence: 14 givenname: Mohamed orcidid: 0000-0003-1916-9837 surname: Eddaoudi fullname: Eddaoudi, Mohamed email: mohamed.eddaoudi@kaust.edu.sa organization: King Abdullah University of Science and Technology (KAUST) |
BookMark | eNqFkM9Kw0AQxhdRsNZePQc8p-5uNn_2WEprhdoK6jlMdyc1NcnG3bSlNx_BZ_RJTKlUEMS5zAx8v_mY74KcVqZCQq4Y7TNK-Q1gVfY55ZSyKA5OSIdFTPhRIujpcQ74Oek5t6JtCcloEHSIHpoNFFg13twuocqVN7ZQ4tbYV-eB82a4hCbfoDcqUDXWaHReZqw3yZcvn-8fD2jbrYRKoTdwu7LExrY3Htc1WgU1qLwx1l2SswwKh73v3iXP49HTcOJP57d3w8HUV4LTwOewYKB4orOQJSxKpM4yJZhAnUCkIUwEcg1SSo4oY7EIY6pipnQmI1wkUgRdcn24W1vztkbXpCuztlVrmXIRUsbDQNJW1T-olDXOWczS2uYl2F3KaLoPM92HmR7DbAHxC2jfalMxVWMhL_7G5AHb5gXu_jFJB6PZ_Q_7BVsBjfY |
CitedBy_id | crossref_primary_10_1016_j_gee_2023_12_006 crossref_primary_10_1016_j_molstruc_2023_135647 crossref_primary_10_1016_j_chphma_2024_08_002 crossref_primary_10_1016_j_inoche_2025_114196 crossref_primary_10_1016_j_jallcom_2022_166864 crossref_primary_10_1016_j_nanoso_2024_101279 crossref_primary_10_1016_j_rser_2022_113111 crossref_primary_10_1088_2515_7647_ad5777 crossref_primary_10_1039_D2CS00065B crossref_primary_10_1002_aenm_202200754 crossref_primary_10_1002_adfm_202212891 crossref_primary_10_1002_aenm_202200113 crossref_primary_10_1002_smsc_202400585 crossref_primary_10_1002_sus2_180 crossref_primary_10_1016_j_nanoen_2024_110073 crossref_primary_10_1002_smtd_202400149 crossref_primary_10_1016_j_pnsc_2023_12_013 crossref_primary_10_1039_D4YA00082J crossref_primary_10_1002_anie_202207221 crossref_primary_10_1002_anie_202307195 crossref_primary_10_1002_aenm_202203193 crossref_primary_10_1038_s41560_022_01188_2 crossref_primary_10_1002_ange_202410300 crossref_primary_10_1002_smll_202207876 crossref_primary_10_1021_acsaem_4c00762 crossref_primary_10_1002_adma_202409354 crossref_primary_10_3390_batteries10050168 crossref_primary_10_1002_admt_202201828 crossref_primary_10_1021_acsaem_4c00086 crossref_primary_10_1002_admi_202400928 crossref_primary_10_1007_s12274_024_6531_7 crossref_primary_10_1002_tcr_202300161 crossref_primary_10_1016_j_solmat_2022_111969 crossref_primary_10_1002_adma_202103617 crossref_primary_10_1021_acsaem_1c01970 crossref_primary_10_1016_j_cej_2021_131895 crossref_primary_10_1016_j_mtchem_2021_100573 crossref_primary_10_1016_j_ijhydene_2021_08_081 crossref_primary_10_1039_D2QI01992B crossref_primary_10_1021_acsami_3c17710 crossref_primary_10_1016_j_cej_2023_148486 crossref_primary_10_1002_adma_202406178 crossref_primary_10_1007_s40820_022_00864_y crossref_primary_10_1039_D1MA00158B crossref_primary_10_1002_smll_202409580 crossref_primary_10_1021_jacs_3c06723 crossref_primary_10_1039_D3QM00782K crossref_primary_10_1021_jacs_1c09290 crossref_primary_10_1016_j_est_2025_116269 crossref_primary_10_3389_fchem_2025_1550285 crossref_primary_10_1039_D2TA02630A crossref_primary_10_1016_j_flatc_2025_100835 crossref_primary_10_1002_ange_202113657 crossref_primary_10_1021_acsaem_2c00627 crossref_primary_10_1021_acssensors_2c02014 crossref_primary_10_1016_j_est_2021_103304 crossref_primary_10_1063_5_0073426 crossref_primary_10_1039_D4TA08466G crossref_primary_10_1016_j_carbon_2022_01_026 crossref_primary_10_1016_j_mtener_2024_101607 crossref_primary_10_1021_jacs_3c04657 crossref_primary_10_1002_batt_202300023 crossref_primary_10_1016_j_jcis_2024_08_043 crossref_primary_10_1002_smll_202405701 crossref_primary_10_1016_j_apsusc_2021_151051 crossref_primary_10_1021_jacs_2c12684 crossref_primary_10_1016_j_carbon_2021_05_061 crossref_primary_10_1016_j_electacta_2021_139301 crossref_primary_10_3390_cryst12101350 crossref_primary_10_1039_D2TA00102K crossref_primary_10_1002_ange_202207221 crossref_primary_10_1002_anie_202215584 crossref_primary_10_1002_marc_202200782 crossref_primary_10_1016_j_flatc_2024_100645 crossref_primary_10_1016_j_jcis_2023_03_081 crossref_primary_10_3390_polym15010139 crossref_primary_10_1016_j_colsurfa_2022_130102 crossref_primary_10_1002_anie_202113657 crossref_primary_10_1021_jacs_2c10471 crossref_primary_10_1016_S1872_5805_22_60586_9 crossref_primary_10_1002_aesr_202000052 crossref_primary_10_1016_j_mser_2022_100713 crossref_primary_10_1002_ange_202313970 crossref_primary_10_1007_s10008_022_05196_w crossref_primary_10_1021_acsapm_4c02203 crossref_primary_10_1007_s41918_024_00234_9 crossref_primary_10_1002_ange_202215584 crossref_primary_10_1007_s42114_022_00432_3 crossref_primary_10_1080_08927022_2023_2189980 crossref_primary_10_1002_app_54538 crossref_primary_10_1016_j_electacta_2023_143693 crossref_primary_10_1016_j_ensm_2024_103522 crossref_primary_10_1039_D1TC05998J crossref_primary_10_1039_D4MH00161C crossref_primary_10_1007_s11664_023_10532_5 crossref_primary_10_1002_ange_202314411 crossref_primary_10_1039_D1MA00771H crossref_primary_10_1021_acsami_3c04454 crossref_primary_10_1016_j_jechem_2022_10_049 crossref_primary_10_20517_energymater_2024_127 crossref_primary_10_1021_acs_energyfuels_4c00778 crossref_primary_10_1021_acs_chemmater_1c02973 crossref_primary_10_1039_D3CC00481C crossref_primary_10_1080_10408436_2023_2202225 crossref_primary_10_1002_smll_202307843 crossref_primary_10_1016_j_mtener_2024_101636 crossref_primary_10_1002_adma_202309302 crossref_primary_10_1016_j_est_2023_108006 crossref_primary_10_1021_acs_jpclett_3c02069 crossref_primary_10_1016_j_electacta_2022_140470 crossref_primary_10_1002_anie_202410300 crossref_primary_10_1002_ange_202307195 crossref_primary_10_1016_j_est_2022_106175 crossref_primary_10_1002_asia_202401149 crossref_primary_10_1002_aenm_202100177 crossref_primary_10_1039_D0TA11266F crossref_primary_10_1002_anie_202314411 crossref_primary_10_1021_acsami_1c10043 crossref_primary_10_1007_s10854_020_05111_x crossref_primary_10_1039_D3RA07655E crossref_primary_10_1016_j_jpowsour_2023_232698 crossref_primary_10_1021_acs_analchem_3c05887 crossref_primary_10_1039_D3SC04571D crossref_primary_10_1039_D4NR04570J crossref_primary_10_1039_D4TC00802B crossref_primary_10_1016_j_electacta_2024_144917 crossref_primary_10_1002_chem_202101587 crossref_primary_10_1039_D3NR05196J crossref_primary_10_1016_j_xcrp_2023_101290 crossref_primary_10_1021_acsami_4c17272 crossref_primary_10_1016_j_ccr_2023_215577 crossref_primary_10_1021_acsnano_3c03918 crossref_primary_10_1002_aenm_202003626 crossref_primary_10_1002_ange_202502088 crossref_primary_10_1039_D1TA04313G crossref_primary_10_1002_admi_202200919 crossref_primary_10_1016_j_jcis_2024_08_123 crossref_primary_10_1002_anie_202313970 crossref_primary_10_1039_D3QM00151B crossref_primary_10_1002_anie_202502088 crossref_primary_10_1002_adfm_202113209 |
Cites_doi | 10.1039/C9RA01357A 10.1021/acsami.8b10486 10.1016/j.cej.2020.124071 10.1002/aenm.201601372 10.1126/science.1241488 10.1039/C9CC08860A 10.1021/acs.accounts.6b00341 10.1002/celc.201900668 10.1021/jacs.9b03441 10.1038/nchem.2352 10.1016/j.apenergy.2019.114119 10.1126/science.1158736 10.1021/jacs.9b02800 10.1126/science.1120411 10.1002/9781118991978.hces112 10.1149/2.023204esl 10.1021/jacs.9b08147 10.1039/C8NJ01942H 10.1016/j.joule.2017.08.018 10.1021/ja8057309 10.1038/ncomms12647 10.1038/natrevmats.2016.98 10.1038/nmat2297 10.1016/S0378-7753(00)00485-7 10.1002/aenm.201703043 10.1038/ncomms7486 10.1038/nmat4766 10.1038/nature13970 10.1016/j.jpowsour.2008.11.012 10.1021/acsami.9b06867 10.1149/1.2085829 10.1038/s41560-018-0169-1 10.1021/acscentsci.6b00220 10.1021/acs.chemmater.6b04178 10.1021/acs.chemrev.8b00252 10.1039/c1ee01354h 10.1016/j.chempr.2020.01.011 10.1021/jacs.8b06460 10.1021/ja308278w 10.1039/b813846j 10.1021/acsnano.5b00184 10.1126/science.1249625 10.1002/anie.201005919 10.1021/jacs.8b11482 10.1149/2.0741910jes 10.1007/s41918-019-00055-1 10.1002/adma.201605336 10.1021/cr020730k 10.1002/9783527646661.ch6 10.1039/C6EE01717G 10.1038/509568a 10.1016/j.micromeso.2019.05.054 10.1021/jp074464w 10.1002/adma.201102306 10.1039/c3ee44164d 10.1007/s11431-015-5931-z 10.1002/adfm.201803786 10.1002/aenm.201900482 10.1038/nmat1368 10.1021/acs.chemmater.8b03897 10.1038/ncomms3736 |
ContentType | Journal Article |
Copyright | 2020 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2020 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SP 7TB 8FD F28 FR3 H8D L7M |
DOI | 10.1002/aenm.202001673 |
DatabaseName | CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | CrossRef Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1614-6840 |
EndPage | n/a |
ExternalDocumentID | 10_1002_aenm_202001673 AENM202001673 |
Genre | article |
GrantInformation_xml | – fundername: King Abdullah University of Science and Technology funderid: OSR‐CRG2017‐3379 |
GroupedDBID | 05W 0R~ 1OC 33P 4.4 50Y 5VS 8-0 8-1 A00 AAESR AAHHS AAHQN AAIHA AAMNL AANLZ AASGY AAXRX AAYCA AAZKR ABCUV ABJNI ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFWVQ AFZJQ AHBTC AIACR AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB AZVAB BDRZF BFHJK BMXJE BRXPI D-A DCZOG EBS G-S HGLYW HZ~ KBYEO LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MY. MY~ O9- P2W P4E RNS ROL RX1 SUPJJ WBKPD WOHZO WXSBR WYJ ZZTAW ~S- 31~ AANHP AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE GODZA HVGLF 7SP 7TB 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY F28 FR3 H8D L7M |
ID | FETCH-LOGICAL-c4203-2ab1ac28df5181689dffc414ed8a6da584e2da9992ee974b570c71cdf96eb8943 |
ISSN | 1614-6832 |
IngestDate | Fri Jul 25 12:18:10 EDT 2025 Tue Jul 01 01:43:36 EDT 2025 Thu Apr 24 22:57:23 EDT 2025 Wed Jan 22 16:33:31 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 38 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c4203-2ab1ac28df5181689dffc414ed8a6da584e2da9992ee974b570c71cdf96eb8943 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-1916-9837 |
PQID | 2450125390 |
PQPubID | 886389 |
PageCount | 9 |
ParticipantIDs | proquest_journals_2450125390 crossref_primary_10_1002_aenm_202001673 crossref_citationtrail_10_1002_aenm_202001673 wiley_primary_10_1002_aenm_202001673_AENM202001673 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-10-01 |
PublicationDateYYYYMMDD | 2020-10-01 |
PublicationDate_xml | – month: 10 year: 2020 text: 2020-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Advanced energy materials |
PublicationYear | 2020 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2019 2012 2019 2011 2009; 6 15 166 4 187 2015; 58 2009 2007; 131 111 2004; 104 2018 2020 2020 2016; 3 259 142 7 2014; 509 2018; 118 2005 2012 2016 2015 2017 2018 2018 2017 2016 2019 2020 2019 2019 2018; 310 134 2 9 29 10 140 1 49 11 387 287 9 42 2008; 7 2015 2005; 1 4 2011 2013 2014 2017 2018 2016 2016; 23 341 516 2 8 9 6 2017 2020 2019 2019; 16 56 3 9 2000; 91 2017; 29 2011 2013 2015 2018 2019 2019 2015 2020 2019; 50 4 6 140 141 31 7 6 141 2008; 321 2014; 7 1991; 138 2009; 38 2014; 343 2013 2018; 28 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_15_9 e_1_2_7_17_7 e_1_2_7_9_1 e_1_2_7_15_8 e_1_2_7_17_6 e_1_2_7_19_4 e_1_2_7_15_7 e_1_2_7_17_5 e_1_2_7_19_3 e_1_2_7_7_1 e_1_2_7_15_6 e_1_2_7_17_4 e_1_2_7_19_2 e_1_2_7_15_5 e_1_2_7_17_3 e_1_2_7_19_1 e_1_2_7_15_4 e_1_2_7_17_2 e_1_2_7_15_3 e_1_2_7_17_1 e_1_2_7_15_2 e_1_2_7_15_1 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_11_1 e_1_2_7_21_5 e_1_2_7_21_4 e_1_2_7_21_3 e_1_2_7_21_2 e_1_2_7_21_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_16_9 e_1_2_7_16_8 e_1_2_7_8_2 e_1_2_7_16_7 e_1_2_7_8_1 e_1_2_7_16_6 e_1_2_7_16_5 e_1_2_7_16_4 e_1_2_7_18_2 e_1_2_7_16_3 e_1_2_7_18_1 e_1_2_7_16_2 e_1_2_7_16_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_12_1 e_1_2_7_10_2 e_1_2_7_15_14 e_1_2_7_10_1 e_1_2_7_15_13 e_1_2_7_15_10 e_1_2_7_15_12 e_1_2_7_15_11 e_1_2_7_20_4 e_1_2_7_20_3 e_1_2_7_20_2 e_1_2_7_20_1 |
References_xml | – volume: 321 start-page: 651 year: 2008 publication-title: Science – volume: 509 start-page: 568 year: 2014 publication-title: Nature – volume: 50 4 6 140 141 31 7 6 141 start-page: 1289 2736 6486 819 905 933 year: 2011 2013 2015 2018 2019 2019 2015 2020 2019 publication-title: Angew. Chem., Int. Ed. Nat. Commun. Nat. Commun. J. Am. Chem. Soc. J. Am. Chem. Soc. Chem. Mater. Nat. Chem. Chem J. Am. Chem. Soc. – volume: 58 start-page: 1799 year: 2015 publication-title: Sci. China, Ser. E: Technol. Sci. – volume: 16 56 3 9 start-page: 220 1883 81 year: 2017 2020 2019 2019 publication-title: Nat. Mater. Chem. Commun. Electrochem. Energy Rev. Adv. Energy Mater. – volume: 343 start-page: 1210 year: 2014 publication-title: Science – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 310 134 2 9 29 10 140 1 49 11 387 287 9 42 start-page: 1166 667 3178 2074 739 2649 65 year: 2005 2012 2016 2015 2017 2018 2018 2017 2016 2019 2020 2019 2019 2018 publication-title: Science J. Am. Chem. Soc. ACS Cent. Sci. ACS Nano Chem. Mater. ACS Appl. Mater. Interfaces J. Am. Chem. Soc. Joule Acc. Chem. Res. ACS Appl. Mater. Interfaces Chem. Eng. J. Microporous Mesoporous Mater. RSC Adv. New J. Chem. – volume: 6 15 166 4 187 start-page: 4343 A60 4009 640 year: 2019 2012 2019 2011 2009 publication-title: ChemElectroChem Electrochem. Solid‐State Lett. J. Electrochem. Soc. Energy Environ. Sci. J. Power Sources – volume: 138 start-page: 1539 year: 1991 publication-title: J. Electrochem. Soc. – volume: 91 start-page: 37 year: 2000 publication-title: J. Power Sources – volume: 131 111 start-page: 1802 year: 2009 2007 publication-title: J. Am. Chem. Soc. J. Phys. Chem. C – volume: 118 start-page: 9233 year: 2018 publication-title: Chem. Rev. – volume: 3 259 142 7 start-page: 455 16 year: 2018 2020 2020 2016 publication-title: Nat. Energy Appl. Energy J. Am. Chem. Soc. Nat. Commun. – volume: 7 start-page: 845 year: 2008 publication-title: Nat. Mater. – volume: 1 4 start-page: 366 year: 2015 2005 publication-title: Nat. Mater. – volume: 38 start-page: 2520 year: 2009 publication-title: Chem. Soc. Rev. – volume: 23 341 516 2 8 9 6 start-page: 4248 1502 78 2847 year: 2011 2013 2014 2017 2018 2016 2016 publication-title: Adv. Mater. Science Nature Nat. Rev. Mater. Adv. Energy Mater. Energy Environ. Sci. Adv. Energy Mater. – volume: 104 start-page: 4245 year: 2004 publication-title: Chem. Rev. – volume: 7 start-page: 1597 year: 2014 publication-title: Energy Environ. Sci. – volume: 28 start-page: 207 year: 2013 2018 publication-title: Adv. Funct. Mater. – ident: e_1_2_7_15_13 doi: 10.1039/C9RA01357A – ident: e_1_2_7_15_6 doi: 10.1021/acsami.8b10486 – ident: e_1_2_7_15_11 doi: 10.1016/j.cej.2020.124071 – ident: e_1_2_7_17_7 doi: 10.1002/aenm.201601372 – ident: e_1_2_7_17_2 doi: 10.1126/science.1241488 – ident: e_1_2_7_20_2 doi: 10.1039/C9CC08860A – ident: e_1_2_7_15_9 doi: 10.1021/acs.accounts.6b00341 – ident: e_1_2_7_21_1 doi: 10.1002/celc.201900668 – ident: e_1_2_7_16_5 doi: 10.1021/jacs.9b03441 – ident: e_1_2_7_16_7 doi: 10.1038/nchem.2352 – ident: e_1_2_7_19_2 doi: 10.1016/j.apenergy.2019.114119 – ident: e_1_2_7_1_1 doi: 10.1126/science.1158736 – ident: e_1_2_7_16_9 doi: 10.1021/jacs.9b02800 – ident: e_1_2_7_15_1 doi: 10.1126/science.1120411 – ident: e_1_2_7_8_1 doi: 10.1002/9781118991978.hces112 – ident: e_1_2_7_21_2 doi: 10.1149/2.023204esl – ident: e_1_2_7_19_3 doi: 10.1021/jacs.9b08147 – ident: e_1_2_7_15_14 doi: 10.1039/C8NJ01942H – ident: e_1_2_7_15_8 doi: 10.1016/j.joule.2017.08.018 – ident: e_1_2_7_18_1 doi: 10.1021/ja8057309 – ident: e_1_2_7_19_4 doi: 10.1038/ncomms12647 – ident: e_1_2_7_17_4 doi: 10.1038/natrevmats.2016.98 – ident: e_1_2_7_2_1 doi: 10.1038/nmat2297 – ident: e_1_2_7_7_1 doi: 10.1016/S0378-7753(00)00485-7 – ident: e_1_2_7_17_5 doi: 10.1002/aenm.201703043 – ident: e_1_2_7_16_3 doi: 10.1038/ncomms7486 – ident: e_1_2_7_20_1 doi: 10.1038/nmat4766 – ident: e_1_2_7_17_3 doi: 10.1038/nature13970 – ident: e_1_2_7_21_5 doi: 10.1016/j.jpowsour.2008.11.012 – ident: e_1_2_7_15_10 doi: 10.1021/acsami.9b06867 – ident: e_1_2_7_9_1 doi: 10.1149/1.2085829 – ident: e_1_2_7_19_1 doi: 10.1038/s41560-018-0169-1 – ident: e_1_2_7_15_3 doi: 10.1021/acscentsci.6b00220 – ident: e_1_2_7_15_5 doi: 10.1021/acs.chemmater.6b04178 – ident: e_1_2_7_13_1 doi: 10.1021/acs.chemrev.8b00252 – ident: e_1_2_7_21_4 doi: 10.1039/c1ee01354h – ident: e_1_2_7_16_8 doi: 10.1016/j.chempr.2020.01.011 – ident: e_1_2_7_15_7 doi: 10.1021/jacs.8b06460 – ident: e_1_2_7_15_2 doi: 10.1021/ja308278w – ident: e_1_2_7_11_1 doi: 10.1039/b813846j – ident: e_1_2_7_15_4 doi: 10.1021/acsnano.5b00184 – ident: e_1_2_7_4_1 doi: 10.1126/science.1249625 – ident: e_1_2_7_16_1 doi: 10.1002/anie.201005919 – ident: e_1_2_7_16_4 doi: 10.1021/jacs.8b11482 – ident: e_1_2_7_21_3 doi: 10.1149/2.0741910jes – ident: e_1_2_7_20_3 doi: 10.1007/s41918-019-00055-1 – ident: e_1_2_7_12_1 doi: 10.1002/adma.201605336 – ident: e_1_2_7_3_1 doi: 10.1021/cr020730k – ident: e_1_2_7_10_1 doi: 10.1002/9783527646661.ch6 – ident: e_1_2_7_17_6 doi: 10.1039/C6EE01717G – ident: e_1_2_7_5_1 doi: 10.1038/509568a – ident: e_1_2_7_15_12 doi: 10.1016/j.micromeso.2019.05.054 – ident: e_1_2_7_18_2 doi: 10.1021/jp074464w – ident: e_1_2_7_17_1 doi: 10.1002/adma.201102306 – ident: e_1_2_7_6_1 doi: 10.1039/c3ee44164d – ident: e_1_2_7_14_1 doi: 10.1007/s11431-015-5931-z – ident: e_1_2_7_10_2 doi: 10.1002/adfm.201803786 – ident: e_1_2_7_20_4 doi: 10.1002/aenm.201900482 – ident: e_1_2_7_8_2 doi: 10.1038/nmat1368 – ident: e_1_2_7_16_6 doi: 10.1021/acs.chemmater.8b03897 – ident: e_1_2_7_16_2 doi: 10.1038/ncomms3736 |
SSID | ssj0000491033 |
Score | 2.617726 |
Snippet | New covalent organic frameworks (COFs), encompassing redox‐functionalized moieties and an aza‐fused π‐conjugated system, are designed, synthesized, and... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | asymmetric supercapacitors Asymmetry Benzoquinone covalent organic frameworks Electrodes Flux density negative electrodes redox chemistry Ruthenium oxide Supercapacitors |
Title | Covalent Organic Frameworks as Negative Electrodes for High‐Performance Asymmetric Supercapacitors |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.202001673 https://www.proquest.com/docview/2450125390 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9NAFB6F9gIHxCoCBc0BiQNyscczXo5RCaoKiZDaot6s2VxVJU7VOIdy4idw5PfxS3jjWeyw04sVTSYTed7nt4zf-x5Cz0shQfGTPAJbXkeUKhKVPONRkeo8FzFTmpkC59k82z-mByfsZDT6OshaWrdiV376ZV3JdaQKYyBXUyX7H5INi8IAfAb5whUkDNd_kvHeElYzL_NtRaU0bqhNtVqZ_jFzfWppvae2143SHflCl9sRkhzeDyoHJqurxcK02JKgUC70pQRLKs9MP56hDzvxaQPa1g2Cz2tvNihvczqxMLli3dmqoYRuw6nzgcvOBVietnwZjMK6M4L9wFuX6PzhrOFX_Pzl4e7wgAKiUZ_q5nUqeABRVrhjTD0cs0xNQRHHA8BZzhdnk4PF-knhWwJZrhvDKkC6ooq0N23-dX6Yyf481xIBT-ez8P0NtE0gAAENuj15PXt3GM7vILJK4rSr3_D35zlBY_Jq8082fZ4-kBmGQ50_c3QH3XaBCJ5YVN1FI93cQ7cG9JT3kfL4wg5fuMcX5ivs8YV7fGHAEjb4-vb5ywBZuEcW_gFZD9Dxm-nR3n7kunJEkpI4jQgXCZekUDVLTNOWUtW1pAnVquCZ4uDQaqI4xB1EawhWBctjmSdS1WWmhWH7f4i2mmWjHyEsa9OIs9Bc6IxqiNUFZTSVuSEQYqSWYxT5fauko6w3nVM-VpZsm1Rmn6uwz2P0Isy_sGQtv52548VQuQd6VRHKwF1jaRmPEelE85dVqg2oPL7Oj56gm_0zs4O22su1fgpubiueOcR9B5qxovc |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Covalent+Organic+Frameworks+as+Negative+Electrodes+for+High%E2%80%90Performance+Asymmetric+Supercapacitors&rft.jtitle=Advanced+energy+materials&rft.au=Kandambeth%2C+Sharath&rft.au=Jia%2C+Jiangtao&rft.au=Wu%2C+Hao&rft.au=Kale%2C+Vinayak+S.&rft.date=2020-10-01&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=10&rft.issue=38&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Faenm.202001673&rft.externalDBID=10.1002%252Faenm.202001673&rft.externalDocID=AENM202001673 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon |