Inorganic Halide Perovskite Solar Cells: Progress and Challenges

All‐inorganic perovskite semiconductors have recently drawn increasing attention owing to their outstanding thermal stability. Although all‐inorganic perovskite solar cells (PSCs) have achieved significant progress in recent years, they still fall behind their prototype organic–inorganic counterpart...

Full description

Saved in:
Bibliographic Details
Published inAdvanced energy materials Vol. 10; no. 23
Main Authors Tian, Jingjing, Xue, Qifan, Yao, Qin, Li, Ning, Brabec, Christoph J., Yip, Hin‐Lap
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.06.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract All‐inorganic perovskite semiconductors have recently drawn increasing attention owing to their outstanding thermal stability. Although all‐inorganic perovskite solar cells (PSCs) have achieved significant progress in recent years, they still fall behind their prototype organic–inorganic counterparts owing to severe energy losses. Therefore, there is considerable interest in further improving the performance of all‐inorganic PSCs by synergic optimization of perovskite films and device interfaces. This review article provides an overview of recent progress in inorganic PSCs in terms of lead‐based and lead‐free composition. The physical properties of all‐inorganic perovskite semiconductors as well as the hole/electron transporting materials are discussed to unveil the important role of composition engineering and interface modification. Finally, a discussion of the prospects and challenges for all‐inorganic PSCs in the near future is presented. Recent progress in inorganic lead‐based and lead‐free CsBX3 perovskite solar cells using various strategies is reviewed and their prospects and challenges in the future are discussed in detail.
AbstractList All‐inorganic perovskite semiconductors have recently drawn increasing attention owing to their outstanding thermal stability. Although all‐inorganic perovskite solar cells (PSCs) have achieved significant progress in recent years, they still fall behind their prototype organic–inorganic counterparts owing to severe energy losses. Therefore, there is considerable interest in further improving the performance of all‐inorganic PSCs by synergic optimization of perovskite films and device interfaces. This review article provides an overview of recent progress in inorganic PSCs in terms of lead‐based and lead‐free composition. The physical properties of all‐inorganic perovskite semiconductors as well as the hole/electron transporting materials are discussed to unveil the important role of composition engineering and interface modification. Finally, a discussion of the prospects and challenges for all‐inorganic PSCs in the near future is presented.
All‐inorganic perovskite semiconductors have recently drawn increasing attention owing to their outstanding thermal stability. Although all‐inorganic perovskite solar cells (PSCs) have achieved significant progress in recent years, they still fall behind their prototype organic–inorganic counterparts owing to severe energy losses. Therefore, there is considerable interest in further improving the performance of all‐inorganic PSCs by synergic optimization of perovskite films and device interfaces. This review article provides an overview of recent progress in inorganic PSCs in terms of lead‐based and lead‐free composition. The physical properties of all‐inorganic perovskite semiconductors as well as the hole/electron transporting materials are discussed to unveil the important role of composition engineering and interface modification. Finally, a discussion of the prospects and challenges for all‐inorganic PSCs in the near future is presented. Recent progress in inorganic lead‐based and lead‐free CsBX3 perovskite solar cells using various strategies is reviewed and their prospects and challenges in the future are discussed in detail.
Author Yao, Qin
Li, Ning
Brabec, Christoph J.
Tian, Jingjing
Yip, Hin‐Lap
Xue, Qifan
Author_xml – sequence: 1
  givenname: Jingjing
  surname: Tian
  fullname: Tian, Jingjing
  organization: South China University of Technology
– sequence: 2
  givenname: Qifan
  surname: Xue
  fullname: Xue, Qifan
  email: qfxue@scut.edu.cn
  organization: South China Institute of Collaborative Innovation
– sequence: 3
  givenname: Qin
  surname: Yao
  fullname: Yao, Qin
  organization: South China University of Technology
– sequence: 4
  givenname: Ning
  surname: Li
  fullname: Li, Ning
  organization: Zhengzhou University
– sequence: 5
  givenname: Christoph J.
  surname: Brabec
  fullname: Brabec, Christoph J.
  organization: Forschungszentrum Jülich
– sequence: 6
  givenname: Hin‐Lap
  orcidid: 0000-0002-5750-9751
  surname: Yip
  fullname: Yip, Hin‐Lap
  email: msangusyip@scut.edu.cn
  organization: South China Institute of Collaborative Innovation
BookMark eNqFkEtLAzEUhYMoWGu3rgdcT81rXq4spdpC1YK6DmnmpqamSU2mSv-9UyoVBHF17-J858B3ho6dd4DQBcF9gjG9kuBWfYopxpiU7Ah1SE54mpccHx9-Rk9RL8Zlm8G8IpixDrqZOB8W0hmVjKU1NSQzCP4jvpkGkidvZUiGYG28TmbBLwLEmEhXJ8NXaS24BcRzdKKljdD7vl30cjt6Ho7T6ePdZDiYpopTzFIyV6zOgBWqqLNS05wDUVSzui5KrYs5J7TQtFR5lTGelVIDLyjFdQFSY1xVrIsu973r4N83EBux9Jvg2klBOWGMlDQr2lR_n1LBxxhAi3UwKxm2gmCxEyV2osRBVAvwX4AyjWyMd02Qxv6NVXvs01jY_jMiBqOH-x_2C9mPfeo
CitedBy_id crossref_primary_10_1016_j_jallcom_2021_161971
crossref_primary_10_1021_acsaem_0c01917
crossref_primary_10_1021_acsanm_4c00312
crossref_primary_10_1021_acsami_2c07420
crossref_primary_10_1039_D1RA06430D
crossref_primary_10_1039_D4MA01280A
crossref_primary_10_1016_j_jssc_2023_124181
crossref_primary_10_1021_acsaem_0c01484
crossref_primary_10_35848_1347_4065_ac4927
crossref_primary_10_1039_D2TA00224H
crossref_primary_10_1021_acsenergylett_3c00017
crossref_primary_10_1016_j_actamat_2022_118661
crossref_primary_10_1002_smll_202101925
crossref_primary_10_1016_j_apsusc_2022_155175
crossref_primary_10_1039_D3NR00133D
crossref_primary_10_1016_j_jmat_2021_02_004
crossref_primary_10_1016_j_mssp_2023_107454
crossref_primary_10_1002_slct_202401586
crossref_primary_10_1016_j_matchemphys_2022_126335
crossref_primary_10_1002_ente_202300523
crossref_primary_10_1002_anie_202401751
crossref_primary_10_1016_j_solidstatesciences_2021_106769
crossref_primary_10_1021_acsaem_1c03876
crossref_primary_10_20517_energymater_2023_136
crossref_primary_10_1038_s41377_021_00516_7
crossref_primary_10_1039_D4TC01553C
crossref_primary_10_3390_nano11092408
crossref_primary_10_1016_j_dyepig_2022_110452
crossref_primary_10_1021_acs_chemrev_4c00073
crossref_primary_10_1002_adom_202400398
crossref_primary_10_1002_chem_202004902
crossref_primary_10_1007_s11426_022_1445_2
crossref_primary_10_1002_aenm_202002882
crossref_primary_10_1016_j_jechem_2021_09_047
crossref_primary_10_1016_j_ceramint_2022_06_125
crossref_primary_10_1021_acssuschemeng_1c04542
crossref_primary_10_3390_nano11123463
crossref_primary_10_1002_adma_202108132
crossref_primary_10_1016_j_jcis_2021_09_117
crossref_primary_10_1016_j_jechem_2023_04_028
crossref_primary_10_1002_anie_202105176
crossref_primary_10_1002_solr_202200860
crossref_primary_10_1016_j_mssp_2024_108134
crossref_primary_10_1016_j_cocom_2024_e00879
crossref_primary_10_1002_ange_202107774
crossref_primary_10_1016_j_mtener_2020_100590
crossref_primary_10_1021_acsami_3c13868
crossref_primary_10_1021_acsaem_1c00575
crossref_primary_10_1016_j_jpowsour_2021_230675
crossref_primary_10_1021_acsaem_2c01673
crossref_primary_10_1002_adfm_202112027
crossref_primary_10_1016_j_mtchem_2023_101511
crossref_primary_10_1016_j_orgel_2021_106102
crossref_primary_10_1002_aelm_202200995
crossref_primary_10_1002_solr_202000714
crossref_primary_10_1016_j_ccr_2024_215957
crossref_primary_10_1039_D1TC05851G
crossref_primary_10_1016_j_cej_2022_139697
crossref_primary_10_1021_acsnano_3c12552
crossref_primary_10_1002_advs_202200445
crossref_primary_10_1007_s11082_022_03823_4
crossref_primary_10_1002_ange_202315841
crossref_primary_10_1016_j_physe_2022_115243
crossref_primary_10_1002_aenm_202201320
crossref_primary_10_1016_j_isci_2021_103365
crossref_primary_10_1134_S1070363224080292
crossref_primary_10_1002_admi_202200562
crossref_primary_10_1021_acsami_1c24362
crossref_primary_10_1016_j_cej_2021_129247
crossref_primary_10_1016_j_mattod_2021_11_017
crossref_primary_10_1002_admi_202200847
crossref_primary_10_1016_j_chemphys_2024_112587
crossref_primary_10_1021_acsaem_3c01799
crossref_primary_10_1002_ange_202401751
crossref_primary_10_1021_acsmaterialslett_4c01890
crossref_primary_10_1088_2040_8986_ac881b
crossref_primary_10_1002_ange_202110603
crossref_primary_10_1088_1402_4896_ad5ff9
crossref_primary_10_1021_acsami_4c14868
crossref_primary_10_1016_j_pmatsci_2023_101223
crossref_primary_10_1002_adfm_202304278
crossref_primary_10_1021_acsami_2c16347
crossref_primary_10_1063_5_0068665
crossref_primary_10_1021_acs_jpclett_4c00560
crossref_primary_10_1039_D2TA09434G
crossref_primary_10_1002_cssc_202101475
crossref_primary_10_1007_s10854_024_12364_3
crossref_primary_10_1021_acssuschemeng_4c06058
crossref_primary_10_1002_adfm_202111116
crossref_primary_10_1039_D1MH02055B
crossref_primary_10_1016_j_jece_2024_113175
crossref_primary_10_1140_epjp_s13360_022_02843_z
crossref_primary_10_1016_j_solener_2025_113290
crossref_primary_10_1039_D3EE03317A
crossref_primary_10_1021_acsnano_4c08789
crossref_primary_10_1088_1361_6641_acf406
crossref_primary_10_1007_s40820_022_00976_5
crossref_primary_10_3390_nano14211742
crossref_primary_10_1016_j_cej_2021_132781
crossref_primary_10_1002_adma_202206932
crossref_primary_10_1002_aenm_202203682
crossref_primary_10_1038_s41467_024_55376_7
crossref_primary_10_1002_anie_202107774
crossref_primary_10_1103_PhysRevB_109_144104
crossref_primary_10_3390_cryst14010086
crossref_primary_10_2139_ssrn_3904962
crossref_primary_10_1002_ange_202102538
crossref_primary_10_1039_D3EE00247K
crossref_primary_10_1016_j_commatsci_2023_112215
crossref_primary_10_1002_smll_202311097
crossref_primary_10_1021_acs_energyfuels_2c03390
crossref_primary_10_1016_j_xcrp_2023_101726
crossref_primary_10_3390_coatings13071198
crossref_primary_10_1002_anie_202110603
crossref_primary_10_1016_j_solener_2023_111885
crossref_primary_10_1002_pssa_202100185
crossref_primary_10_1016_j_nanoen_2021_105747
crossref_primary_10_1002_anie_202102538
crossref_primary_10_1088_1674_4926_44_3_030202
crossref_primary_10_1088_1361_6463_ac3033
crossref_primary_10_1016_j_matt_2024_05_026
crossref_primary_10_1021_acsaenm_4c00211
crossref_primary_10_1016_j_jallcom_2023_172771
crossref_primary_10_1016_j_nanoen_2021_106157
crossref_primary_10_1021_acs_inorgchem_3c01834
crossref_primary_10_1002_er_7807
crossref_primary_10_3390_mi14010093
crossref_primary_10_1021_acs_chemmater_4c00571
crossref_primary_10_1021_acsenergylett_2c01883
crossref_primary_10_1016_j_isci_2021_103729
crossref_primary_10_1039_D1TA02786G
crossref_primary_10_1364_OE_517600
crossref_primary_10_1002_chem_202300566
crossref_primary_10_1002_aenm_202103690
crossref_primary_10_1016_j_mtener_2023_101473
crossref_primary_10_1007_s11082_023_04980_w
crossref_primary_10_1021_acsami_2c20752
crossref_primary_10_1088_1402_4896_ad3a2a
crossref_primary_10_1039_D4QM00197D
crossref_primary_10_1039_D2EE01256A
crossref_primary_10_3390_nano12183121
crossref_primary_10_1088_2515_7655_ac93b3
crossref_primary_10_1002_adsu_202200074
crossref_primary_10_1021_acsaem_2c04178
crossref_primary_10_1016_j_nanoen_2022_107792
crossref_primary_10_1039_D0QM00756K
crossref_primary_10_1039_D0TC03345F
crossref_primary_10_1016_j_solener_2021_10_017
crossref_primary_10_1021_acsami_2c03585
crossref_primary_10_1002_adfm_202404402
crossref_primary_10_1002_smll_202206952
crossref_primary_10_1007_s13391_025_00560_0
crossref_primary_10_1021_acs_chemmater_3c02059
crossref_primary_10_1002_admt_202401672
crossref_primary_10_1088_1361_6463_ad31e2
crossref_primary_10_1039_D2EE00663D
crossref_primary_10_1109_JPHOT_2024_3494817
crossref_primary_10_1155_2023_4440117
crossref_primary_10_1002_solr_202100839
crossref_primary_10_3390_nano14151266
crossref_primary_10_1002_ange_202105176
crossref_primary_10_1016_j_jece_2023_109960
crossref_primary_10_1016_j_cej_2024_154429
crossref_primary_10_1016_j_optmat_2024_115713
crossref_primary_10_1021_acsami_2c11895
crossref_primary_10_3390_cryst13050765
crossref_primary_10_1002_solr_202000419
crossref_primary_10_1016_j_ccr_2021_214180
crossref_primary_10_1002_aenm_202201733
crossref_primary_10_1002_smtd_202300421
crossref_primary_10_1088_1361_6641_ac7d70
crossref_primary_10_1021_acs_inorgchem_3c04368
crossref_primary_10_1002_solr_202200570
crossref_primary_10_1039_D4TA02446J
crossref_primary_10_1016_j_electacta_2020_137360
crossref_primary_10_1007_s11664_024_11266_8
crossref_primary_10_1002_ente_202201159
crossref_primary_10_1016_j_heliyon_2024_e34059
crossref_primary_10_1021_acsami_1c06533
crossref_primary_10_1002_ente_202100691
crossref_primary_10_3390_nano11051253
crossref_primary_10_1002_aenm_202104051
crossref_primary_10_1039_D0NR06138G
crossref_primary_10_1016_j_solmat_2025_113441
crossref_primary_10_1002_solr_202100815
crossref_primary_10_1021_acs_nanolett_2c02071
crossref_primary_10_1063_5_0156462
crossref_primary_10_1016_j_jallcom_2022_168101
crossref_primary_10_1021_acsaem_1c00054
crossref_primary_10_1002_adma_202309193
crossref_primary_10_1088_1402_4896_acfaf2
crossref_primary_10_1039_D2NR07022G
crossref_primary_10_1016_j_jmat_2022_09_005
crossref_primary_10_1016_j_apsusc_2024_159831
crossref_primary_10_1039_D3CP05445D
crossref_primary_10_1002_solr_202100923
crossref_primary_10_1039_D3YA00057E
crossref_primary_10_1016_j_optmat_2023_114672
crossref_primary_10_1016_j_joule_2022_05_013
crossref_primary_10_1016_j_surfin_2022_102307
crossref_primary_10_1021_acsaem_1c02005
crossref_primary_10_3390_nanomanufacturing3020012
crossref_primary_10_1016_j_jcis_2024_05_092
crossref_primary_10_1016_j_nanoen_2025_110859
crossref_primary_10_1002_aenm_202202491
crossref_primary_10_3390_ma17133222
crossref_primary_10_1002_solr_202100375
crossref_primary_10_1002_admi_202200447
crossref_primary_10_1088_1674_4926_42_7_071901
crossref_primary_10_1039_D0MA00994F
crossref_primary_10_1002_aenm_202100672
crossref_primary_10_1007_s12274_021_3566_x
crossref_primary_10_1016_j_cej_2023_141943
crossref_primary_10_1002_anie_202315841
crossref_primary_10_1002_aenm_202402595
crossref_primary_10_1039_D2TA01170K
crossref_primary_10_1016_j_jelechem_2024_118563
crossref_primary_10_1021_acsanm_2c00732
crossref_primary_10_1039_D4NR03579H
crossref_primary_10_1016_j_microc_2023_108940
crossref_primary_10_1002_ange_202108800
crossref_primary_10_1002_cssc_202301761
crossref_primary_10_1016_j_joule_2023_09_009
crossref_primary_10_1016_j_mset_2023_10_003
crossref_primary_10_1002_adfm_202109321
crossref_primary_10_1103_PhysRevMaterials_5_035405
crossref_primary_10_1007_s11467_020_1046_0
crossref_primary_10_1039_D3NR01390A
crossref_primary_10_1002_solr_202100880
crossref_primary_10_1088_1402_4896_adaaad
crossref_primary_10_1016_j_nantod_2020_101062
crossref_primary_10_1021_acsami_0c09571
crossref_primary_10_1021_acssuschemeng_2c05859
crossref_primary_10_1007_s40843_020_1499_8
crossref_primary_10_1016_j_solener_2023_112240
crossref_primary_10_1007_s42247_022_00364_0
crossref_primary_10_1039_D0TA09096D
crossref_primary_10_1016_j_cej_2022_136242
crossref_primary_10_1007_s43621_024_00702_8
crossref_primary_10_1002_sstr_202000050
crossref_primary_10_1039_D1SE01721G
crossref_primary_10_1002_smtd_202300192
crossref_primary_10_1016_j_jcis_2022_02_049
crossref_primary_10_1016_j_ceramint_2024_10_043
crossref_primary_10_1016_j_jechem_2022_07_035
crossref_primary_10_1016_j_mseb_2022_115645
crossref_primary_10_1002_eem2_12524
crossref_primary_10_1021_acsami_1c02377
crossref_primary_10_1088_1402_4896_ad0a27
crossref_primary_10_1002_agt2_19
crossref_primary_10_1021_acs_accounts_1c00343
crossref_primary_10_1007_s11801_022_1187_6
crossref_primary_10_1007_s10904_024_03270_6
crossref_primary_10_1002_solr_202200020
crossref_primary_10_1021_acs_nanolett_2c00002
crossref_primary_10_1007_s42765_023_00366_5
crossref_primary_10_1016_j_physb_2021_413650
crossref_primary_10_1021_acsami_4c11177
crossref_primary_10_1016_j_physb_2024_415915
crossref_primary_10_1002_adfm_202111894
crossref_primary_10_1002_er_8742
crossref_primary_10_1002_adma_202004832
crossref_primary_10_1002_aenm_202301965
crossref_primary_10_1016_j_surfin_2023_103575
crossref_primary_10_1007_s10854_024_12177_4
crossref_primary_10_1016_j_mtelec_2024_100114
crossref_primary_10_1039_D1CP05809F
crossref_primary_10_1016_j_synthmet_2021_116918
crossref_primary_10_1021_acs_energyfuels_1c01378
crossref_primary_10_1016_j_cej_2024_156691
crossref_primary_10_1016_j_mtphys_2023_101088
crossref_primary_10_1002_advs_202203749
crossref_primary_10_1002_anie_202108800
crossref_primary_10_1021_acsenergylett_1c01817
crossref_primary_10_1002_inf2_12322
crossref_primary_10_1016_j_mattod_2020_09_002
crossref_primary_10_1016_j_surfin_2021_101598
crossref_primary_10_1039_D2CE00637E
crossref_primary_10_1002_adom_202301052
crossref_primary_10_1016_j_jcis_2025_02_167
crossref_primary_10_1088_1361_6463_ad82f7
Cites_doi 10.1246/cl.190270
10.1002/solr.201800354
10.1021/acs.chemmater.5b04107
10.1016/j.matlet.2017.04.046
10.1021/ja301539s
10.1021/acsenergylett.8b00270
10.1002/aenm.201900896
10.1021/acs.nanolett.7b00050
10.1016/j.joule.2019.07.015
10.1002/solr.201800278
10.1007/s11426-019-9504-x
10.1021/acsenergylett.7b00606
10.1021/acsami.9b14957
10.1002/advs.201801123
10.1039/C6TA04685A
10.1002/aenm.201601130
10.1002/anie.201807270
10.1002/solr.201900254
10.1039/C8TC01837E
10.1002/solr.201900233
10.1063/1.5019608
10.1002/solr.201700180
10.1002/smll.201900854
10.1002/aenm.201800525
10.1002/solr.201900135
10.1021/acs.chemrev.9b00107
10.1002/solr.201700188
10.1016/j.nanoen.2016.09.009
10.1021/jacs.7b07949
10.1021/acsenergylett.6b00341
10.1021/acsenergylett.8b00672
10.1016/j.joule.2018.10.008
10.1021/jacs.9b06796
10.1126/science.aag2700
10.1021/jacs.7b08628
10.1039/C8TA02522C
10.1002/adma.201401991
10.1038/ncomms13938
10.1002/solr.201700086
10.1002/anie.201801837
10.1021/acs.nanolett.9b01553
10.1039/C7TA00929A
10.1021/acs.accounts.5b00404
10.1002/solr.201600001
10.1002/aenm.201803150
10.1039/C5TA06398A
10.1038/nenergy.2016.149
10.1038/s41467-019-13909-5
10.1021/acsenergylett.7b00707
10.1021/jacs.6b10227
10.1126/science.aav8680
10.1002/adma.201603072
10.1002/advs.201901067
10.1002/aenm.201900555
10.1002/anie.201901081
10.1021/acsami.7b16349
10.1002/solr.201800139
10.1021/jz500279b
10.1039/C5TA05741H
10.1002/adfm.200700124
10.1021/jacs.8b07927
10.1016/j.jlumin.2011.09.006
10.1038/s41467-018-06915-6
10.1002/adma.201703682
10.1002/solr.201900212
10.1002/adma.201806593
10.1021/jacs.7b13229
10.1038/s41467-018-07951-y
10.1002/solr.201800284
10.1038/nenergy.2016.178
10.1021/nl5048779
10.1039/C7NR09657G
10.1007/s40820-019-0320-y
10.1126/sciadv.1700841
10.1021/acs.chemmater.8b01808
10.1021/acs.jpclett.8b03742
10.1039/C8SE00154E
10.1021/acs.nanolett.9b00238
10.1021/jacs.6b10734
10.1016/j.nanoen.2014.04.017
10.1021/acs.jpclett.7b02008
10.1021/acs.jpclett.6b02344
10.1002/aenm.201802346
10.1021/acsenergylett.7b00416
10.1021/acsenergylett.7b00591
10.1002/solr.201800164
10.1002/anie.201910800
10.1016/j.joule.2018.10.011
10.1002/adma.201903448
10.1021/acs.jpclett.6b00002
10.1021/cg400645t
10.1039/C8TA03811B
10.1016/j.solmat.2018.04.032
10.1002/adfm.201900964
10.1002/aenm.201600457
10.1039/C8TA08900K
10.1063/1.4748888
10.1002/smll.201704443
10.1021/acsenergylett.7b00751
10.1016/j.nanoen.2019.04.066
10.1039/C7TA11154A
10.1002/adma.201802509
10.1126/science.1243982
10.1021/acsami.6b11393
10.1021/acs.jpclett.5b02597
10.1039/C7SE00100B
10.1016/j.joule.2018.01.009
10.1016/j.electacta.2013.03.036
10.1002/solr.201800216
10.1021/acsenergylett.7b00171
10.1002/adma.201905143
10.1039/C6TA08332C
10.1002/cphc.201900447
10.1039/C9TC04164H
10.1002/cssc.201702221
10.1002/adma.201705393
10.1002/adma.201901152
10.1002/solr.201800239
10.1021/acsami.9b23384
10.1002/adma.201900605
10.1021/acsenergylett.6b00402
10.1002/adma.201800855
10.1126/science.aax3878
10.1002/solr.201800315
10.1038/s41467-018-04636-4
10.1002/anie.201800019
10.1016/j.jpowsour.2018.07.091
10.1021/acs.jpclett.8b02555
10.1016/S0022-0248(01)01972-8
10.1002/anie.202000199
10.1002/adma.201502567
10.1002/aenm.201803572
10.1021/acsenergylett.7b00257
10.1038/nenergy.2016.194
10.1021/jp5126624
10.1002/solr.201900287
10.1038/ncomms15684
10.1038/1821436a0
10.1038/s41467-019-12678-5
10.1007/s11426-019-9486-0
10.1002/aenm.201600474
10.1002/aenm.201502458
10.1002/anie.201907331
10.1016/j.isci.2019.04.025
10.1021/acs.jpclett.5b00968
10.1002/solr.201800075
10.1038/s41467-018-03169-0
10.1038/s41563-018-0018-4
10.1002/adma.201900326
10.1002/aenm.201903751
10.1021/acs.jpcc.7b06268
10.1016/j.joule.2017.07.017
10.1016/j.joule.2018.05.004
10.1007/978-3-319-35114-8_3
10.1007/s00706-017-1933-9
10.1016/j.joule.2018.06.013
10.1021/acsenergylett.6b00499
10.1021/acsami.9b09171
10.1016/j.joule.2018.04.012
10.1002/solr.201800217
10.1002/aenm.201800504
10.1038/nnano.2014.181
10.1002/anie.201910843
10.1002/aenm.201901685
10.1021/acsenergylett.7b00508
10.1039/C7TA06816F
10.1002/aenm.201800398
10.1002/solr.201900265
ContentType Journal Article
Copyright 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
7SP
7TB
8FD
F28
FR3
H8D
L7M
DOI 10.1002/aenm.202000183
DatabaseName CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList CrossRef
Aerospace Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1614-6840
EndPage n/a
ExternalDocumentID 10_1002_aenm_202000183
AENM202000183
Genre reviewArticle
GrantInformation_xml – fundername: DFG
  funderid: BR 4031/13‐1
– fundername: Solar Technologies go Hybrid
– fundername: Science and Technology Program of Guangdong Province, China
  funderid: 2018A030313045
– fundername: Basic and Applied Basic Research Major Program of Guangdong Province
  funderid: 2019B030302007
– fundername: Natural Science Foundation of China
  funderid: 21761132001; 91733302; 51803060
– fundername: DFG
  funderid: SFB 953; 182849149
– fundername: Science and Technology Program of Guangzhou, China
  funderid: 2017A050503002
– fundername: state of Bavaria (EnCN and SFF)
– fundername: Ministry of Science and Technology
  funderid: 2017YF0206600
GroupedDBID 05W
0R~
1OC
33P
4.4
50Y
5VS
8-0
8-1
A00
AAESR
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABJNI
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFWVQ
AFZJQ
AHBTC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
AZVAB
BDRZF
BFHJK
BMXJE
BRXPI
D-A
DCZOG
EBS
G-S
HGLYW
HZ~
KBYEO
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY.
MY~
O9-
P2W
P4E
RNS
ROL
RX1
SUPJJ
WBKPD
WOHZO
WXSBR
WYJ
ZZTAW
~S-
31~
AANHP
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
GODZA
HVGLF
7SP
7TB
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
F28
FR3
H8D
L7M
ID FETCH-LOGICAL-c4203-1bc3d5e37c7d58f264e1c2f3dd78ff7b4127f28c6953458afe47220d7eaf00993
ISSN 1614-6832
IngestDate Fri Jul 25 12:05:17 EDT 2025
Tue Jul 01 01:43:34 EDT 2025
Thu Apr 24 23:03:54 EDT 2025
Wed Jan 22 16:38:04 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 23
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c4203-1bc3d5e37c7d58f264e1c2f3dd78ff7b4127f28c6953458afe47220d7eaf00993
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5750-9751
PQID 2413318257
PQPubID 886389
PageCount 28
ParticipantIDs proquest_journals_2413318257
crossref_primary_10_1002_aenm_202000183
crossref_citationtrail_10_1002_aenm_202000183
wiley_primary_10_1002_aenm_202000183_AENM202000183
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-06-01
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 06
  year: 2020
  text: 2020-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced energy materials
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 5
2017; 8
2017; 1
2017; 2
2017; 3
2019; 11
2019; 10
2019; 15
2019; 58
2014; 26
2020; 59
2019; 19
2020; 12
2020; 11
2020; 10
2017; 199
2019; 365
2018; 6
2018; 9
2018; 8
2014; 5
2018; 3
2012; 132
2018; 2
2019; 62
2012; 134
2018; 5
2019; 61
2019; 20
2013; 98
2013; 13
2002; 237–239
2016; 354
2019; 29
2019; 119
2018; 30
2017; 121
2014; 9
2014; 7
2016; 49
2007; 17
2019; 7
2015; 15
2019; 9
2015; 6
2019; 3
2012; 101
2018; 140
2019; 6
2018; 184
2015; 3
2019; 31
2013; 342
2017; 29
2019; 141
2017; 139
1958; 182
2016; 4
2016; 6
2018; 17
2016; 7
2016; 1
2015; 27
2017; 17
2018; 399
2018; 112
2019; 48
2019
2016
2015; 119
2016; 138
2018; 11
2016; 28
2018; 10
2017; 148
2016; 8
2018; 14
2018; 57
e_1_2_7_108_1
e_1_2_7_3_1
e_1_2_7_104_1
e_1_2_7_127_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_83_1
e_1_2_7_100_1
e_1_2_7_123_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_87_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_161_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_142_1
e_1_2_7_165_1
e_1_2_7_146_1
e_1_2_7_169_1
e_1_2_7_116_1
e_1_2_7_90_1
e_1_2_7_112_1
e_1_2_7_94_1
e_1_2_7_71_1
e_1_2_7_52_1
e_1_2_7_98_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_75_1
e_1_2_7_56_1
e_1_2_7_150_1
e_1_2_7_37_1
e_1_2_7_79_1
e_1_2_7_131_1
e_1_2_7_154_1
e_1_2_7_135_1
e_1_2_7_158_1
e_1_2_7_139_1
e_1_2_7_109_1
e_1_2_7_4_1
e_1_2_7_128_1
e_1_2_7_105_1
e_1_2_7_8_1
e_1_2_7_124_1
e_1_2_7_101_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_82_1
e_1_2_7_120_1
e_1_2_7_63_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_86_1
e_1_2_7_67_1
e_1_2_7_48_1
e_1_2_7_162_1
e_1_2_7_143_1
e_1_2_7_29_1
e_1_2_7_166_1
e_1_2_7_147_1
e_1_2_7_117_1
e_1_2_7_113_1
e_1_2_7_51_1
e_1_2_7_70_1
e_1_2_7_93_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_74_1
e_1_2_7_97_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_78_1
e_1_2_7_151_1
e_1_2_7_132_1
e_1_2_7_155_1
e_1_2_7_136_1
e_1_2_7_159_1
e_1_2_7_5_1
e_1_2_7_106_1
e_1_2_7_129_1
e_1_2_7_9_1
e_1_2_7_102_1
e_1_2_7_125_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_81_1
e_1_2_7_121_1
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_85_1
e_1_2_7_47_1
e_1_2_7_89_1
e_1_2_7_140_1
e_1_2_7_163_1
e_1_2_7_28_1
e_1_2_7_144_1
e_1_2_7_167_1
e_1_2_7_148_1
e_1_2_7_118_1
e_1_2_7_114_1
e_1_2_7_73_1
e_1_2_7_110_1
e_1_2_7_50_1
e_1_2_7_92_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_77_1
e_1_2_7_54_1
e_1_2_7_96_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_58_1
e_1_2_7_152_1
e_1_2_7_39_1
e_1_2_7_133_1
e_1_2_7_156_1
e_1_2_7_137_1
e_1_2_7_6_1
e_1_2_7_107_1
e_1_2_7_80_1
e_1_2_7_126_1
e_1_2_7_103_1
e_1_2_7_18_1
e_1_2_7_84_1
e_1_2_7_122_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_88_1
e_1_2_7_65_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_160_1
e_1_2_7_69_1
e_1_2_7_141_1
e_1_2_7_27_1
e_1_2_7_164_1
e_1_2_7_145_1
e_1_2_7_168_1
e_1_2_7_149_1
e_1_2_7_119_1
e_1_2_7_91_1
e_1_2_7_115_1
e_1_2_7_72_1
e_1_2_7_95_1
e_1_2_7_111_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_76_1
e_1_2_7_99_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_130_1
e_1_2_7_38_1
e_1_2_7_153_1
e_1_2_7_134_1
e_1_2_7_157_1
e_1_2_7_138_1
References_xml – volume: 19
  start-page: 5176
  year: 2019
  publication-title: Nano Lett.
– volume: 10
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 9
  start-page: 4544
  year: 2018
  publication-title: Nat. Commun.
– volume: 11
  start-page: 91
  year: 2019
  publication-title: Nano‐Micro Lett.
– volume: 2
  start-page: 2419
  year: 2018
  publication-title: Sustainable Energy Fuels
– volume: 7
  year: 2019
  publication-title: J. Mater. Chem. C
– volume: 2
  start-page: 1500
  year: 2018
  publication-title: Joule
– volume: 7
  start-page: 80
  year: 2014
  publication-title: Nano Energy
– volume: 112
  year: 2018
  publication-title: Appl. Phys. Lett.
– volume: 12
  year: 2020
  publication-title: ACS Appl. Mater. Interfaces
– volume: 182
  start-page: 1436
  year: 1958
  publication-title: Nature
– volume: 121
  year: 2017
  publication-title: J. Phys. Chem. C
– volume: 14
  year: 2018
  publication-title: Small
– volume: 3
  start-page: 205
  year: 2019
  publication-title: Joule
– volume: 139
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 3
  start-page: 2485
  year: 2019
  publication-title: Joule
– volume: 140
  start-page: 3825
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 7
  start-page: 5028
  year: 2016
  publication-title: J. Phys. Chem. Lett.
– volume: 8
  year: 2017
  publication-title: Nat. Commun.
– volume: 48
  start-page: 989
  year: 2019
  publication-title: Chem. Lett.
– volume: 11
  start-page: 837
  year: 2018
  publication-title: ChemSusChem
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 9
  start-page: 927
  year: 2014
  publication-title: Nat. Nanotechnol.
– volume: 58
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 1
  start-page: 710
  year: 2017
  publication-title: Sustainable Energy Fuels
– volume: 6
  start-page: 5580
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 27
  start-page: 7162
  year: 2015
  publication-title: Adv. Mater.
– volume: 1
  year: 2017
  publication-title: Sol. RRL
– volume: 6
  year: 2019
  publication-title: Adv. Sci.
– volume: 3
  start-page: 1787
  year: 2018
  publication-title: ACS Energy Lett.
– volume: 3
  year: 2018
  publication-title: Sol. RRL
– year: 2019
– volume: 9
  start-page: 2225
  year: 2018
  publication-title: Nat. Commun.
– volume: 30
  start-page: 6668
  year: 2018
  publication-title: Chem. Mater.
– volume: 399
  start-page: 76
  year: 2018
  publication-title: J. Power Sources
– volume: 6
  start-page: 2452
  year: 2015
  publication-title: J. Phys. Chem. Lett.
– volume: 57
  start-page: 3787
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 3
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 1
  start-page: 573
  year: 2016
  publication-title: ACS Energy Lett.
– volume: 4
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 2
  start-page: 1901
  year: 2017
  publication-title: ACS Energy Lett.
– volume: 5
  year: 2018
  publication-title: Adv. Sci.
– volume: 6
  start-page: 6287
  year: 2018
  publication-title: J. Mater. Chem. C
– volume: 20
  start-page: 2580
  year: 2019
  publication-title: ChemPhysChem
– volume: 1
  start-page: 371
  year: 2017
  publication-title: Joule
– volume: 59
  start-page: 4391
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 2
  year: 2018
  publication-title: Sol. RRL
– volume: 2
  start-page: 1501
  year: 2017
  publication-title: ACS Energy Lett.
– volume: 3
  start-page: 191
  year: 2019
  publication-title: Joule
– volume: 10
  start-page: 9996
  year: 2018
  publication-title: Nanoscale
– volume: 11
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 15
  start-page: 156
  year: 2019
  publication-title: iScience
– volume: 5
  start-page: 1035
  year: 2014
  publication-title: J. Phys. Chem. Lett.
– volume: 7
  start-page: 746
  year: 2016
  publication-title: J. Phys. Chem. Lett.
– volume: 139
  start-page: 836
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 2
  start-page: 2183
  year: 2017
  publication-title: ACS Energy Lett.
– volume: 28
  start-page: 469
  year: 2016
  publication-title: Nano Energy
– volume: 184
  start-page: 15
  year: 2018
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 26
  start-page: 7122
  year: 2014
  publication-title: Adv. Mater.
– volume: 62
  start-page: 810
  year: 2019
  publication-title: Sci. China: Chem.
– volume: 3
  start-page: 970
  year: 2018
  publication-title: ACS Energy Lett.
– volume: 2
  start-page: 558
  year: 2018
  publication-title: Joule
– volume: 134
  start-page: 8579
  year: 2012
  publication-title: J. Am. Chem. Soc.
– volume: 3
  year: 2019
  publication-title: Sol. RRL
– volume: 199
  start-page: 50
  year: 2017
  publication-title: Mater. Lett.
– volume: 57
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 1
  start-page: 1028
  year: 2016
  publication-title: ACS Energy Lett.
– volume: 342
  start-page: 341
  year: 2013
  publication-title: Science
– volume: 141
  year: 2019
  publication-title: J. Am. Chem. Soc.
– volume: 2
  start-page: 1621
  year: 2017
  publication-title: ACS Energy Lett.
– volume: 9
  start-page: 6024
  year: 2018
  publication-title: J. Phys. Chem. Lett.
– volume: 17
  start-page: 2028
  year: 2017
  publication-title: Nano Lett.
– volume: 11
  start-page: 177
  year: 2020
  publication-title: Nat. Commun.
– volume: 49
  start-page: 155
  year: 2016
  publication-title: Acc. Chem. Res.
– volume: 2
  start-page: 2319
  year: 2017
  publication-title: ACS Energy Lett.
– start-page: 53
  year: 2016
– volume: 237–239
  start-page: 538
  year: 2002
  publication-title: J. Cryst. Growth
– volume: 9
  start-page: 1076
  year: 2018
  publication-title: Nat. Commun.
– volume: 2
  year: 2017
  publication-title: Nat. Energy
– volume: 62
  start-page: 1044
  year: 2019
  publication-title: Sci. China: Chem.
– volume: 2
  start-page: 1356
  year: 2018
  publication-title: Joule
– volume: 148
  start-page: 795
  year: 2017
  publication-title: Monatsh. Chem.
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 1
  year: 2016
  publication-title: Nat. Energy
– volume: 119
  start-page: 7444
  year: 2019
  publication-title: Chem. Rev.
– volume: 6
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 98
  start-page: 263
  year: 2013
  publication-title: Electrochim. Acta
– volume: 28
  start-page: 284
  year: 2016
  publication-title: Chem. Mater.
– volume: 2
  start-page: 2239
  year: 2017
  publication-title: ACS Energy Lett.
– volume: 3
  year: 2017
  publication-title: Sci. Adv.
– volume: 19
  start-page: 2066
  year: 2019
  publication-title: Nano Lett.
– volume: 17
  start-page: 394
  year: 2018
  publication-title: Nat. Mater.
– volume: 354
  start-page: 92
  year: 2016
  publication-title: Science
– volume: 119
  start-page: 1763
  year: 2015
  publication-title: J. Phys. Chem. C
– volume: 57
  start-page: 5746
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 10
  start-page: 2566
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 10
  start-page: 194
  year: 2019
  publication-title: J. Phys. Chem. Lett.
– volume: 5
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 6
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 101
  year: 2012
  publication-title: Appl. Phys. Lett.
– volume: 2
  start-page: 2065
  year: 2018
  publication-title: Joule
– volume: 2
  start-page: 897
  year: 2017
  publication-title: ACS Energy Lett.
– volume: 132
  start-page: 345
  year: 2012
  publication-title: J. Lumin.
– volume: 1
  start-page: 1233
  year: 2016
  publication-title: ACS Energy Lett.
– volume: 2
  start-page: 2219
  year: 2017
  publication-title: ACS Energy Lett.
– volume: 15
  start-page: 3692
  year: 2015
  publication-title: Nano Lett.
– volume: 365
  start-page: 591
  year: 2019
  publication-title: Science
– volume: 8
  start-page: 4391
  year: 2017
  publication-title: J. Phys. Chem. Lett.
– volume: 15
  year: 2019
  publication-title: Small
– volume: 9
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 17
  start-page: 3274
  year: 2007
  publication-title: Adv. Funct. Mater.
– volume: 10
  start-page: 16
  year: 2019
  publication-title: Nat. Commun.
– volume: 7
  start-page: 167
  year: 2016
  publication-title: J. Phys. Chem. Lett.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 8
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 140
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 365
  start-page: 679
  year: 2019
  publication-title: Science
– volume: 10
  start-page: 4686
  year: 2019
  publication-title: Nat. Commun.
– volume: 138
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 13
  start-page: 2722
  year: 2013
  publication-title: Cryst. Growth Des.
– volume: 61
  start-page: 165
  year: 2019
  publication-title: Nano Energy
– ident: e_1_2_7_33_1
  doi: 10.1246/cl.190270
– ident: e_1_2_7_87_1
  doi: 10.1002/solr.201800354
– ident: e_1_2_7_21_1
  doi: 10.1021/acs.chemmater.5b04107
– ident: e_1_2_7_163_1
  doi: 10.1016/j.matlet.2017.04.046
– ident: e_1_2_7_32_1
  doi: 10.1021/ja301539s
– ident: e_1_2_7_100_1
  doi: 10.1021/acsenergylett.8b00270
– ident: e_1_2_7_108_1
  doi: 10.1002/aenm.201900896
– ident: e_1_2_7_95_1
  doi: 10.1021/acs.nanolett.7b00050
– ident: e_1_2_7_129_1
  doi: 10.1016/j.joule.2019.07.015
– ident: e_1_2_7_47_1
  doi: 10.1002/solr.201800278
– ident: e_1_2_7_28_1
  doi: 10.1007/s11426-019-9504-x
– ident: e_1_2_7_37_1
  doi: 10.1021/acsenergylett.7b00606
– ident: e_1_2_7_137_1
  doi: 10.1021/acsami.9b14957
– ident: e_1_2_7_123_1
  doi: 10.1002/advs.201801123
– ident: e_1_2_7_153_1
  doi: 10.1039/C6TA04685A
– ident: e_1_2_7_141_1
  doi: 10.1002/aenm.201601130
– ident: e_1_2_7_105_1
  doi: 10.1002/anie.201807270
– ident: e_1_2_7_121_1
  doi: 10.1002/solr.201900254
– ident: e_1_2_7_132_1
  doi: 10.1039/C8TC01837E
– ident: e_1_2_7_117_1
  doi: 10.1002/solr.201900233
– ident: e_1_2_7_29_1
  doi: 10.1063/1.5019608
– ident: e_1_2_7_127_1
  doi: 10.1002/solr.201700180
– ident: e_1_2_7_169_1
  doi: 10.1002/smll.201900854
– ident: e_1_2_7_97_1
  doi: 10.1002/aenm.201800525
– ident: e_1_2_7_5_1
  doi: 10.1002/solr.201900135
– ident: e_1_2_7_24_1
  doi: 10.1021/acs.chemrev.9b00107
– ident: e_1_2_7_20_1
  doi: 10.1002/solr.201700188
– ident: e_1_2_7_151_1
  doi: 10.1016/j.nanoen.2016.09.009
– ident: e_1_2_7_98_1
  doi: 10.1021/jacs.7b07949
– ident: e_1_2_7_128_1
  doi: 10.1021/acsenergylett.6b00341
– ident: e_1_2_7_31_1
  doi: 10.1021/acsenergylett.8b00672
– ident: e_1_2_7_101_1
  doi: 10.1016/j.joule.2018.10.008
– ident: e_1_2_7_111_1
  doi: 10.1021/jacs.9b06796
– ident: e_1_2_7_8_1
  doi: 10.1126/science.aag2700
– ident: e_1_2_7_131_1
  doi: 10.1021/jacs.7b08628
– ident: e_1_2_7_82_1
  doi: 10.1039/C8TA02522C
– ident: e_1_2_7_7_1
  doi: 10.1002/adma.201401991
– ident: e_1_2_7_3_1
  doi: 10.1038/ncomms13938
– ident: e_1_2_7_25_1
  doi: 10.1002/solr.201700086
– ident: e_1_2_7_83_1
  doi: 10.1002/anie.201801837
– ident: e_1_2_7_104_1
  doi: 10.1021/acs.nanolett.9b01553
– ident: e_1_2_7_34_1
  doi: 10.1039/C7TA00929A
– ident: e_1_2_7_167_1
  doi: 10.1021/acs.accounts.5b00404
– ident: e_1_2_7_4_1
  doi: 10.1002/solr.201600001
– ident: e_1_2_7_23_1
  doi: 10.1002/aenm.201803150
– ident: e_1_2_7_53_1
  doi: 10.1039/C5TA06398A
– ident: e_1_2_7_164_1
  doi: 10.1038/nenergy.2016.149
– ident: e_1_2_7_120_1
  doi: 10.1038/s41467-019-13909-5
– ident: e_1_2_7_133_1
  doi: 10.1021/acsenergylett.7b00707
– ident: e_1_2_7_75_1
  doi: 10.1021/jacs.6b10227
– ident: e_1_2_7_68_1
  doi: 10.1126/science.aav8680
– ident: e_1_2_7_39_1
  doi: 10.1002/adma.201603072
– ident: e_1_2_7_138_1
  doi: 10.1002/advs.201901067
– ident: e_1_2_7_130_1
  doi: 10.1002/aenm.201900555
– ident: e_1_2_7_42_1
  doi: 10.1002/anie.201901081
– ident: e_1_2_7_159_1
  doi: 10.1021/acsami.7b16349
– ident: e_1_2_7_134_1
  doi: 10.1002/solr.201800139
– ident: e_1_2_7_15_1
  doi: 10.1021/jz500279b
– ident: e_1_2_7_145_1
  doi: 10.1039/C5TA05741H
– ident: e_1_2_7_51_1
  doi: 10.1002/adfm.200700124
– ident: e_1_2_7_65_1
  doi: 10.1021/jacs.8b07927
– ident: e_1_2_7_43_1
  doi: 10.1016/j.jlumin.2011.09.006
– ident: e_1_2_7_67_1
  doi: 10.1038/s41467-018-06915-6
– ident: e_1_2_7_81_1
  doi: 10.1002/adma.201703682
– ident: e_1_2_7_118_1
  doi: 10.1002/solr.201900212
– ident: e_1_2_7_11_1
  doi: 10.1002/adma.201806593
– ident: e_1_2_7_113_1
  doi: 10.1021/jacs.7b13229
– ident: e_1_2_7_143_1
  doi: 10.1038/s41467-018-07951-y
– ident: e_1_2_7_84_1
  doi: 10.1002/solr.201800284
– ident: e_1_2_7_142_1
  doi: 10.1038/nenergy.2016.178
– ident: e_1_2_7_35_1
  doi: 10.1021/nl5048779
– ident: e_1_2_7_60_1
  doi: 10.1039/C7NR09657G
– ident: e_1_2_7_165_1
  doi: 10.1007/s40820-019-0320-y
– ident: e_1_2_7_62_1
  doi: 10.1126/sciadv.1700841
– ident: e_1_2_7_59_1
  doi: 10.1021/acs.chemmater.8b01808
– ident: e_1_2_7_136_1
  doi: 10.1021/acs.jpclett.8b03742
– ident: e_1_2_7_156_1
  doi: 10.1039/C8SE00154E
– ident: e_1_2_7_157_1
  doi: 10.1021/acs.nanolett.9b00238
– ident: e_1_2_7_144_1
  doi: 10.1021/jacs.6b10734
– ident: e_1_2_7_52_1
  doi: 10.1016/j.nanoen.2014.04.017
– ident: e_1_2_7_162_1
  doi: 10.1021/acs.jpclett.7b02008
– ident: e_1_2_7_148_1
  doi: 10.1021/acs.jpclett.6b02344
– ident: e_1_2_7_79_1
  doi: 10.1002/aenm.201802346
– ident: e_1_2_7_30_1
  doi: 10.1021/acsenergylett.7b00416
– ident: e_1_2_7_36_1
  doi: 10.1021/acsenergylett.7b00591
– ident: e_1_2_7_78_1
  doi: 10.1002/solr.201800164
– ident: e_1_2_7_9_1
  doi: 10.1002/anie.201910800
– ident: e_1_2_7_125_1
  doi: 10.1016/j.joule.2018.10.011
– ident: e_1_2_7_103_1
  doi: 10.1002/adma.201903448
– ident: e_1_2_7_94_1
  doi: 10.1021/acs.jpclett.6b00002
– ident: e_1_2_7_26_1
  doi: 10.1021/cg400645t
– ident: e_1_2_7_89_1
  doi: 10.1039/C8TA03811B
– ident: e_1_2_7_158_1
  doi: 10.1016/j.solmat.2018.04.032
– ident: e_1_2_7_139_1
  doi: 10.1002/adfm.201900964
– ident: e_1_2_7_166_1
  doi: 10.1002/aenm.201600457
– ident: e_1_2_7_44_1
  doi: 10.1039/C8TA08900K
– ident: e_1_2_7_6_1
  doi: 10.1063/1.4748888
– ident: e_1_2_7_76_1
  doi: 10.1002/smll.201704443
– ident: e_1_2_7_96_1
  doi: 10.1021/acsenergylett.7b00751
– ident: e_1_2_7_106_1
  doi: 10.1016/j.nanoen.2019.04.066
– ident: e_1_2_7_58_1
  doi: 10.1039/C7TA11154A
– ident: e_1_2_7_2_1
– ident: e_1_2_7_110_1
  doi: 10.1002/adma.201802509
– ident: e_1_2_7_17_1
  doi: 10.1126/science.1243982
– ident: e_1_2_7_74_1
  doi: 10.1021/acsami.6b11393
– ident: e_1_2_7_73_1
  doi: 10.1021/acs.jpclett.5b02597
– ident: e_1_2_7_154_1
  doi: 10.1039/C7SE00100B
– ident: e_1_2_7_155_1
  doi: 10.1016/j.joule.2018.01.009
– ident: e_1_2_7_49_1
  doi: 10.1016/j.electacta.2013.03.036
– ident: e_1_2_7_119_1
  doi: 10.1002/solr.201800216
– ident: e_1_2_7_147_1
  doi: 10.1021/acsenergylett.7b00171
– ident: e_1_2_7_116_1
  doi: 10.1002/adma.201905143
– ident: e_1_2_7_152_1
  doi: 10.1039/C6TA08332C
– ident: e_1_2_7_48_1
  doi: 10.1002/cphc.201900447
– ident: e_1_2_7_40_1
  doi: 10.1039/C9TC04164H
– ident: e_1_2_7_13_1
  doi: 10.1002/cssc.201702221
– ident: e_1_2_7_112_1
  doi: 10.1002/adma.201705393
– ident: e_1_2_7_124_1
  doi: 10.1002/adma.201901152
– ident: e_1_2_7_45_1
  doi: 10.1002/solr.201800239
– ident: e_1_2_7_90_1
  doi: 10.1021/acsami.9b23384
– ident: e_1_2_7_69_1
  doi: 10.1002/adma.201900605
– ident: e_1_2_7_149_1
  doi: 10.1021/acsenergylett.6b00402
– ident: e_1_2_7_91_1
  doi: 10.1002/adma.201800855
– ident: e_1_2_7_22_1
  doi: 10.1126/science.aax3878
– ident: e_1_2_7_115_1
  doi: 10.1002/solr.201800315
– ident: e_1_2_7_64_1
  doi: 10.1038/s41467-018-04636-4
– ident: e_1_2_7_77_1
  doi: 10.1002/anie.201800019
– ident: e_1_2_7_85_1
  doi: 10.1016/j.jpowsour.2018.07.091
– ident: e_1_2_7_146_1
  doi: 10.1021/acs.jpclett.8b02555
– ident: e_1_2_7_50_1
  doi: 10.1016/S0022-0248(01)01972-8
– ident: e_1_2_7_88_1
  doi: 10.1002/anie.202000199
– ident: e_1_2_7_16_1
  doi: 10.1002/adma.201502567
– ident: e_1_2_7_102_1
  doi: 10.1002/aenm.201803572
– ident: e_1_2_7_38_1
  doi: 10.1021/acsenergylett.7b00257
– ident: e_1_2_7_80_1
  doi: 10.1038/nenergy.2016.194
– ident: e_1_2_7_150_1
  doi: 10.1021/jp5126624
– ident: e_1_2_7_54_1
  doi: 10.1002/solr.201900287
– ident: e_1_2_7_140_1
  doi: 10.1038/ncomms15684
– ident: e_1_2_7_27_1
  doi: 10.1038/1821436a0
– ident: e_1_2_7_109_1
  doi: 10.1038/s41467-019-12678-5
– ident: e_1_2_7_107_1
  doi: 10.1007/s11426-019-9486-0
– ident: e_1_2_7_168_1
  doi: 10.1002/aenm.201600474
– ident: e_1_2_7_93_1
  doi: 10.1002/aenm.201502458
– ident: e_1_2_7_46_1
  doi: 10.1002/anie.201907331
– ident: e_1_2_7_61_1
  doi: 10.1016/j.isci.2019.04.025
– ident: e_1_2_7_72_1
  doi: 10.1021/acs.jpclett.5b00968
– ident: e_1_2_7_92_1
  doi: 10.1002/solr.201800075
– ident: e_1_2_7_55_1
  doi: 10.1038/s41467-018-03169-0
– ident: e_1_2_7_18_1
  doi: 10.1038/s41563-018-0018-4
– ident: e_1_2_7_12_1
  doi: 10.1002/adma.201900326
– ident: e_1_2_7_71_1
  doi: 10.1002/aenm.201903751
– ident: e_1_2_7_135_1
  doi: 10.1021/acs.jpcc.7b06268
– ident: e_1_2_7_56_1
  doi: 10.1016/j.joule.2017.07.017
– ident: e_1_2_7_63_1
  doi: 10.1016/j.joule.2018.05.004
– ident: e_1_2_7_14_1
  doi: 10.1007/978-3-319-35114-8_3
– ident: e_1_2_7_19_1
  doi: 10.1007/s00706-017-1933-9
– ident: e_1_2_7_66_1
  doi: 10.1016/j.joule.2018.06.013
– ident: e_1_2_7_10_1
  doi: 10.1021/acsenergylett.6b00499
– ident: e_1_2_7_122_1
  doi: 10.1021/acsami.9b09171
– ident: e_1_2_7_126_1
  doi: 10.1016/j.joule.2018.04.012
– ident: e_1_2_7_161_1
  doi: 10.1002/solr.201800217
– ident: e_1_2_7_99_1
  doi: 10.1002/aenm.201800504
– ident: e_1_2_7_1_1
  doi: 10.1038/nnano.2014.181
– ident: e_1_2_7_86_1
  doi: 10.1002/anie.201910843
– ident: e_1_2_7_70_1
  doi: 10.1002/aenm.201901685
– ident: e_1_2_7_57_1
  doi: 10.1021/acsenergylett.7b00508
– ident: e_1_2_7_160_1
  doi: 10.1039/C7TA06816F
– ident: e_1_2_7_41_1
  doi: 10.1002/aenm.201800398
– ident: e_1_2_7_114_1
  doi: 10.1002/solr.201900265
SSID ssj0000491033
Score 2.6700332
SecondaryResourceType review_article
Snippet All‐inorganic perovskite semiconductors have recently drawn increasing attention owing to their outstanding thermal stability. Although all‐inorganic...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Composition
Electron transport
inorganic perovskite
lead‐based
lead‐free perovskites
Optimization
perovskite solar cells
Perovskites
Photovoltaic cells
Physical properties
Semiconductors
Solar cells
Thermal stability
Title Inorganic Halide Perovskite Solar Cells: Progress and Challenges
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.202000183
https://www.proquest.com/docview/2413318257
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfGdoHDtA0QHWPyYRKHKuDYSeNyWlWGummdQNukcooSf0hFVYpox4G_nuf4KxWf2yWqXDtR_H72-8h7PyN0IgaS1Dm4qVLBIs9olSWcVzQBd4gRrkWR1ibeMb0aTG6zi1k-i-m2bXXJun4jfvy2ruQhUoU2kKupkr2HZMNNoQF-g3zhChKG63_J-LyxhzKJ_gTMaalMPvvy-8oEZPvXxmftj9Vi0Sa9fTR5WGZXM4HysT9BZdW1TUc-HUDZekCwZe1LBO9-bqOlF6DuvniVB-2zuzYq-mmuI9Q-V0vbFlN-5hZ5bpyLNFASM6Lc5giqPBlwF49U3TZLuRR2VNJBji0ndso1qJ5fdm7LBFupxtADmPqhlLOoo_x3-dAz_3tfy-h7djUN_z9COxQ8CdgKd0bvp5fXIRAHLlJKWFuI4d_Pk3sS-nbzIZvGS_RIun5Na5jc7KFd51HgkYXHPtpSzQF60uGZfIpOA1CwBQqOQMEtUHALlHfYwwQDTHCEyTN0--HsZjxJ3NEZicioyTasBZO5YoUoZM41WL0qFVQzKQuudVFnKS005WIwzFmW80orQxpKZKEqbZwG9hxtN8tGvUBYpHqo61wzoqFrDSPIsDI0cRKEwMSwhxI_J6VwvPLmeJNFaRmxaWnmsAxz2EOvQ_-vllHljz2P_BSXbtWtSvMdGPQQaJoeou20_-Mu5QYMDh8y6CV6HNfDEdpef7tTr8AWXdfHDk0_ATrefgE
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inorganic+Halide+Perovskite+Solar+Cells%3A+Progress+and+Challenges&rft.jtitle=Advanced+energy+materials&rft.au=Tian%2C+Jingjing&rft.au=Xue%2C+Qifan&rft.au=Yao%2C+Qin&rft.au=Li%2C+Ning&rft.date=2020-06-01&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=10&rft.issue=23&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Faenm.202000183&rft.externalDBID=10.1002%252Faenm.202000183&rft.externalDocID=AENM202000183
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon