Inorganic Halide Perovskite Solar Cells: Progress and Challenges
All‐inorganic perovskite semiconductors have recently drawn increasing attention owing to their outstanding thermal stability. Although all‐inorganic perovskite solar cells (PSCs) have achieved significant progress in recent years, they still fall behind their prototype organic–inorganic counterpart...
Saved in:
Published in | Advanced energy materials Vol. 10; no. 23 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.06.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | All‐inorganic perovskite semiconductors have recently drawn increasing attention owing to their outstanding thermal stability. Although all‐inorganic perovskite solar cells (PSCs) have achieved significant progress in recent years, they still fall behind their prototype organic–inorganic counterparts owing to severe energy losses. Therefore, there is considerable interest in further improving the performance of all‐inorganic PSCs by synergic optimization of perovskite films and device interfaces. This review article provides an overview of recent progress in inorganic PSCs in terms of lead‐based and lead‐free composition. The physical properties of all‐inorganic perovskite semiconductors as well as the hole/electron transporting materials are discussed to unveil the important role of composition engineering and interface modification. Finally, a discussion of the prospects and challenges for all‐inorganic PSCs in the near future is presented.
Recent progress in inorganic lead‐based and lead‐free CsBX3 perovskite solar cells using various strategies is reviewed and their prospects and challenges in the future are discussed in detail. |
---|---|
AbstractList | All‐inorganic perovskite semiconductors have recently drawn increasing attention owing to their outstanding thermal stability. Although all‐inorganic perovskite solar cells (PSCs) have achieved significant progress in recent years, they still fall behind their prototype organic–inorganic counterparts owing to severe energy losses. Therefore, there is considerable interest in further improving the performance of all‐inorganic PSCs by synergic optimization of perovskite films and device interfaces. This review article provides an overview of recent progress in inorganic PSCs in terms of lead‐based and lead‐free composition. The physical properties of all‐inorganic perovskite semiconductors as well as the hole/electron transporting materials are discussed to unveil the important role of composition engineering and interface modification. Finally, a discussion of the prospects and challenges for all‐inorganic PSCs in the near future is presented. All‐inorganic perovskite semiconductors have recently drawn increasing attention owing to their outstanding thermal stability. Although all‐inorganic perovskite solar cells (PSCs) have achieved significant progress in recent years, they still fall behind their prototype organic–inorganic counterparts owing to severe energy losses. Therefore, there is considerable interest in further improving the performance of all‐inorganic PSCs by synergic optimization of perovskite films and device interfaces. This review article provides an overview of recent progress in inorganic PSCs in terms of lead‐based and lead‐free composition. The physical properties of all‐inorganic perovskite semiconductors as well as the hole/electron transporting materials are discussed to unveil the important role of composition engineering and interface modification. Finally, a discussion of the prospects and challenges for all‐inorganic PSCs in the near future is presented. Recent progress in inorganic lead‐based and lead‐free CsBX3 perovskite solar cells using various strategies is reviewed and their prospects and challenges in the future are discussed in detail. |
Author | Yao, Qin Li, Ning Brabec, Christoph J. Tian, Jingjing Yip, Hin‐Lap Xue, Qifan |
Author_xml | – sequence: 1 givenname: Jingjing surname: Tian fullname: Tian, Jingjing organization: South China University of Technology – sequence: 2 givenname: Qifan surname: Xue fullname: Xue, Qifan email: qfxue@scut.edu.cn organization: South China Institute of Collaborative Innovation – sequence: 3 givenname: Qin surname: Yao fullname: Yao, Qin organization: South China University of Technology – sequence: 4 givenname: Ning surname: Li fullname: Li, Ning organization: Zhengzhou University – sequence: 5 givenname: Christoph J. surname: Brabec fullname: Brabec, Christoph J. organization: Forschungszentrum Jülich – sequence: 6 givenname: Hin‐Lap orcidid: 0000-0002-5750-9751 surname: Yip fullname: Yip, Hin‐Lap email: msangusyip@scut.edu.cn organization: South China Institute of Collaborative Innovation |
BookMark | eNqFkEtLAzEUhYMoWGu3rgdcT81rXq4spdpC1YK6DmnmpqamSU2mSv-9UyoVBHF17-J858B3ho6dd4DQBcF9gjG9kuBWfYopxpiU7Ah1SE54mpccHx9-Rk9RL8Zlm8G8IpixDrqZOB8W0hmVjKU1NSQzCP4jvpkGkidvZUiGYG28TmbBLwLEmEhXJ8NXaS24BcRzdKKljdD7vl30cjt6Ho7T6ePdZDiYpopTzFIyV6zOgBWqqLNS05wDUVSzui5KrYs5J7TQtFR5lTGelVIDLyjFdQFSY1xVrIsu973r4N83EBux9Jvg2klBOWGMlDQr2lR_n1LBxxhAi3UwKxm2gmCxEyV2osRBVAvwX4AyjWyMd02Qxv6NVXvs01jY_jMiBqOH-x_2C9mPfeo |
CitedBy_id | crossref_primary_10_1016_j_jallcom_2021_161971 crossref_primary_10_1021_acsaem_0c01917 crossref_primary_10_1021_acsanm_4c00312 crossref_primary_10_1021_acsami_2c07420 crossref_primary_10_1039_D1RA06430D crossref_primary_10_1039_D4MA01280A crossref_primary_10_1016_j_jssc_2023_124181 crossref_primary_10_1021_acsaem_0c01484 crossref_primary_10_35848_1347_4065_ac4927 crossref_primary_10_1039_D2TA00224H crossref_primary_10_1021_acsenergylett_3c00017 crossref_primary_10_1016_j_actamat_2022_118661 crossref_primary_10_1002_smll_202101925 crossref_primary_10_1016_j_apsusc_2022_155175 crossref_primary_10_1039_D3NR00133D crossref_primary_10_1016_j_jmat_2021_02_004 crossref_primary_10_1016_j_mssp_2023_107454 crossref_primary_10_1002_slct_202401586 crossref_primary_10_1016_j_matchemphys_2022_126335 crossref_primary_10_1002_ente_202300523 crossref_primary_10_1002_anie_202401751 crossref_primary_10_1016_j_solidstatesciences_2021_106769 crossref_primary_10_1021_acsaem_1c03876 crossref_primary_10_20517_energymater_2023_136 crossref_primary_10_1038_s41377_021_00516_7 crossref_primary_10_1039_D4TC01553C crossref_primary_10_3390_nano11092408 crossref_primary_10_1016_j_dyepig_2022_110452 crossref_primary_10_1021_acs_chemrev_4c00073 crossref_primary_10_1002_adom_202400398 crossref_primary_10_1002_chem_202004902 crossref_primary_10_1007_s11426_022_1445_2 crossref_primary_10_1002_aenm_202002882 crossref_primary_10_1016_j_jechem_2021_09_047 crossref_primary_10_1016_j_ceramint_2022_06_125 crossref_primary_10_1021_acssuschemeng_1c04542 crossref_primary_10_3390_nano11123463 crossref_primary_10_1002_adma_202108132 crossref_primary_10_1016_j_jcis_2021_09_117 crossref_primary_10_1016_j_jechem_2023_04_028 crossref_primary_10_1002_anie_202105176 crossref_primary_10_1002_solr_202200860 crossref_primary_10_1016_j_mssp_2024_108134 crossref_primary_10_1016_j_cocom_2024_e00879 crossref_primary_10_1002_ange_202107774 crossref_primary_10_1016_j_mtener_2020_100590 crossref_primary_10_1021_acsami_3c13868 crossref_primary_10_1021_acsaem_1c00575 crossref_primary_10_1016_j_jpowsour_2021_230675 crossref_primary_10_1021_acsaem_2c01673 crossref_primary_10_1002_adfm_202112027 crossref_primary_10_1016_j_mtchem_2023_101511 crossref_primary_10_1016_j_orgel_2021_106102 crossref_primary_10_1002_aelm_202200995 crossref_primary_10_1002_solr_202000714 crossref_primary_10_1016_j_ccr_2024_215957 crossref_primary_10_1039_D1TC05851G crossref_primary_10_1016_j_cej_2022_139697 crossref_primary_10_1021_acsnano_3c12552 crossref_primary_10_1002_advs_202200445 crossref_primary_10_1007_s11082_022_03823_4 crossref_primary_10_1002_ange_202315841 crossref_primary_10_1016_j_physe_2022_115243 crossref_primary_10_1002_aenm_202201320 crossref_primary_10_1016_j_isci_2021_103365 crossref_primary_10_1134_S1070363224080292 crossref_primary_10_1002_admi_202200562 crossref_primary_10_1021_acsami_1c24362 crossref_primary_10_1016_j_cej_2021_129247 crossref_primary_10_1016_j_mattod_2021_11_017 crossref_primary_10_1002_admi_202200847 crossref_primary_10_1016_j_chemphys_2024_112587 crossref_primary_10_1021_acsaem_3c01799 crossref_primary_10_1002_ange_202401751 crossref_primary_10_1021_acsmaterialslett_4c01890 crossref_primary_10_1088_2040_8986_ac881b crossref_primary_10_1002_ange_202110603 crossref_primary_10_1088_1402_4896_ad5ff9 crossref_primary_10_1021_acsami_4c14868 crossref_primary_10_1016_j_pmatsci_2023_101223 crossref_primary_10_1002_adfm_202304278 crossref_primary_10_1021_acsami_2c16347 crossref_primary_10_1063_5_0068665 crossref_primary_10_1021_acs_jpclett_4c00560 crossref_primary_10_1039_D2TA09434G crossref_primary_10_1002_cssc_202101475 crossref_primary_10_1007_s10854_024_12364_3 crossref_primary_10_1021_acssuschemeng_4c06058 crossref_primary_10_1002_adfm_202111116 crossref_primary_10_1039_D1MH02055B crossref_primary_10_1016_j_jece_2024_113175 crossref_primary_10_1140_epjp_s13360_022_02843_z crossref_primary_10_1016_j_solener_2025_113290 crossref_primary_10_1039_D3EE03317A crossref_primary_10_1021_acsnano_4c08789 crossref_primary_10_1088_1361_6641_acf406 crossref_primary_10_1007_s40820_022_00976_5 crossref_primary_10_3390_nano14211742 crossref_primary_10_1016_j_cej_2021_132781 crossref_primary_10_1002_adma_202206932 crossref_primary_10_1002_aenm_202203682 crossref_primary_10_1038_s41467_024_55376_7 crossref_primary_10_1002_anie_202107774 crossref_primary_10_1103_PhysRevB_109_144104 crossref_primary_10_3390_cryst14010086 crossref_primary_10_2139_ssrn_3904962 crossref_primary_10_1002_ange_202102538 crossref_primary_10_1039_D3EE00247K crossref_primary_10_1016_j_commatsci_2023_112215 crossref_primary_10_1002_smll_202311097 crossref_primary_10_1021_acs_energyfuels_2c03390 crossref_primary_10_1016_j_xcrp_2023_101726 crossref_primary_10_3390_coatings13071198 crossref_primary_10_1002_anie_202110603 crossref_primary_10_1016_j_solener_2023_111885 crossref_primary_10_1002_pssa_202100185 crossref_primary_10_1016_j_nanoen_2021_105747 crossref_primary_10_1002_anie_202102538 crossref_primary_10_1088_1674_4926_44_3_030202 crossref_primary_10_1088_1361_6463_ac3033 crossref_primary_10_1016_j_matt_2024_05_026 crossref_primary_10_1021_acsaenm_4c00211 crossref_primary_10_1016_j_jallcom_2023_172771 crossref_primary_10_1016_j_nanoen_2021_106157 crossref_primary_10_1021_acs_inorgchem_3c01834 crossref_primary_10_1002_er_7807 crossref_primary_10_3390_mi14010093 crossref_primary_10_1021_acs_chemmater_4c00571 crossref_primary_10_1021_acsenergylett_2c01883 crossref_primary_10_1016_j_isci_2021_103729 crossref_primary_10_1039_D1TA02786G crossref_primary_10_1364_OE_517600 crossref_primary_10_1002_chem_202300566 crossref_primary_10_1002_aenm_202103690 crossref_primary_10_1016_j_mtener_2023_101473 crossref_primary_10_1007_s11082_023_04980_w crossref_primary_10_1021_acsami_2c20752 crossref_primary_10_1088_1402_4896_ad3a2a crossref_primary_10_1039_D4QM00197D crossref_primary_10_1039_D2EE01256A crossref_primary_10_3390_nano12183121 crossref_primary_10_1088_2515_7655_ac93b3 crossref_primary_10_1002_adsu_202200074 crossref_primary_10_1021_acsaem_2c04178 crossref_primary_10_1016_j_nanoen_2022_107792 crossref_primary_10_1039_D0QM00756K crossref_primary_10_1039_D0TC03345F crossref_primary_10_1016_j_solener_2021_10_017 crossref_primary_10_1021_acsami_2c03585 crossref_primary_10_1002_adfm_202404402 crossref_primary_10_1002_smll_202206952 crossref_primary_10_1007_s13391_025_00560_0 crossref_primary_10_1021_acs_chemmater_3c02059 crossref_primary_10_1002_admt_202401672 crossref_primary_10_1088_1361_6463_ad31e2 crossref_primary_10_1039_D2EE00663D crossref_primary_10_1109_JPHOT_2024_3494817 crossref_primary_10_1155_2023_4440117 crossref_primary_10_1002_solr_202100839 crossref_primary_10_3390_nano14151266 crossref_primary_10_1002_ange_202105176 crossref_primary_10_1016_j_jece_2023_109960 crossref_primary_10_1016_j_cej_2024_154429 crossref_primary_10_1016_j_optmat_2024_115713 crossref_primary_10_1021_acsami_2c11895 crossref_primary_10_3390_cryst13050765 crossref_primary_10_1002_solr_202000419 crossref_primary_10_1016_j_ccr_2021_214180 crossref_primary_10_1002_aenm_202201733 crossref_primary_10_1002_smtd_202300421 crossref_primary_10_1088_1361_6641_ac7d70 crossref_primary_10_1021_acs_inorgchem_3c04368 crossref_primary_10_1002_solr_202200570 crossref_primary_10_1039_D4TA02446J crossref_primary_10_1016_j_electacta_2020_137360 crossref_primary_10_1007_s11664_024_11266_8 crossref_primary_10_1002_ente_202201159 crossref_primary_10_1016_j_heliyon_2024_e34059 crossref_primary_10_1021_acsami_1c06533 crossref_primary_10_1002_ente_202100691 crossref_primary_10_3390_nano11051253 crossref_primary_10_1002_aenm_202104051 crossref_primary_10_1039_D0NR06138G crossref_primary_10_1016_j_solmat_2025_113441 crossref_primary_10_1002_solr_202100815 crossref_primary_10_1021_acs_nanolett_2c02071 crossref_primary_10_1063_5_0156462 crossref_primary_10_1016_j_jallcom_2022_168101 crossref_primary_10_1021_acsaem_1c00054 crossref_primary_10_1002_adma_202309193 crossref_primary_10_1088_1402_4896_acfaf2 crossref_primary_10_1039_D2NR07022G crossref_primary_10_1016_j_jmat_2022_09_005 crossref_primary_10_1016_j_apsusc_2024_159831 crossref_primary_10_1039_D3CP05445D crossref_primary_10_1002_solr_202100923 crossref_primary_10_1039_D3YA00057E crossref_primary_10_1016_j_optmat_2023_114672 crossref_primary_10_1016_j_joule_2022_05_013 crossref_primary_10_1016_j_surfin_2022_102307 crossref_primary_10_1021_acsaem_1c02005 crossref_primary_10_3390_nanomanufacturing3020012 crossref_primary_10_1016_j_jcis_2024_05_092 crossref_primary_10_1016_j_nanoen_2025_110859 crossref_primary_10_1002_aenm_202202491 crossref_primary_10_3390_ma17133222 crossref_primary_10_1002_solr_202100375 crossref_primary_10_1002_admi_202200447 crossref_primary_10_1088_1674_4926_42_7_071901 crossref_primary_10_1039_D0MA00994F crossref_primary_10_1002_aenm_202100672 crossref_primary_10_1007_s12274_021_3566_x crossref_primary_10_1016_j_cej_2023_141943 crossref_primary_10_1002_anie_202315841 crossref_primary_10_1002_aenm_202402595 crossref_primary_10_1039_D2TA01170K crossref_primary_10_1016_j_jelechem_2024_118563 crossref_primary_10_1021_acsanm_2c00732 crossref_primary_10_1039_D4NR03579H crossref_primary_10_1016_j_microc_2023_108940 crossref_primary_10_1002_ange_202108800 crossref_primary_10_1002_cssc_202301761 crossref_primary_10_1016_j_joule_2023_09_009 crossref_primary_10_1016_j_mset_2023_10_003 crossref_primary_10_1002_adfm_202109321 crossref_primary_10_1103_PhysRevMaterials_5_035405 crossref_primary_10_1007_s11467_020_1046_0 crossref_primary_10_1039_D3NR01390A crossref_primary_10_1002_solr_202100880 crossref_primary_10_1088_1402_4896_adaaad crossref_primary_10_1016_j_nantod_2020_101062 crossref_primary_10_1021_acsami_0c09571 crossref_primary_10_1021_acssuschemeng_2c05859 crossref_primary_10_1007_s40843_020_1499_8 crossref_primary_10_1016_j_solener_2023_112240 crossref_primary_10_1007_s42247_022_00364_0 crossref_primary_10_1039_D0TA09096D crossref_primary_10_1016_j_cej_2022_136242 crossref_primary_10_1007_s43621_024_00702_8 crossref_primary_10_1002_sstr_202000050 crossref_primary_10_1039_D1SE01721G crossref_primary_10_1002_smtd_202300192 crossref_primary_10_1016_j_jcis_2022_02_049 crossref_primary_10_1016_j_ceramint_2024_10_043 crossref_primary_10_1016_j_jechem_2022_07_035 crossref_primary_10_1016_j_mseb_2022_115645 crossref_primary_10_1002_eem2_12524 crossref_primary_10_1021_acsami_1c02377 crossref_primary_10_1088_1402_4896_ad0a27 crossref_primary_10_1002_agt2_19 crossref_primary_10_1021_acs_accounts_1c00343 crossref_primary_10_1007_s11801_022_1187_6 crossref_primary_10_1007_s10904_024_03270_6 crossref_primary_10_1002_solr_202200020 crossref_primary_10_1021_acs_nanolett_2c00002 crossref_primary_10_1007_s42765_023_00366_5 crossref_primary_10_1016_j_physb_2021_413650 crossref_primary_10_1021_acsami_4c11177 crossref_primary_10_1016_j_physb_2024_415915 crossref_primary_10_1002_adfm_202111894 crossref_primary_10_1002_er_8742 crossref_primary_10_1002_adma_202004832 crossref_primary_10_1002_aenm_202301965 crossref_primary_10_1016_j_surfin_2023_103575 crossref_primary_10_1007_s10854_024_12177_4 crossref_primary_10_1016_j_mtelec_2024_100114 crossref_primary_10_1039_D1CP05809F crossref_primary_10_1016_j_synthmet_2021_116918 crossref_primary_10_1021_acs_energyfuels_1c01378 crossref_primary_10_1016_j_cej_2024_156691 crossref_primary_10_1016_j_mtphys_2023_101088 crossref_primary_10_1002_advs_202203749 crossref_primary_10_1002_anie_202108800 crossref_primary_10_1021_acsenergylett_1c01817 crossref_primary_10_1002_inf2_12322 crossref_primary_10_1016_j_mattod_2020_09_002 crossref_primary_10_1016_j_surfin_2021_101598 crossref_primary_10_1039_D2CE00637E crossref_primary_10_1002_adom_202301052 crossref_primary_10_1016_j_jcis_2025_02_167 crossref_primary_10_1088_1361_6463_ad82f7 |
Cites_doi | 10.1246/cl.190270 10.1002/solr.201800354 10.1021/acs.chemmater.5b04107 10.1016/j.matlet.2017.04.046 10.1021/ja301539s 10.1021/acsenergylett.8b00270 10.1002/aenm.201900896 10.1021/acs.nanolett.7b00050 10.1016/j.joule.2019.07.015 10.1002/solr.201800278 10.1007/s11426-019-9504-x 10.1021/acsenergylett.7b00606 10.1021/acsami.9b14957 10.1002/advs.201801123 10.1039/C6TA04685A 10.1002/aenm.201601130 10.1002/anie.201807270 10.1002/solr.201900254 10.1039/C8TC01837E 10.1002/solr.201900233 10.1063/1.5019608 10.1002/solr.201700180 10.1002/smll.201900854 10.1002/aenm.201800525 10.1002/solr.201900135 10.1021/acs.chemrev.9b00107 10.1002/solr.201700188 10.1016/j.nanoen.2016.09.009 10.1021/jacs.7b07949 10.1021/acsenergylett.6b00341 10.1021/acsenergylett.8b00672 10.1016/j.joule.2018.10.008 10.1021/jacs.9b06796 10.1126/science.aag2700 10.1021/jacs.7b08628 10.1039/C8TA02522C 10.1002/adma.201401991 10.1038/ncomms13938 10.1002/solr.201700086 10.1002/anie.201801837 10.1021/acs.nanolett.9b01553 10.1039/C7TA00929A 10.1021/acs.accounts.5b00404 10.1002/solr.201600001 10.1002/aenm.201803150 10.1039/C5TA06398A 10.1038/nenergy.2016.149 10.1038/s41467-019-13909-5 10.1021/acsenergylett.7b00707 10.1021/jacs.6b10227 10.1126/science.aav8680 10.1002/adma.201603072 10.1002/advs.201901067 10.1002/aenm.201900555 10.1002/anie.201901081 10.1021/acsami.7b16349 10.1002/solr.201800139 10.1021/jz500279b 10.1039/C5TA05741H 10.1002/adfm.200700124 10.1021/jacs.8b07927 10.1016/j.jlumin.2011.09.006 10.1038/s41467-018-06915-6 10.1002/adma.201703682 10.1002/solr.201900212 10.1002/adma.201806593 10.1021/jacs.7b13229 10.1038/s41467-018-07951-y 10.1002/solr.201800284 10.1038/nenergy.2016.178 10.1021/nl5048779 10.1039/C7NR09657G 10.1007/s40820-019-0320-y 10.1126/sciadv.1700841 10.1021/acs.chemmater.8b01808 10.1021/acs.jpclett.8b03742 10.1039/C8SE00154E 10.1021/acs.nanolett.9b00238 10.1021/jacs.6b10734 10.1016/j.nanoen.2014.04.017 10.1021/acs.jpclett.7b02008 10.1021/acs.jpclett.6b02344 10.1002/aenm.201802346 10.1021/acsenergylett.7b00416 10.1021/acsenergylett.7b00591 10.1002/solr.201800164 10.1002/anie.201910800 10.1016/j.joule.2018.10.011 10.1002/adma.201903448 10.1021/acs.jpclett.6b00002 10.1021/cg400645t 10.1039/C8TA03811B 10.1016/j.solmat.2018.04.032 10.1002/adfm.201900964 10.1002/aenm.201600457 10.1039/C8TA08900K 10.1063/1.4748888 10.1002/smll.201704443 10.1021/acsenergylett.7b00751 10.1016/j.nanoen.2019.04.066 10.1039/C7TA11154A 10.1002/adma.201802509 10.1126/science.1243982 10.1021/acsami.6b11393 10.1021/acs.jpclett.5b02597 10.1039/C7SE00100B 10.1016/j.joule.2018.01.009 10.1016/j.electacta.2013.03.036 10.1002/solr.201800216 10.1021/acsenergylett.7b00171 10.1002/adma.201905143 10.1039/C6TA08332C 10.1002/cphc.201900447 10.1039/C9TC04164H 10.1002/cssc.201702221 10.1002/adma.201705393 10.1002/adma.201901152 10.1002/solr.201800239 10.1021/acsami.9b23384 10.1002/adma.201900605 10.1021/acsenergylett.6b00402 10.1002/adma.201800855 10.1126/science.aax3878 10.1002/solr.201800315 10.1038/s41467-018-04636-4 10.1002/anie.201800019 10.1016/j.jpowsour.2018.07.091 10.1021/acs.jpclett.8b02555 10.1016/S0022-0248(01)01972-8 10.1002/anie.202000199 10.1002/adma.201502567 10.1002/aenm.201803572 10.1021/acsenergylett.7b00257 10.1038/nenergy.2016.194 10.1021/jp5126624 10.1002/solr.201900287 10.1038/ncomms15684 10.1038/1821436a0 10.1038/s41467-019-12678-5 10.1007/s11426-019-9486-0 10.1002/aenm.201600474 10.1002/aenm.201502458 10.1002/anie.201907331 10.1016/j.isci.2019.04.025 10.1021/acs.jpclett.5b00968 10.1002/solr.201800075 10.1038/s41467-018-03169-0 10.1038/s41563-018-0018-4 10.1002/adma.201900326 10.1002/aenm.201903751 10.1021/acs.jpcc.7b06268 10.1016/j.joule.2017.07.017 10.1016/j.joule.2018.05.004 10.1007/978-3-319-35114-8_3 10.1007/s00706-017-1933-9 10.1016/j.joule.2018.06.013 10.1021/acsenergylett.6b00499 10.1021/acsami.9b09171 10.1016/j.joule.2018.04.012 10.1002/solr.201800217 10.1002/aenm.201800504 10.1038/nnano.2014.181 10.1002/anie.201910843 10.1002/aenm.201901685 10.1021/acsenergylett.7b00508 10.1039/C7TA06816F 10.1002/aenm.201800398 10.1002/solr.201900265 |
ContentType | Journal Article |
Copyright | 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | AAYXX CITATION 7SP 7TB 8FD F28 FR3 H8D L7M |
DOI | 10.1002/aenm.202000183 |
DatabaseName | CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | CrossRef Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1614-6840 |
EndPage | n/a |
ExternalDocumentID | 10_1002_aenm_202000183 AENM202000183 |
Genre | reviewArticle |
GrantInformation_xml | – fundername: DFG funderid: BR 4031/13‐1 – fundername: Solar Technologies go Hybrid – fundername: Science and Technology Program of Guangdong Province, China funderid: 2018A030313045 – fundername: Basic and Applied Basic Research Major Program of Guangdong Province funderid: 2019B030302007 – fundername: Natural Science Foundation of China funderid: 21761132001; 91733302; 51803060 – fundername: DFG funderid: SFB 953; 182849149 – fundername: Science and Technology Program of Guangzhou, China funderid: 2017A050503002 – fundername: state of Bavaria (EnCN and SFF) – fundername: Ministry of Science and Technology funderid: 2017YF0206600 |
GroupedDBID | 05W 0R~ 1OC 33P 4.4 50Y 5VS 8-0 8-1 A00 AAESR AAHHS AAHQN AAIHA AAMNL AANLZ AASGY AAXRX AAYCA AAZKR ABCUV ABJNI ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFWVQ AFZJQ AHBTC AIACR AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB AZVAB BDRZF BFHJK BMXJE BRXPI D-A DCZOG EBS G-S HGLYW HZ~ KBYEO LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MY. MY~ O9- P2W P4E RNS ROL RX1 SUPJJ WBKPD WOHZO WXSBR WYJ ZZTAW ~S- 31~ AANHP AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE GODZA HVGLF 7SP 7TB 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY F28 FR3 H8D L7M |
ID | FETCH-LOGICAL-c4203-1bc3d5e37c7d58f264e1c2f3dd78ff7b4127f28c6953458afe47220d7eaf00993 |
ISSN | 1614-6832 |
IngestDate | Fri Jul 25 12:05:17 EDT 2025 Tue Jul 01 01:43:34 EDT 2025 Thu Apr 24 23:03:54 EDT 2025 Wed Jan 22 16:38:04 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 23 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c4203-1bc3d5e37c7d58f264e1c2f3dd78ff7b4127f28c6953458afe47220d7eaf00993 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-5750-9751 |
PQID | 2413318257 |
PQPubID | 886389 |
PageCount | 28 |
ParticipantIDs | proquest_journals_2413318257 crossref_primary_10_1002_aenm_202000183 crossref_citationtrail_10_1002_aenm_202000183 wiley_primary_10_1002_aenm_202000183_AENM202000183 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-06-01 |
PublicationDateYYYYMMDD | 2020-06-01 |
PublicationDate_xml | – month: 06 year: 2020 text: 2020-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Advanced energy materials |
PublicationYear | 2020 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 5 2017; 8 2017; 1 2017; 2 2017; 3 2019; 11 2019; 10 2019; 15 2019; 58 2014; 26 2020; 59 2019; 19 2020; 12 2020; 11 2020; 10 2017; 199 2019; 365 2018; 6 2018; 9 2018; 8 2014; 5 2018; 3 2012; 132 2018; 2 2019; 62 2012; 134 2018; 5 2019; 61 2019; 20 2013; 98 2013; 13 2002; 237–239 2016; 354 2019; 29 2019; 119 2018; 30 2017; 121 2014; 9 2014; 7 2016; 49 2007; 17 2019; 7 2015; 15 2019; 9 2015; 6 2019; 3 2012; 101 2018; 140 2019; 6 2018; 184 2015; 3 2019; 31 2013; 342 2017; 29 2019; 141 2017; 139 1958; 182 2016; 4 2016; 6 2018; 17 2016; 7 2016; 1 2015; 27 2017; 17 2018; 399 2018; 112 2019; 48 2019 2016 2015; 119 2016; 138 2018; 11 2016; 28 2018; 10 2017; 148 2016; 8 2018; 14 2018; 57 e_1_2_7_108_1 e_1_2_7_3_1 e_1_2_7_104_1 e_1_2_7_127_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_83_1 e_1_2_7_100_1 e_1_2_7_123_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_87_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_68_1 e_1_2_7_161_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_142_1 e_1_2_7_165_1 e_1_2_7_146_1 e_1_2_7_169_1 e_1_2_7_116_1 e_1_2_7_90_1 e_1_2_7_112_1 e_1_2_7_94_1 e_1_2_7_71_1 e_1_2_7_52_1 e_1_2_7_98_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_75_1 e_1_2_7_56_1 e_1_2_7_150_1 e_1_2_7_37_1 e_1_2_7_79_1 e_1_2_7_131_1 e_1_2_7_154_1 e_1_2_7_135_1 e_1_2_7_158_1 e_1_2_7_139_1 e_1_2_7_109_1 e_1_2_7_4_1 e_1_2_7_128_1 e_1_2_7_105_1 e_1_2_7_8_1 e_1_2_7_124_1 e_1_2_7_101_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_82_1 e_1_2_7_120_1 e_1_2_7_63_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_86_1 e_1_2_7_67_1 e_1_2_7_48_1 e_1_2_7_162_1 e_1_2_7_143_1 e_1_2_7_29_1 e_1_2_7_166_1 e_1_2_7_147_1 e_1_2_7_117_1 e_1_2_7_113_1 e_1_2_7_51_1 e_1_2_7_70_1 e_1_2_7_93_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_74_1 e_1_2_7_97_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_78_1 e_1_2_7_151_1 e_1_2_7_132_1 e_1_2_7_155_1 e_1_2_7_136_1 e_1_2_7_159_1 e_1_2_7_5_1 e_1_2_7_106_1 e_1_2_7_129_1 e_1_2_7_9_1 e_1_2_7_102_1 e_1_2_7_125_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_81_1 e_1_2_7_121_1 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_85_1 e_1_2_7_47_1 e_1_2_7_89_1 e_1_2_7_140_1 e_1_2_7_163_1 e_1_2_7_28_1 e_1_2_7_144_1 e_1_2_7_167_1 e_1_2_7_148_1 e_1_2_7_118_1 e_1_2_7_114_1 e_1_2_7_73_1 e_1_2_7_110_1 e_1_2_7_50_1 e_1_2_7_92_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_77_1 e_1_2_7_54_1 e_1_2_7_96_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_58_1 e_1_2_7_152_1 e_1_2_7_39_1 e_1_2_7_133_1 e_1_2_7_156_1 e_1_2_7_137_1 e_1_2_7_6_1 e_1_2_7_107_1 e_1_2_7_80_1 e_1_2_7_126_1 e_1_2_7_103_1 e_1_2_7_18_1 e_1_2_7_84_1 e_1_2_7_122_1 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_88_1 e_1_2_7_65_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_160_1 e_1_2_7_69_1 e_1_2_7_141_1 e_1_2_7_27_1 e_1_2_7_164_1 e_1_2_7_145_1 e_1_2_7_168_1 e_1_2_7_149_1 e_1_2_7_119_1 e_1_2_7_91_1 e_1_2_7_115_1 e_1_2_7_72_1 e_1_2_7_95_1 e_1_2_7_111_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_76_1 e_1_2_7_99_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_130_1 e_1_2_7_38_1 e_1_2_7_153_1 e_1_2_7_134_1 e_1_2_7_157_1 e_1_2_7_138_1 |
References_xml | – volume: 19 start-page: 5176 year: 2019 publication-title: Nano Lett. – volume: 10 year: 2020 publication-title: Adv. Energy Mater. – volume: 9 start-page: 4544 year: 2018 publication-title: Nat. Commun. – volume: 11 start-page: 91 year: 2019 publication-title: Nano‐Micro Lett. – volume: 2 start-page: 2419 year: 2018 publication-title: Sustainable Energy Fuels – volume: 7 year: 2019 publication-title: J. Mater. Chem. C – volume: 2 start-page: 1500 year: 2018 publication-title: Joule – volume: 7 start-page: 80 year: 2014 publication-title: Nano Energy – volume: 112 year: 2018 publication-title: Appl. Phys. Lett. – volume: 12 year: 2020 publication-title: ACS Appl. Mater. Interfaces – volume: 182 start-page: 1436 year: 1958 publication-title: Nature – volume: 121 year: 2017 publication-title: J. Phys. Chem. C – volume: 14 year: 2018 publication-title: Small – volume: 3 start-page: 205 year: 2019 publication-title: Joule – volume: 139 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 3 start-page: 2485 year: 2019 publication-title: Joule – volume: 140 start-page: 3825 year: 2018 publication-title: J. Am. Chem. Soc. – volume: 7 start-page: 5028 year: 2016 publication-title: J. Phys. Chem. Lett. – volume: 8 year: 2017 publication-title: Nat. Commun. – volume: 48 start-page: 989 year: 2019 publication-title: Chem. Lett. – volume: 11 start-page: 837 year: 2018 publication-title: ChemSusChem – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 9 start-page: 927 year: 2014 publication-title: Nat. Nanotechnol. – volume: 58 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 1 start-page: 710 year: 2017 publication-title: Sustainable Energy Fuels – volume: 6 start-page: 5580 year: 2018 publication-title: J. Mater. Chem. A – volume: 27 start-page: 7162 year: 2015 publication-title: Adv. Mater. – volume: 1 year: 2017 publication-title: Sol. RRL – volume: 6 year: 2019 publication-title: Adv. Sci. – volume: 3 start-page: 1787 year: 2018 publication-title: ACS Energy Lett. – volume: 3 year: 2018 publication-title: Sol. RRL – year: 2019 – volume: 9 start-page: 2225 year: 2018 publication-title: Nat. Commun. – volume: 30 start-page: 6668 year: 2018 publication-title: Chem. Mater. – volume: 399 start-page: 76 year: 2018 publication-title: J. Power Sources – volume: 6 start-page: 2452 year: 2015 publication-title: J. Phys. Chem. Lett. – volume: 57 start-page: 3787 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 3 year: 2015 publication-title: J. Mater. Chem. A – volume: 1 start-page: 573 year: 2016 publication-title: ACS Energy Lett. – volume: 4 year: 2016 publication-title: J. Mater. Chem. A – volume: 2 start-page: 1901 year: 2017 publication-title: ACS Energy Lett. – volume: 5 year: 2018 publication-title: Adv. Sci. – volume: 6 start-page: 6287 year: 2018 publication-title: J. Mater. Chem. C – volume: 20 start-page: 2580 year: 2019 publication-title: ChemPhysChem – volume: 1 start-page: 371 year: 2017 publication-title: Joule – volume: 59 start-page: 4391 year: 2020 publication-title: Angew. Chem., Int. Ed. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 2 year: 2018 publication-title: Sol. RRL – volume: 2 start-page: 1501 year: 2017 publication-title: ACS Energy Lett. – volume: 3 start-page: 191 year: 2019 publication-title: Joule – volume: 10 start-page: 9996 year: 2018 publication-title: Nanoscale – volume: 11 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 15 start-page: 156 year: 2019 publication-title: iScience – volume: 5 start-page: 1035 year: 2014 publication-title: J. Phys. Chem. Lett. – volume: 7 start-page: 746 year: 2016 publication-title: J. Phys. Chem. Lett. – volume: 139 start-page: 836 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 2 start-page: 2183 year: 2017 publication-title: ACS Energy Lett. – volume: 28 start-page: 469 year: 2016 publication-title: Nano Energy – volume: 184 start-page: 15 year: 2018 publication-title: Sol. Energy Mater. Sol. Cells – volume: 26 start-page: 7122 year: 2014 publication-title: Adv. Mater. – volume: 62 start-page: 810 year: 2019 publication-title: Sci. China: Chem. – volume: 3 start-page: 970 year: 2018 publication-title: ACS Energy Lett. – volume: 2 start-page: 558 year: 2018 publication-title: Joule – volume: 134 start-page: 8579 year: 2012 publication-title: J. Am. Chem. Soc. – volume: 3 year: 2019 publication-title: Sol. RRL – volume: 199 start-page: 50 year: 2017 publication-title: Mater. Lett. – volume: 57 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 1 start-page: 1028 year: 2016 publication-title: ACS Energy Lett. – volume: 342 start-page: 341 year: 2013 publication-title: Science – volume: 141 year: 2019 publication-title: J. Am. Chem. Soc. – volume: 2 start-page: 1621 year: 2017 publication-title: ACS Energy Lett. – volume: 9 start-page: 6024 year: 2018 publication-title: J. Phys. Chem. Lett. – volume: 17 start-page: 2028 year: 2017 publication-title: Nano Lett. – volume: 11 start-page: 177 year: 2020 publication-title: Nat. Commun. – volume: 49 start-page: 155 year: 2016 publication-title: Acc. Chem. Res. – volume: 2 start-page: 2319 year: 2017 publication-title: ACS Energy Lett. – start-page: 53 year: 2016 – volume: 237–239 start-page: 538 year: 2002 publication-title: J. Cryst. Growth – volume: 9 start-page: 1076 year: 2018 publication-title: Nat. Commun. – volume: 2 year: 2017 publication-title: Nat. Energy – volume: 62 start-page: 1044 year: 2019 publication-title: Sci. China: Chem. – volume: 2 start-page: 1356 year: 2018 publication-title: Joule – volume: 148 start-page: 795 year: 2017 publication-title: Monatsh. Chem. – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 1 year: 2016 publication-title: Nat. Energy – volume: 119 start-page: 7444 year: 2019 publication-title: Chem. Rev. – volume: 6 year: 2016 publication-title: Adv. Energy Mater. – volume: 98 start-page: 263 year: 2013 publication-title: Electrochim. Acta – volume: 28 start-page: 284 year: 2016 publication-title: Chem. Mater. – volume: 2 start-page: 2239 year: 2017 publication-title: ACS Energy Lett. – volume: 3 year: 2017 publication-title: Sci. Adv. – volume: 19 start-page: 2066 year: 2019 publication-title: Nano Lett. – volume: 17 start-page: 394 year: 2018 publication-title: Nat. Mater. – volume: 354 start-page: 92 year: 2016 publication-title: Science – volume: 119 start-page: 1763 year: 2015 publication-title: J. Phys. Chem. C – volume: 57 start-page: 5746 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 10 start-page: 2566 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 10 start-page: 194 year: 2019 publication-title: J. Phys. Chem. Lett. – volume: 5 year: 2017 publication-title: J. Mater. Chem. A – volume: 6 year: 2018 publication-title: J. Mater. Chem. A – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 101 year: 2012 publication-title: Appl. Phys. Lett. – volume: 2 start-page: 2065 year: 2018 publication-title: Joule – volume: 2 start-page: 897 year: 2017 publication-title: ACS Energy Lett. – volume: 132 start-page: 345 year: 2012 publication-title: J. Lumin. – volume: 1 start-page: 1233 year: 2016 publication-title: ACS Energy Lett. – volume: 2 start-page: 2219 year: 2017 publication-title: ACS Energy Lett. – volume: 15 start-page: 3692 year: 2015 publication-title: Nano Lett. – volume: 365 start-page: 591 year: 2019 publication-title: Science – volume: 8 start-page: 4391 year: 2017 publication-title: J. Phys. Chem. Lett. – volume: 15 year: 2019 publication-title: Small – volume: 9 year: 2019 publication-title: Adv. Energy Mater. – volume: 17 start-page: 3274 year: 2007 publication-title: Adv. Funct. Mater. – volume: 10 start-page: 16 year: 2019 publication-title: Nat. Commun. – volume: 7 start-page: 167 year: 2016 publication-title: J. Phys. Chem. Lett. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 8 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 140 year: 2018 publication-title: J. Am. Chem. Soc. – volume: 365 start-page: 679 year: 2019 publication-title: Science – volume: 10 start-page: 4686 year: 2019 publication-title: Nat. Commun. – volume: 138 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 13 start-page: 2722 year: 2013 publication-title: Cryst. Growth Des. – volume: 61 start-page: 165 year: 2019 publication-title: Nano Energy – ident: e_1_2_7_33_1 doi: 10.1246/cl.190270 – ident: e_1_2_7_87_1 doi: 10.1002/solr.201800354 – ident: e_1_2_7_21_1 doi: 10.1021/acs.chemmater.5b04107 – ident: e_1_2_7_163_1 doi: 10.1016/j.matlet.2017.04.046 – ident: e_1_2_7_32_1 doi: 10.1021/ja301539s – ident: e_1_2_7_100_1 doi: 10.1021/acsenergylett.8b00270 – ident: e_1_2_7_108_1 doi: 10.1002/aenm.201900896 – ident: e_1_2_7_95_1 doi: 10.1021/acs.nanolett.7b00050 – ident: e_1_2_7_129_1 doi: 10.1016/j.joule.2019.07.015 – ident: e_1_2_7_47_1 doi: 10.1002/solr.201800278 – ident: e_1_2_7_28_1 doi: 10.1007/s11426-019-9504-x – ident: e_1_2_7_37_1 doi: 10.1021/acsenergylett.7b00606 – ident: e_1_2_7_137_1 doi: 10.1021/acsami.9b14957 – ident: e_1_2_7_123_1 doi: 10.1002/advs.201801123 – ident: e_1_2_7_153_1 doi: 10.1039/C6TA04685A – ident: e_1_2_7_141_1 doi: 10.1002/aenm.201601130 – ident: e_1_2_7_105_1 doi: 10.1002/anie.201807270 – ident: e_1_2_7_121_1 doi: 10.1002/solr.201900254 – ident: e_1_2_7_132_1 doi: 10.1039/C8TC01837E – ident: e_1_2_7_117_1 doi: 10.1002/solr.201900233 – ident: e_1_2_7_29_1 doi: 10.1063/1.5019608 – ident: e_1_2_7_127_1 doi: 10.1002/solr.201700180 – ident: e_1_2_7_169_1 doi: 10.1002/smll.201900854 – ident: e_1_2_7_97_1 doi: 10.1002/aenm.201800525 – ident: e_1_2_7_5_1 doi: 10.1002/solr.201900135 – ident: e_1_2_7_24_1 doi: 10.1021/acs.chemrev.9b00107 – ident: e_1_2_7_20_1 doi: 10.1002/solr.201700188 – ident: e_1_2_7_151_1 doi: 10.1016/j.nanoen.2016.09.009 – ident: e_1_2_7_98_1 doi: 10.1021/jacs.7b07949 – ident: e_1_2_7_128_1 doi: 10.1021/acsenergylett.6b00341 – ident: e_1_2_7_31_1 doi: 10.1021/acsenergylett.8b00672 – ident: e_1_2_7_101_1 doi: 10.1016/j.joule.2018.10.008 – ident: e_1_2_7_111_1 doi: 10.1021/jacs.9b06796 – ident: e_1_2_7_8_1 doi: 10.1126/science.aag2700 – ident: e_1_2_7_131_1 doi: 10.1021/jacs.7b08628 – ident: e_1_2_7_82_1 doi: 10.1039/C8TA02522C – ident: e_1_2_7_7_1 doi: 10.1002/adma.201401991 – ident: e_1_2_7_3_1 doi: 10.1038/ncomms13938 – ident: e_1_2_7_25_1 doi: 10.1002/solr.201700086 – ident: e_1_2_7_83_1 doi: 10.1002/anie.201801837 – ident: e_1_2_7_104_1 doi: 10.1021/acs.nanolett.9b01553 – ident: e_1_2_7_34_1 doi: 10.1039/C7TA00929A – ident: e_1_2_7_167_1 doi: 10.1021/acs.accounts.5b00404 – ident: e_1_2_7_4_1 doi: 10.1002/solr.201600001 – ident: e_1_2_7_23_1 doi: 10.1002/aenm.201803150 – ident: e_1_2_7_53_1 doi: 10.1039/C5TA06398A – ident: e_1_2_7_164_1 doi: 10.1038/nenergy.2016.149 – ident: e_1_2_7_120_1 doi: 10.1038/s41467-019-13909-5 – ident: e_1_2_7_133_1 doi: 10.1021/acsenergylett.7b00707 – ident: e_1_2_7_75_1 doi: 10.1021/jacs.6b10227 – ident: e_1_2_7_68_1 doi: 10.1126/science.aav8680 – ident: e_1_2_7_39_1 doi: 10.1002/adma.201603072 – ident: e_1_2_7_138_1 doi: 10.1002/advs.201901067 – ident: e_1_2_7_130_1 doi: 10.1002/aenm.201900555 – ident: e_1_2_7_42_1 doi: 10.1002/anie.201901081 – ident: e_1_2_7_159_1 doi: 10.1021/acsami.7b16349 – ident: e_1_2_7_134_1 doi: 10.1002/solr.201800139 – ident: e_1_2_7_15_1 doi: 10.1021/jz500279b – ident: e_1_2_7_145_1 doi: 10.1039/C5TA05741H – ident: e_1_2_7_51_1 doi: 10.1002/adfm.200700124 – ident: e_1_2_7_65_1 doi: 10.1021/jacs.8b07927 – ident: e_1_2_7_43_1 doi: 10.1016/j.jlumin.2011.09.006 – ident: e_1_2_7_67_1 doi: 10.1038/s41467-018-06915-6 – ident: e_1_2_7_81_1 doi: 10.1002/adma.201703682 – ident: e_1_2_7_118_1 doi: 10.1002/solr.201900212 – ident: e_1_2_7_11_1 doi: 10.1002/adma.201806593 – ident: e_1_2_7_113_1 doi: 10.1021/jacs.7b13229 – ident: e_1_2_7_143_1 doi: 10.1038/s41467-018-07951-y – ident: e_1_2_7_84_1 doi: 10.1002/solr.201800284 – ident: e_1_2_7_142_1 doi: 10.1038/nenergy.2016.178 – ident: e_1_2_7_35_1 doi: 10.1021/nl5048779 – ident: e_1_2_7_60_1 doi: 10.1039/C7NR09657G – ident: e_1_2_7_165_1 doi: 10.1007/s40820-019-0320-y – ident: e_1_2_7_62_1 doi: 10.1126/sciadv.1700841 – ident: e_1_2_7_59_1 doi: 10.1021/acs.chemmater.8b01808 – ident: e_1_2_7_136_1 doi: 10.1021/acs.jpclett.8b03742 – ident: e_1_2_7_156_1 doi: 10.1039/C8SE00154E – ident: e_1_2_7_157_1 doi: 10.1021/acs.nanolett.9b00238 – ident: e_1_2_7_144_1 doi: 10.1021/jacs.6b10734 – ident: e_1_2_7_52_1 doi: 10.1016/j.nanoen.2014.04.017 – ident: e_1_2_7_162_1 doi: 10.1021/acs.jpclett.7b02008 – ident: e_1_2_7_148_1 doi: 10.1021/acs.jpclett.6b02344 – ident: e_1_2_7_79_1 doi: 10.1002/aenm.201802346 – ident: e_1_2_7_30_1 doi: 10.1021/acsenergylett.7b00416 – ident: e_1_2_7_36_1 doi: 10.1021/acsenergylett.7b00591 – ident: e_1_2_7_78_1 doi: 10.1002/solr.201800164 – ident: e_1_2_7_9_1 doi: 10.1002/anie.201910800 – ident: e_1_2_7_125_1 doi: 10.1016/j.joule.2018.10.011 – ident: e_1_2_7_103_1 doi: 10.1002/adma.201903448 – ident: e_1_2_7_94_1 doi: 10.1021/acs.jpclett.6b00002 – ident: e_1_2_7_26_1 doi: 10.1021/cg400645t – ident: e_1_2_7_89_1 doi: 10.1039/C8TA03811B – ident: e_1_2_7_158_1 doi: 10.1016/j.solmat.2018.04.032 – ident: e_1_2_7_139_1 doi: 10.1002/adfm.201900964 – ident: e_1_2_7_166_1 doi: 10.1002/aenm.201600457 – ident: e_1_2_7_44_1 doi: 10.1039/C8TA08900K – ident: e_1_2_7_6_1 doi: 10.1063/1.4748888 – ident: e_1_2_7_76_1 doi: 10.1002/smll.201704443 – ident: e_1_2_7_96_1 doi: 10.1021/acsenergylett.7b00751 – ident: e_1_2_7_106_1 doi: 10.1016/j.nanoen.2019.04.066 – ident: e_1_2_7_58_1 doi: 10.1039/C7TA11154A – ident: e_1_2_7_2_1 – ident: e_1_2_7_110_1 doi: 10.1002/adma.201802509 – ident: e_1_2_7_17_1 doi: 10.1126/science.1243982 – ident: e_1_2_7_74_1 doi: 10.1021/acsami.6b11393 – ident: e_1_2_7_73_1 doi: 10.1021/acs.jpclett.5b02597 – ident: e_1_2_7_154_1 doi: 10.1039/C7SE00100B – ident: e_1_2_7_155_1 doi: 10.1016/j.joule.2018.01.009 – ident: e_1_2_7_49_1 doi: 10.1016/j.electacta.2013.03.036 – ident: e_1_2_7_119_1 doi: 10.1002/solr.201800216 – ident: e_1_2_7_147_1 doi: 10.1021/acsenergylett.7b00171 – ident: e_1_2_7_116_1 doi: 10.1002/adma.201905143 – ident: e_1_2_7_152_1 doi: 10.1039/C6TA08332C – ident: e_1_2_7_48_1 doi: 10.1002/cphc.201900447 – ident: e_1_2_7_40_1 doi: 10.1039/C9TC04164H – ident: e_1_2_7_13_1 doi: 10.1002/cssc.201702221 – ident: e_1_2_7_112_1 doi: 10.1002/adma.201705393 – ident: e_1_2_7_124_1 doi: 10.1002/adma.201901152 – ident: e_1_2_7_45_1 doi: 10.1002/solr.201800239 – ident: e_1_2_7_90_1 doi: 10.1021/acsami.9b23384 – ident: e_1_2_7_69_1 doi: 10.1002/adma.201900605 – ident: e_1_2_7_149_1 doi: 10.1021/acsenergylett.6b00402 – ident: e_1_2_7_91_1 doi: 10.1002/adma.201800855 – ident: e_1_2_7_22_1 doi: 10.1126/science.aax3878 – ident: e_1_2_7_115_1 doi: 10.1002/solr.201800315 – ident: e_1_2_7_64_1 doi: 10.1038/s41467-018-04636-4 – ident: e_1_2_7_77_1 doi: 10.1002/anie.201800019 – ident: e_1_2_7_85_1 doi: 10.1016/j.jpowsour.2018.07.091 – ident: e_1_2_7_146_1 doi: 10.1021/acs.jpclett.8b02555 – ident: e_1_2_7_50_1 doi: 10.1016/S0022-0248(01)01972-8 – ident: e_1_2_7_88_1 doi: 10.1002/anie.202000199 – ident: e_1_2_7_16_1 doi: 10.1002/adma.201502567 – ident: e_1_2_7_102_1 doi: 10.1002/aenm.201803572 – ident: e_1_2_7_38_1 doi: 10.1021/acsenergylett.7b00257 – ident: e_1_2_7_80_1 doi: 10.1038/nenergy.2016.194 – ident: e_1_2_7_150_1 doi: 10.1021/jp5126624 – ident: e_1_2_7_54_1 doi: 10.1002/solr.201900287 – ident: e_1_2_7_140_1 doi: 10.1038/ncomms15684 – ident: e_1_2_7_27_1 doi: 10.1038/1821436a0 – ident: e_1_2_7_109_1 doi: 10.1038/s41467-019-12678-5 – ident: e_1_2_7_107_1 doi: 10.1007/s11426-019-9486-0 – ident: e_1_2_7_168_1 doi: 10.1002/aenm.201600474 – ident: e_1_2_7_93_1 doi: 10.1002/aenm.201502458 – ident: e_1_2_7_46_1 doi: 10.1002/anie.201907331 – ident: e_1_2_7_61_1 doi: 10.1016/j.isci.2019.04.025 – ident: e_1_2_7_72_1 doi: 10.1021/acs.jpclett.5b00968 – ident: e_1_2_7_92_1 doi: 10.1002/solr.201800075 – ident: e_1_2_7_55_1 doi: 10.1038/s41467-018-03169-0 – ident: e_1_2_7_18_1 doi: 10.1038/s41563-018-0018-4 – ident: e_1_2_7_12_1 doi: 10.1002/adma.201900326 – ident: e_1_2_7_71_1 doi: 10.1002/aenm.201903751 – ident: e_1_2_7_135_1 doi: 10.1021/acs.jpcc.7b06268 – ident: e_1_2_7_56_1 doi: 10.1016/j.joule.2017.07.017 – ident: e_1_2_7_63_1 doi: 10.1016/j.joule.2018.05.004 – ident: e_1_2_7_14_1 doi: 10.1007/978-3-319-35114-8_3 – ident: e_1_2_7_19_1 doi: 10.1007/s00706-017-1933-9 – ident: e_1_2_7_66_1 doi: 10.1016/j.joule.2018.06.013 – ident: e_1_2_7_10_1 doi: 10.1021/acsenergylett.6b00499 – ident: e_1_2_7_122_1 doi: 10.1021/acsami.9b09171 – ident: e_1_2_7_126_1 doi: 10.1016/j.joule.2018.04.012 – ident: e_1_2_7_161_1 doi: 10.1002/solr.201800217 – ident: e_1_2_7_99_1 doi: 10.1002/aenm.201800504 – ident: e_1_2_7_1_1 doi: 10.1038/nnano.2014.181 – ident: e_1_2_7_86_1 doi: 10.1002/anie.201910843 – ident: e_1_2_7_70_1 doi: 10.1002/aenm.201901685 – ident: e_1_2_7_57_1 doi: 10.1021/acsenergylett.7b00508 – ident: e_1_2_7_160_1 doi: 10.1039/C7TA06816F – ident: e_1_2_7_41_1 doi: 10.1002/aenm.201800398 – ident: e_1_2_7_114_1 doi: 10.1002/solr.201900265 |
SSID | ssj0000491033 |
Score | 2.6700332 |
SecondaryResourceType | review_article |
Snippet | All‐inorganic perovskite semiconductors have recently drawn increasing attention owing to their outstanding thermal stability. Although all‐inorganic... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Composition Electron transport inorganic perovskite lead‐based lead‐free perovskites Optimization perovskite solar cells Perovskites Photovoltaic cells Physical properties Semiconductors Solar cells Thermal stability |
Title | Inorganic Halide Perovskite Solar Cells: Progress and Challenges |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.202000183 https://www.proquest.com/docview/2413318257 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfGdoHDtA0QHWPyYRKHKuDYSeNyWlWGummdQNukcooSf0hFVYpox4G_nuf4KxWf2yWqXDtR_H72-8h7PyN0IgaS1Dm4qVLBIs9olSWcVzQBd4gRrkWR1ibeMb0aTG6zi1k-i-m2bXXJun4jfvy2ruQhUoU2kKupkr2HZMNNoQF-g3zhChKG63_J-LyxhzKJ_gTMaalMPvvy-8oEZPvXxmftj9Vi0Sa9fTR5WGZXM4HysT9BZdW1TUc-HUDZekCwZe1LBO9-bqOlF6DuvniVB-2zuzYq-mmuI9Q-V0vbFlN-5hZ5bpyLNFASM6Lc5giqPBlwF49U3TZLuRR2VNJBji0ndso1qJ5fdm7LBFupxtADmPqhlLOoo_x3-dAz_3tfy-h7djUN_z9COxQ8CdgKd0bvp5fXIRAHLlJKWFuI4d_Pk3sS-nbzIZvGS_RIun5Na5jc7KFd51HgkYXHPtpSzQF60uGZfIpOA1CwBQqOQMEtUHALlHfYwwQDTHCEyTN0--HsZjxJ3NEZicioyTasBZO5YoUoZM41WL0qFVQzKQuudVFnKS005WIwzFmW80orQxpKZKEqbZwG9hxtN8tGvUBYpHqo61wzoqFrDSPIsDI0cRKEwMSwhxI_J6VwvPLmeJNFaRmxaWnmsAxz2EOvQ_-vllHljz2P_BSXbtWtSvMdGPQQaJoeou20_-Mu5QYMDh8y6CV6HNfDEdpef7tTr8AWXdfHDk0_ATrefgE |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inorganic+Halide+Perovskite+Solar+Cells%3A+Progress+and+Challenges&rft.jtitle=Advanced+energy+materials&rft.au=Tian%2C+Jingjing&rft.au=Xue%2C+Qifan&rft.au=Yao%2C+Qin&rft.au=Li%2C+Ning&rft.date=2020-06-01&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=10&rft.issue=23&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Faenm.202000183&rft.externalDBID=10.1002%252Faenm.202000183&rft.externalDocID=AENM202000183 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon |